
From benchmarking optimization heuristics to dynamic
algorithm configuration
Vermetten, D.L.

Citation
Vermetten, D. L. (2025, February 13). From benchmarking optimization
heuristics to dynamic algorithm configuration. Retrieved from
https://hdl.handle.net/1887/4180395
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4180395
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4180395


Chapter 7

Conclusions

Throughout this thesis, we have explored iterative optimization heuristics for continu-
ous optimization. We have shown that rigorous benchmarking does not only improve
our understanding of the algorithm but also highlights avenues for further exploration.
Through the use of modular design spaces for algorithms, we can fine-tune our op-
timizers to specific landscape properties, or create high-level selectors which exploit
complementarity between the available solvers. In fact, observing the anytime perfor-
mance of large algorithm portfolios shows that a dynamic approach to the algorithm
selection problem has the potential to lead to even larger performance gains.

In Chapter 3, we addressed our first research question: How can robust bench-
marking pipelines be made accessible and resulting data be made usable by the wider
community? We introduced IOHprofiler as a modular environment for benchmarking
iterative optimization heuristics, which provides both a way for setting up benchmark-
ing studies via IOHexperimenter as well as an accessible interface for the analysis of
the resulting benchmark data in IOHanalyzer. Using this framework, we showed how a
robust benchmarking pipeline can be used in combination with a wide variety of prob-
lems. By focusing on the BBOB suite, we investigated some commonly overlooked
aspects of the instance generation procedure and how this interacts with commonly
used landscape analysis methods. This highlights the relation between the setup of a
benchmark study and the ways in which we draw conclusions from the resulting data.

To close out Chapter 3, we note that benchmarking is more than just performance-
oriented comparisons between algorithms. By looking at the concept of structural bias,
we illustrate how behavior-based benchmarking can be used to gain insights into the
inner workings of an algorithm, and the potential biases therein.

163



7.0.

In Chapter 4, we explored our second research question: How can a modular design
aid in the exploration of interactions between different algorithmic ideas? We discussed
two modular algorithms: modCMA and modDE, each of which encompasses a design
space with thousands of potential configurations. By making use of algorithm config-
uration techniques, we illustrated the complementarity which exists between different
modules, since the best-performing configuration differs significantly per benchmark
function. We also highlight that tuned configurations of these modular algorithms can
clearly outperform existing versions of the respective algorithms. Additionally, the
tuning procedure can be used as a way of incrementally assessing a new modules con-
tribution to the existing design space. While these results show a promising direction
for future assessment of algorithmic ideas, there are several challenges inherent to our
proposed approach. Most critically, we showed that the inherent stochasticity of the
considered algorithms has a drastic impact on the stability of the results obtained by
algorithm configuration methods, suggesting a need for better noise-hanling methods.

The research question discussed in Chapter 5 was: To what extent can we exploit
performance complementary between different algorithms by switching between them?
Starting from a large set of benchmarking data, we showed that different algorithms
perform well during different parts of the optimization process. By assuming we can
freely switch between them, we observed significant potential performance gains from
dynamic algorithm selection. By first focussing on switching between configurations
of a modular algorithm, we sidestepped the question of warmstarting to show that
performance can indeed improve by changing the configuration during the search. We
then investigated per-run dynamic algorithm selection, where we utilize information
from the first algorithm to determine which algorithm to switch to, where the switch
incorporates a warmstart of the state of the secondary algorithm. Finally, we tackled
the question of when the switch should occur, by transitioning to a sliding-window
approach where we predict the relative benefit of performing a switch versus sticking
with the original algorithm. Such a model could in future be used to create fully
dynamic algorithm selectors which can switch multiple times throughout the search.

The final research question, discussed in Chapter 6, was: How can we fairly judge
the performance of meta-learning methods in the context of black-box optimization?
This question was inspired by observations from the previous chapter, where different
algorithm selection techniques showed promising performance on the BBOB suite, but
failed to generalize to a similar suite from a different platform. To better understand
this seeming lack of generalizability, we introduced MA-BBOB, a problem generator
based on the BBOB suite which uses affine recombination to create new benchmark

164



Chapter 7. Conclusions

problems with known global optima. This generator was subsequently used to inves-
tigate the link between function landscapes and algorithm performance, resulting in
an experiment which shows that generalizability of algorithm selection results is still
lacking.

7.1 Key Findings

7.1.1 Chapter 3

• Benchmarking can be made accessible, and by doing so we can gain new in-
sights into both algorithms and problems. Specifically, IOHprofiler allows us to
investigate problems from new domains, such as star-discrepancy computation,
and tackle them using state-of-the-art solvers. This highlights where further
algorithm development is required, since the used algorithm portfolio failed to
convincingly outperform a random search baseline.

• Benchmarking environments can not only function to interface problems with
algorithms, with data annotation and sharing options such as ontologies, which
allow for a wide variety of ways in which to combine data from separate sources
and gain new insights.

• Instance generation mechanisms such as the one used in the BBOB suite can be
very useful to test algorithm invariances, but care should be taken when using
them in a box-constrained setting, since the used transformations necessarily
change the part of the landscape the algorithm interacts with. This can be seen
when looking at the ELA features of different BBOB instances, many of which
are different in a statistically significant way. Looking at the instance generation
procedure also highlights potential biases in the BBOB suite, e.g. with regard to
the possible locations of the global optima, which should be kept in mind when
using them in future benchmarking studies.

• Benchmarking is not limited to only looking at the performance of an algorithm.
We can design more behavior-oriented benchmarks to gain an understanding of
different algorithmic aspects, for example, its structural bias to certain regions
of its domain. Knowing whether an algorithm is biased towards e.g. the center
of the domain can be combined with knowledge about the biases of different
benchmark suites to identify potentially misleading comparisons.

165



7.1. Key Findings

7.1.2 Chapter 4

• In addition to enabling a fair comparison of different algorithmic ideas within the
same overarching framework, modular algorithm design also creates opportuni-
ties to explore interactions between many algorithm modifications which have
been proposed in isolation. By combining this design principle with algorithm
configuration tools, we find that well-configured module settings can lead to
significant improvement over common variants of the same base algorithm.

• While algorithms can be configured to perform well over a large set of benchmark
problems, configuring for performance on individual functions leads to additional
improvements, highlighting the inherent complementarity present in these large
configuration spaces.

• Algorithm configuration is an inherently noisy problem, and while most algo-
rithm configurations incorporate various strategies to overcome this noise, the
relation between the level of variance and the best noisy selection technique is
not yet clear, which can lead to ‘lucky’ configurations being selected over those
with actual better performance.

7.1.3 Chapter 5

• Just as algorithm selection can take advantage of complementarity between
solvers on different types of problems, dynamic algorithm selection can take
advantage of complementarity on different parts of the search. While some of
these advantages remain theoretical, we can obtain improvements in performance
on several functions by switching between algorithms at certain stages.

• Switching between algorithm variants can be simplified by working with modu-
lar algorithms, where the question of warm-starting the second algorithm can be
addressed by preserving the internal state of the algorithm. While finding opti-
mal dynamic combinations of parameter settings becomes challenging because of
the increased noise, we have shown that dynamic combinations can outperform
their static counterparts on the majority of used benchmark problems.

• A dynamic algorithm combination does not always have to be determined before
running the algorithm. By utilizing information collected from the trajectory
of an initial algorithm, the most promising secondary algorithm can be selected

166



Chapter 7. Conclusions

from a larger portfolio. This could allow us to take advantage of the per-run
stochasticity of our algorithms, leading to a per-run algorithm selection scenario.

• If we can accurately predict an algorithm’s performance from a small initial
trajectory, we can use these models to identify whether a switch at any given
point in the search would be worthwhile, which could form the basis for a truly
online dynamic algorithm selector. Unfortunately, this adds another level of
complexity to the meta-learning task and our current models are not robust
enough for this purpose.

7.1.4 Chapter 6

• The Many-Affine BBOB generator provides a new set of problems to validate
current results on the generalizability of algorithm selection methods trained on
BBOB. By showcasing that this generalizability is severely lacking for simple
ELA-based models, we highlight the importance of further research into both
the features we use to represent problems based on limited samplings, and the
potential over-reliance on the same set of problems to guide algorithmic devel-
opments.

7.2 Future Work

As this thesis takes a wide view on benchmarking and its implications for various
meta-learning scenarios, many open questions and areas for further research remain.
Here, we highlight a few of the most relevant ones:

• Data Accessibility. As this thesis illustrates, there are many potential uses
of benchmark data beyond the comparison of algorithm performance. As such,
data which is collected for one study can, and often should, be re-used in other
areas. Benchmarking tools play a critical role in facilitating this aspect, and while
tools such as OpenML [237] have been widely adopted in the machine learning
community, examples of data repositories in the optimization domain are less
common. Repositories such as COCO’s data archive [4], while valuable sources
of performance data, are still somewhat limited in their usability because of a lack
of meta-data, specifically information about the used algorithm implementation,
and available code. From the metadata perspective, data ontologies such as
OPTION [136] could provide a way to link different repositories together, while

167



7.2. Future Work

efforts to increase reproducibility [151] within the wider community might make
sharing code and data the norm rather than an exception.

• Judging New Algorithms. As the field of iterative optimization heuristics
continues to grow, an ever-increasing number of algorithms will be proposed.
While many of these might contain interesting algorithmic novelties, the way in
which these contributions are judged has to adapt to keep up with the increases
in scale. Current papers too often rely on comparison to a very limited set of
baselines, where only average performance over a large set of functions is con-
sidered. This comparison should be extended to include established algorithms
and be judged not on aggregate performance, but for example on contribution to
this overall portfolio of established algorithms. In addition to this, a larger focus
should be placed on unambiguous descriptions of the algorithmic components,
rather than metaphors used to motivate their novelty.

• Achieving DynAS. In Chapter 5, we showed the potential performance to be
gained from different versions of dynamic algorithm selection. However, through-
out the experiments described in that chapter, we notice that the resulting per-
formance is not yet stable, sometimes failing to beat even the static algorithms.
Since DynAS consists of several interacting components, improvements in each of
these aspects are needed in order to achieve usable dynamic switching behavior,
with the two core components being:

– Warmstarting: when performing a switch, we need to be careful not to lose
information obtained at the beginning of the search. Depending on the
algorithms used, we might need to initialize a population, stepsizes, covari-
ance information. . . The way in which this information transfer is performed
has a significant impact on the final performance, and as such should be
carefully designed.

– Deciding when to switch: in order to achieve optimal performance, a switch
between algorithms might need to occur at different points in the search for
different runs. As such, the current algorithm needs to identify the point
at which it is most promising to transition to a new algorithm, based only
on the information it has obtained so far. While trajectory-based ELA
features seem to be somewhat promising, their variance poses a significant
challenge, and other techniques might need to be considered as well.

• Understanding Generalizability. With the growing popularity of methods

168



Chapter 7. Conclusions

such as algorithm selection or even dynamic switching, the question of how to
fairly judge these meta-algorithms becomes more prominent. We have seen that
classical methods such as leave-one-problem-out don’t fit well with the available
benchmark sets, and performance on one suite does not necessarily translate to
others. In order to create a larger testbed, more attention has to be placed on
the analysis of different benchmark suites and their complementarity, resulting
in larger sets of training and testing functions. While problem generators like
MA-BBOB might be a useful component in this process, further analysis into
the wide variety of benchmarks is required to make more informed decisions.

169



7.2. Future Work

170


