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Propositions
accompanying the thesis

Enhancing Autonomy and E�ciency in
Goal-Conditioned Reinforcement Learning

1. In reset-free settings, model-based reinforcement learning is always prefe-
rable over model-free. [Chapter 3]

2. In deterministic tasks where we require a quick solution, stitching pre-
viously encountered high-reward trajectories (‘episodic memory’) is prefe-
rable over reinforcement learning. [Chapter 4 & 5]

3. Adaptive switching between episodic memory and reinforcement learning
gives both fast and optimal solutions. [Chapter 5]

4. When the agent reaches frontier goals, additional exploration near those
goals expands the agent’s knowledge boundary, leading to improved per-
formance. [Chapter 6]

5. Reinforcement learning agents should context-dependently decide when,
how and for how long to explore.

6. When downstream tasks are unknown, learning a world model should be
the primary objective of an reinforcement learning agent.

7. We should strive for autonomous reinforcement learning agents that re-
quire as few human interventions as possible.

8. Getting reinforcement learning to work requires reading, thinking, engi-
neering, experimenting, and organizing, and each aspect is indispensable.

9. If you do not yet have a clear goal in life, try to learn as much as possible
about the world, since it will enable you to quickly adapt to future goals.

Zhao Yang
Leiden, 26-02-2025
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Chapter 1

Introduction

A child who learns to walk integrates sensory feedback from the environment with
motor commands from the brain. We, as humans, first perceive the surrounding en-
vironment, gather visual, proprioceptive and tactile information and adjust our move-
ments accordingly to avoid falls or setbacks to learn to walk in a stable, fast fashion.
The aforementioned learning process is an example of reinforcement learning (RL): we
adjust our behavior based on the feedback we collect from the external environment
(Sutton & Barto, 2018). If we walk steadily and reach the desired locations sooner to
get food for survival, which is positive feedback, we reinforce the behaviors that create
such fast movements. In contrast, when we fall, we receive negative feedback. The
impact of hitting the ground creates pain. As a result, we avoid the behaviors that
lead to the fall. Although humans generally take 10 to 18 months to learn to walk by
following this reinforcement learning circle, we do not require external help and can
learn innately. This is the appeal of RL, that the learning occurs through trial and
error, in a self-improving way. In this thesis, we will discuss a computational way to
implement reinforcement learning, which is a popular subfield of artificial intelligence.

As an illustration, let’s imagine there is a humanoid robot called Bob that is
instructed to learn to walk. Bob is equipped with all different types of sensors for
capturing the surrounding information and more importantly, it is programmed with
a reward function that acts like our brain to score every action that Bob takes. The
reward will be higher when the movement is stable and swift, and lower if Bob falls
down. Bob dedicates itself to learning day and night, sometimes falling to the ground
and requiring human assistance for repairs. After several days of effort, Bob finally
masters the ability to walk.
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With walking mastered, Bob is instructed to learn to cook, cycle, play soccer, and
more. There are many more skills it can acquire and goals it can achieve. However,
the skills Bob mastered for walking might not be useful for new tasks. For example,
cooking requires Bob to stand and use its arm, rather than walk. Bob must develop
new skills for newly encountered tasks. This way, if the same task is commanded in
the future, Bob can execute the previously learned corresponding skill set. To learn
multiple tasks, Bob begins to adjust its behaviors based on the feedback given by the
reward function that changes with each new goal. Over time, Bob learns different skill
sets to accomplish different goals. This process is called goal-conditioned reinforcement
learning (GCRL), which is a generalization of standard RL and aims to learn multiple
tasks. In the example, GCRL enables Bob to learn more than just one task, with each
task linked to a specific reward function. In GCRL, the behavior learned is conditioned
on the given goal and adapts when the goal changes.

To complete the GCRL loop (Colas et al., 2022), Bob should follow three primary
steps and one optional step:

1. Define the goal space. Bob must first understand which goals are achievable
within its capabilities. For instance, Bob could set goals such as learning to walk
or cook. However, goals like flying would be unrealistic since Bob lacks wings.

2. Select a goal. Once the goal space is defined, Bob needs to choose a goal that
is interesting to pursue. For example, if Bob has already mastered walking, it
might find cooking more interesting and challenging as a new goal.

3. Reach the goal. After selecting a goal, Bob must devise a strategy to achieve
it. This could involve various learning methods such as learning through trail
and error, or imitating human behaviors.

4. Post-explore (optional). Even after achieving a goal, Bob can choose to con-
tinue exploring further and push beyond the initial goal to discover additional
capabilities or improvements. For example, after mastering walking, Bob might
continue to practice and eventually learn to run, finding that running is an ex-
tension of walking.

After the goal is achieved (step 3), Bob generally returns to step 2 to select a
new goal and repeat the process. Or it goes back to step 1 since the newly acquired
experience can also change / grow the goal space. Alternatively, Bob can opt for the
post-exploration phase (step 4) to further explore new possibilities. Intuitively, when
a goal is accomplished, Bob reaches the limit of its current abilities. By continuing

2



Chapter 1. Introduction

Figure 1.1: Four steps in the GCRL framework. We investigate four research questions
(RQ) in total. RQ1 in Chapter 3 proposes a new goal selection mechanism to deal with the
reset-free RL setting. RQ2 in Chapter 4 and RQ3 in Chapter 5 propose two non-parametric
methods to learn to solve the given task faster. RQ4 in Chapter 6 investigates the role of
post-exploration.

to push beyond these limits, it is likely to uncover new and exciting insights, thereby
learning new skills.

GCRL (Liu et al., 2022) is an extension of conventional RL that adapts it to a
multiple-goal setting. As illustrated by the example of Bob, GCRL enables the agent
to learn to achieve multiple goals rather than just one. In our complex society, everyone
must manage various roles and responsibilities, and ideally, we would want an AI agent
to emulate this versatility, becoming a generalist agent proficient in various fields.

Recent developments demonstrate that leveraging the GCRL framework can en-
able an agent to achieve remarkable feats. For instance, an agent trained using GCRL
is able to play StarCraft at the level of best human professional players (Vinyals et
al., 2019), a game that requires rapid decision-making and precise control; perform
hundreds of tasks (Mendonca et al., 2021), including object manipulation and locomo-
tion; or solve Rubik’s cube (Akkaya et al., 2019) with a robot hand. It also shows
tremendous potential in other fields, such as finance (Zheng et al., 2022), healthcare
(He et al., 2023) and energy management (Yi et al., 2022).

Training a generalist agent using GCRL takes four steps (illustrated in Figure 1.1),
each of which are researched individually or combined to improve the GCRL loop. We
now discuss each of these four steps and identify what is still missing.

As shown in Figure 1.1, the first step of the GCRL framework is to define the
goal space. The goal space defines the space of interest that the agent should learn to
achieve ultimately. It can be defined in several ways: the same as the state space, a

3



Research questions

sub-space of the entire state space (Ecoffet et al., 2021; Plappert et al., 2018), or an
embedding space of the original state space (Mendonca et al., 2021; Péré et al., 2018).
After having a goal space, we need to specify a goal sampling strategy to sample goals
from the defined goal space (see the step 2 in Figure 1.1).

A default approach for sampling goals is uniform sampling, which assumes that
every goal is equally important to learn. However, previous research also shows that
biasing the sampling towards frontier states (Pitis et al., 2020; Pong et al., 2019) or
goals on which the agent has learning progress (Florensa et al., 2018; Portelas et al.,
2020) can lead to better performance.

When a goal is selected (see the step 3 in Figure 1.1), the agent can be trained to
reach the goal using goal-conditioned policies (Rahman et al., 2023; Schaul, Horgan,
et al., 2015; Z. Zhang et al., 2023) or online planning (Hansen et al., 2022; Sancaktar et
al., 2022). Afterwards, if the agent achieves the selected goal or exhausts the assigned
budget for reaching it, it can opt for performing additional exploration (Ecoffet et al.,
2021; E. S. Hu et al., 2023), which we call post-exploration. As illustrated in the
fourth step of Figure 1.1, by engaging in post-exploration, the robot ventures into new
areas and expands the frontier of its capabilities.

Although extensive research has already been conducted on each step of the GCRL
framework, in this thesis, we have identified several drawbacks in current methods: 1)
Current goal selection strategies are designed for conventional episodic RL settings,
and they fail in other scenarios, for example, in settings where there is no reset. 2)
After an interesting goal (e.g. the frontier state) is selected, an under-trained goal-
conditioned policy might be lagging behind and not able to reach it, which slows down
the learning process. 3) While performing additional exploration after reaching a goal
(post-exploration) enhances performance, a direct comparison with the agent without
post-exploration is lacking. In this thesis, we investigate the aforementioned problems
of existing methods and propose various new approaches to overcome these drawbacks,
thereby improving the GCRL framework.

1.1 Research questions
We research four questions in total (see Figure 1.1), one on step 2 (we propose a goal
selection strategy to tackle the RL setting where there is no reset), two on step 3 (we
propose two non-parametric methods to reach the goal faster) and one on step 4 (we
investigate the role of post-exploration). The research questions we aim to answer in
the thesis are as follows:

4



Chapter 1. Introduction

Q1 Can RL agents learn without access to a ‘reset’?[Chapter 3]

(step 2) RL agents typically need to be reset to their initial
states after achieving a goal, starting the process over again.
For example, once a quadruped robot completes a loading task
in the factory, it will be moved to a designated location and
its angles of joints will be restored to their default positions,
preparing it for the next task. Additionally, if the robot gets
stuck along the way, human intervention is required to free it
so

it can continue its task. Ideally, an RL agent should be able to operate au-
tonomously and manage to escape from deadlock states, restore its joints, and
move itself to designated locations as needed. In the GCRL framework, the be-
haviors of agents largely depend on commanded goals, making intelligent goal
selection crucial for effective exploration and navigation. We demonstrate that
by selecting goals appropriately, GCRL agents can operate without the access
to the reset method. On the contrary, they can perform reset behaviors by
themselves. This process occurs without human intervention, thus being more
autonomous.

Q2 Can non-parametric methods be applied to tasks with a continuous
action space to achieve faster learning? [Chapter 4]

(step 3) Learning signals in RL are slowly back-propagated,
especially when combined with parametric function approxi-
mations (e.g. deep neural networks). Rather than using RL
to learn to achieve goals, previous research shows that non-
parametric methods such as episodic control (Blundell, Uria,
Pritzel, Li, Ruderman, Leibo, Rae, et al., 2016) can learn faster
in Atari (Bellemare et al., 2013) and Labyrinth tasks, which all
have discrete action spaces. We instead study if episodic contr-

ol methods can also be applied to tasks with a continuous action space and, if
so, how we can implement it to achieve faster learning, as it does in tasks with
a discrete action space.

Q3 Can non-parametric and parametric methods be combined to achieve
both fast learning and optimality? [Chapter 5]

5



Outline of this thesis

(step 3) Non-parametric methods (episodic control) overwrite
the previous solution by the newly encountered better solution.
Consequently, it keeps track of the best solution quickly, even
if such a solution might occur with low probability. Unlike RL,
in tasks with stochasticity, episodic control is unable to store
the optimal solution. In essence, RL is slow but capable of
finding the optimal solution, while episodic control is fast but
tends to

be non-optimal. We investigate whether it is possible to combine episodic con-
trol with RL methods to leverage the advantages of both. Specifically, can we
achieve the speed of episodic control while also attaining the optimality of RL?

Q4 What benefits can post-exploration introduce compared to not having
it? [Chapter 6]

(step 4) Optionally, when the selected goal is achieved, RL
agents can choose to explore additionally and hopefully step
into the unknown area. We call the exploration after the goal
has been achieved ‘post-exploration’. Go-Explore (Ecoffet et al.,
2021) implements the post-exploration idea as an RL agent and
shows strong performance on extremely hard exploration tasks.
However, it is not clear why the agent with post-exploration o-

utperforms the one without and whether it can be extended to more general cases.
We investigate why post-exploration is helpful and conduct a more explicit com-
parison between the agent with it and without by turning it on and off in the
same RL algorithm within a more general GCRL framework, under both tabular
and deep RL settings in discrete navigation and continuous control tasks.

1.2 Outline of this thesis
The stucture of this thesis is as follows. In Chapter 2, we provide the necessary
background for understanding the work presented: RL and GCRL as well as its four
main algorithmic design choices. Chapter-specific preliminaries will be introduced in
each chapter separately.

Then, in Chapter 3, we propose a model-based reset-free (MoReFree) agent to
tackle the reset-free RL setting where there is no access to a reset mechanism. By using
world models and commanding the GCRL agent on three different goal distributions,
MoReFree can eliminate the need for reset and result in a more autonomous agent.

6



Chapter 1. Introduction

MoReFree outperforms state-of-the-art methods tailored for reset-free RL setting with
regard to data efficiency and asymptotic performance.

In Chapter 4, we propose a non-parametric method called continuous episodic
control (CEC) that can learn to achieve goals faster. Since the original non-parametric
method episodic control (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al.,
2016) only works for tasks with a discrete action space, we extend it to be able to
solve tasks with a continuous action space and examine it on several robotic control
tasks. Results show that CEC has a superior learning speed than conventional deep
RL methods while obtaining competitive asymptotic performance.

Non-parametric methods (episodic control) overwrite the existing solutions with
better ones as they are encountered. These methods learn faster but are non-optimal
in stochastic tasks. In Chapter 5, we combine episodic control with RL to form one
united agent, which switches between the two agents to gain benefits from both sides,
i.e. the speed of episodic control and optimality and generalizability of RL.

In Chapter 6, we present the work on post-exploration, where we systematically in-
vestigate how additional exploration after the selected goal is achieved (post-exploration)
enhances the performance under tabular and deep RL settings in discrete navigation
and continuous control tasks. We find that the agent with post-exploration discovers
more of the state space compared to the one without.

Finally, in Chapter 7 we reflect on the work presented in this thesis and the field
of goal-conditioned RL as a whole, and propose potential directions for future work.
At the end, we summarize the main conclusion.
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Chapter 2

Preliminaries

In this chapter, we explain the necessary concepts, definitions, and notations for under-
standing the entire thesis. Chapter-specific concepts are explained within each chapter.
First, we introduce reinforcement learning, a framework used to solve decision-making
problems. Then, reinforcement learning will be extended to the goal-conditioned set-
ting, where the agent needs to learn policies conditioned on different goals. In the
end, related work on four fundamental phases of the goal-conditioned reinforcement
learning framework is briefly discussed.

2.1 Reinforcement learning

Reinforcement learning (RL) is a framework to solve sequential decision-making prob-
lems, which are formalized as Markovian decision processes (MDPs). In this thesis,
we follow the definition and notations of MDP introduced by Sutton and Barto, 2018.
A MDP is a 5-tuple, < S,A, p, r, γ >, where:

• S is a set of states, called the state space.

• A is a set of actions, called the action space.

• p(s′|s, a) .
= Pr(St = s′|St−1 = s,At−1 = a) is the transition dynamic, which

defines the probability of transitioning from state s to s′ after taking the action
a at time step t. s, s′ ∈ S are states and St is the state at time t. Similarly,
a ∈ A is the action and At is the action at time t.

9
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Figure 2.1: The agent-environment interaction in a MDP (Sutton & Barto, 2018). The
agent observes the state St and takes the action At in the environment. The environment
returns the next state St+1 and reward Rt+1. Then the process repeats.

• r(s, a, s′) is the reward function, which produces the intermediate reward Rt
.
=

r(s, a, s′|St−1 = s,At−1 = a, St = s′), i.e. after transitioning from s to s′ by
taking action a.

• γ is the discount factor ranging from [0, 1].

The agent-environment interaction is shown in Figure 2.1. At time step t, the
agent observes the state St. Then, according to a policy π : S → Pr(A), the agent
chooses an action At ∼ π(At|St). Next, the action At is executed and influences the
environment to transition from St to St+1 based on the transition dynamic p. At the
same time, the agent gets a reward Rt+1. The agent observes the new state St+1, then
the process repeats. We are interested in the long-term performance of the agent, thus
we would like to maximize the cumulative future reward that the agent can get. The
cumulative future reward (also called return G) at the time step t can be written as:

Gt
.
= Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ... =

∞∑

k=0

γk ·Rt+k+1. (2.1)

We define the value function Vπ(s) of the state s as the expected return starting from
the state s, following the policy π and transition dynamic p:

V π(s)
.
= Eπ,p[Gt|St = s]. (2.2)

The equation can be written in a recursive format, known as the Bellman equation:

V π(s) = Ea∼π(·|s),s′∼p(·|s,a)[r(s, a, s
′) + γ · V π(s′)]. (2.3)
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The state-action value function Qπ(s, a) is defined as the expected return starting from
the state s and taking the action a, and following the policy π afterwards, based on
the transition dynamic p:

Qπ(s, a)
.
= Eπ,p[Gt|St = s,At = a]. (2.4)

Similarly, the state-action value function can be rewritten in a recursive format as
well:

Qπ(s, a) = Es′∼p(·|s,a)[r(s, a, s
′) + γ · Ea′∼π(·|s′)[Q

π(s′, a′)]]. (2.5)

The objective of RL is to find a policy π∗ that maximizes the state-action value
function:

π∗ .
= argmax

π
Qπ(s, a). (2.6)

2.2 Goal-conditioned reinforcement learning

Goal-conditioned reinforcement learning (GCRL) extends RL to a multiple-goal setting
to solve goal-conditioned MDP, which is defined as < S,A, p, r, γ,G >, where G is a
set of goals called the goal space. For any goal g ∈ G, the reward function will also
take the goal g as input, denoted as r(s, a, s′, g) (Schaul, Horgan, et al., 2015), which
provides the reward for achieving the goal g. We can then rewrite the goal-conditioned
state value function and state-action value function in a similar way as Equations (2.3)
and (2.5):

V π(s, g) = Ea∼π(·|s,g),s′∼p(·|s,a)[r(s, a, s
′, g) + γ · V π

g (s′, g)],

Qπ(s, a, g) = Es′∼p(·|s,a)[r(s, a, s
′, g) + γ · Ea′∼π(·|s′,g)[Q

π(s′, a′, g)]],
(2.7)

where π now takes an additional input g to be a goal-conditioned policy. The objective
of GCRL is to find a policy π∗ that maximizes the state-action value function over all
goals (Liu et al., 2022):

π∗ .
= argmax

π
Eg∼pg Q

π(s, a, g), (2.8)

where pg represents the desired goal distribution.
As we discussed in Chapter 1, a typical GCRL framework comprises four phases

(as detailed in Table 2.1): 1) defining the goal space; 2) selecting an interesting goal for
the agent; 3) the agent learning to reach the goal; 4) the agent post-exploring. Each of
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Table 2.1: Commonly used methods for each step in the GCRL framework (see Figure 1.1).
Representative references are added in the table and more extensive references can be found
in the text. GCP is short for goal-conditioned policy and MB is short for model-based.

1. Define the goal
space

2. Select a goal 3. Reach the goal 4. Post-explore

State space (Ecof-
fet et al., 2021;
Plappert et al.,
2018)

Frontier states
(Pitis et al., 2020;
Pong et al., 2019)

GCP (Hafner et
al., 2023; Schaul,
Horgan, et al.,
2015)

Random (Ecoffet
et al., 2021)

Learned (Eysen-
bach et al., 2022;
Mendonca et al.,
2021)

Learning progress
(Florensa et al.,
2018; Portelas et
al., 2020)

MB planning
(Hansen et al.,
2023)

Intrinsic reward
(Sekar et al., 2020;
Zhu et al., 2020)

Others (Fu et al.,
2019; Jiang et al.,
2022)

Others (E. S. Hu
et al., 2023; C. Lu
et al., 2024)

Others (Blundell,
Uria, Pritzel, Li,
Ruderman, Leibo,
Rae, et al., 2016;
Ecoffet et al.,
2021)

Others (Klissarov
et al., 2023)

these steps has been studied either independently or in conjunction with others. We
now provide an overview of commonly used methods for each step. A summary can
be found in Table 2.1. It is important to note that while some of these works may
not have been explicitly studied within the GCRL framework, they can essentially be
adapted and integrated into the GCRL framework with minimal modifications.

2.2.1 Define the goal space

To ensure that the training goals align with the evaluation goals, it is essential to
define a goal space that matches or covers the area of interest for evaluation. Typically,
evaluation focuses on a sub-space of the entire state space. For instance, in the Fetch-
Push task 1, although the state space of the block covers the whole table, the robot
is only required to push the block to goals sampled from the center area of the table
during evaluation, rather than the entire table. Thus, a pre-defined sub-space of the
state space is generally used for sampling goals in tasks with a continuous state space
(Plappert et al., 2018; X. Yang et al., 2021; Yu et al., 2019). In tasks with a discrete
state space, specific states are selected (e.g. states that can lead to more exploration
potential) to form a pool representing the goal space (Ecoffet et al., 2021; Kompella

1The Fetch-Push task can be found in https://robotics.farama.org/envs/fetch/push/
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et al., 2022).
When dealing with high-dimensional state spaces, such as images, the original state

space may contain excessive distracting information. Therefore, a more compact latent
space can be learned using techniques such as a self-predictive objective (Hansen et al.,
2023; Schwarzer et al., 2020), contrastive loss (Eysenbach et al., 2022; Poudel et al.,
2024), or reconstruction loss (Hafner et al., 2023; Mendonca et al., 2021), which can
then be utilized as the goal space.

Besides using the original state space or a learned latent space thereof, language
itself offers a compact and abstract representation that can be used as a goal space
(Chevalier-Boisvert et al., 2024; Fu et al., 2019). Moreover, the integration of multi-
modal goals, which combines both languages and images (Jiang et al., 2022), can
further provide a richer goal space.

Although our thesis does not focus on how to better define a goal space, it is a
crucial aspect of the GCRL framework in general.

2.2.2 Select a goal

The exploration of the GCRL agent largely depends on the selected goals, which serve
as guidance to indicate the next area of interest for the agent. Once the goal space
is defined, the most straightforward approach to select goals from the goal space is
uniform sampling, where each goal in the goal space is sampled with equal probability.
However, as learning progresses, certain goals may become more relevant than others.
For instance, after the agent masters nearby goals, it may be more beneficial to focus on
goals that are slightly farther away, but not too distant (e.g. the step 2 in Figure 1.1).

Various strategies have been developed to select goals dynamically. Skew-fit (Pong
et al., 2019) and MEGA (Pitis et al., 2020) focus on selecting frontier states as goals
by first estimating state density and then choosing states with lower densities. These
methods encourage the agent to explore less-visited areas of the state space. AMIGo
(Campero et al., 2021) trains two agents in an adversarial fashion: one agent is trained
to select challenging goals for another agent, which then attempts to reach these se-
lected goals. This approach ensures continuous improvement for both learning agents,
encouraging the goal-selecting agent to select interesting goals progressively. Goal-
GAN (Florensa et al., 2018) selects goals based on their difficulty, and goals that are
neither too easy nor too difficult are selected for the agent to achieve. Similarly, se-
lecting goals where the agent demonstrates learning progress (Portelas et al., 2020)
has also shown to be effective. PEG (E. S. Hu et al., 2023) focuses on goals that offer
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the most exploration potential, driving the agent toward the most informative parts
of the state space.

Recently, foundation models have demonstrated a profound understanding of the
real world, characterized by their ability to master a wide range of tasks and domains.
Consequently, they can be directly utilized to inform the agent about which goals to
pursue (C. Lu et al., 2024).

Unlike the goal selection strategy we propose in Chapter 3, which is designed
especially for a more realistic and autonomous RL scenario where the expensive reset
is eliminated, the methods discussed here are tailored for the conventional episodic
RL setting and often fail in the more challenging reset-free setting. More specifically,
these methods cannot deal with over-exploration, a challenge that is introduced by
the reset-free setting.

2.2.3 Reach the goal

After the goal is selected, goal-conditioned policies / value functions (Schaul, Horgan,
et al., 2015) are usually deployed to learn to reach the given goal. On the other
hand, since the process of learning to reach the goal is a decision-making problem
formulated as a MDP, any methods that solve an MDP can be used here. Meanwhile,
RL methods might not always be the best choice due to their poor performance under
certain scenarios, such as low data regime, or in the setting where a dynamic model
is given or learned, methods beyond reinforcement learning are also used to fulfill the
given goal.

If access to the underlying tasks / environments is available, then the agent can be
directly teleported to the selected goal and then post-explores (Ecoffet et al., 2021).
It saves a massive amount of learning time but having such oracle access is impos-
sible and unrealistic in real life. When a dynamic model is given / learned, besides
training goal-conditioned policies/value functions from synthetic data generated by
the dynamic model (Hafner et al., 2023), model-based planning can also be utilized
to find the solution to the given goal (Hansen et al., 2023; Schrittwieser et al., 2020).
Other methods like imitation learning (Ding et al., 2019; Reuss et al., 2023), evolu-
tion strategies (Salimans et al., 2017) or episodic control (Blundell, Uria, Pritzel, Li,
Ruderman, Leibo, Rae, et al., 2016; H. Hu et al., 2021) can also be used to learn to
reach the goal.

In Chapters 4 and 5, we explore the application of episodic control, a non-parametric
approach known for its superior learning speed (Blundell, Uria, Pritzel, Li, Ruderman,
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Leibo, Rae, et al., 2016), for reaching the goal. We first extend the previous episodic
control to tasks with a continuous action space in Chapter 4. Then, to address its
inherent limitation (i.e. non-optimality), we propose to combine episodic control with
deep RL Chapter 5, achieving both fast learning and better final performance.

2.2.4 Post-explore

When the selected goal or the allocated budget is reached, the agent may post-explore.
This differs from the exploration in typical RL paradigms, where the exploration and
exploitation are alternated (e.g. ε-greedy) or integrated (e.g. adding policy entropy
regularization). In contrast, post-exploration is pure exploration, focusing entirely on
exploring the environment without considering any task-specific rewards.

Essentially, any exploration approaches can be used for post-exploration. The
most straightforward approach is random exploration (Ecoffet et al., 2021; Pong et
al., 2019), which, despite its simplicity, has demonstrated strong performance. More
sophisticated exploration mechanisms that seek novel states based on intrinsic reward
(distinct from extrinsic reward provided by the environment) are also applicable.

For instance, Random Network Distillation (RND) (Burda et al., 2018) encourages
the agent to seek novel states by maximizing the prediction error between a fixed
randomly initialized network and a predictor network. In this setup, the predictor
network is trained to predict the random network’s output, with larger prediction
errors indicating more novel states. Another method, Intrinsic Curiosity Module (ICM)
(Pathak et al., 2017), rewards the agent based on the prediction error between the
predicted and the real next state. ICM stimulates the agent to collect states that lead
to more accurate prediction, effectively targeting less frequently encountered states.
Plan To Explore (P2E) (Sekar et al., 2020) is a model-based exploration method
that is trained to maximize the disagreement among outputs of an ensemble of world
models, encouraging the agent to visit states that can improve world models the most.

Foundation models, as we described in Section 2.2.3, show profound understandings
of the world. They can be used to provide preferences over states (Klissarov et al.,
2023), which are then used to guide the exploration in a manner that aligns with the
heuristics and insights of the used foundation models.

Whereas the paper that first introduces the idea of post-exploration illustrates that
RL agents equipped with post-exploration can solve extremely challenging exploration
tasks (Ecoffet et al., 2021), it lacks a direct comparison with agents that do not employ
post-exploration. The underlying reasons why post-exploration enhances performance
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remains unclear. Therefore, in Chapter 6, we conduct a systematic investigation on
post-exploration by turning it on and off within the same RL agent and qualitatively
analyse why post-exploration facilitates stronger performance.

Four primary steps of the GCRL framework in Figure 1.1 are discussed above and
the chapters presented later focus on the step 2, 3 and 4. In Chapter 3, we work
on the step 2 where a goal sampling strategy is proposed to tackle the reset-free RL
setting. Chapter 4 and Chapter 5 study the step 3, and propose two non-parametric
methods to learn the given task faster. Post-exploration (the step 4) is investigated
in Chapter 6.
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Abstract
Reinforcement learning (RL) is an appealing paradigm for training intelligent agents,
enabling policy acquisition from the agent’s own autonomously acquired experience.
However, the training process of RL is far from automatic, requiring extensive human
effort to reset the agent and environments.

To tackle the challenging reset-free setting, we first demonstrate the superiority of
model-based (MB) RL methods in such setting, showing that a straightforward applica-
tion of MBRL can outperform all the prior state-of-the-art methods while requiring less
supervision. We then identify limitations inherent to this direct extension and propose
a solution called model-based reset-free (MoReFree) agent, which further enhances the
performance. MoReFree adapts two key mechanisms, exploration and policy learning,
to handle reset-free tasks by prioritizing task-relevant states. It exhibits superior
data-efficiency across various reset-free tasks without access to environmental reward
or demonstrations while significantly outperforming privileged baselines that require
supervision. Our findings suggest model-based methods hold significant promise for
reducing human effort in RL. Website: https://sites.google.com/view/morefree
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3.1 Introduction

Reinforcement learning presents an attractive framework for training capable agents.
At first glance, RL training appears intuitive and autonomous - once a reward is
defined, the agent learns from its own automatically gathered experience. However,
in practice, RL training often assumes the access to environmental resets that can
require significant human effort to setup, which poses a significant barrier for real
world applications of RL like robotics.

Most RL systems on real robots to date have employed various strategies to imple-
ment resets, all requiring a considerable amount of effort (Levine et al., 2016; Naga-
bandi et al., 2020; Yahya et al., 2017; Zhu et al., 2019). In Nagabandi et al. (2020)’s
work, which trains a dexterous hand to rotate balls, the practitioners had to (1) posi-
tion a funnel underneath the hand to catch dropped balls, and (2) deploy a separate
robot arm to pick up the dropped balls for resets, and (3) script the reset behav-
ior. These illustrate that even for simple behaviors, proper implementation of reset
mechanisms can result in significant human effort and time.

Figure 3.1: Performance and collected data
of different agents on the reset-free Ant loco-
motion task.

Rather than depending on human-
engineered reset mechanisms, the agent
can operate within a reset-free training
scheme, learning to reset itself (Eysen-
bach et al., 2017; Haldar et al., 2023;
Sharma, Gupta, et al., 2021; Sharma
et al., 2022) or train a policy capable
of starting from diverse starting states
(Zhu et al., 2020). However, the absence
of resets introduces unique exploration
challenges. Without periodic resets, the
agent can squander significant time in
task-irrelevant regions that require care-
ful movements to escape and may overex-
plore, never returning from indefinite exploration. Recent unsupervised model-based
RL (MBRL) approaches (E. S. Hu et al., 2023; Mendonca et al., 2021) in the episodic
setting have shown sophisticated exploration, high data-efficiency and promising re-
sults in long-horizon tasks. This prompts the question: would MBRL agents excel in
the reset-free RL setting?

As an initial attempt, we first evaluate an unsupervised MBRL agent, in a reset-
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free Ant locomotion task. The ant is reset to the center of a rectangular arena, and is
tasked with navigating to the upper right corner. The agent is reset only once at the
start of training. The evaluation is episodic - the agent is reset at the start of each
evaluation episode.

For the MBRL agent, we use PEG (E. S. Hu et al., 2023), which was developed
to solve hard exploration tasks in the episodic setting. As seen in Figure 3.1, PEG,
with minor modifications for the reset-free version, outperforms prior state-of-the-art,
model-free agent, IBC (J. Kim et al., 2023), tailored for the reset-free setting.

In Figure 3.1, we plot state visitation heatmaps of the agents, where lighter colors
correspond to more visitations. The oracle agent, with access to resets, explores the the
“task-relevant” area between the initial and top right corner, which is ideal for training
a policy that succeeds in episodic evaluation. IBC’s heatmap (bottom) shows that it
fails to explore effectively, never encountering the goal states in the top right region.
In contrast, PEG exhaustively explores the entire space, as seen through its uniform
heatmap. This results in an overexploration problem - PEG may devote considerable
time on finding irrelevant states rather than concentrating on the task-relevant region
of the task. This leads us to ask: how can MBRL agents acquire more task-
relevant data in the reset-free setting to improve its performance?

We propose Model-based, Reset-Free (MoReFree), which improves two key mech-
anisms in model-based RL, exploration and policy optimization, to better handle reset-
free training. Following the top row of Figure 3.2: to gather task-relevant data without
resets, we define a training curriculum that alternates between temporally extended
phases of task solving, resetting, and exploration. Next, as seen in the bottom row
of Figure 3.2, we bias the policy training within the world model towards achieving
task-relevant goals such as reaching initial states and evaluation states.

Our key contributions are as follows: (1) We demonstrate the viability of using
model-based agents with strong exploration abilities for the reset-free setting as well as
their inherent limitations. We address such limitations through the MoReFree frame-
work which focuses exploration and policy optimization on task-relevant states. (2)
We evaluate the adapted reset-free version of MBRL baseline and MoReFree against
state-of-the-art reset-free methods in 8 challenging reset-free tasks ranging from ma-
nipulation to locomotion. Notably, both model-based approaches outperform prior
state-of-the-art baselines in 7/8 tasks in final performance and data efficiency, all the
while requiring less supervision (e.g. environmental reward or demonstrations). MoRe-
Free outperforms the model-based baseline in the 3 hardest tasks. (3) We perform
in-depth analysis of the MoReFree and baselines behaviors, and show that MoReFree
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explores the state space thoroughly while retaining high visitation counts in the task-
relevant regions. Our ablations show that the performance gains of MoReFree come
from the proposed design choices and justify the approach.

: sampled goal              : goal-cond. policy        : exploration policy 

: sampled goal              : goal-cond. policy

: sampled goalImagined Practice Achieving 
Eval Goal

Practice Achieving 
Initial State

Practice Achieving 
Random State

∞ …

Real

Figure 3.2: MoReFree is a model-based RL agent for solving reset-free tasks. Top row:
MoReFree strikes a balance between exploring unseen states and practicing optimal behavior
in task-relevant regions by directing the goal-conditioned policy to achieve evaluation states,
initial state states (emulating a reset), and exploratory goals. Bottom row: MoReFree
focuses the goal-conditioned policy training inside the world model on achieving evaluation
states, initial states, and random replay buffer states to better prepare the policy for the
aforementioned exploration scheme.

3.2 Related Work
Reset-free RL: There is a growing interest in researching reinforcement learning
methods that can effectively address the complexities of reset-free training. Sharma,
Xu, et al., 2021 proposes a reset-free RL benchmark (EARL) and finds that standard
RL methods like SAC (Haarnoja, Zhou, Hartikainen, et al., 2018) fail catastrophically
in EARL. Multiple approaches have been proposed to address reset-free training, which
we now summarize. One approach is to add an additional reset policy, to bring the
agent back to suitable states for learning (Eysenbach et al., 2017; J. Kim et al., 2022,
2023; Sharma, Gupta, et al., 2021; Sharma et al., 2022). LNT (Eysenbach et al., 2017)
and J. Kim et al., 2022 train a reset policy to bring the agent back to initial state
distribution, supervised by dense rewards and demonstrations respectively. MEDAL
(Sharma et al., 2023, 2022), train a goal-conditioned reset policy and direct it to
reset goal states from demonstrations. IBC (J. Kim et al., 2023) defines a curriculum
for both task and reset policies without requiring demonstrations. VaPRL (Sharma,
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Gupta, et al., 2021) trains a single goal-conditioned policy to reach high value states
close to the initial states. Instead of guiding the agent back to familiar states, R3L
(Zhu et al., 2020) and Xu et al., 2020 learn to reset the policy to diverse initial states,
resulting in a policy that is more robust to variations in starting states. However, such
methods are limited to tasks where exploration is unchallenging. The vast majority
of reset-free approaches are model-free, with a few exceptions (K. Lu, Grover, et al.,
2020; K. Lu, Mordatch, & Abbeel, 2020). Other works (Gupta et al., 2021; Smith
et al., 2019) model the reset-free RL training process as a multi-task RL problem and
require careful definition of the task distribution such that the tasks reset each other.

Goal-conditioned Exploration: A common theme running through the afore-
mentioned work is the instantiation of a curriculum, often through commanding goal-
conditioned policies, to keep the agent in task-relevant portions of the environment
while exploring. Closely related is the subfield of goal-conditioned exploration in RL,
where a goal-conditioned agent selects its own goals during training time to generate
data. There is a large variety of approaches for goal selection, such as task progress
(Baranes & Oudeyer, 2013; Veeriah et al., 2018), intermediate difficulty (Florensa
et al., 2018), value disagreement (Y. Zhang et al., 2020), state novelty (Pitis et al.,
2020; Pong et al., 2019), world model error (E. S. Hu et al., 2023; Sekar et al., 2020),
and more. Many goal-conditioned exploration methods use the “Go-Explore” (Ecoffet
et al., 2021) strategy, which first selects a goal and runs the goal-conditioned pol-
icy (“Go”-phase), and then switches to an exploration policy for the latter half of
the episode (“Explore”-phase). PEG (E. S. Hu et al., 2023), which MoReFree uses,
extends Go-Explore to the model-based setting, and utilizes the world model to plan
states with higher exploration value as goals. However, such methods are not designed
for the reset-free RL setting, and may suffer from over-exploration of task-irrelevant
states.

Table 3.1: A conceptual overview of reset-free methods. Existing methods are model-free,
and most of them require other forms of supervision (environmental reward or demonstra-
tions or both). In performance, MoReFree improves over reset-free PEG, which significantly
outperforms privileged baselines IBC, MEDAL and R3L.

Approach MEDAL IBC VaPRL R3L reset-free PEG MoReFree
Model-based ! ! ! ! " "

Demonstrations " ! " ! ! !
Environmental reward " " " ! ! !

We notice that the majority of all prior work are model-free and may suffer from
poor sample efficiency and exploration issues. In contrast, our model-based approaches
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use world models to efficiently train policies and perform non-trivial goal-conditioned
exploration with minimal supervision. See Table 3.1 for a conceptual comparison
between prior work and two model-based methods (MoReFree and reset-free PEG).

3.3 Preliminaries

3.3.1 Reset-free RL

We follow the definition of reset-free RL from EARL (Sharma, Xu, et al., 2021), and
extend it to the goal-conditioned RL setting. Consider the goal-conditioned Markov
decision process (MDP) M = (S,G,A, p, r, ρ0, ρg∗ , γ). At each time step t in the state
st ∈ S, a goal-conditioned policy π(·|st, g) under the goal command g ∈ G selects an
action at ∈ A and transitions to the next state st+1 with the probability p(st+1|st, at),
and gets a reward r(st, at, g). ρ0 is the initial state distribution, ρg∗ is the evaluation
goal distribution, and γ is the discount factor.

The learning algorithm A is defined: {si, ai, si+1}t−1
i=0 $→ (at,πt), which maps the

transitions collected until the time step t to the action at the agent should take in the
non-episodic training and the best guess πt of the optimal policy π∗ on the evaluation
goal distribution (ρg∗). In reset-free training the agent will only be reset to the initial
state s0 ∼ ρ0 a few times. The evaluation of agents is still episodic. The agent always
starts from s0 ∼ ρ0, and is asked to achieve g ∼ ρg∗ . The evaluation objective for a
policy π is:

J(π) = Es0∼ρ0,g∼ρg∗ ,aj∼π(·|sj ,g),sj+1∼p(·|sj ,aj)[
T∑

j=0

γjr(sj , aj , g)], (3.1)

where T is the total time steps during the evaluation. The goal of algorithm A during
the reset-free training is to minimize the performance difference D(A) of the current
policy πt and the optimal policy π∗:

D(A) =
∞∑

t=0

(J(π∗)− J(πt)). (3.2)

In summary, the algorithm A should output an action at that the agent should take
in the non-episodic data collection and a policy πt that can maximize J(πt) at every
time step t based on all previously collected data.
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3.3.2 Model-based RL setup

Recent goal-conditioned MBRL approaches like LEXA (Mendonca et al., 2021) and
PEG (E. S. Hu et al., 2023) train goal-conditioned policies purely using synthetic data
generated by learned world models. Their robust exploration demonstrate significant
success in solving long-horizon goal-conditioned tasks. In the reset-free setting, strong
exploration is crucial, as the agent can no longer depend on episodic resets to bring it
back to task-relevant areas if it gets stuck. Therefore, we select PEG as the backbone
MBRL agent for its strong exploration abilities and sample efficiency.

PEG (E. S. Hu et al., 2023) is a model-based Go-Explore framework that extends
LEXA (Mendonca et al., 2021), an unsupervised goal-conditioned variant of Dream-
erV2 (Hafner et al., 2020). The following components are parameterized by θ and
learned:

world model: T̂θ(st|st−1, at−1)

goal conditioned policy: πG
θ (at|st, g) goal conditioned value: V G

θ (st, g)

exploration policy: πE
θ (at|st) exploration value: V E

θ (st)

(3.3)

The world model is a recurrent state-space model (RSSM) which is trained to
predict future states and is used as a learned simulator to train the policies and value
functions. The goal-conditioned policy πG

θ is trained to reach random states sampled
from the replay buffer. The exploration policy πE

θ is trained on an intrinsic motivation
reward that rewards world model error, expressed through the variance of an ensemble
(Sekar et al., 2020). Both policies are trained on simulated trajectory rollouts in the
world model.

! Self-supervised Goal-reaching Reward Function: Rather than assuming
access to the environmental reward, PEG learns its own reward function. PEG uses a
dynamical distance function (Hartikainen et al., 2019) as the reward function within
world models, which predicts the number of actions between a start and goal state.
The distance function is trained on random state pairs from imaginary rollouts of
πG
θ . πG

θ is then trained to minimize the dynamical distance between its states and
commanded goal state in imagination. See Mendonca et al., 2021 for more details.

! Phased Exploration via Go-Explore: For data-collection, PEG employs the
Go-Explore strategy. In the “Go”-phase, a goal is sampled from some goal distribution
ρ. The goal-conditioned policy, conditioned on the goal is run for some time horizon
HG, resulting in trajectory τg.

Then, in the “Explore”-phase, starting from the last state in the “Go”-phase, the
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exploration policy is run for HE steps, resulting in τe. The interleaving of goal-
conditioned behavior with exploratory behavior results in more directed exploration
and informative data. This in turn improves accuracy of the world model, and the
policies that train inside the world model. See Algorithm 1 and Algorithm 2 for pseu-
docode. The choice of goal distribution ρ is important for Go-Explore. In easier tasks,
the evaluation goal distribution ρg∗ may be sufficient. But in longer-horizon tasks,
evaluation goals may be too hard to achieve. Instead, intermediate goals from an
exploratory goal distribution ρE can help the agent explore. We choose PEG, which
generates goals by planning through the world model to maximize exploration value
(see E. S. Hu et al., 2023 for details).

3.4 Method
As motivated in Section 3.1 and Figure 3.1, the
direct application of PEG to the reset-free setting
shows promising performance but suffers from over-
exploration of task-irrelevant states. To adapt model-
based RL to the reset-free setting, we introduce MoRe-
Free, a model-based approach that improves PEG
to handle the lack of resets and overcome the over-
exploration problem. MoReFree improves two key
mechanisms of MBRL for reset-free training: explo-
ration and policy training.

3.4.1 Back-and-Forth Go-Explore

First, we introduce MoReFree’s procedure for collecting new datapoints in the real
environment. PEG (E. S. Hu et al., 2023) already has strong goal-conditioned explo-
ration abilities, but was developed for solving episodic tasks. Without resets, PEG’s
Go-Explore procedure can undesirably linger in unfamiliar but task-irrelevant portions
of the state space. This generates large amounts of uninformative trajectories, which
in turn degrades world model learning and policy optimization.

MoReFree overcomes this by periodically directing the agent to return to the states
relevant to the task (i.e. initial and evaluation goals). We call this exploration pro-
cedure “Back-and-Forth Go-Explore”, where we sample pairs of initial and evaluation
goals and ask the agent to cycle back and forth between the goal pairs, periodically
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interspersed with exploration phases (see Figure 3.2 top row).
Now, we define the “Back-and-Forth Go-Explore” strategy as seen in Algorithm

3. First, we decide whether to perform initial / evaluation state directed exploration.
With probability α, we sample goals (g∗, g0) from ρg∗ , ρ0 respectively. Then, we ex-
ecute the Go-Explore routine for each goal. We name Go-Explore trajectories condi-
tioned on initial state goals as “Back” trajectories, and Go-Explore trajectories con-
ditioned on evaluation goals as “Forward” trajectories. With probability 1 − α, we
execute exploratory Go-Explore behavior by sampling exploratory goals from PEG.
The difference between reset-free PEG and MoReFree can be seen in Algorithm 2,
unlike PEG, MoReFree employs the “Back-and-Forth Go-Explore”.

By following this exploration strategy, the agent modulates between various Go-
Explore strategies, alternating between solving the task by pursuing evaluation goals,
resetting the task by pursuing initial states, and exploring unfamiliar regions via ex-
ploratory goals.

3.4.2 Learning to Achieve Relevant Goals in Imagination

Next, we describe how MoReFree trains the goal-conditioned policy in the world model.
To train πG

θ , MoReFree samples various types of goals and executes πG
θ (· | ·, g) inside

the world model to generate “imaginary” trajectories. The trajectory data is scored
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using the learned dynamical distance reward mentioned in Section 3.3.2 , and the policy
is updated to maximize the expected return. This procedure is called imagination
(Hafner et al., 2019), and allows the policy to be trained on vast amounts of synthetic
trajectories to improve sample efficiency.

First, we choose to sample evaluation goals from ρg∗ since the policy will be evalu-
ated on its evaluation goal-reaching performance. Next, recall that Back-and-Forth Go-
Explore procedure also samples initial states from ρ0 as goals for the Go-phase to emu-
late resetting behavior. Since we would like πG

θ to succeed in such cases so that the task
is
reset, we will also sample from ρ0. Fi-
nally, we sample random states from
the replay buffer to increase πG

θ ’s abil-
ity to reach arbitrary states. The sam-
pling probability for each goal type is
set to α/2,α/2, 1 − α respectively. In
other words, MoReFree biases the goal-
conditioned policy optimization proce-
dure to focus on achieving task-relevant
goals (i.e. evaluation and initial states),
as they are used during evaluation and
goal-conditioned exploration to condi-
tion the goal-reaching policy (see Fig-
ure 3.2 bottom row). This leads to additional changes of line 13 in Algorithm 2.

3.4.3 Implementation Details

Our work builds on the top of PEG (E. S. Hu et al., 2023), and we use its default
hyperparameters for world model, policies, value functions and temporal reward func-
tion. We set the length of each phase for Go-Explore (HG,HE) to half the evaluation
episode length for each task. We set the default value of α = 0.2 for all tasks (never
tuned). See Section 3.7.3 for more details and the supplemental for MoReFree code.

3.5 Experiments
We evaluate three MBRL methods (PEG (E. S. Hu et al., 2023), the extension reset-
free PEG and our proposed method MoReFree) and four competitive reset-free base-
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PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

Figure 3.3: We evaluate MoReFree on eight reset-free tasks ranging from navigation to
manipulation. PP is short for Pick&Place.

lines on eight reset-free tasks. We aim to address the following questions: 1) Do MBRL
approaches work well in reset-free tasks in terms of sample efficiency and performance?
2) What limitations arise from running MBRL in the reset-free setting, and does our
proposed solution MoReFree address them? 3) What sorts of behavior do MoReFree
and baselines exhibit in such tasks, and are our design choices for MoReFree justified?

Baselines: All baselines except for R3L are implemented using official codebases,
see Section 3.7.2 for details.

• PEG (E. S. Hu et al., 2023) is the original episodic PEG in which exploratory
goals are only sampled once at the beginning of each episode (in the reset-free
setting, the episode is extremely long). The goal-conditioned policy and the
exploration policy are then executed for the first half and second half of the
episode, respectively.

• reset-free PEG is a straightforward extension of PEG to the reset-free setting.
Exploratory goals are sampled every HG+HE steps. Then, the goal-conditioned
policy is executed for HG steps followed by the exploration policy being executed
for HE steps.

• MEDAL (Sharma et al., 2022) requires demonstrations and trains two policies,
one for returning to demonstration states and another that achieves task goals.

• IBC (J. Kim et al., 2023) is a competitive baseline that outperforms prior reset-
free work (e.g. MEDAL, VaPRL) by defining a bidirectional curriculum for the
goal-conditioned forward and backwards (i.e. reset) policies trained using the
environmental reward.

• R3L (Zhu et al., 2020) trains two policies, one for achieving task goals and
another that perturbs the agent to novel states. Notably, it is the only baseline
that operates without any additional assumptions (i.e. environmental rewards,
demonstrations, and resets).
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• Oracle is SAC (Haarnoja, Zhou, Hartikainen, et al., 2018) trained under the
episodic setting on the environmental reward.

Note that most baselines enjoy some advantage over two MBRL methods: MEDAL,
IBC and Oracle use ground truth environmental reward, while MEDAL also uses
demonstrations and Oracle uses resets. See Table 3.1 for a conceptual comparison
between MoReFree and prior work.

Environments: We evaluate MoReFree and baselines on eight tasks (see Fig-
ure 3.3). We select five tasks from IBC’s evaluation suite of six tasks; (Fetch Reach is
omitted because it is trivially solvable). Next, we increased the complexity of the two
hardest tasks from IBC, Fetch Push and Fetch Pick&Place, by extending the size of
the workspace, replacing artificial workspace limits (which cause unrealistic jittering
behavior near the limits, see the website for videos) with real walls, and evaluating on
harder goal states (i.e. Pick&Place goals only in the air rather than including ones
on the ground). In addition, we contributed a difficult locomotion task, Ant, which is
adapted from the PEG codebase (E. S. Hu et al., 2023). All methods are run with 5
seeds, and the mean performance and standard error are reported. During the evalua-
tion, the performance on tasks with randomly sampled goals from ρg∗ is measured by
averaging over 10 episodes. See Section 3.7 for more experimental details.

3.5.1 Results
As shown in Fig 3.4, two reset-free model-based methods (MoReFree and reset-free
PEG), without demonstrations or access to environmental reward, outperform other
baselines with privileged access to supervision in both final performance and sample
efficiency in 7/8 tasks. We observe that the two reset-free MBRL methods learn good
behaviors: the pointmass agent hugs the wall of the UMaze to minimize travel time
and the Fetch robot deftly pushes and picks up the block into multiple target locations.
MoReFree is always competitive with or outperforms reset-free PEG, with large gains
in the 3 hardest tasks: Push (hard) by 45%, Pick&Place (hard) by 13% and Ant
(hard) by 36%. We observe that MoReFree learns non-trivial reset behaviors such as
picking and pushing blocks back into the center of the table for the hard variants of the
Fetch manipulation tasks. However, the original PEG performs poorly, suggesting that
directly applying episodic MBRL methods in a reset-free setting without adaptations
yields suboptimal results. See the website for videos of MoReFree and baselines.

In many tasks, the baselines fail to learn at all. We believe this is due the low
sample budget, which may be too low for the baselines to fully explore the environment
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Figure 3.4: Two reset-free MBRL methods (MoReFree and reset-free PEG) significantly
outperform baselines in 7/8 tasks. However, directly applying PEG works poorly. In 4 tasks,
only MBRL methods are able to learn meaningful behavior, showcasing MBRL’s sample
efficiency in the reset-free setting. MoReFree outperforms reset-free PEG in the 3 most
difficult tasks.

and learn the proper resetting behaviors necessary to train the actual task policy. In
Section 3.11, we increased the training budget by 3× for the IBC baseline and it
still fails, underscoring the difficulty of the tasks and the sample-efficiency gains of
MoReFree and MBRL. On the other hand, we noticed that one environment, Sawyer
Door, seemed particularly hard for MBRL agents to solve. We hypothesize that the
dynamics of the task are hard to model, resulting in performance degradation for
model-based approaches (see Section 3.10 for more analysis).

3.5.2 Analysis

To explain the performance differences between MoReFree and baselines, we closely
analyze the exploration behaviors.

MoReFree focuses on task-relevant states. In Figure 3.5 we visualize the
state visitation heatmaps of methods in various environments, and also compute the
percentage of “task-relevant” states (initial and goal regions, highlighted with white
borders). We highlight two trends. First, the heatmaps show that MoReFree and reset-
free PEG explore thoroughly while baselines have more myopic exploration patterns,
as seen in the Ant heatmaps at the top.

Next, performance differences between reset-free PEG and MoReFree are intu-
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Push

13.2% 9.8%

Pick&Place (hard)

MoReFree reset-free PEG MoReFree reset-free PEG

MoReFree reset-free PEG IBC MEDAL R3L

22.7% 11.4%

83.6%83.6%

Push (hard)

   74.5%79.7%

Pick&Place

Ant

6.1% 1.3%

Figure 3.5: State visitation heatmaps of different agents. White areas are task-relevant
states (including initial and goal state distributions) and we overlay the percentages of task-
relevant states. reset-free MBRL methods explore more and in harder environments, MoRe-
Free experiences more task-relevant states.

itively explained by the amount of task-relevant data collected by each agent. In eas-
ier environments like Push or Pick&Place where both reset-free PEG and MoReFree
encounter similar amounts of task-relevant states, the performance is roughly similar
between reset-free PEG and MoReFree. But in harder environments (Ant, Push (hard),
Pick&Place (hard)) with larger state spaces and more complicated resetting dynamics,
MoReFree collects 1.3− 5× more task-relevant data and has large performance gains
over reset-free PEG. By experiencing more task-relevant states and training policies
on them in imagination, MoReFree policies are more suited towards succeeding at the
episodic evaluation criteria. See Section 3.8 for additional visualizations.

MoReFree effectively resets. Next, we investigate the qualitative behavior
of MoReFree’s Back-and-Forth Go-Explore. To see if “Back” trajectories help free
the agent from the sink states, we analyze the replay buffer of MoReFree for the
environments, and plot the starting locations of the agent / object up to 100 timesteps
before a successful “Back” trajectory is executed in Figure 3.6. The color intensity of
the dots correspond to state density over the last 100 steps (i.e. dark red means the
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Push (hard) Pick&Place (hard)
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PointUMaze Tabletop Ant

Figure 3.6: We visualize the start position (red dots) of successful “Back” trajectories of
MoReFree’s Back-and-Forth Go-Explore, where πG

θ is directed to reset the environment. The
color intensity of the dots correspond to state density over the last 100 steps.

agent / object has rested there for a while). We observe that the starting locations
(red dots) of the agent / object are in corners or next to walls in all environments. This
suggests that these areas act as sink states, where the agent / object would remain for
long and waste time. We observe that MoReFree learns reset behaviors like picking
the block out of corners and walls in Fetch Push and Fetch Pick&Place. See detailed
videos of the reset behavior on the website.

3.5.3 Ablations

To justify our design choices, we ablate the two mechanisms of MoReFree, the back-
and-forth exploration and task-relevant goal-conditioned policy training, and plot the
results in Figure 3.7. First, removing all mechanisms (MF w/o Explore & Imag.)
reduces to reset-free PEG, and we can see a large gap in performance. Next, MF with
Only Task Goals sets α = 1, which causes an extreme bias towards task-relevant
states in the exploration and policy training. This also degrades performance, due to
the need for strong exploration in the reset-free setting. Examinations of more values
for α can be found in Section 3.7.3.

Finally, we isolate individual components of MoReFree. First, we disable Back-
and-Forth Go-Explore by disallowing the sampling of initial or evaluation goals during
Go-Explore. Only exploratory goals are used in Go-Explore for this ablation (named
MF w/o BF-GE). Next, in MF w/o Imag. we turn off the initial / evaluation
goal sampling in imagination, so only random replay buffer goals are used to train
πG
θ . We see that both variants perform poorly. This is somewhat intuitive, as the two

components rely on each other. Having both forms a synergistic cycle where 1) the
goal-conditioned policy’s optimization is more focused towards reaching initial / goal
states, and 2) the exploration is biased towards reaching initial / goal states by using
the goal-conditioned policy we just optimized in step 1. If we remove one without the
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Figure 3.7: Ablations on 5 variants of MoReFree over 3 hard environments, Push (hard),
Pick&Place (hard) and Ant, with normalized final performance.

other, then the cycle breaks down. In MF w/o Imag., Back-and-Forth Go-Explore
will suffer since πG

θ trained on random goals cannot reliably reach initial / evaluation
goals. In MF w/o BF-GE, the exploration strategy will not seek initial / evaluation
states, resulting in an inaccurate world model and degraded policy optimization. In
summary, the ablations show that MoReFree’s design is sound and is the major factor
behind its success in the reset-free setting. See Section 3.9 for details.

3.6 Conclusion and Future Work
As a step towards reset-free training, we adapt model-based methods to the reset-
free setting and demonstrate their superior performance. Specifically, we show that
with minor modifications, unsupervised MBRL method substantially outperforms the
state-of-the-art model-free baselines tailored for the reset-free setting while being more
autonomous (requires less supervision like environmental reward or demonstrations).
We then identify a limitation of unsupervised MBRL in the reset-free setting (over-
exploration on task-irrelevant states), and propose MoReFree to address such limi-
tations by focusing model-based exploration and goal-conditioned policy training on
task-relevant states. We conduct a through experimental study of MoReFree and base-
lines over 8 tasks, and show considerable performance gains over the MBRL baseline
and prior state-of-the-art reset-free methods. Despite its overall success, MoReFree
is not without limitations. Being a model-based approach, it inherits all associated
disadvantages. For example, we believe Sawyer Door is a task where learning the
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dynamics is harder than learning the policy (see Section 3.10), disadvantaging MBRL
approaches. Next, MoReFree uses a fixed percentage of task-relevant goals for explo-
ration and imagination, whereas future work could consider an adaptive curriculum.
Finally, scaling MoReFree to high-dimensional observations would be a natural exten-
sion. We hope MoReFree inspires future efforts in increasing autonomy in RL.

3.7 Experimental Details

3.7.1 Environments

PointUMaze: The state space is 7D and the action space is 2D. The initial state is
(0, 0), which located in the bottom-left corner, and noise sampled from U(−0.1, 0.1) is
added when reset. The goal during the evaluation is always located in at the top-left
corner of the U-shape maze. The maximum steps during the evaluation is 100. Hard
reset will happen after every 2e5 steps. In the whole training process we performed,
it only reset once at the beginning of the training. Taken from the IBC (J. Kim et al.,
2023) paper.

Tabletop: The state space is 6D, and the action space is 3D. During the evaluation,
four goal locations are sampled in turn, the initial state of the agent is always fixed
and located in the center of the table. The maximum steps during the evaluation is
200. Hard reset will happens after every 2e5 steps. In the whole training process we
performed, it only reset once at the beginning of the training. Taken from the EARL
(Sharma, Xu, et al., 2021) benchmark and also used in the IBC paper.

Sawyer Door: The state space is 7D and the action space is 4D. The position
of door is initialized to open state (60 degree with noise sampled from (0, 18) degree)
and the goal is always to close the door (0 degree). The arm is initialized to a fixed
location. Maximum number of steps is 300 for the evaluation. Hard reset will happen
after every 2e5 steps. In the whole training process we performed, it resets twice.
Taken from the EARL (Sharma, Xu, et al., 2021) benchmark and also used in the IBC
paper.

Fetch Push and Pick&Place: The state space is 25D and action space is 4D.
These are taken from the IBC paper. Authors converted the original Fetch environ-
ments to a reversible setting by defining a constraint on the block position. The initial
and goal distributions are identical to the original Fetch Push and Pick&Place. More
details can be found in the IBC paper.

Push (hard): Different from the original Fetch Push task, in our case walls are
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added to prevent the block from dropping out of the table. The workspace of the
robot arm is also limited. The block is always initialized to a fixed location, and goal
distribution during the evaluation is U(−0.15, 15). Fetch Push used in the IBC paper,
the block is limited by joint constraint, which shows unrealistic jittering behaviors
near the limits (we observe such phenomenon by running model-based go-explore, the
exploration policy prefers to always interact with the block and keep pushing it towards
the limit boundary, see videos on our project website 1). Meanwhile, the gripper is
blocked, which makes the task easier. In our case, we release the gripper and it can
now open and close again which add two more dimension of the state space. We found
it is important to release the gripper in our version of Push task, when the block is
in corners, it will need to operate the gripper to drag the block escape from corners.
The maximum steps the agent can take in 50 during the evaluation. Hard reset will
happen after every 1e5 steps. In the whole training process we performed, it resets 5
times in total.

Pick&Place (hard): We add walls in the same way as we did for Push (hard).
We make it more difficult by only evaluating the agent on goals that are in the air.
Then it has to learn to perform picking behavior properly, whereas goals on the ground
can just be solved by pushing. The goal will be uniformly sampled from a 5× 5× 10

cm cubic area above the table. It has the same observation space, action space, initial
state and maximum steps with Fetch Push described above. Hard reset will happens
after every 1e5 steps. In the whole training process we performed, it resets 5 times
in total. See the visual difference between our Pick&Place and IBC’s in Figure 3.3.
Since the workspace of the robot is limited within the walls as well in Push (hard)
and Pick&Place (hard), when the block gets stuck in corners, the robot needs to
precisely move to the corner and bring the block back. In contrast, the robot in IBC’s
version can move to everywhere, being able to create various circumstance to solve
such difficult position.

Ant: We adapt the AntMaze task from environments2 codebase of PEG and
change the shape of the maze to square, also change the evaluation goal distribution
to be a uniform distribution U(2, 3) for both x and y location, which lies on the top-left
corner of the square. The ant is always initialized to the center point (0, 0) of the
square to start from, with uniform noise (U(−0.1, 0.1)) added. The state space is 29D
and the action space is 8D. The maximum steps for evaluation is 500. Hard reset will
happen after every 2e5 steps. In the whole training process we performed, it reset 4

1https://sites.google.com/view/morefree
2https://github.com/edwhu/mrl
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times in total.

3.7.2 Baseline Implementations
PEG: We use the official implementation of PEG3 and only optimize the exploratory
goal distribution once at the beginning of each reset-free training episode, i.e. HG and
HE are set to half of the reset-free episode length.

reset-free PEG: We extend the official implementation of PEG4 to reset-free
setting by 1) set HG and HE to half of the evaluation episode length; 2) optimizing
the goal distribution every HG +HE steps; 3) keeping all other hyperparameters the
same as MoReFree.

IBC: We use the official implementation from authors5 and keep hyperparameters
unchanged.

MEDAL: We follow the official implementation of MEDAL6 and use the deaf-
ult setting for experiments. Since MEDAL requires demonstrations, for tasks from
EARL benchmark, demonstrations are provided. For other environments, we generate
demonstrations by executing the final trained MoReFree to collect data. 30 episodes
are generated for each task.

R3L: We implement R3L agent by modifying the FBRL agent from MEDAL code-
base. The backward policy is replaced by an exploration policy trained using the
random network distillation (RND) objective (Burda et al., 2018). The RND imple-
mentation we follow is from DI-engine7.

Oracle: This is a episodic SAC agent, we use the implementation from MEDAL
codebase and keep all the hyper-parameters unchanged.

MoReFree: Our agent is built on the model-based go-explore method PEG (E. S.
Hu et al., 2023), we extend their codebase by adding back-and-forth goal sampling
procedure and training on evaluation initial and goal states in imagination goal-
conditioned policy training. See our codebase in the supplemental.

3.7.3 Hyperparameters
Train ratio (i.e. Update to Data ratio) is an important hyper-parameter in MBRL. It
controls how frequently the agent is trained. Every n steps, a batch of data is sampled

3https://github.com/penn-pal-lab/peg
4https://github.com/penn-pal-lab/peg
5https://github.com/snu-larr/ibc_official
6https://github.com/architsharma97/medal
7https://opendilab.github.io/DI-engine/12_policies/rnd.html
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Figure 3.8: Performance of MoReFree with different values of α in Push (hard).

from the replay buffer, the world model is trained on the batch, and then policies and
value functions are trained in imagination. In all our experiments, we only vary n

on different tasks. See the table below for different values on different tasks we used
through experiments. MoReFree also introduces a new parameter α, which we keep
α = 0.2 for all tasks and did not tune it at all. All other hyperparameters we keep the
same as the original code base.

Table 3.2: Different train ratio we used for different tasks. We keep all other hyperparam-
eters the same as default ones.

PointUMaze 2 Sawyer Door 5 Tabletop 1 Fetch Push 2
Fetch Pick&Place 2 Push (hard) 2 Pick&Place (hard) 2 Ant 2

Different values for α. We examine different values of α in MoReFree on Fetch
Push task, which affects how much MoReFree focuses on task-relevant goals in explo-
ration and imagination. In Figure 3.8, we see that introducing a moderate amount
of task-relevant goals (α=0.2, α=0.5) results in sensible performance, while too many
task-relevant goals (α=0.7, α=1.0) degrades performance. We use the same value of
alpha, 0.2, across all tasks, which showcases MoReFree ’s consistency.
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3.7.4 Results Clarification
In Push and Pick&Place results, we retrieved the final performance of MEDAL directly
from the IBC paper (dashed purple lines) and did not have time to run R3L in these
two environments. R3L is shown to be a lot worse than MEDAL in the MEDAL paper
and performs obviously bad in other tasks shown in Figure 3.4. In Push (hard) and
Pick&Place (hard), we ran R3L and MEDAL with less budget since other methods
clearly outperform and their learning curves do not show any evidence for going up.

3.7.5 Resource Usage
We submit jobs on a cluster with Nvidia 2080, 3090 and A100 GPUs. Our model-based
experiments take 1-2 days to finish, and the model-free baselines take half day to one
day to run.

3.8 More Visualizations on Replay Buffer
We visualize the replay buffer of different agents on more tasks. See Figure 3.9 for
XY location of the mug in Tabletop, Figure 3.11 for XY location data of the agent
in PointUMaze, Figure 3.10 for XZ location of the block in Pick&Place (hard) and
Figure 3.12 for XY location data of the block in Push (hard) and Pick&Place (hard).
Overall, we see MoReFree explores the whole state space better. Meanwhile, due
to back-and-forth procedure, MoReFree collects more data near initial / goal states,
which are important for the evaluation. However, IBC, MEDAL, R3L and Oracle all
fail to explore well; their heatmaps are mostly populated with low visitation cells.

3.9 Detailed Ablations
We report learning curves for each variant agent we ablate in Section 3.5.3 on every
task in Figure 3.13. Since MoReFree does not learn at all in Saywer Door task, we
exclude the ablation for it. In each task, MoReFree is better or on par with all other
ablations. Through learning curves, we see different components contribute differently
on different tasks.

We further analyze the ablation on PointUMaze as an example by visualizing the
replay buffer of different variants, see Figure 3.14. In the performance on PointUMaze
from Figure 3.13, sampling exploratory goals for data collection is important (MF w/o
Explore & Imag. outperforms other ablations). But we see in 3.14, MF w/o Explore
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MoReFree IBC MEDAL Oracle

Tabletop
200k MEDAL, 

100/50

reset-free PEG R3L

Figure 3.9: XY state visitation heatmap of the mug in Tabletop of various approaches.
MoReFree’s heatmap shows high state diversity while retaining high visitation counts near
the task-relevant states (red circles are goal states, the blue circle is the initial state). reset-
free PEG also shows diverse exploration, but it over-explores the bottom-right corner which
is entirely task-irrelevant. IBC’s bi-directional curriculum leads the exploration shuttles be-
tween the initial state and goal states, but fails to explore well. All other methods fail to
explore, visited states mostly cluster in few spots.

Fetch Pick&Place
x-z view
200k

[1.15, 1.55], [0.4, 0.55]
bins=50/vmax=5

MoReFree IBC MEDAL Oraclereset-free PEG R3L

Figure 3.10: XZ state visitation heatmap of the block in Pick&Place (hard). States above
the red line are in the air, which are crucial for solving the picking task. Two MBRL methods
collect more data diversely in the air, while other reset-free methods barely pick up the block.

Figure 3.11: State visitation heatmap on point maze. MoReFree has special focuses
on both initial state (blue circles) corner and goal state (red circles), while explore much
uniformly. MEDAL collects lots of data near the goal state and little data on the initial state.
Both MEDAL and Oracle explore less extensively.

& Imag. does not have focus on the initial / goal state which we care about for the
evaluation, which makes it slightly worse than MoReFree. MF with Only Task Goals
has a strong preference on initial / goal state, we think it is because in the later phase of
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Figure 3.12: Block state visitation heatmap on Fetch Push (left) and Fetch Pick&Place
(right) of different agents. MoReFree better explores the whole state space, while IBC and
MEDAL do not have too much interactions with the block, thus lighted areas are scattered
everywhere.

the training when the agent is able to solve the task, it goes back-and-forth consistently
to collect data. But in the early phase of the training, it might lack exploration which
causes the degraded performance compare with MoReFree. MF w/o Explore and MF
w/o Imag. only either go to initial / goal state for data collection and do not practice
on it during the imagination training, or practice without really going, which both
does not form the positive cycle, and end up with poor performance.

3.10 MBRL on Sawyer Door
We investigate why two MBRL methods fail on Sawyer Door tasks. Note that MoRe-
Free is able to solve intermediate goals such as closing the door in some angles, but is
unable to solve the original IBC evaluation goal (see website for more videos).

We simplify Sawyer Door task by limiting the movement range of the robot to a
box and also having a block holds the door to prevent it from opening it too much,
see Figure 3.15. Although MBRL methods are trained on the simplified environment,
we see learning curves on Sawyer Door are completely flat in Figure 3.4, compared
with other baselines trained on the original task. We wonder why MBRL methods can
show the same performance and gain benefits as it does in other environments.
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Figure 3.13: Learning curves of ablation study on 5 tasks. We see different components
contribute differently in different tasks. For instance, in Tabletop, MF w/o Imag. even
performs better than MoReFree, maybe because the whole state space can be explored quickly,
then randomly sampling states from the replay buffer as goals for training already has good
coverage on evaluation initial / goal states.

Figure 3.14: State visitation heatmap on PointUMaze task of all ablations. Red circles
are evaluation goal states and blues are initial states. We see MoReFree collect good amount
of data near initial / goal states while stronger exploration. MF w/o Explore and MF w/o
Imag. could not gather task-relative data, which further causes poor performance.

MoReFree and reset-free PEG use DreamerV2 as backbone agents and extend it
to reset-free settings. We hypothesize that Dreamer itself, even under the episodic
setting with task reward function, would not work well. If that’s the case, then MBRL
methods in the reset-free setting with self-supervised reward function would almost
certainly not work either. For example, if the backbone agent cannot model the
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dynamics precisely, then both policy learning and dynamical distance reward learning,
will be degraded.

Figure 3.15: Simplified version of Sawyer Door. Orange walls show the limited workspace
for the robot arm, and a grey wall is added to limit the movement of the door. The door can
only move to maximum 60 degrees.

Figure 3.16: Performance of DreamerV2 and V3 on episodic Sawyer Door task. SAC can
solve the task in 200k steps, while after 1 million steps MBRL is still not able to steadily
solve the task.

We then run the underlying MBRL backbones under the episodic setting. Fig-
ure 3.16 shows DreamerV2 8, and Dreamerv3 9 struggle to solve the task, while model-
free method SAC can steadily solve the task after 200k steps. This might be a potential
reason that MBRL methods do not work on the more difficult reset-free setting. We
hypothesize that the combination of the sparse environmental reward and dynamics
of the door result in a hard prediction problem for world modelling approaches. We
leave further investigation for the future work.

8https://github.com/danijar/dreamerv2
9https://github.com/danijar/dreamerv3

42

https://github.com/danijar/dreamerv2
https://github.com/danijar/dreamerv3


Chapter 3. World Models Increase Autonomy in Reinforcement
Learning

Figure 3.17: Longer training of IBC in our Fetch tasks, where the state space is larger and
artificial constraints are replaced with surrounded walls. IBC still can not learn meaningful
behaviors.

Figure 3.18: XY location of the block collected by IBC on Push (hard) and its original
version (Push). IBC covers the whole state space very well in Push while fails in Push (hard),
where the block stays for long time in corners or areas next to walls.

3.11 More Analysis on Fetch Environments

Although IBC gains good final performance in Push and Pick&Place, it starts learning
late compared with MBRL methods and fails entirely in our harder versions. We
suspect IBC might need more computational budget to start learning in harder tasks.
Thus we train IBC with two millions environment steps and results in Figure 3.17
show that it still fails to solve the harder version of Push.

Figure 3.18 shows 600k data of the obejct (XY view) collected by IBC on our
Push (hard) and IBC’s Push. We see the block stays in corners or next to walls
a lot in Push (hard), while goes everywhere and covers the whole space in IBC’s
Push, indicating object interaction is more difficult in Push (hard) due to the larger
state space, surrounded walls and limited work space. In IBC’s Push, the block can
bounce back when it hits the limit of joint constraints. However, in Push (hard), the
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block needs to be explicitly brought back from the corner or walls, requiring more
sophisticated behaviors. Meanwhile, larger size of the limited area (our version is 3×
larger than IBC’s.) also increases the difficulty of the task.

3.12 Analysis on R3L
R3L trains two policies, one for reaching the goal and another that brings the agent
to novel states. The goal-reaching policy is trained using a learned classifier to classify
the goal state and other states. Original R3L takes images as inputs, thus the trained
classifier can successfully classify goal images from random state images. In our work,
we use low-dimensional state input. Outputs of the trained classifier on the whole
state space of PointUMaze is shown in Figure 3.19. We see that the classifier learns
to output higher values for states close to the goal state (red dot) and lower values for
states further away. Nonetheless, due to the smoothness of the output scope, states
near the initial state (blue circle) that are numerically closer but spatially further to the
goal state also have higher values. R3L agent trained using such reward function will
always tend to follow states with higher values to the corner instead of going forward.
See the website for more videos. These trained reward functions are misleading for
learning reasonable policies which result in poor performance we see in Figure 3.4.

Figure 3.19: Outputs of the learned classifier on the whole state space. Due to the
smoothness of the output scope, states near the initial state (blue circle) also have higher
values.

44



Chapter 4

Continous Episodic Control

Authors: Zhao Yang, Thomas Moerland, Mike Preuss, Aske Plaat
Published in IEEE Conference on Games (CoG), 21-24 August 2023, Boston, USA.

45



Abstract
Non-parametric episodic memory can be used to quickly latch onto high-rewarded
experience in reinforcement learning tasks. In contrast to parametric deep reinforce-
ment learning approaches in which reward signals need to be back-propagated slowly,
these methods only need to discover the solution once, and may then repeatedly solve
the task. However, episodic control solutions are stored in discrete tables, and this
approach has so far only been applied to discrete action space problems. Therefore,
this paper introduces Continuous Episodic Control (CEC), a novel non-parametric
episodic memory algorithm for sequential decision making in problems with a contin-
uous action space. Results on several sparse-reward continuous control environments
show that our proposed method learns faster than state-of-the-art model-free RL and
memory-augmented RL algorithms, while maintaining good long-run performance as
well. In short, CEC can be a fast approach for learning in continuous control tasks. 1

1Code can be found at https://github.com/yangzhao-666/cec.
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4.1 Introduction

Deep reinforcement learning (RL) methods have recently demonstrated superhuman
performance on a wide range of tasks, including Gran Turisma (Wurman et al., 2022),
StarCraft (Vinyals et al., 2019), Go (Silver et al., 2017), etc. However, in these
methods, the weights of neural networks are slowly updated over time to match the
target predictions based on the encountered reward signal. Therefore, even if the
agent finds the solution to the problem, the learning still can be fairly slow, and
the agent may not be able to solve the problem in subsequent episodes. This is
one of the reasons state-of-the-art RL methods generally require many interactions
with the environment and substantial computational resources (Mnih, Kavukcuoglu,
Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, et al., 2015; Silver et al., 2016).
Non-parametric episodic memory (EM) is introduced to directly store high-rewarded
experiences, enabling the agent to quickly latch onto these experiences in reinforcement
learning problems. Compared to parametric deep RL methods, these methods only
need to solve the task once, because the solution is stored in memory and can be
quickly retrieved. This is especially helpful for tasks where the agent only gets a final
reward once it succeeds, i.e. sparse reward problems (Ecoffet et al., 2021). Although
parametric RL methods do perform well in the long run (due to its generalizability,
optimality and ability of dealing with stochasticity), sometimes we prefer a quick
and less computationally expensive solution to the problem (Blundell, Uria, Pritzel,
Li, Ruderman, Leibo, Rae, et al., 2016). The ability to quickly latch onto recent
successful experiences is also clearly evident in nature, where scrub jays for example
store food and directly remember the exact location using episodic memory (Clayton
& Dickinson, 1998).

Episodic memory is a term that originates from neuroscience (Tulving, 1972), where
it refers to memory that we can quickly recollect. In the context of RL, this concept
has generally been implemented as a non-parametric (or semi-parametric) table that
can be read from and written into rapidly. Information stored in the memory can then
either be used directly for control (for action selection) or to generate training targets
for parametric deep RL methods. When used for control (usually called episodic
control), episodic memory stores state-action pairs and their corresponding episodic
returns in memory and extracts the policy by taking actions with maximum returns.
It is therefore conceptually similar to tabular RL methods (C. J. C. H. Watkins, 1989)
but with a different update rule, where stored values are directly replaced with larger
encountered ones instead of being gradually updated towards targets.
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Figure 4.1: Conceptual illustration of the Continuous Episodic Control (CEC) algorithm.
Left: We store a non-parametric table/buffer of state-action-value estimates obtained from
previous episodes. Middle & Right: Action selection for a novel query state (dark blue circle)
is performed by collecting its nearest neighbours in the buffer (dashed circle), and then
sampling one of the actions of these neighbours proportional to their value (right). After
possibly injecting exploration noise the selected action for the query state is returned.

Since current episodic control methods maintain a value estimate for each state-
action pair (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al., 2016), they
cannot naturally deal with continuous action spaces. One solution to this problem
is to combine episodic memory with deep RL methods, where the episodic memory
part generates training targets for a value network that is used to act (value-based
approaches (Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller,
et al., 2015)) or to guide act (actor-critic approaches (Lillicrap et al., 2015)) in the
environment. The drawback of this approach is that we not only have to maintain
extra memory, but again rely on the relatively slow deep RL agent for action selection
and thereby performance is affected. The natural question that arises is: can we
directly use episodic memory for action selection in continuous control
tasks, without relying on parametric RL methods?

This work therefore introduces Continuous Episodic Control (CEC), an algorithm
that uses episodic memory directly for action selection in tasks with a continuous
action space. The main idea is based on the principle of generalisation: similar states
generally require similar actions to obtain high returns. However, given a new query
state, we 1) may not have that exact state in our buffer, and 2) we definitely only
have value estimates for a few points in the continuous space of possible actions. We
solve these issues by 1) specifying the nearest neighbour search in state space and 2)
selecting actions proportionally to their value estimate, injected with Gaussian noise
per action. The overall process of CEC is illustrated in Figure 4.1.

Experiments on a range of continuous control tasks show that our method out-
performs state-of-the-art model-free and memory-augmented RL methods in various
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continuous control problems. We also visualize how CEC manages to capture state-
action values quickly and reliably in the beginning of the training, which results in
steeper learning curves. In short, CEC seems to be a promising approach to learn
quickly in continuous control tasks.

4.2 Background
In reinforcement learning (Sutton & Barto, 2018), an agent interacts with the envi-
ronment. This process is formed as a Markov Decision Process (MDP) defined as
the tuple M = 〈S,A, P,R, γ〉, where S is a set of states, A is a set of actions the
agent can take, P specifies the transition dynamic of the environment, R is the re-
ward function, and γ is the discount factor. At timestep t, the agent observes a
state st ∈ S, and selects an action at ∈ A. The environment returns a next state
st+1 ∼ P (·|st, at) and an associated reward rt = R(st, at, st+1) after the action is
executed. The agent selects actions according to a policy π(·|st) that maps a state
to a distribution over actions. The goal is to learn a policy that can maximize the
expected return: Est+1∼P (·|st,at),at∼π(·|st),rt∼R(·|st,at)[

∑T
t=0 γ

t · rt], where γ ∈ [0, 1].
Define the state-action value Q(st, at) as the expected return:

Q(st, at) = EP,π,R[
T∑

k=t

γk · rk],

when the agent starts from state st and action at at time-step t. Q-learning learns the
optimal state-action value function by updating the current estimated value towards
a target value (TD-target) following:

Q̂(st, at)← Q̂(st, at) + α · [rt + γ ·max
a′∈A

Q̂(st+1, a
′)− Q̂(st, at)] ,

where α is the learning rate, Q̂(st, at) is estimated state-action value.
In deep Q-learning (Mnih et al., 2013), state-action value function Q(st, at) is

approximated by a neural network denoted by Qφ(st, at). Then the function is up-
dated by minimizing the mean squared error L(φ, D) between the TD-target and the
estimated value computed using samples from D:

L(φ, D) = E(st,at,rt,st+1)∼D

(
rt + γ ·max

a′∈A
Q̂φ(st+1, a

′)− Q̂φ(st, at)
)2

After the optimal state-action value function is learned, the optimal policy can be
exacted by greedily taking actions that have highest state-action values:

at = argmax
at

Q(st, at). (4.1)
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4.3 Related Work
In this section, we will discuss RL methods that use or are augmented with episodic
memory. There are mainly two directions, one that directly uses episodic memory
for control (‘episodic control’), and another which uses data in the episodic memory
to guide the learning update of parametric RL agents (‘memory-augmented RL’). We
will discuss both.

Episodic control Model-free episodic control (MFEC) (Blundell, Uria, Pritzel, Li,
Ruderman, Leibo, Rae, et al., 2016) uses a non-parametric table to store episodic
return Gt =

∑T
k=t γ

k−trk for each state-action pair and only overwrites it when a
higher return of the state-action pair is encountered:

Q̂em(st, at)← max[Q̂em(st, at), Gt]

The optimal policy is extracted by greedily taking actions with the greatest values
stored in the EM table, similar with Equation (4.1). It outperforms state-of-the-art
model-free RL methods on some Atari games in the short run. Neural episodic con-
trol (Pritzel et al., 2017b) proposed to use a semi-tabular approach called differentiable
neural dictionary (DND) which can store trainable representations which are updated
during the training process. NEC selects action in the same way as MFEC. The slowly
changing representations and quickly updating values lead to better performance than
MFEC. To the best of our knowledge, no previous method has studied the use of
episodic memory for action selection in continuous action spaces.

Memory-augmented RL Instead of using non-parametric models directly for ac-
tion selection, information stored can also be used to enhance learning of a deep RL
agent. During updates of value-based deep RL methods (Mnih, Kavukcuoglu, Silver,
Rusu, Veness, Bellemare, Graves, Riedmiller, et al., 2015) or critic parts of actor-critic
RL methods (Lillicrap et al., 2015), the neural network is updated by minimizing the
error between a TD target and the currently estimated Q value. Therefore, values
from the episodic memory can be used to form a new update target alongside the
original TD target:

L = α · (Q̂− Q̂original)
2 + β · (Q̂− Q̂em)2, (4.2)

where L is the loss/error to minimize, α and β are hyper-parameters to balance the
contribution of the original TD target Q̂original and the episodic target Q̂em, and Q̂ is
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the current Q value estimation. Episodic Memory Deep Q-networks (EMDQN) (Lin
et al., 2018), Episodic Memory Actor-Critic (EMAC) (Kuznetsov & Filchenkov, 2021),
Model-based Episodic Control (MBEC) (Le et al., 2021) and Generalizable Episodic
Memory (GEM) (H. Hu et al., 2021) all use this approach, but in different ways.
EMDQN combines values from the EM with 1-step TD target in deep Q learning
using fixed α and β. EMAC combines values from the EM with 1-step TD target
in DDPG for solving tasks with continuous action space. MBEC brings episodic
memory into the model-based RL settings, and combines values from the EM with
1-step TD target using a learned weight instead of fixed α and β. GEM uses EM
for implicit planning and performs the update with an n-step TD target (Sutton &
Barto, 2018), first taking n steps based on the EM then bootstrapping from a Q-
network. Aforementioned methods are all trying to distill information stored in EMs
into parametric models. Although by doing so the performance of parametric models
is enhanced, meanwhile it also loses the underlying benefit of EM which is fast reading
and writing.

Table 4.1: Overview of related memory-based RL approaches. None of these previous
works uses episodic memory for action selection in problems with a continuous action space.

Method EM usage Action space
MFEC action selection discrete
NEC action selection discrete

EMAC target update continuous
EMDQN target update discrete

GEM target update continuous
MBEC target update discrete

Neural Map feature storage discrete
CEC (ours) action selection continuous

Finally, note that there are various other methods, such as Neural Map (Parisotto
& Salakhutdinov, 2018), that learn to interact with an external (tabular) memory
module to deal with partial observability, but these approaches do not store any value
or policy estimates in the table, like episodic memory. A summary of related work is
provided in Table 4.1.

4.4 Continuous Episodic Control (CEC)
The principle of CEC is that actions the agent takes in similar states should also be
similar. It is implemented by maintaining a table that contains a state-action-value
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tuple for each row. Each entry stores the cumulative discounted reward the agent
received in an episode after taking the specific action in the specific state. To interact
with the memory, CEC mainly has two functions: an update function that adds new
encountered data into the memory or updates old data after an episode is terminated,
and an action selection function that is used during the episode to select actions.

Update We update the episodic memory after each collected episode. Intuitively, we
want our episodic memory to have good coverage of the visited state space, for which
we use the following mechanism. We first collect state-action-value pairs (s, a, v) from
episodes, where each value

v = Q̂em(s, a) =
T∑

i=0

(γ)i · rt+i|st = s, at = a

is the cumulative discounted reward obtained after taking action a in state s (for
readability we often omit the dependence of v on s and a when it is clear from the
context). For each collected (s, a, v), we then find its closest state neighbour sc in
the current memory. The new state-action-value tuple is directly added into the CEC
memory if the state is far away from its closest neighbor. Thereby, if the CEC memory
does not contain any information about the area near the incoming state, we directly
add it into the memory.

When its closest neighbor is within a certain distance threshold d, and its corre-
sponding value is smaller than the value of the incoming state, we replace the previous
state-action-value tuple with the new one. The intuition is that when the closest
neighbor is close enough, we assume that the CEC memory has information about the
area near the new state. However, if the stored value is worse than the one of the
new state-action-value tuple, we do overwrite it since we now have information about
a better action in the specific state region. The update rule can be expressed as:

EM(sc, ac, vc)←






(s, a, v) if f(s, sc) < d

and v > vc,

(sc, ac, vc) otherwise

(4.3)

Here, superscript c indicates the closest neighbour in the buffer, superscript l indicates
the least recently updated entry in the buffer, EM() refers to the slot of the specific
entry in the memory buffer, f() specifies a distance measure and d specifies a distance
threshold. Once the buffer has filled up, when a new coming state is out of the distance
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threshold of its closest state, the least updated tuple will be thrown away and the new
coming tuple will be added, otherwise, it will follow the aforementioned update rule:

EM(sl, al, vl)←





(s, a, v) if f(s, sc) > d,

(sl, al, vl) otherwise

(4.4)

Here, superscript l indicates the least recently updated entry in the buffer.

Action selection When a state s is encountered, a corresponding action a is selected
based on information stored in the CEC memory. We first find the k nearest-neighbors
of state s, denoted by Sk, then filter out neighbors which are too far away. Especially
when the memory is sparse, the closest neighbors could still be very far away and we do
not consider these faraway neighbors as ‘similar’ states. Next we let values stored for
state-action pairs of the filtered neighbors Sk decide which action should be selected.
Higher values indicate better actions, but for exploration purposes we still want to
give other actions a chance to be chosen. Therefore, we sample an action from the set
Sk proportional to their value estimates, by taking a softmax:

p(as|Sk) =
evs/τ∑

s′∈Sk

evs′/τ
, s ∈ Sk (4.5)

where subscripts s and s′ indicate the state the specific action and value belong
to in the buffer, and τ is a temperature factor to scale exploration. We now have a
sample from the discrete set of ai points in the buffer, but our true action space is of
course continuous. We therefore transform our sample to a continuous distribution by
adding Gaussian noise to the sampled action with probability ε. During the evaluation,
all exploration is turned off and actions are selected by greedily taking the action of
the closest neighbour.

Feature embedding While dealing with a high-dimensional state space, storing
the original state and finding its neighbors is expensive. We therefore utilize random
projections to project the original state space into a smaller space. We first sample
a random matrix A ∈ RDori×Dnew for a standard Gaussian distribution, where Dori

and Dnew are the dimensions of the original and projected state space, respectively.
We then (matrix) multiply the original state by A to get an embedded state, i.e.
snew = A · sori, where snew and sori are the embedded and original state, respectively.
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These transformations will still preserve the relative distance in the original state
space. We only use the random projection for FetchReach and Safexp-CarGoal
environments, while for other environments the original state is directly stored and
queried.

The overall algorithm can be found in Algorithm 1. knn(k, s, n, d) is a function
that first finds the k nearest neighbors of the state s, then filters out states whose
distances are larger than n times of the distance threshold d.

Algorithm 1 Continuous Episodic Control (CEC)
Initialize: CEC Memory M , environment Env, episode memory Meps, distance
threshold d, filter factor n, k for k-nearest-neighbors, discount factor γ, noise stan-
dard deviation σ, exploration factor ε.
while training budget left do
s← Env.reset() {Reset the environment.}
done = false
while not done do

// SELECT ACTION
Sk = knn(k, s, n, d) {Find k nearest-neighbors of the state s within threshold
n× d.}
a ∼ p(as|Sk) {Select actions based on Equation (4.5)}.
if ∆ ∼ U(0, 1) < ε then
ψ ∼ N (0,σ2)
a← a+ ψ

end if
s′, r, done← Env.step(a)
Append [s, a, r] to Meps

s← s′

end while
// UPDATE
v = 0
while Meps not empty do

s, a, r ← Meps.pop()
v ← r + γ · v
Update M using (s, a, v). {Update CEC memory based on (Equations (4.3)
and (4.4))}.

end while
end while
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4.5 Experiments
In this section, we will first give some insights of CEC by using simple toy examples.
Then we scale up to more complex continuous control tasks and compare with state-
of-the-art RL and memory-augmented RL methods. Dimensions of environments we
used for this work are shown in Table 4.2. Although Safexp-PointGoal and Safexp-
CarGoal have the same action space (two actuators, one for turning and one for
moving), in Safexp-CarGoal both turning and moving require coordinating both of
the actuators, which is more complex. Every experiment is averaged over 5 indepen-
dent runs and standard errors are plotted as well.

Table 4.2: Dimensions of state spaces and action spaces of different environments.

Env State Space Action Space
GrowingTree 1 1

MountainCarContinuous 2 1
PointUMaze 4 2
Point4Rooms 4 2

Safexp-PointGoal 24 2
Safexp-CarGoal 36 2

FetchReach 13 4

4.5.1 Toy Examples

In order to first get an overview and more insights into the method, we create a toy
example called GrowingTree. In this environment, the agent needs to ‘grow’ the ‘tree’
to the given target height. More details can be found in Tab. ??. The continuous
action space ranges from -0.1 to 0.1, which means the agent can chose to ‘cut’ (< 0)
the ‘tree’ or ‘grow’ (> 0) the ‘tree’. The observation for the agent is the height of the
current ‘tree’ and the height changes every step by simply adding the action to the
previous observation. The optimal policy for the agent to get the final reward is to
take 0.1 as the action every step whatever the height of the tree is, which causes the
‘tree’ to grow linearly.

We train the CEC agent on the toy example, with results shown in Figure 4.2.
Every row of the figure shows an evaluation of the CEC agent after another 10k

training steps, from top to bottom. The nth row therefore represents the evaluation
results after n × 10k training steps. The left part of the figure shows the heights of
the tree during the evaluation episode. If the optimal policy is learned by the agent,
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Figure 4.2: Evaluation on the toy example. We train the CEC agent on the toy example
for 100 k steps and evaluate it every 10k steps. Training are from top to bottom. Left:
the performance during the evaluation. It gradually takes shorter episode to reach the goal.
x-axis is taken steps during the evaluation episode and y-axis is the state (the height of the
current ‘tree’). Red horizontal lines are targets we set. Right: actions selected by the trained
CEC agent. x-axis represents different states while y-axis represents actions. Red horizontal
lines are final target states and green vertical lines are optimal actions (0.1).

Table 4.3: Details about GrowingTree environment. The agent only gets a final reward
when it successfully reaches the given goal (with a distance tolerance).

state space [-2, 2]
action space [-0.1, 0.1]

maximum steps 200
goal 1.0

final reward 1.0
distance tolerance 0.1

start height 0

the height of the tree will increase quickly with the number of steps (x-axis) increases.
The right figure shows the actions the CEC agent takes for every possible state (we
only evaluate states that lie within [0,1]). The optimal action in every state is (near)
0.1.

In the top rows, the agent still chooses to ‘cut’ the ‘tree’ sometimes, but the overall
trend of the ‘tree’ is still growing. Although the solution is not the optimal, the agent
is able to solve the problem successfully. In the middle rows, the agent can solve the
task fairly quickly. However, if we look at the middle rows of the right figure, the
chosen action for every possible state is still far from the optimal and a few of them
are still smaller than 0. Gradually, selected actions of all possible states are getting
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Figure 4.3: Four continuous navigation environments we used in this work and their
corresponding results. From left to right, they are ‘PointUMaze’, ‘Point4Rooms’, ‘Safexp-
PointGoal’ and ‘Safexp-CarGoal’, respectively. We see the proposed method CEC (blue
lines) outperform SAC (orange lines) and EMAC (grey lines) in all these four tasks. Results
are averaged over five independent runs and the shaded area represents standard errors.

Figure 4.4: MountainCarContinuous environment and learning curve of the CEC agent on
it. The agent gradually learns to solve the problem.

closer and closer to the optimal values (bottom rows).
Through this simple example, we see that our principle “similar states should have

similar actions" does work and can indeed quickly solve the problem with a non-optimal
solution, while it may also discover a near-optimal solution given more time.

We next test our method in a simple classical RL task, MountainCarContinuous.
We use the sparse reward version of the task, where the agent only gets a final reward
(+100) once it brings the car successfully to the flag on the top of the mountain. Since
the initial position of the car is randomly generated near the bottom of the mountain,
the agent also needs to deal with proper generalization. The learning curve of CEC
on this task is shown in Figure 4.4. The CEC agent gradually learns to solve the
task, which gives a first indication that our method can indeed be used for basic RL
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problems that require generalization.

Figure 4.5: State values produced by CEC (top) and SAC (bottom) during the training
on PointUMaze. Figures from left to right are after 5k, 50k, and 100k steps of training,
respectively. Since the state space is continuous, we discretize the location information into
12×12 grids and the orientation information into 20 directions (represent as different directed
arrows). Longer arrows indicate larger state-action values, and SAC outputs very large values
at the beginning which is not rational while CEC has larger values for the area near the goal.

4.5.2 Continuous Navigation Tasks
We next move to more complicated test environments, in which we will also compare
CEC to two baselines: the model-free deep RL method SAC (Haarnoja, Zhou, Abbeel,
& Levine, 2018) and a memory-augmented deep RL method EMAC (Kuznetsov &
Filchenkov, 2021) which uses EM for learning targets. We test these in four continuous
Mujoco navigation tasks, shown in Figure 4.3. They are PointUMaze, Point4Rooms,
Safexp-PointGoal, and Safexp-CarGoal, respectively. These tasks are all sparse-reward
problems, in which the agent only gets a final reward when the task is successfully
completed. Locations of both goals and agents are initialized with small randomness
every episode. Hyper-parameters we are using for CEC on these tasks can be found
in Table 4.4.

Results are shown in Figure 4.3. CEC agents can quickly solve the task and
outperform SAC and EMAC agents in all environments. In these four navigation
tasks, there are explicit bottlenecks and CEC can quickly remember the discovered
solution by only discovering it once. In contrast, the deep RL methods need to discover
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Table 4.4: Hyper-parameters of CEC we are using for continuous navigation tasks. Nota-
tions can be found in Algorithm 1.

Env k τ σ n d
PointUMaze 5 0.1 0.3 1 0.1
Point4Rooms 5 1 0.3 3 0.1

PointGoal 5 0.1 0.1 1 0.1
CarGoal 1 10 0.1 3 0.1

the solution multiple times in order to back-propagate reward signals for learning, and
this rediscovery is time-consuming due to the bottlenecks in the tasks.

We also visualize state-action values of CEC and SAC during the training for
PointUMaze, which is shown in Figure 4.5. The agent always starts from the bottom-
left corner and the goal is always located at the top-left corner. Both of these locations
are initialized with small randomness. Since the state space of the environment is 3
dimensional (x location of the agent, y location of the agent, orientation of the agent)
and continuous, we discretize x, y locations as a grid world (12× 12) and orientations
as a group of different directed arrows (20 different directions). The length of the
arrow represents the state-action value of the state that is jointly indicated by the
arrow and the position of the cell and the action for that specific state (only one
action is maintained for each state). The longer the arrow is, the larger the state-
action value is. From Figure 4.5, we see that in the beginning the SAC agent strongly
overestimates all state-actions values, due to the random initialization(arrows went
across the whole state space, meaning all state-action values are extremely large). On
the contrary, the CEC agent obtains reasonable estimates more quickly, also identifying
larger value estimates near the goal region. While training progresses, both agents
gradually improve their estimates to better propagate high-value estimates towards
the start region (i.e., identifying a good policy). Both agents eventually solve the task,
but CEC was much faster, as can be seen in Figure 4.3 as well.

4.5.3 Robotics Control Task
We finally investigate our method on a more complicated robotics control task: FetchReach.
The goal of the task is to control the robotics arm to reach the red point, which is reset
to a randomly sampled position every episode. The environment and its associated
learning curve are shown in Figure 4.6. We use k = 5, τ = 1,σ = 0.1, n = 3, d = 0.5

for CEC. We see that CEC still outperforms the state-of-the-art baseline methods,
although the difference is less pronounced compared to the previous navigation tasks.
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We attribute this to the lack of bottlenecks in this task. CEC is probably most useful
when a task has some narrow passages, which are challenging from an exploration
point of view, and in which CEC can quickly latch onto a few successful trials. Never-
theless, even in a robotics task with no bottleneck characteristics, CEC performs on
par with current state-of-the-art model-free baselines.

Figure 4.6: FetchReach environment and performance of different agents. CEC still out-
performs other RL agents but the benefits are not as large as the ones in previous navigation
tasks.

4.6 Conclusion and Future Work
In this work, we propose a new episodic control method called continuous episodic
control (CEC) which can handle tasks with a continuous action space. It is the first
work that uses episodic memory for continuous action selection. By following the
principle that “similar states should have similar actions", CEC agents outperform
the state-of-the-art RL method SAC and memory-augmented RL method EMAC in
various sparse-reward continuous control environments. Although RL methods might
outperform episodic control in the long run, sometimes we do prefer a quick and cheap
solution to the problem. Several experiments show CEC has strong performance on
continuous navigation tasks, especially when there are bottlenecks in the environment.

Although non-parametric methods (like episodic control) require increasing mem-
ory with new data, this can be eliminated by employing a throw-away mechanism
that only stores important data. In fact, experimental results show that episodic
control is able to scale up to Atari games (Silver et al., 2016), such as Ms.Pac-Man,
Space Invaders, and Frostbite, where pixel images are used as observations. However,
episodic control also has its limitations. For example, using Monte-Carlo returns as its
state-action values has high variance, and also it will not be able to learn the optimal
solution in stochastic environments by definition. But we believe sometimes we do
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prefer a quick (might be sub-optimal) solution.
In the future, it would be very interesting to investigate better feature embedding

methods (such as using latent features of a pre-trained VAE (Kingma & Welling,
2013)) and exploration strategies that work well with CEC. In addition, we could
also look at methods to improve the nearest neighbour search, for example, based
on clustering. Finally, we believe there is potential to combine episodic control and
parametric reinforcement learning methods to distill strengths from both sides and
then end up with a more powerful agent.
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Abstract
While deep reinforcement learning has shown important empirical success, it tends to
learn relatively slow due to slow propagation of rewards information and slow update of
parametric neural networks. Non-parametric episodic memory, on the other hand, pro-
vides a faster learning alternative that does not require representation learning and
uses maximum episodic return as state-action values for action selection. Episodic
memory and reinforcement learning both have their own strengths and weaknesses.
Notably, humans can leverage multiple memory systems concurrently during learning
and benefit from all of them. In this work, we propose a method called Two-Memory
reinforcement learning agent (2M) that combines episodic memory and reinforcement
learning to distill both of their strengths. The 2M agent exploits the speed of the
episodic memory part and the optimality and the generalization capacity of the re-
inforcement learning part to complement each other. Our experiments demonstrate
that the 2M agent is more data efficient and outperforms both pure episodic mem-
ory and pure reinforcement learning, as well as a state-of-the-art memory-augmented
RL agent. Moreover, the proposed approach provides a general framework that can
be used to combine any episodic memory agent with other off-policy reinforcement
learning algorithms. 1

1Code can be found at https://github.com/yangzhao-666/2m.
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5.1 Introduction

Deep reinforcement learning (DRL) achieves impressive results in a wide range of do-
mains. It reaches super-human performance in games such as Atari (Mnih et al., 2013),
Go (Silver et al., 2017) and Gran Turismo (Wurman et al., 2022). Recently, it also has
shown promise in scientific applications such as controlling nuclear plasma fusion (De-
grave et al., 2022) and discovering new matrix multiplication algorithms (Fawzi et al.,
2022). However, DRL is well-known for being data inefficient, since back-propagation
of reward signals and learning updates (including representation learning) can be slow.

In contrast to such parametric learning approaches, non-parametric episodic mem-
ory approaches maintain a memory buffer to store high-rewarded trajectories for ei-
ther action selection (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al., 2016;
Pritzel et al., 2017a) or for enhancing other reinforcement learning methods (H. Hu
et al., 2021; Kuznetsov & Filchenkov, 2021; Lin et al., 2018). These papers have
been demonstrated to outperform conventional reinforcement learning methods in cer-
tain tasks, such as Atari (Bellemare et al., 2013), and Labyrinth (Mnih et al., 2016).
In episodic memory, reward signals are back-propagated considerably faster than in
one-step temporal difference (TD) learning that is commonly used in reinforcement
learning. In addition, one-step TD learning is further slowed down by representation
learning and the use of function approximation. A potential problem of episodic mem-
ory is that fast back-propagation is problematic in stochastic tasks, and the lack of
learnable feature representations can make generalization difficult in episodic memory.
The question therefore becomes: can we combine the best of both approaches in a
single algorithm?

Evidence from neuroscience shows that multiple memory systems are activated
when humans are learning, and these also interact with each other (Poldrack &
Packard, 2003; Schott et al., 2005). Previous research (H. Hu et al., 2021; Kuznetsov
& Filchenkov, 2021; Lin et al., 2018) has shown that integrating episodic memory
and reinforcement learning can improve overall performance. In these works, episodic
memory is mainly used to provide learning signals for DRL methods, but they again
face the same challenges that are inherent to DRL. To fully capitalize on the advan-
tages of episodic memory and reinforcement learning, we propose a novel approach
called Two-Memory reinforcement learning (2M), in which both approaches comple-
ment eachother.

The workflow of the 2M agent is shown in Figure 5.1. The 2M agent maintains two
memories, namely ‘episodic control’ (episodic memory for control) (2M-EC) and ‘rein-
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Figure 5.1: The workflow of the 2M agent. Before the episode starts, the 2M agent selects
one type of memory for action selection in the next episode, which could either be episodic
control (EC) or parametric reinforcement learning (RL). The data subsequently collected is
used to update the EC solution (directly), and also enters an experience replay buffer (B) for
future updating of the parametric RL solution.

forcement learning’ (2M-RL). In the beginning, the 2M agent decides which memory to
employ for action selection in the upcoming episode. Then the collected episodic data
is pushed into the experience replay buffer where data for training 2M-RL is sampled
from occasionally. Meanwhile, episodic trajectories are used to update 2M-EC.

The intuition is that after 2M-EC discovers high-reward trajectories, the 2M agent
is able to retrieve these trajectories quickly although they might be suboptimal. How-
ever, at this stage, 2M-RL still has not learned anything substantial due to the one-step
reward backup and the slow updates required with function approximation (in DRL).
Thus, the 2M agent should prefer to use 2M-EC initially. As the amount of data col-
lected increases and training continues, 2M-RL becomes increasingly good at dealing
with stochasticity and developing better feature representations; the 2M agent should
then gradually switch to 2M-RL. This is the conceptual approach we study in this
work.

In short, our work makes two main contributions:

• We propose a novel framework called 2M that combines episodic control and
reinforcement learning methods, exploiting the strengths from both sides. The
framework can be used with any type of EC method and any type of off-policy
RL method.

• We conduct experiments showing that 2M outperforms state-of-the-art baselines,
and we also include ablation studies that examine when the 2M works well, and
where it may still be improved.
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5.2 Background

We will first introduce the formal problem definition and the two main approaches
combined in this paper: parametric reinforcement learning (in the form of deep Q-
learning) and non-parametric episodic memory.

5.2.1 Markov Decision Process

We follow standard definitions (Sutton & Barto, 2018) and define decision making
problems as a Markov Decision Process (MDP) represented by 〈S,A,R, P, γ〉. S de-
notes the state space, A denotes the action space, R denotes the reward function and
P denotes the dynamic transition. γ is the discount factor, which is usually close
to 1. The agent interacts with the environment by taking action at ∈ A according
to some policy π given the current state st ∈ S at time step t, then the next state
st+1 ∼ P (·|st, at) and reward rt = R(st, at, st+1) is returned by the environment. A
policy π maps a state to a distribution over actions. The agent will then take the
next action at+1 based on the new state st+1. This process repeats until the terminal
time step T . The goal of the agent is to learn a policy π that maximizes the expected
cumulative reward: Est+1∼P (·|st,at),at∼π(·|st),rt∼R(·|st,at)[

∑T
t=0 γ

t · rt].

5.2.2 Deep Q-Learning

Define the state-action value function Q(st, at) as the expected cumulative reward
the agent will receive by starting from state st and taking action at. Q-learning is
an algorithm to learn the optimal Q value function, it updates the state-action value
function by iteratively following the Bellman equation. The update rule of Q-learning
is:

Q(st, at)← Q(st, at) + α(rt + γmax
a′∈A

Q(st+1, a
′)−Q(st, at))

where α is the learning rate and γ is the discount factor. The solution of Q-learning
is generally stored in a table. When the state space is large, storing all possible states
becomes infeasible. We may then use a neural network to approximate the state-action
value function. The update rule of deep Q network (Silver et al., 2017) is:

y(st)← rt−1 + γmax
a′∈A

Q(st, a
′)

Est,at,rt,st+1∈D(y(st+1)−Q(st, at))
2 (5.1)

67



Related Work

where D is the sampled data for training. After we have the state-action value function,
the policy is exacted by always taking the action with the highest state-action value
greedily in every state.

5.2.3 Episodic Control

Episodic control refers to a class of methods that directly use non-parametric episodic
memory for action selection (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et
al., 2016; Pritzel et al., 2017a). It is generally implemented as a table (Qec), and
rows represent different actions while columns represent different states. Each entry
is associated with a state-action (st, at) pair and denotes the highest encountered
episodic return (Gt =

∑T
k=t γ

k−trk) after taking action at in the state st. The update
only occurs after one episode has terminated, which is similar to tabular Monte-Carlo
back-up but with a more aggressive update rule. Instead of incrementally updating
state-action values, episodic control replaces the stored episodic return with the best
value observed so far. The update rule of episodic control is:

Qec(st, at)←





Gt if (st, at) /∈ Qec,

max{Gt, Qec(st, at)} otherwise

(5.2)

During action selection, if the queried state already has Q values for all actions, we
take the action that is with the highest Q value. Otherwise, missed Q values are
estimated by averaging over the queried state’s K-nearest neighbors’ Q values. When
the memory is full, the least updated entry will be dropped from the table.

5.3 Related Work

We will first discuss previous work on episodic control, and how it has been used as
a training target for deep reinforcement learning. This last approach differs from our
work, where EC is used for action selection (see Figure 5.1). Afterwards, we also
briefly discuss related work on experience replay, since it plays a central role in our
approach as well (see Figure 5.1).
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5.3.1 Episodic Control

Model Free Episodic Control (MFEC) (Blundell, Uria, Pritzel, Li, Ruderman, Leibo,
Rae, et al., 2016) is the first episodic control method and it is implemented as a table
with untrainable features. Thus, it enjoys limited generalization over either a randomly
projected or pre-trained feature space. Neural Episodic Control (NEC) (Pritzel et al.,
2017a) solves this limitation by maintaining a differentiable table to learn features
while using the same update and action selection rule (shown in Equation (5.2)) as
MFEC but achieves better performance. Since Monte-Carlo returns must be stored for
each state-action pair, episodic control methods can not deal with continuous action
spaces naturally. Continuous Episodic Control (CEC) (Z. Yang et al., 2022) extends
episodic memory to select actions directly in continuous action space. The 2M agent
integrates MFEC as a core component, and partially uses it for action selection.

5.3.2 Episodic Memory for Learning

While using episodic memory for control is fast, reinforcement learning methods might
still be preferred in the long run due to their strength. Many approaches use the returns
stored in episodic memory to provide richer learning targets for reinforcement learning
methods. Episodic Memory Deep Q Network (EMDQN) (Lin et al., 2018) uses returns
in episodic memory to enhance learning targets in deep Q-Learning. Episodic Memory
Actor-Critic (EMAC) (Kuznetsov & Filchenkov, 2021) and Generalizable Episodic
Memory (GEM) (H. Hu et al., 2021) uses episodic returns to enhance learning targets
in actor-critic methods to solve tasks with continuous action space. Episodic Backward
Update (EBU) (Lee et al., 2019) utilizes structural information of states that are in
the same episode and executes a one-step backup for each state along the trajectory.
The aforementioned methods take advantage from richer learning signals of episodic
memory, but underlying neural network training still progresses slowly. Thereby, the
benefit of the EC solution will not affect action selection quickly. In contrast, the 2M
agent does use episodic memory for action selection, which may give it a fast head-
start. As a second difference, in 2M the collected data is also used to train the 2M-RL
agent (in contrast to previous methods).

5.3.3 Experience Replay

Experience replay was originally proposed to improve data efficiency and break correla-
tions of training data for off-policy reinforcement learning methods. Uniform sampling
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is the most naive and commonly used way to sample data from the replay buffer for
training, where transitions are sampled at the same frequency as they were experi-
enced regardless of their significance (Schaul, Quan, et al., 2015). To address this
limitation, prioritized Experience Replay (PER) (Schaul, Quan, et al., 2015) priori-
tizes transitions that have larger TD errors during the training, and samples these
transitions more often because larger TD errors indicate there is more information to
learn. Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) is proposed
for the multi-goal/goal-conditioned RL setting; it treats states that the agent actually
achieves as desired goals and learns from failures. Since not all failures are equally im-
portant, Curriculum-guided Hindsight Experience Replay (CHER) (Fang et al., 2019)
adaptively replays failed experiences according to their similarities to true goals. An
event table (Kompella et al., 2022) is defined as a buffer to store transitions related to
important events. The authors theoretically proved that sampling more data from the
event table will lead to better performance. Although the 2M agent doesn’t employ
any special sampling strategies to sample from the replay buffer, the data stored in
the buffer is actually from two different sources (2M-EC and 2M-RL). We can thus
vary sampling preference by pushing different amounts of data from different sources.

5.4 Two-Memory Reinforcement Learning (2M)

We will now formally introduce the 2M framework. It consists of two ‘memories’,
where one represents a fast learning memory (episodic control agent) and another
one represents a slow learning memory (reinforcement learning agent, in our work we
use 1-step (deep) Q-learning). Intuitively, we should prefer to use the fast (but sub-
optimal) learning memory initially, then gradually switch to the slow (but with better
asymptotic performance) learning memory. In this section, we will first motivate this
intuition by using a very simple example (Section 5.4.1). Then we explain the designs
of the proposed approach. Since we combine two different methods and want to switch
between them, we also need to discuss a scheduling mechanism to decide when to
switch (Section 5.4.2) and need to decide how to utilize collected data (Section 5.4.3).
The overall algorithm is detailed in Algorithm 2. At the beginning of each episode,
2M-EC or 2M-EC is selected and will be used for action selection in the whole episode.
Collected data is stored into the replay buffer used for training 2M-RL which happens
every N steps. 2M-EC is trained after every episode is finished. Eventually, the one
performs better during the training will be used for evaluation.
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Figure 5.2: A motivating example with seven states in the state space and two actions in
the action space. After the agent discovers all possible trajectories (from s1 to all possible
terminal states), EC (orange) finds the sub-optimal solution while one-step off-policy RL
(grey) only back-propagates reward signals to direct predecessor states and thus does not
change the estimates at the root state. However, after many iterations, off-policy RL will
converge to the true optimal values (preferring action left followed by action left), while EC
will commit to a suboptimal solution (action left followed by action right). Colour shading
indicates the preferred solution path for each method after a single visit to every possible
path.

Figure 5.3: The five MinAtar games used in the experiments (from left to right): Breakout,
Space Invaders, Asterix, Seaquest, Freeway.

5.4.1 A Motivating Example
We first consider a very simple example domain shown in Figure 5.2, circles with
numbers represent different states while smaller circles represent actions. There are
seven states in the state space: S = {s1, s2, s3, s4, s5, s6, s7}, two actions (left and
right) in the action space: A = {a1, a2}. Most of dynamic transitions are deterministic,
except in state s2, after taking action a2, there is 50% probability the next state ends
up with s5 and 50% probability ends up with s6: P (s2, a2, s5) = P (s2, a2, s6) = 0.5.
Leaf nodes (s4, s5, s6, s7) are terminal states where the agent will receive a reward:
R(s2, a1, s4) = +10, R(s2, a2, s5) = −10, R(s2, a2, s6) = +20, and R(s3, a2, s7) = −20.
Color shading indicates the decisions that different agents will make after a single visit
to every possible trajectory (orange for episodic control and grey for 1-step Q-learning).
We can see that after the agent discovers all possible trajectories, the episodic control
agent is already able to follow a sub-optimal trajectory starting from the initial state.
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Algorithm 2 Two-Memory Reinforcement Learning
Input: Environment env, non-parametric episodic control agent ec, parameterized
reinforcement learning agent rl, Two-memory agent 2M, replay buffer B, probability
pec, exploration factor ε
Gec ← [ ] {initialize return list of ec}
Grl ← [ ] {initialize return list of rl}
2M-RL ← rl
2M-EC ← ec
while training budget left do
s← reset the env
done = false
τ ← [ ] {initialize episodic trajectory}
if ∆ ∼ U(0, 1) < pec then

2M ← 2M-EC {2M switches to EC}
else

2M ← 2M-RL {2M switches to RL}
end if
G← 0
while not done do

execute action a selected by 2M based on s with ε-greedy exploration
observe reward r and next state s′ in env
store (s, a, r, s′) to B and τ
s← s′

G← G+ r
update 2M-RL using D according to (Equation (5.1)) if needed, D ∼ B

end while
update 2M-EC using τ according to (Equation (5.2))
if 2M is 2M-RL then

add G to Grl

else
add G to Gec

end if
update pec {decay or increase or consistent}

end while

However, the 1-step Q-learning agent only back-propagates the reward signal from
terminal states to their predecessors, which means the 1-step Q-learning agent still is
not able to make decisions in the initial state. The optimal policy for this MDP is to
take a1 in s1 and take a1 in s2 as well. By definition, episodic control will converge
to a sub-optimal policy that always takes a2 in s2 (shown in Equation (5.3)). With
more updates, 1-step Q-learning will learn the optimal state-action value (shown in
Equation (5.4)) for each state-action pair, which will result in the optimal policy.
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Qec(s2, a1) = 10, Qec(s2, a2) = 20 (5.3)

Q∗(s2, a1) = 10, Q∗(s2, a2) = 5 (5.4)

Thus, we conclude that episodic control is fast but sub-optimal, and reinforcement
learning (1-step Q-learning in our case) is slow but optimal. There should exist an
intersection point between these two different methods where reinforcement learning
surpasses episodic memory. One might ask why we do not compare with (full-episode)
Monte-Carlo backup. The 1-step back-up can utilize off-policy learning to learn from
data collected by other policies, which is more data efficient. We therefore aim to
combine the fast learning of EC with the data efficiency of 1-step off-policy learning.

5.4.2 Switching
The previous example highlighted that EC may learn a solution faster, while RL
may eventually converge to a better solution. Therefore, we ideally want a switching
mechanism, that transitions from EC action selection to RL action selection. We need
to decide both when and how to switch between the two different ‘memories’.

Regarding the ‘when’, we propose to decide which memory to use for every episode.
This way, we ensure that action selection within the episode stays consistent. To
determine which memory we will use in a particular episode, we need to define a
probability pec that specifies the probability that we will use EC in the next episode.
Obviously, we then select 2M-RL with probability 1 − pec. Since we favor the use of
2M-EC at the beginning and 2M-RL near the end, we want to gradually decay pec

from a high value to a lower value according to the equation:

pec ← pe + (ps − pe) · e−i/τ (5.5)

where ps and pe are starting value and end value of pec, i is the number of steps the
agent takes so far and τ is the temperature that controls the speed of decay. Smaller
τ decays pec faster while lager τ decays pec slower. In the ablation experiments, we
also experiment with different scheduling mechanisms.

During evaluation, we exploit knowledge stored in both memories in a greedy
manner. However, we still need to decide which memory to use during evaluation. The
scores 2M-RL and 2M-EC obtained during training are used as metrics to evaluate
their respective performances, and the memory with the higher recent score is selected
for action selection during evaluation. More specifically, we keep track off cumulative
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rewards of both memories during training, and the score (srl and sec for 2M-RL and
2M-EC, respectively) is defined as the average cumulative reward over the last n

episodes per memory method. We fix n = 50 in this work. Thus, the 2M agent will
choose among two memories using Equation (5.6).

2M←





2M-RL if srl ≥ sec,

2M-EC otherwise

(5.6)

5.4.3 Learning

To foster mutual improvement of the two memories, the collected data is shared be-
tween 2M-EC and 2M-RL. Regardless of which memory the data is collected by, it is
used to update 2M-EC according to Equation (5.2), ensuring that 2M-EC is always up
to date. On the other hand, since we use off-policy reinforcement learning methods,
data collected by 2M-EC can also be used to update 2M-RL. This is implemented by
maintaining a replay buffer, and all data collected during the training will be pushed
into it. 2M-RL is then trained (Equation (5.1)) every x timesteps (we use x = 10)
by sampling minibatches from the buffer. It should be noted that the value of pec

indirectly determines the amount of data in the replay buffer originating from 2M-EC,
and thereby the proportion of such data used for training 2M-RL.

5.5 Experiments

We first present experimental results on a simple WindyGrid environment to demon-
strate the efficiency of the proposed 2M agent. Subsequently, we perform extensive
experiments on five MinAtar (Young & Tian, 2019) games, namely Breakout, SpaceIn-
vaders, Asterix, Seaquest, Freeway, as illustrated in Figure 5.3. These games present
diverse challenges, such as exploration (Seaquest and Freeway), classical control tasks
(Breakout and SpaceInvaders), and so on. MinAtar is a simplified version of Atari
Learning Environment (Bellemare et al., 2013), which simplifies representations of
games while still capturing general mechanics. This allows the agent to focus on be-
havioural challenges rather than representation learning. Finally, an ablation study is
conducted to investigate the crucial choices of the proposed method.
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5.5.1 Proof of Concept Under Tabular RL Setting

Figure 5.4: An illustration of the WindyGrid environment. The agent (smile face) needs
to navigate from the starting point to the given goal (star). There is the stochastic wind that
will (black column with up arrows) blow the agent up and the agent gets a penalty when it
reaches the trap (red cell).

The 2M agent integrates tabular 1-step Q-learning with episodic control to solve a
WindyGrid task (shown in Figure 5.4). The WindyGrid instance we use here is 7× 10

large, with a stochastic wind in the 7th row and a trap where the agent will get a large
penalty. The agent needs to navigate from the initial state (3, 0) to the terminal state
(3, 7). The results presented in Figure 5.5 demonstrate the performance of various

Figure 5.5: Results on WindyGrid under tabular settings. Left: Evaluation returns of
different agents, EC learns very fast but converges to local optima while RL learns slowly but
converges to global optima. 2M learns faster (compare to RL) at the beginning and has better
asymptotic performance (compare to EC). Colors in the background indicate memories used
during evaluation, orange and grey represent the use of 2M-EC and 2M-RL. Right: Learned
Q-values summed across the entire state-action space, 2M-RL learns Q-values faster than
pure RL which is trained using monotonic RL data.

agents. The left figure shows returns the agent obtains during the evaluation, while
the right figure shows learned Q-values summed across the whole state-action space.
The orange line represents the EC agent, which achieves quick learning and decent
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performance from the start but only has sub-optimal asymptotic performance. In
contrast, the grey line corresponds to the RL agent, which initially performs poorly
but gradually improves and eventually converges to the optimal solution. The blue
line corresponds to the 2M agent, which learns faster at the beginning compared to RL
and achieves better asymptotic performance compared to EC. The background colors
indicate the use of different memories by the 2M agent during the evaluation, with
the agent using 2M-EC (orange) for evaluation at the beginning and then switching
to 2M-RL (grey) after approximately 25k steps.

Since the memories 2M-RL and 2M-EC share data, and 2M-RL is trained on data
collected by both of them, we investigate whether this approach has a positive impact
compared to training solely on data collected by pure RL. As Varun et al. (Kompella et
al., 2022) demonstrated theoretically and experimentally, learning from data correlated
to the optimal policy will results in lower complexity (which is an intuitive result). If
we assume the EC data is at least somewhat correlated to the optimal policy, we expect
that use of EC data in RL updates will lead to faster learning. We experimentally test
this idea in Figure 5.5. The right panel of Figure 5.5 shows that using mixed data to
train the RL agent (2M-RL) can indeed result in faster learning of state-action values
compared to using data solely collected by RL. This suggest EC data may actually
improve RL sample efficiency.

5.5.2 Results on MinAtar Games
Next, we perform experiments on five MinAtar games, which also vary in the amount
of stochasticity. We optimize hyper-parameters over the values shown in Table 5.1,
where the settings used for the final results are highlighted in bold.

Table 5.1: Tuned hyper-parameters, where the ones we use for the final experiments are
highlighted in bold. ps is the starting value from Equation (5.5)

ε (for exploration) 0.1, 0.9
k (for k-NN in EC) 1,3, 10

ps → pe (for switching) 0.9→ 0.1,0.1→ 0.1,0.1→ 0.9
learning rate 0.001,0.0001

In the results presented in Figure 5.6, the top rows depict the various memories
the 2M agent selected during the evaluation, whereas the bottom rows display the
returns agents obtain. The performance of EC (orange lines) and DQN (grey lines) is
consistent with the findings observed in the toy example, where EC learns quickly at
the beginning but converges to sub-optimal solutions while DQN learns slowly but has
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Figure 5.6: Results on MinAtar games: Breakout, SpaceInvaders, Asterix, Seaquest, Free-
way. The top row shows the relevant memory that the 2M agent chooses for evaluation:
orange represents 2M-EC and grey represents 2M-RL. The bottom row shows the returns
obtained during training (running independent evaluation epsisodes). The 2M agent either
outperforms or is on par with all baseline comparisons (EC, DQN and EMDQN). EC gener-
ally learns fast, but then reaches a plateau. 2M learns equally fast initially, but then adopts
the better long-term performance of RL.

better asymptotic performance. 2M agents (blue lines) perform the best (comparably
to EC) at the beginning on all five games, and in most games, they also exhibit
better asymptotic performance (or at least equally good performance) compared to
other baselines (except maybe for Asterix). In Asterix, the 2M agent underperforms
EMDQN (green lines), but is still better than DQN and EC.

During the evaluation, most 2M agents demonstrate a preference for using 2M-EC
initially and then switching to 2M-RL over time. In Freeway, the agent continually
switches between 2M-EC and 2M-RL, suggesting a mutually beneficial relationship
between these two memories. However, in Breakout, the agent consistently favors to
use 2M-EC. This may be attributed to the fact that stochastic dynamic transitions
have a less pronounced impact on performance in this game, with the most critical
time step being the one at which the paddle must bounce the ball. We hypothesize 2M-
RL can help 2M-EC escape local optima and then 2M-EC can rapidly learn improved
solutions and continue to progress. To test this hypothesis, we need to check whether
a 2M agent that does not share collected data between both memories indeed 1) has
worse performance, and 2) prefers RL in the long run, instead of getting to a more
optimal EC solution.

Figure 5.7 shows the performance of an 2M agent with data sharing enabled and
disabled. With data sharing (2Mw/DaS), the agent mostly prefers to use EC during
evaluation (top-left figure), as expected from Figure 5.6. When we deactivate data
sharing (2Mw/oDaS, two memories are only trained using data collected by the cor-
responding memory separately), the 2M agent only prefers 2M-EC at the beginning
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and then sticks to 2M-RL (bottom-left graph of the figure). The performance graph
on the right of the figure confirms these results. Without data sharing, 2M does not
reach the same performance (blue line stays above the orange line). The circles show
the performance of 2M-EC at the end of training for both methods. Without data
sharing, 2M-EC (the orange circle in Figure 5.7) converges to a sub-optimal solution.
With data sharing enabled, 2M-EC (the blue circle in Figure 5.7) has a way higher per-
formance. This observation provides evidence to support the aforementioned notion
that 2M-RL and 2M-EC complement eachother.

Figure 5.7: Left: Switching schedule of 2M agent with data sharing (top) and without data
sharing (bottom) during evaluation on Breakout. Right: Returns two different 2M agents
are able to get in evaluation. The final performance of 2M-EC is represented by coloured
circles. We see that with data sharing, EC reaches a return of 6, while without data sharing,
EC only manages to reach a return of 3.

5.5.3 Ablation Study
In this section, we conduct two groups of ablation experiments to study the design
choices in our work. First, we would like to investigate the impacts of data sharing.
Deactivating data sharing (2Mw/oDS), resulting in 2M-RL being solely trained on
data collected by 2M-RL and 2M-EC being solely trained on data collected by 2M-EC.
This transforms our proposed method becomes a ‘scheduler’ that schedules the training
between two distinct models and uses the better one for evaluation. Second, we aim
to study different ways of scheduling pec. Specifically, we examine three different
scheduling approaches: decayed scheduling (2Mw/DS), constant scheduling (2Mw/CS)
and increased scheduling (2Mw/IS).

Intuitively, data sharing can be helpful since each memory will get different data
from another memory, hopefully, they could also learn from each other. It should

78



Chapter 5. Two-Memory Reinforcement Learning

result in a better performance compared to only training the agent on its own col-
lected data. In fact, such sharing has different impacts on different games, shown in
Figure 5.8. In Seaquest, data sharing improves 2M agent’s performance, and harms
the performance of the agent in Asterix. To understand the reasons for these oppo-
site impacts, we separately track the performance of 2M-EC and 2M-RL during the
training, and final performance are represented by circles and triangles in Figure 5.8
and larger size represents more use of 2M-EC (larger ps) during the training. In As-
terix, data sharing pulls down the performance of 2M-RL (blue triangles are always
below orange ones), and training 2M-RL on more data collected by 2M-EC leads to
even worse performance (the large blue triangle is way below the large orange one),
indicating that data collected by 2M-EC is actually harmful for training 2M-RL in
this game. Conversely, in Seaquest, data sharing improves the performance of 2M-EC
(blue circles are always above orange ones), which again indicates that 2M-RL can
help 2M-EC escape from local optima. However, overusing data collected by 2M-EC
to train 2M-RL also leads to worse performance (the large blue triangle is way below
the large orange one). All in all, 2M-RL should not use too much data collected by
2M-EC. Although we show that such training is helpful to learn the optimal state-
action values when collected data is correlated to the optimal policy, this assumption
is not always satisfied. Meanwhile, 2M-RL can help 2M-EC escape from local optima
but not always. We presume it helps when stochastic transitions have fewer negative
impacts, then 2M-EC is able to catch improved solutions provided by 2M-RL. For
example, in Asterix, there are many enemies and the agent dies immediately when it
touches enemies, meaning the agent will more likely die if a single wrong (sub-optimal)
action is made. Therefore, once 2M-EC discovers a sub-optimal trajectory with a very
high return (luckily manage to survive for a long time, like ending up with s6 in the
motivating example in Figure 5.2) with a tiny probability, it will stick to it. Then
it is difficult for 2M-EC to escape from local optima even though improved solutions
are provided. We leave more systematic investigations on this phenomenon for future
work.

Next we examine how different scheduling mechanisms affect performance. The 2M
agent with decayed scheduling (2Mw/DS) will initially give a higher preference to use
2M-EC for data collection during the training, then gradually shifts towards 2M-RL.
On the contrary, increased scheduling (2Mw/IS) will start with a strong preference
for using 2M-RL, then gradually switch to 2M-EC. Constant scheduling maintains a
constant preference for 2M-EC and 2M-RL throughout the training process. Given
that 2M agents with 2Mw/DS perform the best or one of the best on all games,
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Figure 5.8: Performance of 2M agents with and without data sharing on Asterix (left) and
Seaquest (right). Results are averaged over 2 different settings, one is with larger pec and one
is with smaller pec. Data sharing has different impacts on these two games. Circles represent
the final performance of 2M-EC while triangles represent the performance of 2M-RL. The
larger size means the larger value of pec during the training.

we only present the performance on Seaquest as a representative in Figure 5.9. The
results demonstrate that the agent with 2Mw/DS outperforms the other two scheduling
mechanisms explicitly.

Figure 5.9: Performance of 2M agents with different scheduling mechanisms on Seaquest.
The one with the decayed scheduling mechanism works the best while other two mechanisms
have similar performance.

To sum up, our experimental results demonstrate that the 2M agent surpasses its
constituent components, i.e. a pure reinforcement learning approach (Q-learning in
tabular settings and DQN (Mnih et al., 2013) in deep RL settings) and a pure episodic
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memory approach (MFEC (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al.,
2016) in both tabular and deep RL settings). Furthermore, our proposed method
exhibits better performance than a state-of-the-art memory-augmented reinforcement
learning method EMDQN (Lin et al., 2018). Since the proposed framework allows for
the integration of various pure EC and RL methods, we only compare the performance
of the 2M agent with those methods that are integrated into it in this work. Therefore,
we do not compare our results with other pure episodic memory and reinforcement
learning approaches. Lastly, we conduct ablation studies to investigate the impact of
two essential design choices: the utilization of data sharing for the mutual improvement
of the memories, and the scheduling of pec for switching between the two memories.

5.6 Conclusion and Future Work
In this work, we proposed a novel approach, termed Two-Memory (2M) reinforce-
ment learning agent, which integrates two distinct learning methods, namely non-
parametric episodic memory and (parametric) reinforcement learning. This approach
capitalizes on the advantages of both methods by leveraging the episodic memory’s
rapid starting and the reinforcement learning’s superior generalization and optimality
to create an agent that achieves higher data efficiency than the individual methods.
Experimental results show that 2M matches or outperforms both DQN and EMDQN
on a range of MinAtar games. In addition, we show that these two distinct memory
modules may complement eachother, leading to even better final performance.

For future work, it would be interesting to automatically determine when data shar-
ing is useful, for example based on the discrepancy between both memories. Another
clear direction to improve the 2M agent could be an adaptive scheduling mechanism to
switch between 2M-EC and 2M-RL, instead of the hand-designed decay schedules used
in this work. Moreover, combining stronger episodic memory methods (such as NEC)
with off-policy reinforcement learning methods could lead to further improvements in
performance. In our work, we uniformly replay data from the replay buffer to train
the 2M-RL component, but a more sophisticated replay strategy, such as prioritized
experience replay (PER), may further enhance performance. Overall, our proposed
approach provides a general framework for combining two fundamentally different ap-
proaches to sequential decision-making, combining their respective strengths.
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Abstract
Go-Explore achieved breakthrough performance on challenging reinforcement learning
(RL) tasks with sparse rewards. The key insight of Go-Explore was that successful
exploration requires an agent to first return to an interesting state (‘Go’), and only
then explore into unknown terrain (‘Explore’). We refer to such exploration after
a goal is reached as ‘post-exploration’. In this paper, we present a clear ablation
study of post-exploration in a general intrinsically motivated goal exploration process
(IMGEP) framework, that the Go-Explore paper did not show. We study the isolated
potential of post-exploration, by turning it on and off within the same algorithm under
both tabular and deep RL settings on both discrete navigation and continuous control
tasks. Experiments on a range of MiniGrid and Mujoco environments show that post-
exploration indeed helps IMGEP agents reach more diverse states and boosts their
performance. In short, our work suggests that RL researchers should consider using
post-exploration in IMGEP when possible since it is effective, method-agnostic, and
easy to implement.
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6.1 Introduction

Go-Explore (Ecoffet et al., 2021) achieved breakthrough performance on challenging
reinforcement learning (RL) tasks with sparse rewards, most notably achieving state-
of-the-art, ‘super-human’ performance on Montezuma’s Revenge, a long-standing chal-
lenge in the field. The key insight behind Go-Explore is that proper exploration should
be structured in two phases: an agent should first attempt to get back to a previously
visited, interesting state (‘Go’), and only then explore into new, unknown terrain (‘Ex-
plore’). Thereby, the agent gradually expands its knowledge base, an approach that is
visualized in Figure 6.1. We propose to call such exploration after the agent reached
a goal post-exploration (to contrast it with standard exploration).

There are actually two variants of Go-Explore in the original paper: one in which
we directly reset the agent to an interesting goal (restore-based Go-Explore), and one in
which the agent has to act to get back to the proposed goal (policy-based Go-Explore).
In this work, we focus on the latter approach, which is technically part of the literature
on intrinsic motivation, in particular intrinsically motivated goal exploration processes
(IMGEP (Colas et al., n.d.)). Note that post-exploration does not require any changes
to the IMGEP framework itself, and can therefore be easily integrated into other
existing work in this direction.

While Go-Explore gave a strong indication of the potential of post-exploration, it
did not structurally investigate the benefit of the approach. Go-Explore was compared
to other baseline algorithms, but post-exploration itself was never switched on and off
in the same algorithm. Thereby, the isolated performance gain of post-exploration
remains unclear.

Therefore, the present paper performs an ablation study of post-exploration in both
tabular and deep RL settings on both discrete and continuous tasks. Experiments in
a range of MiniGrid and Mujoco tasks show that post-exploration provides a strong
isolated benefit over standard IMGEP algorithms. As a smaller contribution, we
also cast Go-Explore into the IMGEP framework, and show how it can be combined
with hindsight experience replay (HER) (Andrychowicz et al., 2017) to make more
efficient use of the observed data. In short, our work presents a systematic study
of post-exploration and shows its effectiveness on both discrete navigation tasks and
continuous control tasks.
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Figure 6.1: Conceptual illustration of post-exploration. Each box displays the entire
state space, where green and red denote the (currently) explored and unexplored regions,
respectively. Left: Goal-based exploration without post-exploration. The top graph shows
the agent reaching a current goal, after which the episode is terminated (or the next goal in
the green area is chosen). Therefore, in the next episode (bottom) the agent will again explore
within the known (green) region), often leaving the unknown (red) area untouched. Right:
Goal-based exploration with post-exploration. The top figure shows the agent reaching a
particular goal, from which the agent now post-explores for several steps (dashed lines).
Thereby, the known area (green) is pushed outwards. On the next episode, the agent may
now also select a goal in the expanded region, gradually expanding its knowledge of the
reachable state space.

6.2 Related Work

Go-Explore is a variant of intrinsically motivated goal exploration processes (IMGEP)
(surveyed by Colas et al. (n.d.)) which generally consists of three phases: 1) defin-
ing/learning a goal space, 2) sampling an interesting goal from the goal space, and
3) getting to the sampled goal based on knowledge from previous episodes. Regard-
ing the first step, Go-Explore (Ecoffet et al., 2021) pre-defines goals as down-scaled
states, and the goal space is adaptively extended by adding new encountered states.
Other IMGEP approaches, like Goal-GAN (Florensa et al., 2018) uses a generative
adversarial network to learn a goal space of appropriate difficulty. As an alternative,
AMIGo (Campero et al., 2021) trains a teacher to propose goals for a student to reach.
In this work, we largely follow the ideas of Go-Explore, and pre-define the goal space
as the visited state space, since our research questions are directed at the effects of
post-exploration.

After a goal space is determined, we need a sampling strategy to set the next goals.
Generally, desired next goals should be novel/diverse enough or lie on the border
of the agent’s knowledge boundary. Example strategies to select next goals include
novelty (Ecoffet et al., 2021; Pitis et al., 2020), learning progress (Colas et al., 2019;
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Table 6.1: Overview of moment of exploration in IMGEP papers. Most IMGEP approaches,
like Goal-GAN (Florensa et al., 2018), CURIOUS (Colas et al., 2019), DIAYN (Pong et al.,
2019), MEGA (Pitis et al., 2020) and AMIGo (Campero et al., 2021), only explore during
goal reaching. Restore-based Go-Explore, which directly resets to a goal, only explore after
the goal is reached. Our work, similar to policy-based Go-explore, explores both during goal-
reaching and after goal reaching.

Approach Exploration Post-exploration
IMGEP " !

Restore-based Go-Explore ! "
Policy-based Go-Explore + this paper " "

Portelas et al., 2020), diversity (Pong et al., 2019; Warde-Farley et al., 2019), and
uniform sampling (Eysenbach et al., 2018). In this work, we use novelty (count-based)
for sampling, since it has less tuneable hyper-parameters.

In the third IMGEP phase, we need to get back to the proposed goal. One variant
of Go-Explore simply resets the agent to the desired goal, but this requires an envi-
ronment that can be set to an arbitrary state. Instead, we follow the more generic
‘policy-based Go-Explore’ approach, which uses a goal-conditioned policy network to
get back to a goal. The concept of goal-conditioning, which was introduced by (Schaul,
Horgan, et al., 2015), is also a common approach in IMGEP approaches. A well-known
addition to goal-based RL approaches is hindsight experience replay (Andrychowicz
et al., 2017), which allows the agent to make more efficient use of the data through
counterfactual goal relabelling. Although Go-Explore did not use hindsight in their
work, we do include it as an extension in our approach.

After we manage to reach a goal, most IMGEP literature samples a new goal and
either reset the episode or continue from the reached state. The main contribution
of Go-Explore was the introduction of post-exploration, in which case we temporarily
postpone the selection of a new goal (Table 6.1). While post-exploration is a new phe-
nomenon in reinforcement learning literature, it is a common feature of most planning
algorithms, where we for example select a particular node on the frontier, go there
first, and then unfold the search tree into unknown terrain.

6.3 Background
We adopt a Markov Decision Processes (MDPs) formulation defined as the tuple M =

(S,A, P,R, γ) (Sutton & Barto, 2018). Here, S is a set of states, A is a set of actions
the agent can take, P specifies the transition function of the environment, and R
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is the reward function. At timestep t, the agent observes state st ∈ S, selects an
action at ∈ A, after which the environment returns a next state st+1 ∼ P (·|st, at)
and associated reward rt = R(st, at, st+1). We act in the MDP according to a policy
π(a|s), which maps a state to a distribution over actions. When we unroll the policy
and environment for T steps, define the cumulative reward (return) of the resulting
trace as

∑T
k=0 γ

k · rt+k+1, where γ ∈ [0, 1] denotes a discount factor. The goal in RL
is to learn a policy that can maximize the expected return.

Define the state-action value Qπ(s, a) as the expected cumulative reward under
some policy π when we start from state s and action a, i.e.,

Qπ(st, at) = Eπ,P

[ T∑

k=0

γk · rt+k|st = s, at = a
]

(6.1)

Our goal is to find the optimal state-action value function Q∗(s, a) = maxπQπ(s, a),
from which we may at each state derive the optimal policy π∗(s) = argmaxaQ∗(s, a).
A well-known RL approach to solve this problem is Q-learning (C. J. Watkins &
Dayan, 1992). Tabular Q-learning maintains a table of Q-value estimates Q̂(s, a), col-
lects transition tuples (st, at, rt, st+1), and subsequently updates the tabular estimates
according to

(6.2)Q̂(st, at)← Q̂(st, at) + α · [rt + γ ·max
a

Q̂(st+1, a)− Q̂(st, at)]

where α ∈ [0, 1] denotes a learning rate. Under a policy that is greedy in the limit
with infinite exploration (GLIE) this algorithm converges on the optimal value function
(C. J. Watkins & Dayan, 1992).

In deep RL, state-action value function Q(s, a) is approximated by a parameter-
ized neural network, denoted by Qφ(s, a). While dealing with continuous action space,
taking max operation over state-action values like in Equation (6.2) is intractable, we
could learn a parameterized deterministic policy µθ for the agent instead. A determin-
istic policy maps a state to a deterministic action rather than a distribution over all
actions. Then we can approximate maxa Qφ(s, a) with Qφ(s, µθ(s)).

(6.3)L(φ, D) = E(st,at,rt,st+1)∼D

(
rt + γ · Q̂(st+1, µ(st+1))− Q̂(st, at)

)2

Deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015) is an actor-critic
method that parameterizes the deterministic policy (‘actor’) and the state-action value
function (‘critic’) as neural networks. The critic is updated by minimizing the mean
squared TD error L(φ, D) in Equation (6.3), where D is a set of collected transitions.
The actor is updated by solving the Equation (6.4).
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Figure 6.2: FourRooms, LavaCrossing, LavaGap, FetchReach, and PointUMaze. Room
layouts of two lava environments are procedurally generated.

max
θ

Est∼D

[
Qφ(st, µθ(st))

]
(6.4)

6.4 Methods

We will first describe how we cast Go-Explore into the general IMGEP framework
(Section 6.4.1), and subsequently introduce how we do post-exploration (Section 6.4.2).

6.4.1 IMGEP

Our work is based on the IMGEP framework shown in Algorithm 3. Since this
paper attempts to study the fundamental benefit of post-exploration, we try to simplify
the problem setting as much as possible, to avoid interference with other issues (such
as goal space representation learning, goal sampling strategy design, reward function
design, etc). We, therefore, define the goal space as the set of states we have observed
so far. For continuous tasks, we discretize the whole state space into bins, so the goal
space for continuous control tasks is the set of bins we have observed so far. Firstly,
a bin will be sampled, then we further uniformly sample a goal from that bin. The
goal space G is initialized by executing a random policy for one episode, while new
states/bins in future episodes augment the set.

For goal sampling, we use a count-based novelty sampling strategy which aims to
sample goals that are less visited more often and more visited less often from the goal
space. We therefore track the number of times n(g) we visited a particular goal g, and
specify the probability of sampling it p(g) as

p(g)g∈G =
( 1
n(g) )

τ

∑
g∈G

( 1
n(g) )

τ
. (6.5)
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Algorithm 3 IMGEP with post-exploration and hindsight (blue part is post-
exploration)

Initialize: Goal-conditioned RL agent RL, environment Env, episode memory M ,
goal space G, goal sampling probability p(g), goal-conditioned reward function
Rg(s, a, s′).
while training budget left do
g ∼ p(g) {Sample a goal g from the goal space G according to the goal sampling
probability p(g).}
s = Env.reset() {Reset the environment.}
Execute a roll-out using RL and collect transitions T along the way.
Update G and p(g) using T . {Extend G by adding new encountered states from
T .}
Store collected transitions T to M .
if g is reached then

Execute a fixed number of steps using the random policy and collect transitions
Tr along the way.
Update G and p(g) using transitions Tr.
Store collected transitions Tr to M .

end if
Sample a batch B from M and hindsight relabel according to the reward function
Rg.
Update RL agent RL using batch B.

end while

Here, τ is a temperature parameter that allows us to scale goal sampling. When τ is
0, goals will be sampled uniformly from the goal space, while larger τ will emphasize
less visited goals more.

Note that we could also use other methods, both for defining the goal space and
for sampling new goals (for example based on curiosity or learning progress).

To get (back) to a selected goal, we train a goal-conditioned policy, for tabular
settings we use Q-learning, and for deep RL settings we use DDPG. Agents are trained
on the goal-conditioned reward function Rg, which is a one-hot indicator that fires
when the agent manages to reach the specified goal:

Rg(s, a, s
′) = 1s′=g. (6.6)

Note that different goal-conditioned rewards functions, and different update meth-
ods are of course possible as well.
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Figure 6.3: IMGEP agents with (blue) and without (orange) post-exploration. Left:
Performance on FourRooms, with results averaging over three different values of ε (0, 0.1, 0.3).
Middle: Performance on LavaCrossing, averaged over 10 different environment seeds. Right:
Performance in LavaGap, averaged over 10 different environment seeds. Overall, agents with
post-exploration outperform agents without post-exploration.

6.4.2 Post-exploration

The general concept of post-exploration was already introduced in Figure 6.1. The
main benefit of this approach is that it increases our chance to step into new, unknown
terrain. Based on this intuition, we will now discuss when and how to post-explore,
as well as how we utilize data collected during the post-exploration.

As is directly visible from Figure 6.1, post-exploration is aiming to expand the
agent’s knowledge boundary further when necessary. Since the less visited goals are
sampled more often, when a selected goal is reached by the agent, that means the
agent’s knowledge boundary (the ability to reach goals) is already near the selected
goal, then we decide to expand the boundary by doing post-exploration. In this work,
we simply let the agent post-explore every time the selected goal is reached. More
constraints can be applied here, such as only doing post-exploration when the reached
goal is lying on the border of the unknown area or it is the bottleneck of a graph of
the visited states, etc. We leave the design of smarter strategies for future work.

We assume that post-exploration could lead the agent to step into new naive ar-
eas, thus it is important to design an effective way to do post-exploration. In Go-
Explore (Ecoffet et al., 2021), they mentioned random post-exploration is a simple
and effective way. So in this work, we also use the random policy during the post-
exploration. The agent will take a fixed number of random actions for post-exploration.

The agent in principle only observes a non-zero reward when it successfully reaches
the goal, which may not happen at every attempt. We may improve sample efficiency
(make more efficient use of each observed trajectory) through hindsight experience
relabelling (HER) (Andrychowicz et al., 2017). With hindsight, we imagine states in
our observed trajectory were the goals we actually attempted to reach, which allows us
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to extract additional information from them (‘if my goal had been to get to this state,
then the previous action sequence would have been a successful attempt’). For tabular
settings, we choose to always relabel 50% of the entire trajectory (goal reaching plus
post-exploration), i.e., half of the states in each trajectory are imagined as if they were
the goal of that episode. We choose to always relabel the full post-exploration part,
because it likely contains the most interesting information, and randomly sample the
remaining relabelling budget from the part of the episode before the goal was reached.
For deep RL settings, we use the ‘future’ relabel strategy from the original HER
work (Andrychowicz et al., 2017).

6.5 Experiments

6.5.1 Experimental Setup

We test our work on three MiniGrid environments (Chevalier-Boisvert et al., 2018)
(tabular settings), and two Mujoco environments (Kanagawa, 2021; Plappert et al.,
2018) (with using the function approximation), visualized in Figure 6.2. Results on two
lava environments are averaged over 10 seeds, i.e., 10 independently drawn instances
of the task. For evaluation, not like in Go-Explore where the agent needs to reach a
specific final goal (the state with the highest score), we instead test the ability of the
agent to reach every possible state in the whole state space. This checks to what extent
the goal-conditioned agent is able to reach a given goal, when we execute the greedy
policy (turn exploration off). All our results report the total number of environment
steps on the x-axis. Therefore, since an episode with post-exploration takes longer,
it will also contribute more steps to the x-axis (i.e., we report performance against
the total number of unique environment calls). Curves display mean performance
over time, including the standard error over 5 repetitions for each experiment (10
repetitions for DRL experiments).

6.5.2 Hyper-parameter Settings

Tabular Q-learning

All hyper-parameters we used for tabular Q-learning in this work are shown in Ta-
ble 6.2. Learning rate α and discount factor γ are for Q-learning update (Equa-
tion (6.2)). τ is the temperature for goal sampling. (Equation (6.5)). ε is the explo-
ration factor in ε-greedy policy. We average results over 3 different values of ε. ppe
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is the percentage of the whole trajectory that the agent will post-explore. ppe = 0.5

means the agent will post-explore 0.5 ∗ l steps after the given goal is reached, l is the
length of the trajectory the agent takes to reach the given goal.

Parameters Values
learning rate 0.1

discount factor 0.99
τ 0
ε 0, 0.1, 0.3
ppe 0.5

Table 6.2: All hyper-parameters we used for tabular Q-learning experiments.

DDPG

All hyper-parameters we used for DDPG agent are shown in Table 6.3. The learning
rate α is for both the policy and the critic update. τ is the temperature for goal
sampling. (Equation (6.5)). Random ε is the probability of taking a random action
and noise ε is the probability of adding noise to selected actions. npe is the number
of steps that the agent will post-explore. nbins is the number of bins we discretize the
whole goal space on each dimension. Batch size is the size of the batch sampled for
training every time. Replay k is the portion of data we will relabel. If k = 4, that
means we will relabel 4/5 of the whole sampled training data. The replay strategy we
used here is ‘future’.1

Parameters FetchReach PointUMaze
learning rate 0.001 0.001

discount factor 0.98 0.98
τ 0 0.01

random ε 0.01 0.1
noise ε 0.01 0.1
npe 30 50
nbins 20 100

batch size 16 2
replay k 4 4

replay strategy future future

Table 6.3: All hyper-parameters we used for DDPG agents.

1For the remaining parameters of DDPG agents, we use the default settings from https://github.
com/TianhongDai/hindsight-experience-replay.
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Figure 6.4: Comparison of characteristic traces (a,b) and coverage (c,d) for agents without
post-exploration (a,c) and with post-exploration (b,d). Colour bars indicate the number of
visitations, green square indicates the selected goal in a particular episode. (a): Standard
exploration towards a goal without post-exploration. (b): With post-exploration, the agent
manages to reach the next room. (c): Coverage after 200k training steps without post-
exploration. (d): Coverage after 200k training steps with post-exploration. The boundary of
the coverage with post-exploration clearly lies further ahead.

6.5.3 Results

Figure 6.3 compares an IMGEP agent with post-exploration to an IMGEP agent
without exploration in the three MiniGrid environments. On all three environments,
the agent with post-exploration outperforms the baseline agent significantly (on its
average ability to reach an arbitrary goal in the state space).

A graphical illustration of the effect of post-exploration is provided in Figure 6.4.
Part a shows a characteristic trace for an agent attempting to reach the green square
without post-exploration, while b shows a trace for an agent with post-exploration. In
a, we see that the agent is able to reach the goal square, but exploration subsequently
stops, and the agent did not learn anything new. In part b, the agent with post-
exploration subsequently manages to enter the next new room. This graph, therefore,
gives a practical illustration of our intuition from Figure 6.1.

To further illustrate this effect, in Figure 6.4, c and d show a visitation heat map
for the agent after 200k training steps, without post-exploration (c) and with post-
exploration (d). The agent with post-exploration (c) has primarily explored goals
around the start region (in the bottom-right chamber). The two rooms next to the
starting room have also been visited, but the agent barely managed to get into the
top-left room. In contrast, the agent with post-exploration (d) has extensively visited
the first three rooms, while the coverage boundary has also been pushed into the
final room already. This effect translates to the increased goal-reaching performance
of post-exploration visible in Figure 6.3. We think such a principle holds in other
environments as well.

94



Chapter 6. First Go, then Post-Explore

Figure 6.5: IMGEP agents with (blue) and without (orange) post-exploration. Left:
Performance on FetchReach, with results averaging over 10 different random seeds. Right:
Performance on PointUMaze, averaged over 10 different random seeds. Overall, agents with
post-exploration outperform agents without post-exploration.

Comparisons between agents with post-exploration and ones without on Mujoco
environments are shown in Figure 6.5 and we use the DDPG agent with HER as
the baseline (orange lines in Figure 6.5) to compare with. With post-exploration,
agents (blue lines in Figure 6.5) outperform baseline agents in both FetchReach and
PointUMaze environments. We observed that at the beginning and the end, two agents
(with post-exploration and without) tend to have similar performances. We interpret
the phenomenon as follows: the agent is not able to reach any selected goals in the
beginning so there are no post-exploration and no benefits; then gradually the agent
starts being able to reach selected goals and post-exploration comes in thus further
improving the performance; in the end, when the whole state space is been entirely
discovered post-exploration will not add benefits anymore. We think this phenomenon
happens in environments where the baseline agent (without post-exploration) can
also fully discover the whole state space over time, however, it would less happen in
environments where there are many bottlenecks so that the baseline agent can hardly
fully discover the entire state space.

By adding post-exploration, the agent is more likely to step into new unknown
areas and thus can further improve the state coverage. Ideally, we want the agent’s
visitation of the state space to be as uniform as possible. More specifically, the higher
entropy indicates that the visitation of the whole state space is more uniform. The
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entropy is computed using the equation below:

−
N∑

i=1

p(xi) log(p(xi)) (6.7)

where the whole state space is discretized into N bins and p(xi) = n(xi)/
N∑
i=0

n(xi),

n(xi) is the number of visitations of the ith bin. Figure 6.6 shows the entropy on
agents’ visitation of the state space during the training. With post-exploration (blue
lines), the entropy always lies above the one without (orange lines). Therefore, the
principle (Figure 6.4) that we saw in the discrete navigation tasks is still true in
continuous control tasks.

Figure 6.6: The entropy of the visitation on the state space for the agent with (blue)
and without (orange) post-exploration. Left: Entropy on FetchReach, with results averaging
over 10 different random seeds. Right: Entropy on PointUMaze, averaged over 10 different
random seeds. Adding post-exploration can increase the entropy of the agent’s visitation on
the state space.

6.6 Conclusion and Future Work
An intrinsically motivated agent not only needs to set interesting goals and be able to
reach them but should also decide whether to continue exploration from the reached
goal (‘post-exploration’). In this work, we systematically investigated the benefit of
post-exploration in the general IMGEP framework under different RL settings and
tasks. Experiments in several MiniGrid and Mujoco environments show that post-
exploration is not only beneficial in navigation tasks under tabular settings but also
can be scaled up to more complex control tasks with neural networks involved. Ac-
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cording to our results, agents with post-exploration gradually push the boundaries of
their known region outwards, which allows them to reach a greater diversity of goals.
Moreover, we realize that ‘post-exploration’ is a very general idea and is easy to be
plugged into any IMGEP method. Researchers should put more attention to this idea
and consider using it when possible.

The current paper studied post-exploration in a simplified IMGEP framework, to
better understand its basic properties. In the future, it would be interesting to plug
post-exploration into other existing IMGEP methods directly to show its benefits.
Moreover, our current implementation uses random post-exploration, which turned
out to already work reasonably well. So an interesting direction for future work is to
post-explore in a smarter way, like using macro actions or options. For example, in
tasks where we need to control a more complex agent such as an ant or a humanoid
robot, then random actions will never help the agent stand up properly and it is even
harder to lead the agent step into new areas. Another promising future direction is to
investigate the ‘adaptive’ post-exploration. Intuitively, post-exploration will be most
likely useful when it starts from a state that is new or important enough and the
agent should post-explore more if the reached area is more naive, etc. In short, the
agent should adaptively decide when and for how long to post-explore based on its
own knowledge boundary or properties of reached goals. Altogether, post-exploration
seems a promising direction for future RL exploration research.
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Conclusion

Goal-conditioned reinforcement learning is pivotal in training a generalist agent. Through-
out this thesis, several new methods are proposed to enhance the goal-conditioned re-
inforcement learning framework. Whereas these methods show superior performance
compared to the baselines, they are not without limitations. In this chapter, we first
answer all research questions that are asked at the beginning, and then discuss the
limitations of the methods we proposed. Then, we zoom out and provide a more gen-
eral reflection on the current goal-conditioned reinforcement learning framework and
how we can potentially improve it in the future. At the end, we summarize the main
conclusion.

7.1 Answers to research questions

In Section 1.1, four research questions were formulated. Here, each research question is
answered based on the results as described in Chapters 3-7, and the main conclusions
for each question are given.

Q1 Can RL agents learn without access to a ‘reset’? [Chapter 3]
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(step 2) Having access to a ’reset’ seems natural, but can be
expensive in real-world tasks. For instance, training a robotic
hand to spin a pen requires human intervention to reset when
the pen falls from the hand (i.e. put the pen back in the robotic
hand). Since such training schemes that require humans in
the loop are infeasible to scale up, ideally, we want agents to
operate with minimal human effort, i.e. without a reset (reset-
free).

However, eliminating reset imposes challenges on exploration. We show model-
based reinforcement learning (MBRL) methods can be applied ‘out-of-the-box’
to the reset-free setting and outperform state-of-the-art model-free methods due
to their sophisticated exploration and high data efficiency, while requiring less
human effort, such as environmental reward function or demonstrations. We
then identify that applying MBRL methods directly causes over-exploration,
i.e. the agent will squander a significant amount of time on ‘task-irrelevant’
states. To overcome over-exploration of MBRL methods, we propose a model-
based reset-free agent (MoReFree), which biases exploration and policy training
towards ‘task-relevant’ states to get better performance. More specifically, dur-
ing the data collection in the real environment, MoReFree is commanded on
three different state distributions, i.e. a goal state distribution and an initial
state distribution for collecting more ‘task-relevant’ data, and an exploratory
state distribution to encourage better exploration and collect novel data. Dur-
ing imagination training, the policy is explicitly trained to reach the initial and
goal state distributions. In short, MBRL methods show promising results under
the reset-free setting due to their sophisticated exploration and high data effi-
ciency, and biasing towards task-relevant states during both data collection and
policy training creates a synergistic cycle for MBRL methods, resulting in even
stronger performance.

Q2 Can non-parametric methods be applied to tasks with a continuous
action space to achieve faster learning? [Chapter 4]
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(step 3) Non-parametric methods, in our case, episodic control
methods, store solutions in tabular forms and maintain values
(episodic returns) for each possible action separately. Conse-
quently, they can in principle only handle tasks with a discrete
action space. We approach the proposed research question by
maintaining both the action and the value for a state, replacing
the existing action and its corresponding value with the newly

encountered action which has a higher value. Since a continuous state will never
be encountered twice, during action selection, we use the k-nearest neighbors
algorithm to make an approximate estimation for the new coming state. We
first find its k-nearest neighbor states, and then actions attached to neighbors
with higher values are more likely to be selected. Our experimental results show
that the proposed method achieves faster learning speed and better performance
compared with deep RL baselines in various continuous control tasks.

Q3 Can non-parametric and parametric methods be combined to achieve
both fast learning and optimality? [Chapter 5]

(step 3) Since episodic control methods replace existing values
using newly encountered better ones, only the best solution the
agent ever discovered is stored, even if such a solution only oc-
curs with low probabilities. Consequently, although they learn
faster, solutions stored by episodic control are non-optimal in
stochastic tasks. RL, on the other hand, learns slowly but
can handle stochasticity. We combine these two approaches
together

to form a single agent called the Two-Memory (2M) agent. For each episode dur-
ing training, either episodic control or RL is selected to collect data, which is
then used to train both of them. During evaluation, the one with better his-
torical performance is used for action selection. Quantitative results show that
2M outperforms both sole RL and episodic control agents in five simplified Atari
games, illustrating the success and effectiveness of such a combination. Interest-
ingly, qualitative results show that initially, the 2M agent prefers to select the
episodic control agent for data collection since it learns reasonably good behav-
iors quickly. But gradually, the RL agent catches up on the performance while
maintaining better solutions, and thus the 2M agent switches to RL for data col-
lection. Thereby, by switching between two methods and employing the better
one for evaluation, 2M achieves both fast learning and optimality.
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Q4 What benefits can post-exploration introduce compared to not having
it? [Chapter 6]

(step 4) Post-exploration is defined as the exploration that
occurs after the selected goal is reached. The intuition be-
hind post-exploration is that the agent should explore when
it is in states where exploration is beneficial. For instance, if
the agent reaches frontier states, performing additional explo-
ration will likely bring the agent into new regions, thus col-
lecting more novel data. Our experimental results show that
post-exploration

indeed can lead the agent into new, unseen areas, where it can acquire more novel
and diverse data. Therefore, the goal space extends to new areas, and the goal-
conditioned policy is trained on new goals, resulting in a better performance
compared with the agent without post-exploration (which resets directly after
reaching the goal), using the same amount of environmental interactions. In
conclusion, post-exploration can allocate the environmental interaction budget
to more interesting areas, collecting more valuable data and leading to better
performance.

7.2 Limitations
Although methods proposed in this thesis show promising results and outperform base-
lines, they are not without limitations. In each chapter, we already briefly discussed
them, and here, we provide a more detailed and thorough discussion.

7.2.1 Limitations of model-based reset-free methods
In Chapter 3, MoReFree shows superior performance compared to baselines in various
simulated robotic tasks. However, as a model-based unsupervised agent, it has all the
disadvantages associated with model-based unsupervised approaches. Furthermore,
evaluating reset-free methods using tasks designed for episodic settings limits their
ability to fully showcase their potential. We discuss the limitations of MoReFree from
these two perspectives.

Unsupervised MBRL backbone MoReFree is built on an unsupervised MBRL
backbone, PEG (E. S. Hu et al., 2023), thus it inherits all drawbacks of both unsu-
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pervised RL and MBRL methods. Unsupervised RL methods learn a self-supervised
reward function, which is subsequently used to train the behavior policy. Although
this eliminates the need for human-defined reward functions, in tasks requiring com-
plex and precise behaviors, such self-supervised reward functions might be inadequate
for providing effective learning signals. In these cases, incorporating a sparse reward
function, which is generally easy to obtain, into the learned reward function can be
beneficial. Similarly, MoReFree is constrained by its model-based backbone. MBRL
methods first fit a model on collected data, and then use the model to either train the
policy or perform online planning. Consequently, the upper bound of the performance
of MBRL methods depends on the accuracy of the learned model. Namely, if the
model is inaccurate, the trained policy or the online planning procedure will also be
imprecise. Thereby, enhancing the underlying MBRL backbone, such as by employing
more accurate world model architectures (Deng et al., 2023; Gu & Dao, 2023) or de-
veloping better self-supervised reward functions, will further improve the performance
of MoReFree.

Benchmark Results shown in Chapter 3 illustrate the strength of MoReFree on
various simulated robotics tasks, which are all adapted from existing tasks designed
for the conventional episodic setting. Although these tasks are already quite challeng-
ing for RL agents, they are constrained in ways that rely on resets, which are not
considered in the reset-free setting. For instance, in the Fetch-Push and Pick&Place
tasks, a fixed-location robot cannot reach an object that has fallen to the ground if
the object is not reset back to the table. However, if the robot were equipped with
motility, it could then navigate around the table, pick up the block from the ground,
and successfully complete the task in a reset-free setting. This increased flexibility
would bring the simulated tasks closer to real-world scenarios, where robots need to
operate in environments with less predefined constraints. To achieve this, we should
specifically design tasks for the reset-free setting, instead of directly adapting them
from episodic benchmarks.

7.2.2 Limitations of episodic control methods

In Chapter 4 and Chapter 5, we show that non-parametric methods, i.e., episodic con-
trol, can latch onto discovered solutions quickly, resulting in better performance than
deep RL methods in some scenarios. We now discuss the main limitations of episodic
control from three perspectives: generalizability, optimality, and representation. In
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the end, we also provide a reflection on why we think it is still worth investigating
episodic control methods in the future.

Generalizability Episodic control methods store discovered solutions in a tabular
format. Therefore, in continuous tasks where it is impossible to encounter exactly the
same state twice, we need mechanisms to retrieve solutions of states that are similar in
some way to the newly encountered state. The most commonly used mechanism is the
K-Nearest Neighbors algorithm (KNN), which outputs the top-k states that are most
similar to the queried state according to a given distance metric (Euclidean distance,
cosine similarity, etc). Unfortunately, in high-dimensional spaces, KNN does not work
well due to the curse of dimensionality, which might output unreasonable neighbors
and limit the generalizability of episodic control methods.

Stochasticity Episodic control methods learn quickly due to their aggressive update
rule: instead of taking the expectation over all possible trajectories, they overwrite
the existing solution with a better encountered one. Consequently, the best solution
ever encountered is stored, even though it might have an extremely low probability of
occurring due to stochastic transition dynamics. This limitation is inherent and cannot
be eliminated unless combined with other methods. For example, in Chapter 5, we
combine episodic control methods with deep RL methods to form one single agent,
which gains the ability of dealing stochasticity from the RL side, resulting in better
performance.

Representation Unlike parametric methods (e.g. deep RL) where representations
are learnable and trained to be informative for learning behavior policies, episodic
control methods do not utilize any learnable parameters. Episodic control methods
either store original states as representations or employ dimensionality reduction meth-
ods like random projection to preprocess the original states. However, these non-
parametric dimensionality reduction methods do not scale up well and might filter out
information that is important for learning good behaviors. Consequently, Pritzel et
al. (2017a) integrates trainable features into episodic control methods, leading to im-
proved performance and highlighting the advantages of using better representations.
Furthermore, employing pre-trained features in episodic control methods could be
beneficial, as the significant success of pre-trained representations in fields such as
computer vision or natural language processing.
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Reflection Episodic control methods draw inspiration from episodic memory in the
human brain, which refers to the ability to recall specific events, experiences, and situ-
ations from one’s past (Tulving, 1983). The primary reason we believe these methods
are still worth investigating is that humans frequently rely on episodic memory in daily
life. For example, when driving home after work, we constantly use episodic memory
to recall the route and landmarks along the way to ensure a quick return. More im-
portantly, even when unexpected events occur, such as encountering traffic we have
never seen before or meeting unfamiliar people, we can still navigate home correctly
and successfully. Apparently, humans demonstrate the ability to handle stochasticity
when using episodic memory, a capability that current episodic control methods lack,
as seen in Algorithm 1 and Chapter 5. This discrepancy raises questions: Is it because
our brain has such good attention mechanisms that it selectively filters out all irrele-
vant information, such as the new traffic? Or is it because the generalization ability
of our brain is so strong that it can adapt to these unseen situations seamlessly? Or
is there something even more sophisticated at play? These questions should motivate
us to continually explore the potential of better implementation of episodic memory
in artificial systems.

7.2.3 Limitations of post-exploration

Post-exploration is exploration after the goal is achieved. In Chapter 6, we made an
attempt to study post-exploration and key design choices are made as straightforward
as possible:

• When the agent should post-explore: post-exploration is only performed
when the goal is successfully achieved, otherwise the agent is reset back to the
initial state, and the next goal is selected for the agent to start over again.

• For how long the agent should post-explore: post-exploration is always
performed with a fixed number of steps, which is treated as a hyper-parameter.

• How the agent should post-explore: during post-exploration, the agent is
always taking random actions.

Although these simple choices allow us to isolate irrelevant factors and better study
the properties of post-exploration, they also limit the scope of our analysis. As tasks
become more complex, the effectiveness and applicability of the aforementioned simple
design choices may need to be reconsidered.
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To improve the current post-exploration scheme, these processes should be dy-
namically adapted. For instance, dynamically determining the number of steps for
post-exploration. Intuitively, the areas that take longer to reach deserve more explo-
ration. Or, as in PEG (E. S. Hu et al., 2023), replacing random exploration with more
sophisticated exploration strategies mentioned in Chapter 2.

7.3 Reflections on goal-conditioned reinforcement learn-
ing

The current goal-conditioned reinforcement learning (GCRL) framework consists of
four fundamental steps: defining the goal space, selecting goals for the agent, training
the agent to achieve these goals, and post-exploration. However, upon reflection,
several considerations arise:

• Autonomy: Each step in the GCRL framework relies heavily on human interven-
tion, which hinders autonomy and scalability. The design of crucial components
such as the reward function, reset mechanisms, and strategies for goal selection
often require human expertise. However, human involvement in these processes
introduces bottlenecks, making it challenging to develop agents that can scale.

• Goal space: Exploration in the GCRL framework is largely influenced by the com-
manded goals selected from the predefined goal space. When humans perform
goal-conditioned learning, we utilize a broad spectrum of goal types (Berkman,
2018), ranging from abstract to concrete, and from objective to subjective. Hu-
mans can also pursue goals that may not yet exist, driven by personal aspirations
or creative visions. Importantly, different types of goals motivate individuals in
distinct ways. In contrast, the goal space typically defined in the current GCRL
framework is too simplistic and often aligns closely with the state space or a
latent representation thereof, which may restrict the exploration of the agent,
potentially limiting the performance.

• State space: A large portion of the current GCRL research focuses on tasks that
utilize proprioceptive state spaces. These internal state representations are rel-
atively easy to obtain in simulated environments but challenging to acquire in
real-world settings. This limitation restricts the applicability of GCRL meth-
ods in real-world applications where only visual perception is available. Conse-
quently, incorporating visual or even multi-modal inputs is essential to enable
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GCRL agents to operate effectively in diverse and more realistic environments.

Excessive reliance on human expertise, unimaginative goal space definition, and
unrealistic state space representation limit the potential for training GCRL agents at
scale in the real world, highlighting the need for improvements in several key areas.

7.4 Future research
As future research of each work has already been discussed in the corresponding chap-
ters separately, here we provide high-level future research directions on the GCRL
field.

Recent developments in foundation models (Mu et al., 2024; Touvron et al., 2023)
that are trained on internet-scale data have demonstrated a strong ability in gen-
eralization and human-level understanding across a wide range of tasks. All these
foundation models came out during the course of my PhD study, and they are already
being integrated into the RL loop, yielding promising results. For instance, they
are demonstrated to be able to design better reward functions (Ma et al., 2023) for
complex robotic tasks than human experts or provide bonuses for better exploration
(Klissarov et al., 2023). Essentially, the findings of previous studies indicate that it
is possible to replace human-designed components with those designed by foundation
models, enhancing the overall performance and enabling the RL framework to scale
up effectively.

The GCRL framework would greatly benefit from the integration of foundation
models, especially given the increased necessity for human design in the training loop.
Foundation models can play a crucial role in several aspects of GCRL:

• Goal selection: With their extensive understanding across various domains, foun-
dation models are likely to comprehend the tasks at hand, thus they can be used
to replace human experts in providing meaningful goals under different contexts
for the RL agents to pursue (C. Lu et al., 2024). For instance, multi-modal foun-
dation models like vision-language models (Radford et al., 2021) can be used to
propose goals in text space while the robot has a vision input.

• Reward signals: Foundation models can also be employed to provide step-wise
reward signals for learning. For example, given a goal, they can distinguish good
states that are likely to lead to the goal from bad ones that are far off. This
distinction can then be used as a reward to train the agent, guiding it to reach
the given goal more effectively.
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However, most powerful foundation models like ChatGPT (OpenAI, 2024), Claude (An-
thropic, 2024) or Gemini (Google, 2024) are close-sourced. This means users can only
query these models and cannot access their intermediate output, such as embedding,
which limits their utility. In contrast, researchers worldwide are developing open-
source domain-specific pre-trained models in areas like robotics (M. Kim et al., 2024;
Padalkar et al., 2023), self-driving cars (J. Yang et al., 2024) and MineCraft (Fan
et al., 2022). If these initiatives can replicate the success seen with pre-training in
natural language processes and computer vision, RL could benefit immensely from
such pre-trained models:

• Pre-trained representations: As seen in natural language processes and computer
vision, pre-trained representations capture the compact and informative features
of the original input space. In RL, where learning representations only from re-
ward signals can be time-consuming, the use of such pre-trained representations
could bypass the need for encoding steps and facilitate the policy learning. Mean-
while, effective representations often ensure that similar states are also close in
the latent space. This property also enables leveraging similarities between rep-
resentations as reward signals.

• Dynamic models: The pre-trained predictive models can also be used as world
models (Escontrela et al., 2024). These models are trained to predict the sub-
sequent states given the current state-action pairs and enable zero-shot model-
based RL or planning, where agents can simulate future states and plan actions
without interactions with the environment.

These applications illustrate just a part of the potential of using foundation mod-
els and domain-specific pre-trained models to enhance GCRL agents. As research
progresses, we anticipate that even more groundbreaking possibilities will emerge, fur-
ther improving the efficiency and performance of GCRL agents.

7.5 Conclusion
In the thesis, we proposed four research questions and focused on three parts of the
goal-conditioned reinforcement learning framework. First, in Chapter 3, we studied
a more autonomous goal-conditioned reinforcement learning setting where there is no
access to reset, which poses challenges on exploration. By using world models and
selecting various goals to command the agent for data collection, our proposed agent
can autonomously operate in reset-free tasks and outperform state-of-the-art baselines.
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Chapter 7. Conclusion

Once a goal is selected, a goal-conditioned policy is typically trained to reach the
goal. Previous research on a non-parametric method, called model-free episodic control
(Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al., 2016), shows that episodic
control can quickly latch onto previously discovered solutions and learn faster than
deep RL methods which are known to be slow. Instead of training a goal-conditioned
policy, episodic control can also be employed to train the agent to reach the selected
goal. However, model-free episodic control was designed for tasks with a discrete
action space. In Chapter 4, we extend the episodic control to continuous episodic
control that can now tackle tasks with a continuous action space, and demonstrate its
strong performance on various continuous robotic control tasks. Moreover, limitations
of episodic control methods are identified in Chapter 5, namely, they will be non-
optimal in stochastic tasks. Then we proposed to combine episodic control with deep
reinforcement learning methods to gain from both approaches. Experimental results
show that by combining these two methods, the unified agent achieves both the fast
learning attributed to episodic control and the optimality attributed to reinforcement
learning.

In Chapter 6, we demonstrated that post-exploration is an important mechanism
to improve efficiency of GCRL agents. By performing post-exploration, agents success-
fully step into new, unseen areas and acquire more diverse data, resulting in better
performance compared to agents without post-exploration.

The methods proposed in the thesis improved components of the goal-conditioned
reinforcement learning framework, including goal selection, policy learning and explo-
ration, consequently enhancing the performance and increasing the autonomy of the
entire goal-conditioned reinforcement learning framework. In future work, we hope
that the goal-conditioned reinforcement learning framework will serve as a recipe for
training a generalist agent, and ultimately, an embodied artificial general intelligent
agent.
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Summary

Reinforcement learning is a framework that enables agents to learn in a manner similar
to humans, i.e. through trial and error. Ideally, we would like to train a generalist agent
capable of performing multiple tasks and achieving various goals. Goal-conditioned
reinforcement learning is a step toward training such an agent. The goal-conditioned
reinforcement learning framework comprises four steps: 1) defining the goal space; 2)
selecting an interesting goal for the agent; 3) the agent learning to reach the goal; 4)
the agent post-exploring.

In the thesis, we proposed four research questions and focused on three parts of the
goal-conditioned reinforcement learning framework. First, in Chapter 3, we studied
a more autonomous goal-conditioned reinforcement learning setting where there is no
access to reset, which poses challenges on exploration. By using world models and
selecting various goals to command the agent for data collection, our proposed agent
can autonomously operate in reset-free tasks and outperform state-of-the-art baselines.

Once a goal is selected, a goal-conditioned policy is typically trained to reach the
goal. Previous research on a non-parametric method, called model-free episodic control
(Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al., 2016), shows that episodic
control can quickly latch onto previously discovered solutions and learn faster than
deep RL methods which are known to be slow. Instead of training a goal-conditioned
policy, episodic control can also be employed to train the agent to reach the selected
goal. However, model-free episodic control was designed for tasks with a discrete
action space. In Chapter 4, we extend the episodic control to continuous episodic
control that can now tackle tasks with a continuous action space, and demonstrate its
strong performance on various continuous robotic control tasks. Moreover, limitations
of episodic control methods are identified in Chapter 5, namely, they will be non-
optimal in stochastic tasks. Then we proposed to combine episodic control with deep
reinforcement learning methods to gain from both approaches. Experimental results
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show that by combining these two methods, the unified agent achieves both the fast
learning attributed to episodic control and the optimality attributed to reinforcement
learning.

In Chapter 6, we demonstrated that additional exploration after reaching fron-
tier goals—referred to as post-exploration—enhances the efficiency of GCRL agents.
Without post-exploration, the agent resets after reaching the frontier goals, preventing
it from expanding its knowledge boundary. By engaging in post-exploration, agents
effectively step into new, unseen areas, acquiring more diverse data. This leads to
improved performance compared to agents that do not perform post-exploration.

The methods proposed in the thesis improved components of the goal-conditioned
reinforcement learning framework, including goal selection, policy learning and explo-
ration, consequently enhancing the performance and increasing the autonomy of the
entire goal-conditioned reinforcement learning framework. In future work, we hope
that the goal-conditioned reinforcement learning framework will serve as a recipe for
training a generalist agent, and ultimately, an embodied artificial general intelligent
agent.
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Samenvatting

Reinforcement learning is een methode om te leren door vallen en opstaan, en dat werkt
voor computers net als bij mensen. Idealiter willen we een generiek algoritme hebben
dat een agent zodanig traint dat deze verschillende taken kan uitvoeren en verschil-
lende doelen kan bereiken. Goal-directed reinforcement learning is een manier die een
stap in deze richting zet. Het Goal-directed reinforcement learning raamwerk omvat
vier stappen: 1) het definiëren van de doelruimte; 2) het selecteren van een interessant
doel voor de agent; 3) een algoritme om de agent te leren om dat doel te bereiken;
4) een agent die post-exploration uitvoert. In het proefschrift poneren we vier onder-
zoeksvragen. We richten ons op drie delen van het goal-directed reinforcement learning
raamwerk. Ten eerste hebben we in Chapter 3 een meer autonoom goal-directed rein-
forcement learning setting bestudeerd die werkt zonder reset; dit levert complicaties op
bij exploratie. Door zogenaamde World-Models te gebruiken en verschillende doelen te
selecteren in de fase van gegevensverzameling, kan onze voorgestelde agent autonoom
werken in reset-vrije taken en beter presteren dan state-of-the-art baselines. Zodra een
doel is geselecteerd, wordt normaalgesproken een goal-directed policy getraind om het
doel te bereiken. Eerder onderzoek naar een niet-parametrische methode (genaamd
model-free episodic control (Blundell, Uria, Pritzel, Li, Ruderman, Leibo, Rae, et al.,
2016)), toont aan dat episodic control snel kan inhaken op eerder ontdekte oplossin-
gen en sneller kan leren dan deep RL-methoden (waarvan bekend is dat ze traag
zijn). In plaats van het trainen van een goal-directed policy, kan episodic control ook
worden gebruikt om de agent te trainen om het geselecteerde doel te bereiken. Model-
free episodic control is echter ontworpen voor taken met een discrete actieruimte. In
Chapter 4 breiden we episodic control uit naar continue episodische methoden die nu
taken met een continue actieruimte kunnen aanpakken. We laten zien dat dit goed
presteert op een aantal continue problemen uit de robotica. Ook noemen we een aantal
beperkingen van episodic control, in Chapter 5, namelijk dat ze niet optimaal zullen
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zijn in stochastische problemen. Vervolgens stelden we voor om episodic control te
combineren met deep reinforcement learning-methoden om van het beste van twee
werelden te bereiken. Onze experimenten laten zien dat door deze twee methoden te
combineren, de gecombineerde agent zowel het snelle leren bereikt van episodic con-
trol, als de optimaliteit van reinforcement learning. In Chapter 6 laten we zien dat
extra exploratie na het bereiken van de doelen op de search-boundary (post-exploratie
genoemd) de eciëntie van GCRL-agenten verbetert. Zonder post-exploratie reset de
agent zich na het bereiken van deze doelen, waardoor de agent zijn kennisgrens niet
kan uitbreiden. Met post-exploratie stappen agenten eectief in nieuwe, onbekende,
gebieden en verwerven ze meer diverse gegevens. Dit leidt tot betere prestaties in
vergelijking met agenten die geen post-exploratie uitvoeren. De methoden die in het
proefschrift worden voorgesteld, verbeterden onderdelen van het goal-directed rein-
forcement learning-framework, waaronder doelselectie, policy-learning en exploratie,
wat heeft geleid tot betere prestaties en de autonomie van het gehele goal-directed re-
inforcement learning-framework verhoogde. In de toekomst hopen we dat goal-directed
reinforcement learning gebruikt zal worden voor het trainen van een generieke agent
en uiteindelijk een embodied AI agent (robot).
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