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Summary

This dissertation primarily focuses on statistical hypothesis testing, a critical area of
study with widespread importance across various academic disciplines and industries.
An example that highlights the importance of hypothesis testing comes from the field of
medicine, specifically in drug development. Suppose researchers are testing a new drug
designed to lower blood pressure. The null hypothesis might state that the new drug
has no effect on blood pressure, while the alternative hypothesis suggests that the drug
does reduce blood pressure. The researchers conduct a clinical trial, giving one group
the new drug and another group a placebo. After collecting the data, the method of
statistical hypothesis testing allows them to analyze whether the observed reduction
in blood pressure is significant or could have occurred by chance. If the test provides
strong evidence against the null hypothesis, the researchers can confidently conclude
that the drug is effective. Without statistical hypothesis testing, they cannot rigorously
assess whether the drug truly works or if the results are just random variations. By
providing a framework to control for errors (like false positives), hypothesis testing
ensures that the drug is only approved if there is strong statistical evidence of its
efficacy, which is critical for public safety and the advancement of medical science.

However, most classical hypothesis testing methods require researchers to collect
a fixed sample size in advance before conducting the test. Once the data from the
predetermined sample size is collected, the test is performed, and conclusions are drawn
about whether to reject or fail to reject the null hypothesis.

The fixed-sample approach has several limitations:

1. Pre-determined sample size: Researchers must decide in advance how many
data points to collect, which may lead to underpowered or overpowered studies if the
chosen sample size is not optimal.

2. No intermediate analysis: In classical hypothesis testing, researchers are

usually not allowed to look at the data as it comes in (to prevent biased decisions) and
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must wait until the full dataset is available.

3. Inflexibility: If unexpected results occur or if the sample size turns out to
be inadequate after data collection, researchers cannot easily adjust the sample size
without risking inflating the Type I error (false positive rate).

Despite these limitations, the fixed-sample approach has been the foundation of
statistical testing for many decades and remains widely used. However, newer methods,
such as anytime-valid tests (e.g., e-value- and e-process-based methods), offer more
flexibility, allowing researchers to evaluate the evidence continuously as data is collected,
without needing a pre-specified sample size. With e-values, one does not even need to
determine the rules for stopping the experiment before it starts.

This dissertation primarily explores e-values and e-processes within the context of
exponential families.

Chapter [2| addresses the problem of determining whether a sample conforms to a
specific exponential family model, essentially testing whether a model is well-specified.
For example, we may want to assess whether a sample follows a Gaussian distribution.
In this case, the null hypothesis includes the entire set of Gaussian distributions, making
it composite. The objective is to reject the null hypothesis if the sample deviates from
a Gaussian distribution. A key focus is on the GRO (Growth-Rate Optimal) e-variable,
which typically corresponds to a specific Bayes factor and has the highest e-power (i.e.,
the ability to detect alternatives) among all e-variables. However, finding the prior
for the GRO e-variable can be computationally expensive. This chapter demonstrates
that in certain scenarios, termed “simple cases,” the GRO e-variable simplifies to a
simple-vs.-simple likelihood ratio, and it provides several equivalent conditions under
which such a likelihood ratio exists for exponential family null hypotheses.

Chapter [3] extends the work of Chapter [2 by offering more general theoretical results
for several e-variables in the context of testing model specification, covering both simple
and composite hypotheses. It is shown that in the “anti-simple case” (the opposite of
the simple case), the conditional e-value achieves asymptotically highest e-power. This
is particularly valuable because, while the GRO e-variable is hard to compute in such
cases, the conditional e-variable is computationally more straightforward. Additionally,
this chapter introduces and compares various types of e-values, including the GRO
e-variable, the conditional e-variable, the UI (Universal Inference) e-variable, and
sequential e-variables, with a detailed analysis of their e-power. Some of these e-values
also lead to the development of anytime-valid tests, known as e-processes.

Chapter [4] focuses on developing methods for testing whether & groups of samples

are distributed according to the same element of an exponential family, using e-values.
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For instance, in the case of two-sample tests (k = 2), these methods can be applied
to assess whether a new medical treatment is effective for a particular disease by
comparing the distribution of outcomes between the treatment and control groups.
We introduce four types of e-variables for the k-sample test: the GRO e-variable, a
conditional e-variable, a mixture e-variable, and a pseudo-e-variable. These e-variables
are compared in terms of their growth rates under alternative hypotheses, where each
group has a different, but fixed, distribution from the same exponential family. The
paper provides theoretical results showing that, under small effect sizes, the e-variables
behave similarly. It also identifies cases where one e-variable simplifies to the GRO
e-variable, reducing computational complexity. In more complex settings, algorithms
for estimating the reverse information projection are suggested.

Chapter [5| focuses on growth-rate optimal in the worst-case (GROW) e-variables.
We analyze the application of GROW e-variables within a hypothesis testing framework
for multivariate distributions. In this framework, the null hypothesis distribution P
has a mean of zero, and various alternative hypotheses H; are defined by different
sets of means. Interestingly, we show that the GROW e-variable connects to a new
concentration inequality we call the Csiszdr-Sanov-Chernoff (CSC) bound. This CSC
inequality extends earlier work to handle multivariate cases with either a convex or
bounded alternative parameter region around 0. Such an inequality is likely to be
valuable in practical applications, such as online learning, and especially in the field of
bandit algorithms.

In summary, this dissertation expands e-variable theory within exponential families
by developing and analyzing several e-variables, providing practical insights for situations

where traditional p-value-based testing may fall short.
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