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Chapter 6

Discussion

In this dissertation, we presented several key mathematical results related to e-values
and e-processes within exponential families. Specifically, we demonstrated the theoretical
foundations for anytime-valid testing with well-specified exponential family models
and developed four types of e-variables for k-sample tests, comparing their respective
e-powers. We also analyzed the GROW e-variable under a composite H; and a simple
Ho, introducing a novel multivariate concentration inequality. In this discussion, we
summarize the main contributions of the dissertation and highlight potential directions
for future research.

6.1 Well-specified model tests

We can interpret Chapters [2| and as providing a comprehensive examination of
testing whether an exponential family model is well-specified. This involves determining
if the data fit the hypothesized exponential family distribution under a specific null
hypothesis H.

Griinwald et al. [42] showed that the growth-rate-optimal (GRO) e-variable can be
obtained via a specific Bayes factor between H; and Hy. When both Hg and H; are
simple hypotheses, the Bayes factor reduces to a likelihood ratio, often referred to as
a “simple e-variable.” However, when H, is composite, the GRO e-variable does not
always correspond to a simple e-variable, though it does in some cases.

In Chapter 2] we presented a theorem, under certain regularity conditions, providing
a general sufficient condition for the existence of a simple e-variable when testing a simple
alternative against a composite regular exponential family null. This condition can be
expressed as “X,(u) — Xq(p) is positive semidefinite for all g € M;.” We also explored
the possibility of constructing GRO or close-to-GRO e-variables when this condition
does not hold. We found that for some p within a specific parameter range, g, /py
still provides a global simple e-variable; for others, it provides a local but not global
e-variable, and for some, it does not provide an e-variable at all. An interesting direction
for future work involves extending these results to curved exponential families [33].
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6.2. k-sample tests

While we have no general results in this area yet, the work of Liang [62] suggests that
this may be feasible. Liang’s variation of the Cochran-Mantel-Haenszel test involves a
null hypothesis that can be reframed in terms of a curved exponential family, where a
local e-variable exists by considering the second derivative of a specific function. This
local e-variable is shown to be global by a different method than what we used in our
construction, suggesting the potential for unifying these approaches.

In Chapter [3| we investigated the ‘opposite’ scenario, where “X,(u) — X,(p) is
negative semidefinite for all u € M,”. In addition, we mainly studied various types
of e-variables and e-processes (Sgip, Sur, Sconn, Sseqrip) for multivariate exponential
family null hypotheses and compared their e-power for i.i.d. data. In this context,
we observed that in certain scenarios, the e-power of the “conditional” e-variable
Sconp 18 asymptotically equal to the e-power of GRO e-variables in the “opposite”
scenario. Additionally, we discovered an interesting phenomenon when considering
composite alternative hypotheses, both in the Gaussian and general case, particularly
regarding the relationship between conditional and RIPr e-variables, suggesting a near
“approximate optional stopping” result.

Future work We also highlighted two e-variables that have not been extensively
analyzed: the sequential conditional e-variable and a certain weighted average of
e-variables. The former is a sequentialized version of the conditional e-variable, used in
classical sequential testing and applicable to k-sample tests with exponential families
[44], which we study in the next chapter. The latter is a weighted average of RIPr
e-variables across different priors on the alternative, which, though an e-variable,
behaves differently from the e-variables we focused on in this thesis.

Finally, future research could focus on relaxing the assumption that the distribution
of the sufficient statistics X must have exponentially small tails under the alternative
hypothesis. This regularity condition underpins most of our results, but its relaxation
could broaden the applicability of e-variables in exponential family settings.

6.2 k-sample tests

In Chapter 4] we introduced and analyzed four types of e-variables for testing whether
k groups of data are distributed according to the same element of an exponential family.
These e-variables include the GRO e-variable (Syp), a conditional e-variable (Sconp), &
mixture e-variable (Syx), and a pseudo-e-variable (Spsgupo)-

Our analysis focused on comparing the growth rates of these e-variables under a
simple alternative where each of the k groups has a distinct, but fixed, distribution
within the same exponential family. We demonstrated that for any pair of e-variables
S,8" € {Sup, Sconns Suix, Spseupo }, the difference in their expected log-growth rates
is O(6%), where § represents the £, distance between the alternative distribution’s
parameters and the null parameter space. This result indicates that when the effect
size is small, the performance of all four e-variables is remarkably similar. For more
substantial effect sizes, Sk has the highest growth rate by definition, making it
the most powerful e-variable. However, calculating Sy requires determining the
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Chapter 6. Discussion

reverse information projection of the alternative distribution onto the null, which is
computationally challenging. We provided theoretical results showing that for certain
exponential families, one of the following equalities holds: Spsrupo = Swir, Sconn = Suip,
or Syix = Srip- These cases significantly reduce the computational complexity of
identifying the most effective e-variable. In instances where such equalities do not
hold, algorithms can approximate the reverse information projection, and we verified
numerically that these approximations lead to near-optimal values for Sg;p. Despite this,
the choice of using Sconp Or Syix might still be preferable due to their computational
efficiency. Our simulations revealed that the optimal choice between Sconp and Syux
depends on the specific exponential family under consideration, and in some cases, no
clear ordering between them emerges.

These results provide practical insights into the trade-offs between different e-variables
in terms of their theoretical properties and computational demands, guiding the selection
of appropriate e-variables in real-world applications.

6.3 GROW e-variables and concentration inequality

Chapter 5| demonstrated how GROW e-variables, relative to an alternative hypothesis
‘H1 defined by a set of means My, connect to a Csiszdr-Sanov-Chernoff (CSC) probability
bound on events determined by the same set M;. Initially, we focused on cases where
M; is convex, largely involving reformulations and reinterpretations of known results.
Subsequently, we developed results for nonconvex, surrounding M;, showing that both
GROW and a form of relative GROW, based on individual-sequence regret, relate to
a modified CSC theorem. For cases where M is defined as a fixed-radius KL ball for
sample size 1, we also derived results that hold as the actual sample size n increases.

To our knowledge, the CSC bounds we derived for surrounding M; characterized by
KL balls are the best available for this context. It is, however, interesting to consider a
different approach: for sample size n, using a KL ball with a radius, in terms of the
Euclidean distance in parameter space, that is decreasing as O(%) or O(@) with
f(n) with very slowly increasing. Firstly, we consider the case that the KL ball is
decreasing as O(1). Since the boundary BD(M{) now varies with n, our asymptotic
results for the CSC bound derived earlier in Chapter [5| no longer apply in the same
form. While the CSC theorem itself remains valid, evaluating the bound may present
additional challenges.

Future work Now, let us explore the case that f(n) = alog(b+ clogn) for some
suitable constants a, b, and ¢. Kaufmann and Koolen [51] provide an anytime-valid
bound for this setting, where the bound’s right-hand side also stabilizes to a nontrivial
constant (i.e., less than 1) for all sufficiently large n.

It remains an open question whether our approach could yield similar bounds;
addressing this is left as a potential direction for future work. Additionally, further
analysis is needed to understand the relationship between anytime-valid bounds and
those derived here. Although our bounds are related to e-values and thus indirectly
connected to anytime-validity, they are not anytime-valid themselves.
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GROW e-variables and concentration inequality
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