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Congenital athymia is a life-limiting disorder due to rare inborn
errors of immunity causing impaired thymus organogenesis or
abnormal thymic stromal cell development and function.
Athymic infants have a T-lymphocyte–negative, B-lymphocyte–
positive, natural killer cell–positive immunophenotype with
profound T-lymphocyte deficiency and are susceptible to severe
infections and autoimmunity. Patients variably display
syndromic features. Expanding access to newborn screening for
severe combined immunodeficiency and T lymphocytopenia and
broad genetic testing, including next-generation sequencing
technologies, increasingly facilitate their timely identification.
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The recommended first-line treatment is allogeneic thymus
transplantation, which is a specialized procedure available in
Europe and the United States. Outcomes for athymic patients
are best with early diagnosis and thymus transplantation before
the development of infectious and inflammatory complications.
These guidelines on behalf of the European Society for
Immunodeficiencies provide a comprehensive review for
clinicians who manage patients with inborn thymic stromal cell
defects; they offer clinical practice recommendations focused on
the diagnosis, investigation, risk stratification, and management
of congenital athymia with the aim of improving patient
outcomes. (J Allergy Clin Immunol 2024;154:1391-408.)

Key words: Congenital athymia, thymus transplantation, 22q11.2
deletion syndrome, DiGeorge syndrome, immunology guidelines

To generate a diverse T-lymphocyte repertoire that is tolerant to
self-antigens, bone marrow–derived T-lymphocyte progenitors
complete their differentiation and selection in the thymus.1,2 The
thymic stroma, composed of epithelial cells, various vascular cell
types, mesenchymal cells, and fibroblasts, provides the intricate
and highly specialized 3-dimensional microenvironment critical
for this process.1,2 Thymic epithelial cells (TEC) originate from
the endodermal lining of the third pharyngeal pouch, whereas
the nonepithelial components of the thymic stroma descend
from the surrounding mesoderm and neural crest–derived mesen-
chyme.2-6 The correct patterning of the third pharyngeal pouch
and early thymus organogenesis are tightly controlled by the ac-
tion of several transcription factors, including TBX (T-box tran-
scription factor) 1, HOXA3 (homeobox protein A3), PAX
(paired box) 1, and PAX9.7-12 Following a first-fate commitment,
differentiation, growth, and function of TEC are dependent on the
expression of FOXN1 (forkhead box N1), a member of the fork-
head family of transcription factors.7,13-18 TEC can be subdivided
on the basis of anatomic, phenotypic, functional, and more
recently transcriptomic characteristics into separate subpopula-
tions and subtypes, defined respectively by their expression of
cell-surface markers or by their transcriptomes.19-26 TEC resident
in the outer cortex of the thymus (designated cortical TEC) con-
trol the early stages of thymopoiesis, including the attraction of
blood-borne lymphoid precursors to the thymus, their commit-
ment to a T-lymphocyte fate, and their expansion and positive se-
lection.13,23,27-30 The latter constitutes a process that enables
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Abbreviations used
22q11.2DS: 2
2q11.2 deletion syndrome
CHARGE syndrome: S
yndrome comprising coloboma, heart defects,

atresia of nasal choanae, retardation of growth

and development, genitourinary anomalies, and

ear anomalies
CHD: C
ongenital heart disease
CHD7: C
hromodomain helicase DNA binding

protein 7
CMV: C
ytomegalovirus
CSA: C
yclosporine A
DGS: D
iGeorge syndrome
FOXI3: F
orkhead box I3
FOXN1: F
orkhead box N1
GOSH: G
reat Ormond Street Hospital
HCT: H
ematopoietic cell transplantation
HLA: H
uman leukocyte antigen
HSC: H
ematopoietic stem cell
HSPC: H
ematopoietic stem and progenitor cells
IEI: I
nborn error of immunity
IgRT: I
mmunoglobulin replacement therapy
NBS: N
ewborn screening
NK: N
atural killer
OFCS2: O
tofaciocervical syndrome type 2
PAX1/9: P
aired box 1/9
SCID: S
evere combined immunodeficiency
TBX1/2: T
-box transcription factor 1/2
TCR: T
-cell antigen receptor
TEC: T
hymic epithelial cells
TREC: T
-cell–receptor excision circle
WES: W
hole exome sequencing
WGS: W
hole genome sequencing
immature T lymphocytes (or thymocytes) that have successfully
expressed a T-cell antigen receptor (TCR) with sufficient affinity
for a peptide–major histocompatibility complex to receive signals
that allow their further survival. Positively selected thymocytes
are next subjected to another quality control of the cells’ antigen
specificity, a process known as central tolerance induction, which
encompasses negative selection and regulatory T-lymphocyte
development. Negative selection ensures that maturing T lym-
phocytes with a high affinity for self–peptide–major histocom-
patibility complex undergo programmed cell death (apoptosis)
and are thus deleted from the repertoire because these cells are
particularly prone to initiate autoimmunity. Alternatively, thy-
mocyteswith an intermediately high affinity for self-antigensmay
escape deletion and instead be diverted to a regulatory T-cell fate.
To efficiently achieve this, TEC collectively express in a promis-
cuous fashion an almost comprehensive set of tissue-restricted
antigens,24,31-34 some of which are under the control of transcrip-
tional regulators, namely autoimmune regulator (AIRE) and fam-
ily zinc finger 2 (FEZF2).24,27,28,31,33 While cortical TEC are
singularly responsible for positive selection, negative selection
can be mediated by TEC lineages as well as bone marrow–
derived antigen presenting cells including dendritic cells and B
lymphocytes.27,28,30,35-43 However, within the thymus, AIRE
and FEZF2 are predominantly expressed in a subset of medullary
TEC, rendering these cells especially competent to shape the TCR
repertoire. Taken together, lymph–stromal interactions within the
thymus instruct the commitment and maturation of T
lymphocytes and shape a diverse repertoire of TCR specificities
that are tolerant to self yet reactive to foreign antigens.

Congenital thymic stromal cell disorders are inborn pathol-
ogies caused by abnormalities in thymic organogenesis and
stromal cell development and/or function, resulting in deficient
and/or dysregulated T-lymphocyte immunity.44-47 The severity of
peripheral T lymphocytopenia correlates with the reduced size of
the thymic stromal scaffold.46 Thymic hypoplasia, depending on
its severity, may therefore result in eithermild T lymphocytopenia
with little or no clinical consequence, or alternatively, it may be
characterized by a clinically significant lack of peripheral T lym-
phocytes, reduced T-lymphocyte proliferative responses, an oli-
goclonal TCR repertoire, and secondary impaired humoral
immunity.48-54 Complete thymic aplasia is rare and results in a
T-lymphocyte–negative, B-lymphocyte–positive, natural killer
cell–positive (T-B1NK1) immunophenotype with severe to
complete absence of naive T lymphocytes, T-lymphocyte prolif-
erative responses, and T-cell–receptor excision circles (TRECs),
which are small circles of DNA created as a by-product of TCR
gene rearrangement.44,50,52-58 A T-B1NK1 immunophenotype
may of course also be seen in the context of severe combined
immunodeficiency (SCID) due to various hematopoietic cell–
intrinsic genetic defects.45,59

Aberrant patterning of the third pharyngeal pouch during early
embryogenesis may result in congenital athymia associated with
defective development of other anatomic structures derived from
the adjacent pharyngeal apparatus.44,60 Defects of thymic organ-
ogenesis may therefore variably be associated with additional
anomalies affecting multiple organs, including craniofacial struc-
tures, the heart, great vessels, and the parathyroids.61 Such field
defects occur in the context of DiGeorge syndrome (DGS), a clin-
ical diagnosis defined by the triad of thymic hypoplasia/aplasia,
hypoparathyroidism, and congenital heart disease (CHD),
although the immunodeficiency and other features of DGS typi-
cally display substantial variability in their clinical pene-
trance.50,53,54,62 Multiple genetic and environmental etiologies
can cause a DGS phenotype (Table I), with heterozygous chromo-
somal deletions at 22q11.2 (22q11.2 deletion syndrome, or
22q11.2DS) constituting the most frequent cause, with an esti-
mated incidence of 1:4000 live births.63 Athymia is uncommon,
occurring in <_1% of individuals with 22q11.2DS, in whom the
condition has previously been referred to as complete DGS
because of the severity of the ensuing immunodeficiency.50,56,64

The deletion is typically between 1.5 and 3.0Mb in size, resulting
in the loss of approximately 30 to 100 genes. The size of the dele-
tion does not correlate with the clinical phenotype.65 Among the
deleted genes is TBX1, a T-box transcription factor that regulates
almost 2000 genes66 and plays a major role in the pharyngeal
patterning defects seen in 22q11.2DS, including immunodefi-
ciency.10,67,68 The terms ‘‘DGS’’ and ‘‘22q11.2DS’’ are often
used interchangeably. However, other genetic and environmental
causes of the DGS triad have been identified.44 Thus, where
known, reference should be made to the exact etiology. The sec-
ond most frequent genetic cause of DGS comprises autosomal-
dominant mutations in the CHD7 (chromodomain helicase
DNA binding protein 7) gene, which underlies CHARGE syn-
drome, or a syndrome with coloboma, heart defects, atresia of
nasal choanae, retardation of growth and development, genitouri-
nary anomalies, and ear anomalies.69,70 While some clinicians
consider CHARGE syndrome a separate disease entity, in this
guideline, we include CHARGE syndrome as one of the genetic



J ALLERGY CLIN IMMUNOL

VOLUME 154, NUMBER 6

KREINS ET AL 1393
etiologies of the clinical DGS triad. The incidence of CHARGE
syndrome is approximately 1:10,000-17,000 live births;71 howev-
er, the frequency of congenital athymia among these is not known.
Other rare genetic causes of DGS include mutations in TBX172-74

or TBX2;75 22q11.2 duplications;76 haploinsufficiency of FOXI3
(forkhead box I3) due to microdeletions at 2p11.277 or heterozy-
gous loss-of-function single gene mutations;78 and partial dele-
tion of the short arm of chromosome 10.79-81 Although thymic
hypoplasia and other features of DGS have been reported in
22q11.2 duplication, lymphopenia is not commonly present.82-85

In cases where DGS remains genetically undefined, it is important
to consider whether in utero exposure in the first trimester to
poorly controlledmaternal diabetes,86,87 alcohol,88 and overexpo-
sure89,90 or underexposure91 to retinoic acid may have occurred.
Retinoic acid metabolism is impaired during pregestational dia-
betes92 and has been linked to TBX1 signaling as well as to other
transcription factors with a role in thymus organogenesis.90,93,94

Congenital athymia has also been identified in other syndromic
inborn errors of immunity (IEI) (Table I),44,95 including otofacio-
cervical syndrome type 2 (OFCS2) caused by homozygous PAX1
deficiency and nude ‘‘SCID’’ resulting from homozygous FOXN1
deficiency.44,58,70,96-100 PAX1 is an evolutionary conserved tran-
scription factor, expressed in the pharyngeal pouches during
embryogenesis, where it is important for patterning and the devel-
opment of the thymic anlagen. Later, PAX1 expression is main-
tained in a fraction of cortical TEC in a FOXN1-dependent
manner.9,101 OFCS2 patients have ear anomalies, facial dysmor-
phism, and skeletal anomalies, and, depending on the degree of
residual PAX transcriptional activity conferred by their mutation
or mutations, they may present with congenital athymia or with a
milder phenotype consisting of combined immunodeficiencywith
overlapping features with DGS.99,100,102-105 As the master tran-
scriptional regulator,14 FOXN1 is essential for TEC differentia-
tion and maintenance, as well as the functional ability to
support thymopoiesis by controlling the expression of key
genes.13 The nude SCID phenotype, comprising congenital athy-
mia, alopecia totalis, and nail dystrophy, was first reported in pa-
tients with homozygous complete loss-of-function mutations in
FOXN1. These include early truncating mutations that likely
result in nonsense mediated mRNA decay, and missense muta-
tions that alter critical residues within the forkhead domain, abro-
gating its ability to bind DNA.44,96,97,106-108 Several studies have
recently characterized monoallelic and compound heterozygous
mutations, finding a range of functional consequences from com-
plete to partial loss of function, including some mutants that exert
a dominant negative effect on the wild-type allele.109-112 These
studies have further revealed the dose dependency for FOXN1
in TEC, such that the severity of the immunodeficiency appears
to reflect the degree of residual FOXN1-induced transcriptional
activity.106

Left untreated, congenital athymia is incompatible with long-
term survival. It is therefore crucial to identify and treat affected
patients as early as possible. Congenital athymia can be treated by
transplanting lymphodepleted thymus tissue, donated by infants
undergoing cardiac surgery, into the quadriceps muscles of
athymic recipients. This provides a functional stromal environ-
ment to generate recipient-derived T lymphocytes. The current
tissue culture and implantation process has not changed much
since its early medical applications.113,114 To date, thymus trans-
plantation outcomes have been reported for more than 140 athy-
mic patients treated at 2 centers, Duke University Medical Center
in the United States and Great Ormond Street Hospital (GOSH) in
the United Kingdom.115-117 The overall survival of patients with
athymia treated with thymus transplantation is approximately
75%, with mortality mainly due to preexisting infections or
infections acquired before immune reconstitution is
established.55,58,115,116,118 Although absolute T-lymphocyte
counts usually remain below those seen in the normal population,
they are sufficient to clear and prevent infections, enabling pa-
tients to participate in normal activities and thus improving their
quality of life.115,116,118,119 Autoimmune manifestations, particu-
larly affecting the thyroid gland and blood cells, are relatively
common after thymus transplantation,115,116 suggesting an
incomplete establishment of self-tolerance by the transplanted
thymic stroma. Overall, thymus transplantation is a lifesaving
procedure for congenital athymia, with superior outcomes
compared to hematopoietic cell transplantation (HCT).120 Poorer
survival and severe graft-versus-host disease have been reported
after HCT, particularly if no matched sibling donor is avail-
able.120,121 Therefore, it is widely agreed that thymus transplan-
tation, as the most appropriate treatment for congenital
athymia, should be the standard of care and that every effort
should be made to ensure prompt access to treatment, where
available.

Here we provide clinical guidelines to help identify, investi-
gate, and manage patients with congenital athymia who should be
considered for thymus transplantation. Our expert panel recom-
mendations, summarized in Fig 1, focus on when to suspect a
thymic stromal cell defect, how to diagnose and stratify patients
according to risk in order to identify those with congenital athy-
mia who might benefit from thymus transplantation, and their
initial, supportive clinical management. While we also discuss
the role of novel diagnostic approaches, the status quo of alloge-
neic thymus transplantation, its follow-up, and future directions,
the emphasis of this guideline is to promote and facilitate early
recognition of congenital athymia and prompt referral for
specialist treatment to improve clinical outcomes. These guide-
lines are focused on the management of congenital athymia, but
many of the recommendations, particularly those related to diag-
nosis and investigation, are applicable to congenital thymic hypo-
plasia. Specific guidance on the management of patients with
thymic hypoplasia is available elsewhere.56
WHEN TO SUSPECT CONGENITAL ATHYMIA
Infants with congenital athymia can come to medical attention

via several different routes (Fig 2). Increasingly, this occurs in the
context of newborn screening (NBS) programs for SCID and T
lymphocytopenia.117,122 NBS for SCID started in some parts of
the United States in 2008, and since 2018, all 50 states have uni-
versal screening programs in place.123 Universal and pilot NBS
programs for SCID are progressively being rolled out in a
growing number of countries.122,124-128 These programs rely on
the detection of TRECs in dried blood spot samples routinely
taken from newborns shortly after birth. TRECs are stable, circu-
lar, episomal DNA excised from genomic sequences during TCR
gene rearrangement and are a relative measure of thymic output
because theymark newly generated T lymphocytes. Low or unde-
tectable TRECs are a positive finding in SCID NBS, and these
TREC-based screening programs also identify infants with
thymic aplasia and hypoplasia.117,122,129,130



TABLE I. Disorders known to cause congenital thymic aplasia or hypoplasia and associated clinical features

DGS etiology Condition Inheritance Syndromic features

Genetic 22q11.2DS44 De novo (90-95%); AD (5-10%) d Variable features of DGS

CHARGE syndrome (CHD7

haploinsufficiency in majority)53
De novo (majority) d Variable features of DGS

d Coloboma

d Choanal atresia

d Growth retardation

d Genitourinary abnormalities

d Ear anomalies

d Cranial nerve dysfunction

TBX1 deficiency67 AD d Variable features of DGS

TBX2 deficiency75 AD d Variable features of DGS

22q11.2 duplication76 AD/de novo d Variable features of DGS

FOXI3 haploinsufficiency,

including 2p11.2 microdeletions77

and heterozygous loss-of-function

FOXI3 variants78

AD (majority) d Variable features of DGS

Partial monosomy 10p79-81 De novo d Variable features of DGS

d Craniofacial malformation

Environmental Diabetic embryopathy86,87 NA d Variable features of DGS

d Renal agenesis

d Vertebral anomalies

In utero overexposure to alcohol87 NA d Variable features of DGS

d Variable features of foetal alcohol syndrome

In utero overexposure to retinoic acid89,90 NA d Variable features of DGS

In utero under exposure to retinoic acid91 NA d Variable features of DGS

Other genetic syndromes associated

with defective thymic development

Nude SCID (FOXN1 deficiency)96 AR d Congenital alopecia totalis

d Nail dystrophy

Hypomorphic FOXN1 deficiency,

including heterozygous variants110

and compound heterozygote mutations111

AD, AR d Nail dystrophy

d Alopecia may be absent, hair thinning

d Eczema

OFCS2 (PAX1 deficiency)99,100 AR d Ear anomalies, preauricular pits, hearing impairment

d Branchial cysts/fistulas

d Facial dysmorphism

d Skeletal anomalies

d Intellectual disability

d Can have overlapping features with DGS including

hypoparathyroidism and congenital heart defects

Variable features of DGS indicates that DGS features include a wide variety of possible anomalies44 but most commonly the following: congenital cardiac defects; parathyroid

hypoplasia; facial dysmorphism; palatal, pharyngolaryngeal, and tracheobronchial defects; and developmental delay.

AD, Autosomal dominant; AR, autosomal recessive; NA, not applicable.
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If not captured by NBS programs, infants with congenital
athymia may present clinically with complications consequent to
their severe T-lymphocyte deficiency,115-117 typically within the
first few months of life, with failure to thrive as well as unusually
persistent, severe, or opportunistic infections such as
Pneumocystis jirovecii pneumonia, CMV pneumonitis, or
disseminated bacillus Calmette-Gu�erin infection. Persistent res-
piratory tract infections—for example, those caused by respira-
tory syncytial virus, parainfluenza virus, or adenovirus—or
persistent candidiasis should also prompt further immunologic
investigation. Gastrointestinal infection and chronic diarrhea
are common features; causes include viruses such as adenovirus,
norovirus, or rotavirus (wild type or vaccine strain). Immune dys-
regulation may occur, which most commonly manifests with
Omenn syndrome–like features, including erythroderma, diar-
rhea, hepatosplenomegaly, lymphadenopathy, elevated IgE, and
eosinophilia.57,99,106,131 More rarely, patients present with symp-
toms of autoimmunity, particularly hematologic cytopenias.
In addition, clinical features related to an underlying syndrome
are often present (Table I). Because athymia is most frequently
encountered in the context of DGS, field defects affecting struc-
tures derived from the adjacent pharyngeal apparatus, including
the parathyroids, aortic arch, cardiac outflow tract, thyroid,
maxilla, mandible, and external/middle ear, are variably present
(Table I). Parathyroid hypoplasia canmanifest with hypocalcemia
and neonatal seizures, and it may be the presenting feature of
DGS. Cardiac conotruncal outflow tract defects lead to particular
CHD, including tetralogy of Fallot, truncus arteriosus, interrupted
aortic arch, double outlet right or left ventricle, transposition of
the great arteries, and aortopulmonary septal defects.44 In addi-
tion to the classical DGS triad, other clinical features may be pre-
sent, including facial dysmorphism, palatal and/or
pharyngolaryngeal defects, tracheobronchomalacia, gastrointes-
tinal problems (ie, feeding difficulties, constipation, and gastro-
esophageal reflux disease), renal anomalies, skeletal problems
(ie, scoliosis and talipes equinovarus), and developmental



Clinical Features
Syndromic (pharyngeal patterning, DGS, nude, OFCS2)

Infections
Autoimmunity / Omenn-like phenotype

Failure to thrive

Immunology
Identified via NBS for SCID

T-B+NK+ phenotype
Isolated T lymphocytopenia
Absent T-cell reconstitution

post-HCT

Genetics
Genetic defect associated with thymic aplasia

Family history

In utero 1st trimester exposure to:
Poorly controlled maternal diabetes, alcohol,

retinoid acid

Immunology
Full blood count

T, B & NK cell enumeration

Thymic output: naive vs memory T lymphocytes,
RTEs, TRECs

T lymphocyte quality: Proliferation, TCR repertoire
analysis, serum immunoglobulins

Genetics
Cytogenetics: aCGH, FISH

Molecular genetics: single gene testing, IEI
panel testing, WES, WGS

+/-Genetic counseling

Novel/research tools
T lymphocyte di erentiation assays

Reporter assays

Identify those with congenital athymia
I. Congenital athymia: CD3+ T lymphocytes <50 cells/µl; negligible

naive T lymphocytes/RTEs/TRECs

II. Congenital athymia & autologous immune dysregulation
(Omenn-like features): CD3+ T lymphocytes >50 cells/µl; naive T
lymphocytes <5% of total CD3+ T lymphocytes; absent/impaired T
lymphocytes proliferation; oligoclonal TCR repertoire

III. Borderline cases: not meeting immunological criteria for athymia
but with significant infections

Significant thymic hypoplasia / T lymphopenia
CD3+ T lymphocytes <1500 cells/µl during 1st 3 years of life; CD4+ T
lymphocytes <400 cells/µl; CD8+ T lymphocytes <200 cells/µl; reduced
naive T lymphocytes/RTEs/TRECs

In conjunction with specialist centre
Thymus transplant centre/

Specialist pediatric immunology centre

Specialist input, investigation &
management guided by clinical syndrome

(e.g. cardiology; ear, nose & throat;
endocrinology; neurology; respiratory;

speech & language therapy)

Psychosocial support for family

Supportive treatment
Isolation

Antimicrobial prophylaxis
IgRT

No live vaccines
Irradiated CMV negative blood products

Withhold breastfeeding from CMV seropositive mothers
Immunosuppression (Omenn-like features)

Monitor for complications
Including microbiological surveillance:

Viral PCR on blood incl. CMV, EBV, adenovirus, HHV6, +/-
others on NPA/stools

Other microbiology guided by clinical presentation

Corrective treatment
Allogeneic thymus transplantation

T cell replete fully matched allogeneic HCT in
certain circumstances

Monitor for immune reconstitution
& complications post thymus

transplantation /HCT

E
G

A
N

A
M

YFITARTS
ETA

GITSEVNI
T

CEPS
US

Vs

FIG 1. Flowchart summarizing clinical guidelines for recognition, investigation, and management of

patients with congenital athymia. aCGH, Array comparative genomic hybridization; EBV, Epstein-Barr virus;
FISH, fluorescence in situ hybridization; HHV6, human herpesvirus 6; NPA, nasopharyngeal aspirate;

RTE, recent thymic emigrant.
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delay.49,132 In addition to DGS with underlying 22q11.2DS, other
genetic and environmental etiologies of DGS have distinct clin-
ical features that may be evident (Table I).44 Patients with
CHARGE syndrome may have coloboma, atresia choanae, retar-
dation of growth and/or development, genitourinary and/or ear
anomalies, and cranial nerve dysfunction.133,134 Infants born to
diabetic mothers may have features of caudal dysplasia sequence,
in particular renal agenesis and vertebral anomalies.86,135 Clinical
features of homozygous FOXN1 deficiency include congenital al-
opecia totalis and nail dystrophy.96,97 PAX1 deficiency underlies
OFCS2with preauricular pits and hearing impairment, facial dys-
morphism, skeletal anomalies, and intellectual
disability.99,100,102,103 While the aforementioned clinical features
should alert clinicians to the possibility of immunodeficiency re-
sulting from impaired thymic stromal cell development, the
severity of the immunologic phenotype in an individual patient



FIG 2. When to suspect congenital athymia.
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cannot be predicted by the severity of the other features. There-
fore, all children with suggestive clinical features should undergo
immunologic and genetic investigations to exclude immunodefi-
ciency—and, crucially, to identify those with life-threatening
athymia who require corrective treatment.

Timely recognition of congenital athymia and early referral for
treatment are the result of several factors. Awareness among
clinicians has increased to recognize the syndromic features
associated with athymia and is matched by expanding access to
TREC-based NBS and next-generation sequencing to facilitate
diagnosis of cases with a genetic etiology. Nonetheless, incom-
plete clinical penetrance, together with clinical and genetic
heterogeneity, can still make timely recognition of athymia
challenging. It may only be recognized after failure of naive T-
lymphocyte reconstitution despite adequate donor engraftment
and reconstitution of other blood lineages in patients treated
empirically with allogeneic HCT for genetically undefined
suspected SCID, highlighting the importance of extensively
investigating patients with a molecularly undefined T-B1NK1
immunophenotype to distinguish between hematopoietic
cell–intrinsic SCID and congenital athymia before considering
allogeneic HCT as a treatment strategy.99,136
HOW TO INVESTIGATE INFANTS WITH

SUSPECTED CONGENITAL ATHYMIA
Children with possible congenital athymia should undergo a

series of investigations aimed at rapidly securing the diagnosis
and etiology, as well as characterizing the severity of their
underlying immune defect (Fig 3). The latter will guide immuno-
logic management and, importantly, will identify those likely to
derive benefit from allogeneic thymus transplantation.
Immunology
A finding of lymphocytopenia based on a full blood count with

differential is often the initial finding in congenital athymia.
Lymphocyte subsets enumerating T, B, and NK cells typically
demonstrate a lowCD31T-lymphocyte count with normal B- and
NK-cell counts, corresponding to a T-B1NK1 immunopheno-
type. Athymic patients with Omenn syndrome–like clinical
features (previously also referred to as athymia with atypical fea-
tures56) have higher, or even normal, lymphocyte counts due to
oligoclonal expansion of dysregulated T lymphocytes of memory
phenotype (CD45RA2CD271).57,131 More definitive immuno-
logic assessment involves quantitative evaluation of thymic
output. Thymic output can be assessed by enumeration of TRECs
using real-time quantitative PCR on isolated peripheral blood
mononuclear cells and provides a practical and accepted indicator
of thymic output, with low or absent TRECs indicating lack of
thymic naive T-lymphocyte production.137 This is distinct from
the NBS assay, whichmeasures TRECs in a dried blood spot sam-
ple.49,138 Although cutoff values vary in different NBS programs,
a TREC value of <20 copies/mL will successfully identify SCID
cases regardless of the underlying cause.139,140 However, because
this assay is not routinely available in many clinical laboratories,
naive T lymphocytes (CD45RA1CD271) or recent thymic emi-
grants (CD45RA1CD311) can alternatively be measured by
flow cytometry. Their frequencies strongly correlate with TREC
levels, suggesting either can be used as a marker for thymic
output.43 In congenital athymia, naive T lymphocytes are pro-
foundly reduced (<50 cells/mL or <5% of the total T lympho-
cytes).56,141 Flow cytometric immunophenotyping is a fast and
widely available technique but can be associated with significant
variability among different centers in sample processing, immu-
nostaining, instrument setup, and data analysis. Standardized pro-
tocols have been developed to generate reproducible and reliable
results and have been shown to be highly useful in the diagnosis of
conditions including SCID, alongside immunologic functional
and genetic testing.142

If the above investigations are consistent with athymia,
qualitative T-lymphocyte tests are of limited value and are not
routinely necessary. In patients who havemeasurable peripheral T
lymphocytes, qualitative assessment can be performed by
measuring diversity of the TCR repertoire and by assessing
T-lymphocyte function. Because the diversity of the TCR
repertoire is almost completely reflective of the naive
T-lymphocyte compartment, patients with reduced thymic output
have a restricted TCR repertoire.138,143 In cases with an Omenn
syndrome–like phenotype, oligoclonality is seen.116,131 Assess-
ment of TCR diversity can be performed using flow cytometry
to quantify TCRVb usage, or more reliably using spectratyping,



FIG 3. How to investigate infants with suspected congenital athymia. aCGH, Array comparative genomic

hybridization; Del, deletion; Dup, duplication; FISH, fluorescence in situ hybridization; RTE, recent thymic

emigrant.
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a molecular technique that measures the length distribution of
complementarity determining region 3 (aka CDR3).144

T-lymphocyte function can be evaluated by measuring in vitro
proliferative capacity to mitogenic stimulants such as
phytohemagglutinin or anti-CD3/28. While patients with
congenital athymia normally have absent or very low responses
to mitogens, athymic patients with oligoclonal T-lymphocyte
expansion may demonstrate normal proliferative mitogen
responses but lack response to specific antigens. However,
these assays are usually only performed in specialized
laboratories and can be unreliable in lymphopenic patients,
reflecting the reduced number of proliferating T lymphocytes
rather than intrinsic T-lymphocyte dysfunction.56 IgM and IgA
are usually quite low, whereas, depending on the age of the
patient, IgG may be normal as a result of maternal transplacental
IgG transfer. Further investigation of humoral immunity by as-
sessing specific antibody production is time-consuming and un-
necessary in the diagnosis of athymia but is recommended in
milder cases.
Genetics
Attempts should be made to genetically define suspected

congenital thymic aplasia/hypoplasia; selection of the most
appropriate genetic investigations may be guided by the patient’s
clinical phenotype (Table I). Chromosomal abnormalities under-
lie the majority of DGS cases but are routinely missed by whole
exome sequencing (WES). Cytogenetic studies should therefore
be performed, particularly in patients with a DGS phenotype. In
this context, array comparative genomic hybridization is
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preferable to fluorescence in situ hybridization or karyotyping
because it allows for high-resolution genome-wide screening
for genetic copy number variation and has been shown to increase
diagnostic yield in the context of suspected DGS.145,146 Where a
monogenic disorder is suspected, the choice of molecular genetic
tests is likely to be influenced by what is locally available. Broad
next-generation sequencing approaches are preferred, including
gene panel testing, where it is imperative to ensure that candidate
genes (Table I) are included in the panel being used, and WES or
whole genome sequencing (WGS). With the latter 2 modalities, a
patient’s genetic variants are usually first filtered against a list of
genes known to cause IEI before more agnostic approaches are
applied that have the potential to identify novel genetic
causes.147,148 For WES and WGS, although only sequencing of
the proband can be performed, the inclusion of unaffected (typi-
cally parents) and, where available, affected, family members
strengthens diagnostic power. WGS offers several advantages
overWES because of its ability to detect noncoding and structural
variants, as well as superior coverage of coding regions.149,150

Single gene sequencing might suffice where the clinical pheno-
type is highly suggestive of a specific genetic diagnosis or if there
is a positive family history, such as in nude SCID (FOXN1) or
OFCS2 (PAX1), particularly if it is the most accessible and
most quickly available diagnostic modality.When a genetic cause
is identified, the family should be referred for genetic counseling
and, if indicated, further genetic and clinical assessments. With
regard specifically to 22q11.2DS, although most cases occur
de novo, 5% to 10% of patients inherit the microdeletion from a
parent.50,151 Therefore, the risk of recurrence should be consid-
ered, with genetic testing extended to relatives and future progeny
as appropriate.

Increasing access to next-generation sequencing and NBS for
SCID has the potential to uncover genetic variation of uncertain
clinical significance as well as to broaden the spectrum of disease
associated with known IEI genes. The latter is exemplified by the
recent description of hypomorphic FOXN1 variants and conse-
quent attenuated clinical phenotypes.106,109-112 In contrast to
nude ‘‘SCID’’–causing null mutations, these hypomorphic vari-
ants may lead to delayed presentation, atypical, and/or milder
clinical and immunologic phenotypes, which may improve with
age and are unlikely to necessitate thymus transplanta-
tion.106,110,111 Despite increasing access to comprehensive ge-
netic testing, approximately 10% of all SCID patients remain
genetically undefined.152,153 Similarly, 13% of athymic patients
who were recently referred to GOSH for thymus transplantation
did not have a genetic diagnosis.117,130 Patients with a T-B1NK1
immunophenotype in whom the underlying cause could either be
a primary hematopoietic defect or congenital athymia require
additional investigations, including an evolving array of research
assays to assist their clinical management.
Other diagnostic investigations, including research

assays
In genetically undefined patients, it is not possible to distin-

guish between hematopoietic cell intrinsic SCID and congenital
athymia solely on the bases of immunophenotyping and prolif-
eration assays. Imaging for thymus tissue does not differentiate
between the 2 conditions, as an absent or greatly reduced thymic
shadow can be seen in both and may be misleading when thymus
tissue is ectopically positioned.154
Research assays are increasingly used to assist in the diagnosis
of thymic stromal cell defects and in therapeutic decision-making.
For example, to functionally assess the pathogenicity of novel
genetic variants in transcription factors, reporter assays can be used
to test the ability of the mutant transcription factor to bind to its
target promoter DNA sequence and activate expression of a
reporter protein. In the context of thymic stromal cell
defects, such assays have been utilized to assess the pathogenicity
of novel genetic variants in FOXN1, PAX1, TBX1, and
FOXI3.78,99,100,106,110,112,155 For genetically undefined T lympho-
cytopenia, the use of ex vivo T-lymphocyte differentiation research
assays has been proposed to distinguish patients with primary he-
matopoietic defects from those with thymic stromal cell defects
and thus direct the most appropriate form of corrective treatment
—HCT versus thymus transplantation, respectively.55,156,157 Pa-
tient CD341 hematopoietic stem and progenitor cells (HSPCs)
are cocultured with stromal cell lines engineered to express the hu-
man Notch ligands DLL-1 or DLL-4 (delta-like ligand 1/4) in the
presence of growth factors to promote T-lymphocyte lineage
commitment and differentiation, either in 2-dimensional mono-
layer cultures158 or in 3-dimensional artificial thymic organoids
or reaggregate thymus organ cultures.159 Feeder cell–free systems
are also available for ex vivo T lymphopoiesis.160 On the one hand,
in principle, successful production ex vivo of CD41 and CD81

double-positive and TCR1 CD31 stages from patient-derived
HSPCs after 6 to 8 weeks of coculture argues against a hematopoi-
etic defect and is instead suggestive of a possible thymic stromal
cell defect. On the other hand, HSPCs from patients with primary
hematopoietic defects are expected to be intrinsically impaired in
their ability to differentiate to these stages.156,157,160 There are,
however, exceptions to this, and HSPCs from patients with a num-
ber of hematopoietic stem cell (HSC)-intrinsic defects, such as
hypomorphic variants in RAG genes or IL2RG, have been shown
to differentiate ex vivo beyond their expected developmental block
into double-positive and CD31TCR ⍺b1 stages; and those with
adenosine deaminase deficiency defy expectations because
in vitroT-lymphocyte development is normal.156,157 The sensitivity
and specificity of these assays are not well established, and there is
a lack of standardization across different research laboratories.
Despite these limitations, ex vivo T-lymphocyte differentiation as-
says are helpful when facing the therapeutic dilemma of HCT
versus thymus transplantation in patients with molecularly unde-
fined, selective T-lymphocyte deficiency.161 To avoid treatment de-
lays, research assays to assist clinical decision-making are best
arranged in coordination with a thymus transplantation team with
experience in their clinical interpretation.
HOW TO IDENTIFY PATIENTS WHO NEED

CORRECTIVE TREATMENT
Patients with congenital thymic stromal cell defects can have

variable degrees of thymic hypoplasia and consequently thymic
output. This means that the overall immunologic consequences
can range from normal T-lymphocyte immunity to a T-B1NK1
immunophenotype. It is therefore important to stratify patients
according to the extent of their immunodeficiency to distinguish
those with complete athymia requiring thymus transplantation
from those with thymic hypoplasia and residual thymic function,
requiring just supportive care. This stratification is mainly based
on immunophenotyping with quantification of thymic output and
on clinical presentation (Fig 4).



FIG 4. How to identify patients who need corrective treatment.
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Immunology in patients with complete athymia
Patients with complete athymia typically have low total

lymphocyte counts, although they can be normal as a result of
increased B- and/or NK-cell numbers or as a result of oligoclonal
T-lymphocyte expansions. More rarely, elevated T-lymphocyte
counts can also be found as a result of maternal T-lymphocyte
engraftment. Here, the engrafted T lymphocytes are usually
predominantly CD41 or CD81 and have an activated or memory
phenotype. All athymic patients, regardless of T-lymphocyte
counts, have negligible TRECs and less than 5% of T lympho-
cytes displaying a naive phenotype, reflecting their absent thymic
output.56,141 Their immunodeficiency is life-limiting, and they
need to be referred for corrective treatment without delay.
Immunology in patients with thymic hypoplasia
After exclusion of congenital athymia, certain patients are

diagnosed with significant thymic hypoplasia, which is associated
with milder T lymphocytopenia, defined as a CD31 T-lympho-
cyte count of <1500 cells/mL during the first 3 years of life.49

Typical findings include reduced CD31, CD41, and CD81T lym-
phocytes (respectively, <400 and <200 cells/mL), naive T lym-
phocytes, and TRECs reflecting reduced but not absent thymic
output.49,56 T-lymphocyte numbers improve with age, reaching
levels similar to healthy adult controls as a result of homeostatic
proliferation with accumulation of memory cells and resultant
skewing of the TCR repertoire.49,51 Naive T lymphocytes and
TRECs, however, remain reduced at all ages compared to age-
matched controls, indicating persistently reduced thymic func-
tion.51 T-lymphocyte function in patients with thymic hypoplasia
is largely intact with normal mitogen responses. In patients with
marked T lymphocytopenia, responses to specific antigens may
be reduced, although this is likely solely due to low numbers
rather than an intrinsic functional defect.51 Regulatory T cells
are reduced in number and frequency with defective suppressive
capacity, whichmay contribute to the increased incidence of auto-
immunity.64,162 Abnormalities in humoral immunity may include
low immunoglobulins, most commonly IgM or IgA deficiency,
poor specific antibody responses, and occasionally hypogamma-
globulinemia requiring immunoglobulin replacement therapy
(IgRT).163,164 The panel does not recommend administration of
live vaccines in patients with CD41 T lymphocytes <400/mL
and CD81 T lymphocytes <200/mL, or in patients with nonpro-
tective IgG titers after tetanus immunization.56 These patients
may require supportive treatment, but they are not eligible for
corrective treatment with thymus transplantation.
Borderline cases
Some cases do not meet the immunologic criteria for athymia

but nevertheless display clinically relevant immunodeficiency
with a history of significant infections and/or immune dysregu-
lation. These patients require careful clinical and immunologic
follow-up because their phenotype may evolve over time. For
patients falling into this category case-by-case consideration
regarding the most appropriate therapeutic strategy is best
achieved in conjunction with a thymus transplantation center.
This is particularly relevant when considering treatment options
for patients with novel or ultrarare defects.105,117,119 Moreover, if
patients develop Omenn syndrome–like features, this should be
considered as a marker of athymia, indicating the need for correc-
tive treatment.
HOW TO MANAGE PATIENTS WITH CONGENITAL

ATHYMIA
These guidelines are focused on the management of infants

with congenital athymia (Fig 5). Guidance for the management of
patients with thymic hypoplasia is available elsewhere.56,165-167



FIG 5. How to manage patients with congenital athymia. NPA, Nasopharyngeal aspirate.
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Ideally, thymus transplantation should be considered as the
first-line treatment in patients with congenital athymia, although
geographical and financial constraints might limit access. Akin to
outcomes after HCT for hematopoietic cell–intrinsic SCID,168

outcomes after thymus transplantation are better when patients
are treated early,117 before they acquire infections.115-117 Treat-
ment at a younger age additionally seems to be associated with
better initial immune reconstitution as a result of higher thymic
output earlier after thymus transplantation.117 Therefore, there
should be no delay in referring patients to a thymus transplanta-
tion center while instituting comprehensive supportive measures
locally.
Supportive measures and monitoring for

complications
Patients are best managed by a local specialist pediatric

immunology unit in conjunction with a thymus transplantation
center. While awaiting corrective treatment, all efforts should be
made to ensure that the patient remains free from infection and in
the best possible overall clinical state because these factors
influence outcome. Preventative care should be promptly insti-
gated once the diagnosis of athymia is suspected, and SCID
management protocols can be co-opted to guide comprehensive
supportive care as well as to monitor for and treat complica-
tions.56,169 Although there is variability among centers in such
protocols, all athymic patients should be subject to reverse
isolation measures, avoidance of ill contacts, and restricted non-
staff caregivers.169 Antimicrobial prophylaxis therapy should be
initiated in line with local SCID protocols, including P jirovecii
pneumonia prophylaxis (ie, trimethoprim–sulfamethoxazole),
an azole antifungal (preferably fluconazole or itraconazole; itra-
conazole requires regular therapeutic drug monitoring), IgRT,
and seasonal anti–respiratory syncytial virus prophylaxis using
passive immunization with monoclonal antibody. Antimycobac-
terial prophylaxis with azithromycin should be considered in at-
risk patients, particularly if there is likely to be a lengthy wait
for thymus transplantation.170 Live immunizations, such as
bacillus Calmette-Gu�erin, rotavirus, and oral polio vaccines, are
contraindicated, and patients should only receive irradiated,
CMV-negative blood products. Breast-feeding should bewithheld
until maternal CMV status is known and discontinued if the
mother is found to be CMV seropositive. Monitoring for viral in-
fections is recommended, including regular PCRs on blood (for
CMV, Epstein-Barr virus, adenovirus, and human herpesvirus
6), stool, and nasopharyngeal aspirates as per local SCID proto-
cols. Additional microbiologic investigations may be required,
guided by clinical presentation.

If a patient develops Omenn syndrome–like features, it is
important to confirm this complication by documenting the
occurrence of oligo-clonal T-lymphocyte expansions by immu-
nophenotyping and/or spectratyping, and, if applicable, by
showing spongiosis with T-lymphocyte infiltration on analysis
of skin biopsy samples.131 Patients developing an Omenn
syndrome–like phenotype should be treated with cyclosporine
A (CSA), with careful therapeutic monitoring of drug levels,
typically aiming for trough levels of 150 to 200 mg/L. They
also require careful skin management with emollients and, for
troublesome skin symptoms, additional topical corticosteroids.
Expert nutritional support is also essential. In patients with
more severe clinical features, it may be necessary to temporarily
treat with systemic steroids before immunosuppression while
awaiting therapeutic CSA levels to be established. Systemic
steroids should be reduced and stopped when the inflammation
is under control and CSA levels optimal. In severe cases,
immunosuppression with antithymocyte globulin may be
considered. Alemtuzumab should be avoided before thymus
transplantation because of its potential for depleting dendritic
cells.171 CSA treatment should be continued until after thymus
transplantation.

Because athymia is often part of a wider congenital syndrome,
patients may have comorbidities that require acute medical
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attention, and some of these will require stabilization before
treatment with thymus transplantation can be contem-
plated.117,119,172 These include patients with CHD, who may
need cardiac surgery before thymus transplantation; airway
stabilization with positive airway pressure or tracheostomy due
to underlying anatomic anomalies; and correction of hypocalce-
mia due to hypoparathyroidism. In patients with very wasted
quadriceps muscles resulting from failure to thrive, implantation
of thymus tissue may be difficult, and a period of nutritional sup-
port may be required to achieve muscle gain before the procedure.
In some patients with life-limiting comorbidities, in particular
cardiac and/or neurologic, palliative care is considered in discus-
sion with the parents and multidisciplinary teams.117,119 For all
patients and their families, provision of adequate psychosocial
support is essential.119

Overall, athymic patients often require complex clinical care,
which benefits from multispecialty coordination and early
involvement of the thymus transplantation team.119,172
Thymus transplantation
Thymus transplantation programs have been established in the

United States at Duke University Medical Center since 1993115

and in the United Kingdom at GOSH since 2009.116 In the United
States, cultured thymus tissue implantation, was approved as a
regenerative medicinal product (Rethymic by Enzyvant, now Su-
mitomo Pharma) by the US Food and Drug Administration in
2021 for the treatment of congenital athymia at Duke Medical
Center. Conversely, in the United Kingdom, thymus transplanta-
tion is not considered amedicinal product but is offered as a trans-
plantation procedure as part of a nationally commissioned
transplantation service regulated by the Human Tissue Authority.
Both transplantation services are available to patients outside of
the United States or the United Kingdom, although the service
offered by GOSH is significantly less expensive than the commer-
cialized treatment in theUnited States. At GOSH, treatment of pa-
tients from the European Union is currently still funded through
reciprocal health care agreements with the United Kingdom,
and those outside of the European Union can access thymus trans-
plantation through the International and Private Patients
service.173

Although the treatment access pathways are different, tissue
preparation and implantation are broadly similar across both
centers. Thymus tissue is donated by immunocompetent infants
undergoing median sternotomy for cardiac surgery if tissue needs
to be removed to improve access to the surgical field.55,141 The tis-
sue is processed into slices, which are then cultured for 13 to 19
days to deplete donor thymocytes while preserving the thymic
stroma.113 Once thymus tissue is in culture, rapid transfer of the
recipient to the thymus transplantation center needs to be ar-
ranged. Donors and recipients do not need to be tissue type
matched for human leukocyte antigens (HLAs), given the ability
of donor thymus to induce tolerance,174,175 but screening for anti-
HLA antibodies in the recipient is recommended before proceed-
ing with implantation of donor tissue. After microbiologic and
histopathologic assessment to confirm safety and suitability,176

cultured thymus tissue is implanted bilaterally into the quadriceps
muscles of the athymic recipient.

Immunosuppression before transplantation is only required in
patients with Omenn syndrome–like features and oligoclonal
T-lymphocyte expansions. This is achieved with antithymocyte
globulin serotherapy (Genzyme, 2 mg/kg once daily, 3 doses) in
the days just before allograft implantation, in addition to previ-
ously established CSA treatment (trough levels of 150-200mg/L).
CSA is subsequently continued after transplantation until initial
thymic output is evidenced by a frequency of naive CD41 T lym-
phocytes of >10% within total peripheral CD41 T lymphocytes,
after which it is slowly decreased over 8 weeks.

Patients are usually transferred back to the referring center 2 to
4 weeks after the thymus transplantation procedure. Immune
reconstitution after thymus transplantation is slow,115,116 typi-
cally taking 5 or 6 months before naive T lymphocytes can be
found in the peripheral blood—and longer in particular in patients
with certain risk factors, such as systemic viral infections or
ongoing cardiorespiratory instability. Therefore, patients initially
remain severely immunocompromised after transplantation and
require continued isolation, monitoring, and unchanged antimi-
crobial prophylaxis until satisfactory immune reconstitution is
achieved. Avoidance of procedures requiring (prolonged) general
anaesthesia and invasive ventilation in the weeks after thymus
transplantation is recommended, if possible, because these may
compromise revascularization of the allograft.177 In the posttrans-
plantation period, care is also needed in avoiding potential
adverse consequences of treatments for comorbidities, such as
receipt of corticosteroid therapy for airway issues and receipt of
testosterone, which has negative trophic effects on the
thymus,178,179 for treatment of micropenis when present in
CHARGE syndrome.

On revascularization of the implanted thymus tissue, the
allograft will be repopulated with recipient-derived T-lymphocyte
precursors, which then undergo stepwise maturation into func-
tional T lymphocytes before egressing into the peripheral circu-
lation. While this takes several months, thymopoiesis can
typically be detected within the thymic grafts by 2 to 3 months
after the procedure.180 The panel recommends histopathologic
assessment of thymic graft biopsy samples approximately 3
months after transplantation. This is best done by specialist sur-
geons, requiring a short readmission to the thymus transplantation
center. Knowing the status of thymopoiesis in the thymic graft al-
lows more informed decisions when managing potential compli-
cations such as autoimmune or inflammatory disease before
initial recovery of peripheral T-lymphocyte immunity.
MANAGEMENT OF EARLY COMPLICATIONS AFTER

THYMUS TRANSPLANTATION (BEFORE IMMUNE

RECONSTITUTION)
The majority of deaths occur in the first year after thymus

transplantation.115,116 Infection is themost frequent cause of mor-
tality, including preexisting infections and posttransplantation in-
fections acquired before immune reconstitution has been
achieved. Systemic viral infections are particularly challenging
tomanage in these patients because recovery of T-lymphocyte im-
munity after thymus transplantation is slow.

In the first months after thymus transplantation, patients should
be carefully monitored for inflammatory complications. Before
immune reconstitution, patients may still develop Omenn
syndrome–like features as a result of their underlying condition,
necessitating immunosuppression with CSA (targeting trough
levels of 150-200 mg/L). At the time of immune reconstitution,
preexisting infections or previously administered bacillus Calm-
ette-Gu�erin can provoke an immune reconstitution inflammatory
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response.116 Life-threatening immune reconstitution inflamma-
tory response requires treatment with high-dose steroids, which
inhibits thymopoiesis and thus delays immune reconstitution.
Early inflammatory complications are often transient, and if
mild, steroid-sparing strategies should be explored to protect
early thymopoiesis in the thymic allografts. A significant propor-
tion of patients develop transient autoimmunity early after
thymus transplantation, including autoimmune cytopenias and
nephropathy.115,116 Steroid-sparing strategies such as immuno-
modulation with high-dose intravenous immunoglobulin and/or
B-lymphocyte depletion with rituximab are preferable. When
faced with these various inflammatory and autoimmune compli-
cations, prior documentation of the status of thymopoiesis on
thymic graft biopsy samples is helpful to aid therapeutic decision
making, allowing the risks of these complications to be balanced
against those posed by steroid-related toxicity within the devel-
oping allograft.119 In a small number of patients, early donor
T-lymphocyte engraftment has been found,115 but without any
adverse effects such as graft-versus-host disease. The level of
this engraftment diminishes over time.
LONG-TERM FOLLOW-UP AFTER THYMUS

TRANSPLANTATION AND LATE COMPLICATIONS
After the first emergence of naive T lymphocytes to the

periphery, T-lymphocyte counts progressively increase over
time, peaking 1 to 2 years after thymus transplantation.115,116 In
most patients, the absolute numbers of total T lymphocytes, naive
T lymphocytes, and TRECs (quantified on peripheral blood T
lymphocytes) remain below the 10th percentile for age.
Nevertheless, thymic output is sustained with at least 10% of T
lymphocytes continuing to have a naive phenotype, the TCR
repertoire becomes diverse, and T-lymphocyte proliferative re-
sponses to mitogens and antigens normalize. All this, taken
together, suggests that despite suboptimal counts, thymic output
is sufficient for satisfactory T-lymphocyte immunity, allowing
clearance of existing and new infections. Antimicrobial prophy-
laxis and IgRT can usually be discontinued.

Continuation of IgRT for 1 or 2 years after thymus trans-
plantation until there is evidence of increasing and sustained
recovery of T-lymphocyte immunity is recommended. The choice
of home therapy with subcutaneous immunoglobulin infusions
should be provided to families, if available, via the child’s
primary hospital with appropriate training and support for
parents.181 Immunizations, following national immunization
schedules, should be commenced 3 months after discontinuation
of IgRT if IgG levels are maintained within normal ranges and the
patient remains clinically well. Once immunizations begin, it is
important to document protective antibody titers against inacti-
vated vaccines before proceeding with administration of live
attenuated vaccines. The latter have been administered to most
transplanted patients without any adverse events despite low
CD81 T-lymphocyte counts in some patients. Long-term clinical
and immunologic outcomes at >2 years after thymus
transplantation have not been published for most patients, and
multicenter data collection is limited by the absence of congenital
athymia as an entity in IEI registries.119 A standardized immuno-
phenotyping protocol for monitoring is recommended, including
assessment of naive T lymphocytes and/or recent thymic emi-
grants at regular intervals after thymus transplantation. The
long-term monitoring of thymic output also benefits from
TREC analysis on sorted T lymphocytes and thymus donor
engraftment studies.

Thymus transplantation is aimed as a one-off therapy, and only
one patient has been reported to require a second thymus
transplantation procedure after the first graft failed in the context
of sepsis shortly after implantation.116 To date, few late deaths
have been reported after thymus transplantation115,117 and no
late complications have occurred, such as significant infections
due to hypothetical thymic graft exhaustion or malignancies,
although overall follow-up is still relatively short.

Ongoing autoimmunity is relatively common after thymus
transplantation,55,115,116 suggesting that the allografts may
generate suboptimal recipient-specific central tolerance. While
chronic cytopenias have been reported in a tiny number of pa-
tients, autoimmunity after thymus transplantation mainly seems
to be restricted against the thyroid, with autoimmune thyroiditis
observed at significantly higher rates than in patients with thymic
hypoplasia.49 It is therefore important to regularly monitor thy-
roid function in patients and, if impaired, to test for antithyroid
autoantibodies.

The panel recommends multidisciplinary long-term follow-up.
Syndromic comorbidities do not resolve after thymus trans-
plantation, but their management becomes easier after satisfac-
tory immune reconstitution.172 A degree of predisposition to
recurrent infections may persist in patients with coexisting
anatomic or functional abnormalities, particularly of the airways.
However, infection risk overall decreases, and patients (and their
families) can proceed with socialization, thus improving their
overall quality of life with better access to health, education,
and social services.119 Access to ongoing familial support can
be provided through immunology clinical nurse specialists and
dedicated clinical nurse specialists at the thymus transplantation
center.119 This support encompasses emotional and psychological
support, education and training, and signposting. There are no es-
tablished patient advocacy groups for congenital athymia, but
clinical teams may be able to offer peer support from previously
treated families.
ROLE FOR HCT IN CONGENITAL ATHYMIA
Although thymus transplantation is recognized as the most

appropriate treatment for congenital athymia, T-cell–replete HCT
from a fully HLA-matched donor can be attempted under certain
circumstances.74,120,182 These include situations where
geographic and/or financial constraints prevent access to thymus
transplantation, and in the context of preexisting systemic viral
infection (ie, disseminated CMV disease and adenofibroma). In
such situations, HCT can confer some degree of T-lymphocyte
immunity through the transfer of postthymic mature T lympho-
cytes. Overall, HCT in congenital athymia yields poor outcomes,
with a survival rate below 50% and a high risk of graft-versus-host
disease.99,120 One study reported improved outcomes if amatched
sibling donor is available, with an initial survival rate of 60%
(8/13), and 25% (2/8) for those who received HCT from HLA-
matched unrelated donors.120,121 The quality of immune reconsti-
tution after HCT is also inferior to that achieved with thymus
transplantation, as it relies on homeostatic expansion of trans-
ferred mature T lymphocytes rather than generation of new T
lymphocytes. Naive T-lymphocyte counts are therefore lower
and the TCR repertoire remains restricted after HCT.117 If HCT
is from a matched family donor, it is recommended that no
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conditioning be provided, and this should allow immune reconsti-
tution to a degree capable of controlling viral infections signifi-
cantly more rapidly compared to after thymus
transplantation.74,182 It may be possible to subsequently proceed
with a thymus transplantation procedure to improve immunity,
provided there have been no severe complications after HCT, as
has been reported in 5 patients.105,115 Thymus transplantation af-
ter HCT requires careful selection of donor thymus tissue with
partial tissue type matching with the HSC donor at any alleles
that were mismatched with the recipient.105,115 The development
of more effective antiviral medications and advances in adoptive
virus-specific T-lymphocyte therapies may also provide tempo-
rary solutions for patients before thymus transplantation.183,184
TRANSLATIONAL RESEARCH AND FUTURE

DIRECTIONS FOR NOVEL TREATMENT

STRATEGIES
We have already emphasized the growing use of research

assays, in particular transcription factor reporter assays and
ex vivo T-lymphocyte differentiation assays in the clinical diag-
nosis and therapeutic management of patients with a genetically
undefined T-B1NK1 immunophenotype. These in vitro assays
also play a role in disease modeling of novel defects associated
with impaired T lymphopoiesis, including novel thymic stromal
cell defects, by delineating their likely HSC-intrinsic or HSC-
extrinsic nature.78,100,156,157,160,185,186 Additionally, induced
pluripotent stem cells can be differentiated into thymic epithelial
progenitor cells,187-189 making it possible to specifically investi-
gate the impact of novel variants in known disease-causing genes
or in candidate genes on TEC development and function, when
starting from patient-derived and/or gene-edited induced pluripo-
tent stem cell lines.99,185,190 Together, these approaches facilitate
the characterization of novel defects, contributing to strength-
ening the diagnostic pathway on validation of more disease-
causing genes.

Research is also focused on optimizing the current treatment
approach using cultured postnatal thymus tissue, and on devel-
oping novel treatment strategies.55 How HLA-mismatched
thymic allografts are able to support thymopoiesis remains poorly
understood, yet the incomplete recovery of T-lymphocyte immu-
nity and relatively common autoimmune manifestations after
thymus transplantation suggest that T-lymphocyte development
and induction of central tolerance are suboptimal. To date, no
beneficial effect has been reported for fortuitous partial HLA
matching between thymus donor and athymic recipient.116,191

This needs to be reassessed in the growing cohorts of transplanted
patients, but in theory at least, partial tissue type matching may
contribute to improving outcomes. Generation of a thymus tissue
bank would be required for partial tissue type matching to be
feasible, and encouragingly, preclinical data suggest that cryopre-
served thymus tissue can support T-lymphocyte development af-
ter culture and transplantation into athymic mice.192,193

Considerable progress has been made recently toward produc-
ing engineered thymic stroma suitable for clinical applications.55

Natural decellularized extracellular matrix from human thymus
can be obtained and seeded with human thymus stromal progen-
itor cells that can be expanded in vitro.20,26 Larger amounts of hu-
man thymus stroma could be produced with this approach, and
because stromal progenitors can be banked, partial tissue type
matching would also be feasible.
CONCLUSIONS
Congenital athymia is a life-limiting disorder, requiring

corrective treatment, ideally by transplanting lymphodepleted
donor thymus tissue. We have provided expert guidance on the
diagnosis, investigation, and management of patients with
congenital athymia, with the aim of improving their outcomes.
Our panel recommendations are summarized in Fig 1.

Outcomes are best with early diagnosis and institution of both
supportive and definitive management, before infectious and
inflammatory complications have developed. We have therefore
emphasized the scenarios in which congenital athymia can
present. Namely, patients might present clinically with syndromic
features, infections, or inflammatory complications; increasingly,
patients are identified in the context of TREC-based NBS
programs for SCID; and finally, failed T-lymphocyte reconstitu-
tion after allogeneic HCT for genetically undefined suspected
SCID should alert to the possibility of an absent thymic niche.
These scenarios should prompt the completion of the set of
investigations recommended herein.

Increasing access to NBS and comprehensive genetic testing
are promoting early diagnosis and treatment, resulting in better
outcomes after thymus transplantation, but have also revealed a
particular challenge with respect to the diagnosis of athymia
versus hematopoietic cell–intrinsic defects in molecularly unde-
fined congenital T-lymphocyte deficiency, where knowing the
cellular etiology influences treatment choice between thymus
transplantation and HCT. With higher morbidity and mortality
rates after HCT in athymic patients, clinical translation of
research assays to assist in diagnosis and therapeutic decision-
making is essential.

Thymus transplantation, the recommended first-line treatment
for congenital athymia, is a highly specialized treatment,
currently only available in 2 centers worldwide. Patients treated
with thymus transplantation have good outcomes overall, with
durable T-lymphocyte immunity and improved quality of life.
Mortality is mostly due to infections occurring before treatment
or before successful immune reconstitution, which is typically
slow after thymus transplantation. Autoimmune complications
are relatively common, in particular transient autoimmune
cytopenias and persistent autoimmune thyroiditis. The panel
recommends centralized recording of long-term clinical and
immunologic outcomes after thymus transplantation to
adequately prioritize strategies aimed at improving outcomes
for athymic patients yet is complicated by the geographical spread
of the patients and the lack of national and international registries
for congenital athymia. Cost and availability of lifesaving novel
gene and cell therapies for rare conditions are a concern even in
high-income countries, and while in Europe accessible and timely
treatment with thymus transplantation is available, continued
efforts are necessary to overcome geographic and economic
challenges and to promote equitable and timely access to
treatment. In the future, the further expansion of NBS programs,
the creation of dedicated registries, the development of new
approaches for thymus replacement therapy, and the support of
initiatives promoting sustained accessibility to novel therapies
may address some of these challenges.
DISCLOSURE STATEMENT
A.Y.K. is supported by the Wellcome Trust (222096/Z/20/Z).

F.D. is supported by an NIHR Academic Clinical Lectureship



J ALLERGY CLIN IMMUNOL

DECEMBER 2024

1404 KREINS ET AL
and an Academy for Medical Sciences Starter Grant. E.H. and
E.G.D. are supported by a grant from the Great Ormond Street
Hospital Children’s Charity. O.E.’s laboratory is supported by
grants from the Swedish Research Council (2018-02752 and
2022-00781) and the Swedish state under an ALF agreement be-
tween the Swedish government and the county councils
(ALFGBG-965795). A.V. is supported by a core grant from the
Telethon Foundation. F.J.T.’s laboratory is supported in part by
EU H2020 grant RECOMB (755170–b) and has received funding
from the European Union Horizon 2020 research and innovation
program as well as from reNEW, the Novo Nordisk Foundation
for Stem Cell Research (NNF21CC0073729). G.A. is supported
by an MRC Programme Grant to GA (MR/T029765/a). and
G.H. is supported by the Wellcome Trust (211944/Z/18/Z).

Disclosure of potential conflict of interest: The authors declare
that they have no relevant conflicts of interest.

The European Society for Immunodeficiencies Clinical Working Party

collaborators are as follows: Siobhan O. Burns, Institute of Immunity and

Transplantation, University College London, andDepartment of Immunology,

The Royal Free London NHS Foundation Trust, London, United Kingdom;

Maria Carrabba, Internal Medicine Department, RITA-ERN Center, Fonda-

zione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan,

Italy; Ann Gardulf, Department of Laboratory Medicine, Karolinska Institu-

tet, Stockholm, Sweden, and Faculty of Social and Health Sciences, Inland

Norway University of Applied Sciences, Elverum, Norway; Filomeen

Haerynck, Primary Immune Deficiency Research Laboratory, Department of

Internal Diseases and Pediatrics, Ghent University, and Department of

Pediatric Pulmonology, Infectious Diseases and Immune Deficiency, Centre

for Primary Immune Deficiency Ghent, Jeffrey Modell Diagnosis and

Research Centre, Ghent University Hospital, Ghent, Belgium; Fabian Hauck,

Division of Pediatric Immunology and Rheumatology, Department of

Pediatrics, Dr von Hauner Children’s Hospital, University Hospital, Lud-

wig-Maximilians-Universit€at M€unchen, Munich, Germany; Peter Jandus, Di-

vision of Clinical Immunology and Allergy, Department of Medicine,

University Hospital and Medical Faculty, University of Geneva, Geneva,

Switzerland; Adam Klocperk, Department of Immunology, 2nd Faculty of

Medicine Charles University, University Hospital in Motol, Prague, Czechia;

Isabelle Meyts, Department of Pediatrics, University Hospital Leuven, and

Laboratory for Inborn Errors of Immunity, Department of Microbiology,

Immunology and Transplantation, KU Leuven, and FWO Vlaanderen and

JMF Diagnostic and Research Center Leuven, Leuven, Belgium; B�en�edicte

Neven, Pediatric Hematology-Immunology and Rheumatology Department,
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