Universiteit

w4 Leiden
The Netherlands

E-values for anytime-valid inference with exponential families
Hao, Y.

Citation
Hao, Y. (2025, February 18). E-values for anytime-valid inference with
exponential families. Retrieved from https://hdl.handle.net/1887/4195433

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4195433

License:

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4195433

Chapter 1

Introduction

In today’s world, data surrounds us like air. For instance, devices like the Apple Watch
continuously collect data about our daily routines, exercise habits, and more. However,
this vast amount of data must be organized and analyzed before meaningful conclusions
can be drawn. Solving practical problems with data is at the core of the science called
statistics. Over the years, statistics has demonstrated its value across various research
fields, such as bioinformatics and sociological research. In the era of big data, where
new data constantly accumulates, we need statistical methods that can handle these
continuous data flows and enable real-time decision-making.

This dissertation focuses on an anytime-valid method (called the e-value method), a
powerful approach designed to tackle hypothesis testing problems within streaming
data contexts. Throughout this work, we develop numerous mathematical results
concerning the theory of the e-value method for hypothesis testing. In this introductory
chapter, we introduce the key topics covered in the dissertation.

First, Section [L.1] introduces the hypothesis testing problem and discusses how it
is addressed by classical methods. We then illustrate the problems that arise when
these traditional methods are used sequentially as the data come in. In Section [[.2] we
present the core concept of the e-value method and explain why it works “safely” for
real-time decision-making. Section [L.3| covers preliminary knowledge that is frequently
referenced in later chapters but not introduced in detail in those chapters. Section
provides an introduction to the exponential families, which are a central focus of
this dissertation. Lastly, in Section [I.5] we offer an outline of each chapter of the
dissertation.

1.1 Hypothesis testing

Hypothesis testing is a common practice in everyday life. For example, during winter,
I often feel discomfort in my stomach after having lunch at the CWI canteen. Since I
rarely ate cold food in China during winter, I suspect that the cold vegetable salad
might be causing this discomfort. To test my suspicion, I eat the cold salad on some
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random days over the course of a month and monitor how my stomach feels each day.
If my stomach consistently feels bad after eating the cold salad but feels fine on other
days, this would provide strong evidence that my suspicion is correct. Of course, one
could argue that it might just be coincidence, but such coincidence would have an
extremely low probability if my suspicion is wrong.

To explain hypothesis testing further, suppose we have collected n observations,
denoted X1y, X(2),.... We are interested in whether these observations are consistent
with one of two hypotheses: the null hypothesis (Hg) or the alternative hypothesis
(H1). In the example above, Hy might be “Eating cold vegetable salad does NOT
cause stomach discomfort”, while 1 would be “Eating cold vegetable salad does cause
stomach discomfort”. In general, H represents a status quo assumption or a standard
model that the data might conform to, while 7 represents a departure from H.

Ho and H; are usually formalized as probability distributions. For example,
the data X(;), X(),... are independent and identically distributed (i.i.d.). Each
Xy is of the form (Y(;),G;) with Y(;) € {FEEL GOOD, FEEL BAD} and G(; €
{EAT SALAD, NOT EAT SALAD}. Then H, is the set of conditional distributions with

Pr(Y(;) = FEEL GOOD|G(;) = EAT SALAD)
=Pr(Y(;) = FEEL GOOD|G ;) = NOT EAT SALAD);

and H; is the set of conditional distributions, in which the first probability is smaller
than the second one.

There are many approaches to hypothesis testing, roughly categorized as frequentist
or Bayesian methods, as explained in detail by Royall [74]. The frequentist approach is
further divided into Fisherian and Neyman-Pearson tests. Fisherian testing focuses on
measuring the evidence against Ho using the p-value (defined later); the smaller the
p-value, the stronger the evidence against Hy. In this framework, there is no explicit
H1, as the test focuses solely on Hy. On the other hand, the Neyman-Pearson approach
explicitly compares two hypotheses, Hg and H;, with the goal of choosing one over the
other. We will omit Bayesian methods here because we do not use them so much in
the thesis.

In some chapters in the thesis, we use Hy to denote the statement defining the
null hypothesis (Chapter [2 and Chapter [3)), and P to denote the corresponding set of
distributions. Similarly, we use H; to denote the statement defining the alternative,
and Q to denote the distributions. In other chapters including this introduction, we use
Ho and H; to directly denote both the set of distributions and their defining statement.

The general goal in all chapters of this thesis is to choose between a null hypothesis
Ho and an alternative H; based on the observations x(y), x(2),.... Both H; and Hg
can be composite, meaning they may consist of multiple possible distributions rather
than a single, fixed one. For example, consider testing whether a coin is fair. The null
hypothesis H( asserts that the coin is fair, meaning the probability of getting “heads”
in a coin toss is exactly 0.5. In this case, the null model space is simple, corresponding
to a Bernoulli distribution with parameter 0.5. Hj is referred to as a simple hypothesis.
On the other hand, the alternative hypothesis H; claims the coin is not fair. This
means the probability of getting “heads” could be any value except 0.5, specifically any
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real number 6 € [0,0.5) U (0.5,1]. Since this allows for a range of different probabilities,
H1 is referred to as a composite hypothesis.

This is one of the most common settings today. While we will not cover all classical
hypothesis testing methods, we will introduce one of the most well-known: the p-value
method.

p-value A p-value is the probability of obtaining test results at least as extreme
as the result actually observed, under the assumption that the null hypothesis Hy is
true. Mathematically, a strict p-value is a random variable p such that for any given
significance level @ € [0,1] and for all Py € H,,
Pyp<a)=a.
In practice, for a set of observations z(") := T(1), -+, T(n), We reject Ho if the p-value
computed from these observations is less than or equal to «, which is commonly set at
0.05. Otherwise, we fail to reject Hy.
To better understand this, let us look at a couple of classical examples.

Example 1. [Correct coin toss test] This test examines whether a coin is fair. The
same example is discussed in Pérez-Ortiz’s PhD dissertation [69]. We toss the coin n
times, and from these observations z(™) = T(1),-- T (n), We record each time whether
“heads” or “tails” appears. The empirical mean is defined as:

1
t(z™) = E#{heads in (™},

The number of heads follows a binomial distribution, and by the Central Limit Theorem
(CLT), if Ho (the coin is fair) is true, (X (™)) approximately complies with a Gaussian
distribution.

Suppose we have an observation (™ and get #(2(™) = 1/24t*. Then the event “If
we would replicate the experiment, we get a result ¢(X (")) that is at least as extreme
as the result actually observed” is given by t(X(") € (—00,1/2 — t*] U [1/2 + t*, 00).
Note that now X (") refers to “new” data, whereas (™) refers to the actually observed
data—see the red intervals in Figure[I.1} Then the p-value corresponding to statistic
t(z(™) is defined as the probability that ¢(X (™)) falls within the red intervals. For each
value of t*, there is a corresponding p-value. If t* = 0.98/1/n, then the p-value is 0.05.

The p-value method would reject Hg if (X (™) falls inside these red intervals,
resulting in a Type-I error (i.e., false rejection of Hy) guarantee with a probability of
0.05. That is

Type-I error := Pr(REJECT Ho|Ho IS TRUE),

which equals 0.05 in this example. This demonstrates the validity of the p-value method
in this example, as it controls the Type-I error at a significance level 0.05.

Example 2. [Incorrect coin toss test] If we extend the previous example to an
online streaming case, the p-value method violates the Type-I error control. Here, we
keep tossing the coin, collecting new observations, and computing t(ac(”)) at each step
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Figure 1.1: If the p-value p = 0.05, then t* = 0.98/+/n.

until ¢(z(™) eventually falls outside the interval [1/2 — 0.98//n,1/2 4 0.98/+/n]. Due
to the randomness in sampling, extreme values will occur eventually, leading us to
reject Hg even if Hy is true. In this scenario, the Type-I error becomes 1, showing that
the p-value method is no longer valid. This will be illustrated in Figure |1.2

We will demonstrate that the e-value method remains valid in the scenario described
in the above examples, to be discussed in Section [I:2} Furthermore, to illustrate why
the Type-I error exceeds o in Example 2] we provide a clearer explanation in the next
example.

Example 3. [Multi-stage tests] Consider the following multi-stage experiment.
Initially, researchers collect a dataset X (") and compute the p-value p;. They reject
Ho if p1 < 0.05, and accept Hg if p; > 0.1. However, if 0.05 < p; < 0.1, they deem the
evidence inconclusive but promising. Therefore, they collect a new sample X'("™) and
compute a new p-value py based on joining datasets X (™ and X’("). They reject H
if po < 0.05, otherwise they accept Hy.

Let us represent the event where 0.05 < p; < 0.1 as G. The total Type-I error
exceeds 0.05 because:

Type-I error = 0.05 + Py(G) - Po(p2 < 0.05 | G) > 0.05.

This shows that the p-value method fails to control the Type-I error in the multi-stage
testing, which already happens when there are just 2 stages. In practice, there are
often multiple stages, which further increases the overall Type-I error.

In the next subsection, we will show that the e-value method consistently succeeds
in the scenarios presented in these examples. More generally, the test process using
the e-value method can be halted at any time without requiring a predefined stopping
rule, offering greater flexibility compared to traditional methods.

1.2 Anytime-valid tests: e-value, e-process

In Section [I3] we discussed a flaw of the p-value in sequential testing. The issue of
sampling until a significant result is obtained has actually been debated by statisticians
since at least the 1940s. Feller in 1940 [34] observed this issue in studies of extra-sensory
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perception, and Anscombe in 1954 [4] famously called it “sampling to a foregone
conclusion.” Robbins in 1952 [73] also pointed out this problem. However, it was not
until 2019 that a fully general framework emerged to address it. In that year, four
papers from different research groups were published on arXiv, laying the foundation
for what would soon become known as the concept of the e-value [42] [05] [OT], [76]. We
will now introduce this general framework.

e-variable, e-value Consider a batch of data (a random vector) X, which can be
collected sequentially or all at once. We define a nonnegative statistic S(X), that is a
function of the observed data. Let Ho = {Pg : @ € O} be the set of distributions for X
defined within their parameter space ©. If the statistic S(X) satisfies the condition:

for all P € Hy : Ep[S(X)] <1, (1.2.1)

then we refer to S(X) as an e-variable relative to Hgy. The value of S(X) computed
from the observed data is called the e-value.

Similar to how we test with p-values, we first set a significance level a € [0, 1] before
conducting an e-value-based test. Given a sample X, we construct an e-variable S(X)
using the entire sample at once, and we reject Hg if and only if S(X) > 1/«. This is
analogous to the traditional p-value approach. This approach ensures a Type-I error
guarantee, as can be explained by Markov’s inequality:

sup Ep[S(X)]
PcHo < o

Type-I error = Pr(S(X) > 1/a|Ho 1S TRUE) < # <
@

However, data is sometimes collected sequentially, requiring us to make decisions
at any time using the data collected so far. A specific example of this is provided
in Example 2] and Example [3] In contrast to p-value methods, the e-value method
can also be applied for testing with a data stream while maintaining a Type-I error
guarantee. We divide this situation into two types: optional continuation and optional

stopping.

Optional continuation Consider a stream of data batches X(;), X(2),.... We

assume the X(;) are independent. Let S(X(;)) be an e-variable based on X(;). Then,
N

for any positive integer N € N*, we define the product SV) := [] S(X(;)), which
i=1

remains an e-variable. In other words,

forall P€Ho:  Ep [S(M] <1, (1.2.2)

which can be shown as follows: since S(X(1)),...,S(X(n)) are independent, it follows
that for all P € Ho,

Ep |S™)] = ﬁ]EP [S(Xa)] <1.
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Then, if we reject Ho when SO) > 1/a, the Type I error is bounded by level o. This
is because, by Markov’s inequality,

sup Ep [S(N)]
PeHo

Type-I error = Pr (S(N) > l/a’Ho IS TRUE) < 7
a

<a.  (1.2.3)

This inequality holds for every fixed N. However, as shown by Griinwald et al [42],
still holds if N is any data dependent stopping time. A stopping time is a
time determined by a rule that, at each step N, decides—based on the data observed
so far, X1, Xo,..., Xy—whether to stop or continue. For example: “stop as soon as
SN) > 1/a”, or “N = 10", or “stop if Xy contains 0”. For a formal definition of
stopping time, we refer to Ramdas et al. [71].

In more detail, Griinwald et al [42] show that S™), S(?) .. is a test supermartingale [T7],
which is a nonnegative supermartingale with Ep[S(1)] < 1. This implies (1.2.3) and
also implies that Ville’s inequality [90] holds, then further implies, for all P € H,, we
have

< —— <aq, (1.2.4)

Type-I error < Pr ( sup SV > 1/a|’Ho IS TRUE 1/
«

N:N>0

) O EplsY]

where (x) follows from Ville’s inequality. We say that the e-value method preserves
Type-I error guarantees under optional continuation.

Optional stopping Now suppose each X(;) is a single (just one) data point and we
have an e-variable S(X(;)) for each point X(;. But now by (1.2.4), we can do optional
stopping - stop at any point we like, and still preserve Type-I error guarantees.

e-process So far, we have assumed that the data stream Xy, X(2),... is composed
of independent observations, which also led to the independence of S(X (1)), S(X(2)), - - -
by construction. However, in practice, they can be dependent. In this thesis, the X
in the data streams considered will always be independent, but we may use different
e-variables S that could be dependent. We directly define a stochastic process
SM 8@ with S a nonnegative statistic of X1y, -+ X(5), satistying

forall Pe Ho:  sup Ep {SW)} <1, (1.2.5)
NeT

where T is the set of all valid stopping times. We call such a process an e-process.

Ramdas et al. [72] show that if a stochastic process SV, S() ... is an e-process,
then for all P € H,, there is a test martingale Mg), Mg), ... such that S® < M}(;)
holds for every i > 0. Therefore, an e-process ensures that the Type-I error remains
bounded, which is derived by Ville’s inequality again, as in .

Let us run a simple simulation comparing an e-process with the traditional p-value
method, as illustrated in Example The results of this simulation are shown in
Figure In this example, the p-value method fails to maintain the Type-I error
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Figure 1.2: A toy simulation for Example [2| is conducted. Similar simulations are also
presented by Ly et al. [65] and Turner et al. [88]. In this setup, samples are drawn from

a Bernoulli(1/2) distribution. We define Sy := %, where po.o(X(;)) denotes the

probability mass function (pmf) of a Bernoulli(O.Q) distribution. S(iy is an e-variable because
it can easily be checked that it complies with . We obtain a new observation at each

time step, then calculate the p-value p(¢(X t))) and e-value S® := H S(;) at time ¢ using

the first ¢t samples observed. This process continues until all samples are examined. If, at
any time t € {1,2,...,300}, p(¢ (X(t>)) < 0.05, we reject Ho; similarly, we reject Ho based on
the e-value if there exists a time ¢’ € {1,2,...,300} such that S > 20. This simulation is
repeated 3000 times, and we compute the rejection rates for both the p- value and e-value.
This simulation shows that the Type-I error of sequentially testing S > 5o remains forever
below 0.05, whereas the Type-I error of sequentially using the p(¢ (Xm)) < 0 05 violates the
level 0.05.
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guarantee, while the e-process method successfully controls the Type-I error rate as
expected. This demonstrates the robustness of the e-process approach in contrast to
the p-value method, which can be prone to inflation of Type-I error in certain scenarios.

In this thesis, we rely on various pieces of preliminary knowledge, though they may
not be explicitly mentioned in each corresponding chapter. Therefore, we have included
essential preliminary knowledge in the following subsections.

1.3 Preliminary knowledge: RIPr and e-power

RIPr Suppose we have a distribution @ and a set of distributions P. The goal is
to find the distribution in P that is ‘closest’ to (). One common way to measure the
divergence between two distributions is by using Kullback-Leibler (KL) Divergence,
denoted as D(Q||P), which is defined as:

D(Q||P) :==Ex~q {log q(X)} ,

p(X)

where ¢(X) and p(X) are the probability densities of @ and P, respectively.

We define W(P) to be the Choquet convex hull of P. This means that W(P) is a
convex set, and distribution Py € W(P), if and only of there is a proper prior W on
‘P such that:

pw(X) = /p(X)dW(p)-

Tt is clear that P C W(P) because, for any P € P, we can place all the prior mass on
P. We define P*, the Reverse Information Projection (RIPr) of @ onto P [60], [27], as
the distribution in W(P) that minimizes the KL-divergence from @ to W(P). This
means that, if the minimum in W(P) can be attained, P* is the distribution that is
‘closest’ to @ in the KL-divergence sense:

P* = argmin D(Q||P). (1.3.1)
PewW(P)

In our simplified introductory statement here, the RIPr is undefined if there is no
distribution in W(P) that minimizes the KL divergence. However, the RIPr can be
defined for such cases as well - see [42], [43] and [58].

e-power In traditional hypothesis testing with a p-value, we use the term ‘power’ to
describe the probability that a test rejects the null hypothesis Hgy when the alternative
hypothesis H; is true. Similarly, in the context of e-values, we aim to measure a test’s
effectiveness through a concept called ‘e-power’. The e-power of an e-variable S = S(X)
based on a data X and alternative H, = {Q} is defined as the expected logarithm of
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S under the alternative distribution Q:
Bx~qllogS(X)] = [ log S(2) dQ(w)

as introduced by [42] and [92].

Let H1 = {Q} and Ho = P. Griinwald et al. [42] prove that Sy, = pq*((XX)) is an
e-variable, where P* is specified as in . They also demonstrate that among all
e-variables for Hg, the RIPr e-variable Sg;p yields the highest e-power relative to the
alternative H; and the null Hg.

In p-value testing, rejecting Ho requires a small p-value, but in the e-value framework,
Ho is rejected when S > 1/a. Therefore, if H; is true, we want S to be as large as
possible. The e-power captures this by measuring the strength of S in providing

evidence against H.

1.4 Preliminary knowledge: Exponential family

The probability density function (pdf) of the exponential distribution is well-known
and can be expressed as:

pa(z) = A 2 € [0,00), A € (0,00), (1.4.1)

where x represents the data, and A is the rate parameter. Interestingly, many other
families, such as the Gaussian, Poisson and Beta distributions, can be written in a
similar form to the exponential distribution. These types of distributions are part of a
broader class known as exponential families. We will now explain this concept in more
detail.

Definition of exponential family Consider a set of probability distributions
P e {Py:0 € O} for data U, where O is the parameter space of P. If there exists
a re-parametrization P = {Pg : 3 € B} with B C R? for some d € N*, and a random
vector X that is a function of U and the probability density (or mass) functions can
be written as:

1 T

pa(U) = 78) &P (B'X), (1.4.2)
where Z(3) is a normalizing factor, then P is called an exponential family. We call
X the sufficient statistic for 3, which can be verified easily using the Fisher—Neyman
factorization theorem. (3 is the natural or canonical parameter of the distribution. (Note
that in Chapter @ we use A for the canonical parameter, whereas in Chapter [5 we use
0.) When the functions X and 3 := (3(0) are fixed, they define a specific exponential
family. Some people prefer to write the exponential family form as:

pa(U) = ﬁ exp (87 X) h(U),
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where h(U) is called the carrier function. However, this is essentially the same as the
previous form since it can be rewritten as:

1 T oy
pe(U =7eXp<ﬁ’ X),
)= 7
where 8’ = (B7,1)" and X' = (X ", logh(U)) .
This re-parametrization highlights how various familiar distributions can be unified
under the exponential family framework. We explain it using the Gaussian example.

Gaussians are an exponential family For simplicity, we only show the one-dimensional
case here. In this example, the standard parameterization would be 8 = (u, 0?) and
® =R x R*. The pdf of a Gaussian can be written as

(1) = 1o

1 " 1 1
=exp (—MuQ + Pl T‘z;ﬁ —logo — 3 10g(27r))

=exp (Bz —log Z(8))
where the last equality holds if we let 8 = (L3, fﬁ)T, = (u,u?)" and log Z(B) =
log [exp (B8Tz) dz = 5z p* + log o + 1 log(2m).

In this section, we introduced the basic concept of the exponential family. However,
throughout this dissertation, more advanced knowledge about the exponential family
is frequently used, though not explicitly explained in the corresponding chapters. We
have placed these more technical details in Appendix

1.5 Outline

We provide a brief overview of the content of each chapter in the following subsections.
Each chapter reports our research on various e-variables for exponential family null
hypothesis and/or alternative hypothesis, addressing different problems. Additionally,
Chapter [f introduces a novel concentration inequality for multivariate exponential
families.

Chapter Conditions for the existence of simple e-variable

In many academic fields, such as social sciences, biology, and physics, researchers often
aim to infer the underlying distribution of data. To do this, they may assume a specific
model structure. For example, they might hypothesize that the data follow a binomial
distribution, then estimate the parameters that best fit the data. However, the data
may come from a different set of distributions, such as a set of negative binomial
distribution. In mathematics, a correct assumption is referred to as a well-specified

10
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model assumption. Therefore, determining whether a model is well-specified is crucial
for accurately learning the structure of the data. This involves testing whether the
observed data are actually distributed according to an element of the given set of
distributions.

Chapter [2| addresses this task using e-variables for exponential families. Specifically,
we may want to test if a certain parameter in an exponential family is zero, or not—this
includes linear regression testing as a particular case. In this chapter, we study the
GRO e-variable for this task, for a single outcome U. As was announced in Section [T.3]
the GRO e-variable is closely connected with the RIPr. The simplest example of GRO
e-variables is the likelihood ratio between simple alternative and simple null hypotheses.
However, for composite hypotheses, the situation becomes more complex. Nevertheless,
GRO e-variables in the form of a likelihood ratio involving a single, specific element of
the composite null hypothesis can sometimes still be found. We refer to such GRO
e-variables as ‘simple’ e-variables. As we will demonstrate, their existence is closely
linked to properties of the aforementioned RIPr.

When simple e-variables exist, they can be easily computed and are known to be
optimal in terms of e-power [53] 42]. In the context of repeated experiments with a fixed
stopping rule for data collection, and a simple alternative, using a simple e-variable will,
asymptotically, provide the strongest evidence against the null hypothesis compared to
other e-variables. Therefore, it is important to determine when simple e-variables exist
in specific contexts. Chapter [2] offers a set of equivalent conditions under which simple
e-variables exist for exponential family null hypotheses.

Chapter General exponential family test

Chapter [3] continues from Chapter [2] In this chapter, we explore the scenario where
a condition ‘opposite’ to the previous conditions applies, which we refer to as the
anti-simple case, meaning that simple e-variables do not exist. For both cases—whether
simple e-variables exist or not—we analyze common types of e-variables and e-processes
related to composite exponential family nulls, but now for sequences of outcomes
rather than a single one: we examine and compare their e-power [94] for i.i.d. data
Uy, Uy, - - .- Recall that e-power plays a pivotal role, as it is maximized by the optimal
e-variable (i.e. GRO e-variable) across all e-variables defined on U(™). As we announced
in Section it can be determined using the reverse information projection (RIPr).
We denote this optimal e-variable as Sg;p. Additionally, we consider a sequentialized
version of the RIPr e-variable, Sgpq-rip, Which is optimal at the individual outcome level
but not necessarily over the entire sample. We also investigate a conditional e-variable,
Sconp, based on conditioning on the sufficient statistic, along with a well-known version
of the universal inference e-variable, Sy, [95].

Instantiating such e-variables requires specifying an alternative hypothesis. We
begin by considering a simple alternative @ = {Q}. Our results demonstrate that the
RIPr prior W that achieves the minimum in is approximately Gaussian with
variance O(1/n) in an asymptotic sense, and exactly if Hp is a Gaussian location family
and @ is also Gaussian. To our knowledge, this is the first time that insights into a
nondegenerate RIPr prior have been obtained for the case of a parametric, non-convex

11
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null.

This result is made possible by our key theoretical insight: the conditional e-variable
Sconp can be analyzed using a local central limit theorem with explicit bounds on the
error terms [16]. Consequently, we derive not only explicit o(1) bounds on its e-power
but also establish that Sconp is closely related to Sgip (in the Gaussian anti-simple case,
they even coincide). We extend these results to other types of e-variables, not only
under the ‘true’ alternative ) but also in the misspecified case, where the data are
sampled i.i.d. from a distribution R # Q.

We employ two standard methods to design e-variables for composite alternatives
Q: the sequential plug-in method [38] and the method of mixtures [71]. We observe
that, when using the method of mixtures and equipping the alternative with a prior
Wi, under regularity conditions, the RIPr prior W in is, approximately, the
same prior W7, regardless of whether we are in the simple case or not. Summarizing
some of our main findings for the composite case, we derive the following relationships.
Under appropriate (though mild) regularity conditions on Hy and H1, for all @ € H;,
(in the chapter we use P and Q because it fits better with other notations.) we have:

Eqllog Siiy / Storn] =o(1)-
" d
Eqllog St/ S =5 logn + o(1).

. d
Eq[log S e/ S5 :% logn + O(1)
with 0 < dgp < d, in the strict simple case.

Eq[log S8 e/ Sn] < — ne

for some € > 0, all large n, in the strict anti-simple case.

Here, d represents the dimensionality of the exponential family, and dg, is a measure of
‘effective dimension’, whose exact value depends on ). Of course, we provide precise
definitions of “strict simple, anti-simple” in Chapter

Chapter k-sample tests with exponential families

A k-sample test is the general version of a two-sample test. It involves analyzing data
from k independent random samples, each drawn from a possibly different population.
For example when k = 2, in studying the effectiveness of a new treatment (such as a
new blood pressure medication), patients are divided into two groups: a treatment
group and a placebo group. Researchers track the number of recoveries in each group
after a set treatment period. If the treatment is effective, a higher recovery rate is
expected in the treatment group compared to the placebo group. The statistical test is
used to determine if the observed difference in recovery rates between the two groups
is significant, or if it could have occurred by chance. Two-sample tests are designed
to model such situations. Mathematically, the objective is to determine whether the
observed difference between the two populations is statistically significant, meaning
whether the difference is likely due to chance or represents a true difference between
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the populations.

Chapter [4] centers on k-sample tests. Some of the results presented in the chapter are
special cases of those from Chapter [3| However, it remains valuable to include them in
this chapter because we provide full details that were not covered in Chapter [3
We develop four (pseudo-) e-variables for k-sample tests in exponential families:
Srirs Sconn, Suix, and Spspupo.  Skips Sconp, Swix are real e-variables, while Spspupo is
an e-variable only when it coincides with Sg;p, which happens whenever the latter is
computationally straightforward; in other instances, it is not a true e-variable but
remains useful for our theoretical analysis. Suppose the (shortest) ¢5-distance between
the k-dimensional parameter of the alternative and the null parameter space is denoted
by §. Our results show that, for any two of the aforementioned e-variables S and 57,
the difference in e-power is given by E[log S — log S’] = O(54).

Chapter 5; GROW e-variables and a novel concentration inequality

The link between optimal rejection regions for anytime-valid tests at a fixed level o and
optimal anytime-valid concentration inequalities is well-documented [47]. Chapter
explores a variation of this connection, focusing on a simple multivariate null hypothesis
and a range of composite alternatives. We examine both absolute and relative GROW
(‘growth-rate optimal in the worst-case’) e-variables as introduced by Griinwald et
al. [42). Further, we illustrate how these e-variables connect to a concentration inequality,
which we refer to as the Csiszdr-Sanov-Chernoff (CSC) inequality.

To start, we analyze the GROW e-variable Sgrow within this framework, considering
cases where H; is either the set P; of all distributions with means in a specified
convex set Mp, the set & of all distributions in the exponential family generated
by Py with means in M;, or any H; for which & C H; C P;. Remarkably, the
GROW e-variables coincide across all such H;1. We derive this result by applying the
well-known Csiszar-Topsge Pythagorean theorem for relative entropy, which leads us
to the fundamental CSC concentration inequality. This section’s focus is primarily on
rephrasing established findings, familiar to the information-theoretic community but
perhaps less so to those working with e-values.

Chapter | then introduces a novel approach, examining cases where the complement
of My forms a connected, bounded set containing Py — a scenario more commonly
encountered in practical applications and more aligned with the multivariate central
limit theorem (CLT). This configuration, which we call the surrounding H, case because
P, is “surrounded” by i, has rarely been considered in the derivation of CSC bounds,
with an exception being the variation studied by Kaufmann and Koolen [51].

We extend the previous Sqrow e-variable to this surrounding #H; case in two ways.
The first approach is a straightforward absolute extension of the GROW e-variable
to the multivariate case, still denoted as Sgrow. Or we can determine a relatively
optimal GROW e-variable Sy, that is as close as possible to the largest Sqrow among
all e-variables Sgrow that can be defined on convex subsets of Hi, where we define
relative optimality in a minimax-regret sense. We characterize Sgrow for the univariate
case (d = 1) while leaving the multidimensional case (d > 1) as an open problem, and
we fully characterize Sy, for general dimensions. We then show that Sy, leads again
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to a CSC bound — and this CSC bound is new.

Appendix 1.A More exponential family preliminaries

Mean parameterization Since X is the sufficient statistic for parameter, it is often
more useful to directly study X rather than U, as we often do in this dissertation.
From equation , we know that X has the same dimension as the canonical
parameter 3. We already know that when the functions X (U) and (3(0) are fixed, we
may define a specific class of exponential family distributions, denoted by P (e.g., the
Gaussian family). A natural approach is to represent Py using the expectation of X,
defined as p(0) := Ey..p,[X], which is called the mean parameterization, and p(0)
is the mean-value parameter. It can be shown that for 6,0’ € @, (O is the standard
parameter space of the distribution family P), if Py # P, then p(6) # pu(6’), ensuring
a distinct probability model for each parameter.

Canonical parameterization For simplicity, we use the notation 38 := 3(0), u :=
©(0) going forward. Since Z(3) is the normalizing factor, we have:

Z(B) = /exp (,BTx) dx,

where the integral becomes a sum in the discrete case. Then taking the first derivative
of log Z(B) w.r.t. B gives us the mean of X under Pg:

dlog Z(B)  [wexp (B7z) dx _ /x

a8 Jew(BTa)de exp (87 ) do = Ep, [X] i= ().

(1.A.1)

Z(B)

We call p(3) the mean-value parameter corresponding to 3. We continue to take the
second derivative of log Z(3) w.r.t. 3. This gives us the covariance matrix of X under
P,@:
5, _ PlogZ(8) _ du(B)

dp? ag
Since X p is positive definite, the transformation from 3 to p is one-to-one, ensuring
that P can be uniquely represented using the canonical parameter 3.

Empirical mean as MLE In the mean parameter space, the mazximum likelihood
estimator (MLE) for the sufficient statistic X generated from a data set & has an
important property, frequently used in the following chapters. Consider a set of i.i.d.
data points (1), Z(2), -, T(n) = (™. The likelihood function is given by:

LB |z™) = ﬁ exp (ﬂT Z“’Yz‘)) :
i=1
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To find the MLE, we take the derivative of the log-likelihood and set it to zero:

dlog £(B | z(™) dlogZ -
— a3 Zw @ —np+ Zx(i) =0. (1.A.2)
where (a) follows from (1.A.1). If L Z 7(;) is in the interior of the the mean-value

parameter space, then (1.A.2]) has solutlon This shows that in such cases, the MLE

for the mean parameter is fi = E Z Z(;), i.e., the empirical mean.
i=1

Robustness properties These properties are shown in detail in [35] Chapter 19].
We briefly introduce some of them that are used frequently in the following chapters.
Let P be a regular exponential family, take X = U and let M be its mean parameter
space (See [13] or [19] for the definition of regular). Consider P, € P such that
Ep,[X] = p € M. Let @ be an arbitrary distribution with Eq[X] = pu* € M. For all
P,, € P, we have:

Bo [toe 2 00| — . [l 2 50] o= Derc 1),

where D(P,-||P,) is the KL-divergence between P,- and P,. This statement holds in
the canonical parameter space (B) of P as well. For all Pg € P with 8 € B, we have:

o o ];ﬁ;(())f())] ~En,. [lg ZZ*(%)} =D

which is equivalent to the statement in M because Pg and P,, with p = pu(3) represent
the same distribution.

Moreover, Ep,. [~logpg(X)] is a strictly convex function with respect to 3,
achieving its unique minimum at 3*. Since Pg and P, represent the same distribution,
Ep,. [~logp,(X)] is also a function of u, achieving its unique minimum at p*.

P,@)7
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