g
4
s

Universiteit
“dd) Leiden
Mb The Netherlands

1

)
3|
B 3
.
=
.

4

&

o

From benchmarking optimization heuristics to dynamic

algorithm configuration
Vermetten, D.L.

Citation
Vermetten, D. L. (2025, February 13). From benchmarking optimization

heuristics to dynamic algorithm configuration. Retrieved from
https://hdl.handle.net/1887/4180395

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
) in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4180395

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4180395

Chapter 6

Testing Generalizability:
MA-BBOB

Algorithm complementarity can be exploited in various ways, as illustrated in previous
chapters. In this thesis, most of our experimentation has been using ELA features to
represent the problem landscape and use this information to choose the most promis-
ing algorithm (combination) to run. The ability of ELA to differentiate between
BBOB functions indeed suggests that these features are a useful representation for
the algorithm selection problem which is confirmed by several studies on algorithm
selection for continuous optimization heuristics which use BBOB as their benchmark
suite [126, 124, 135, 18, 138, 174]. However, a key challenge with using BBOB for
this type of algorithm selection lies in the evaluation of the results. One method is
a leave-one-function-out technique [180], which uses 23 functions for training and the
remaining one for testing. This approach tends to show poor performance since each
problem has been designed to represent different high-level challenges for the optimiza-
tion algorithm. As such, another technique of cross-validation by splitting function
instances is commonly used [126]. However, this is likely to overfit and overestimate
the performance of the selector, since the instances of different problems are inherently
very similar. Thus, overfitting to biases of the instance design is an often overlooked
risk [135].

One potential way in which this bias can be reduced is by creating new, larger sets of
benchmark problems (e.g. using genetic programming to fill the instance space [172,

149]), or by creating a problem generator (e.g., the GNBG generator [263] or the

145

6.1. Many-Affine BBOB

W-model in pseudo-Boolean optimization [257]). Such problem generators can then
create arbitrarily many benchmark functions, to be used in the common train/test or
cross-validation mechanisms from the machine learning community [188].

This chapter is a shortened version of the journal paper [249], which accumulates
and extends work presented at the GECCO [251] and the AutoML [250] conferences.
Our focus is on describing the Many-Affine BBOB function generator (MA-BBOB).
To construct new functions, we create affine combinations between existing BBOB
functions, building on the work of Dietrich and Mersmann [58]. Our generator is a
generalization of their approach, designed to create unbiased combinations of problems
where the contribution of the components can be smoothly varied. We highlight the
core design choices made in the construction of MA-BBOB in Section 6.1 and illustrate
their impact on the types of problems which can be created.

The parameterization of the MA-BBOB generator allows us to investigate con-
trolled, potentially small differences in functions from both the ELA and algorithm
performance perspectives. This is illustrated in Section 6.2 by investigating the ad-
dition of global structure (sphere function) to all other BBOB problems, as well as
transitioning between pairs of BBOB problems.

Finally, in Section 6.3 we make use of a set of 1000 functions generated with MA-
BBOB to illustrate an algorithm selection scenario, and show that the generalization
from BBOB to MA-BBOB fails to meet expectations. A comparison of the ELA-based
algorithm selection approach with an artificial baseline using the weights of the affine
combinations indicates that there is room to improve on the current ELA-based setup,
especially when trying to generalize from BBOB to MA-BBOB.

6.1 Many-Affine BBOB

6.1.1 Pairwise Affine Combinations

To create affine combinations between two BBOB functions, we use a slightly modified
version of the procedure proposed in [58]. Specifically, we define the combination C

as follows:

C(Fy1,, Fa1,,)(x) = 10%, with
X = (04 logio (Fi,r,(z) — Fi,,(O1,1,))+

(1 - a) 1Ogl() (F2,12 (‘T - 01,11 + 02,12) - F2,12 (02,12)))

146

Chapter 6. Testing Generalizability: MA-BBOB

Here, Fi, I, F5, and I, are the two base functions and their instance numbers,
as defined in BBOB [96]. O;,, and Og 1, represent the location of the optimum of
functions Fy j, and F5 j, respectively. The transformation to when evaluating F5 j,
is performed to make sure the location of the optimum is at Oy ,. As opposed to
the original definition, we subtract the optimal values before aggregating and take a
logarithmic mean between the problems. This way, we can use consistent values for
« across problems, without having to perform the entropy-based selection performed
in [58]. It has the additional benefit of ensuring the objective value of the optimal
solution is always 0, so the comparison of performance across instances and problems is
simplified. In Figure 6.1, we illustrate the change in the landscape for the combination
of F21 and F1, for different values of «.

Figure 6.1: Evolution of the landscape (log-scaled function-values) of the affine combi-
nation between F21 (o = 1) and F1 (a = 0), instance 1 for both functions, for varying
a in 0.25 increments. The red circle highlights the location of the global optimum.

6.1.2 Combining Multiple BBOB Functions

We extend the pairwise affine combinations from Section 6.1.1 to create a function
generator which uses affine combinations of multiple BBOB functions. In particular,

our generator is defined as follows:
24

MA-BBOB(W, I, Xopt)(x) = R~ (Z Wi Ri(Fi 1, (x = Xopt + Oi.1,) — Fir,(0i.1,)))
i=1

Here, W and I are 24-dimensional vectors containing the weight and instance
identifiers respectively, and Xopt is the location of the optimum, which we generate
uniformly at random in the domain [—5,5]%. Finally, R; and R~! are rescaling func-
tions, defined in Section 6.1.2. We highlight the motivation behind each of these design

choices in the following subsections.

147

6.1. Many-Affine BBOB

0 0
mean max minmax min equal

Figure 6.2: Log-scaled fitness values of an example of a single many-affine function
with 5 different ways of scaling. The first 4 are taking the mean, max, (max + min),/2
and min of 50000 random samples to create the scale factor, while the fifth (‘equal’)
option does not make use of this scaling.

Scaling of Function Values

While the geometric weighted average used in Section 6.1.1 between component func-
tions reduces the impact of small differences in scale, some BBOB problems vary by
orders of magnitude, which can still cause one function to dominate the combined
landscape. To address this, we add a rescaling function to the MA-BBOB definition,
which transforms the log-precision on each component function into approximately
[0,1] before the transformation. This is done by capping the log-precision at —8,
adding 8 so the minimum is at 0 and dividing by a scale factor S;. This procedure
aims to make the target precision of 102 similarly easy to achieve on all component

problems. We thus get the following scaling functions:

max(logo(z), —8) + 8
Si

Rz(I) =

R—l (x) — 10(10-1‘)—8

To determine practical scale factors, we collect a set of 50000 random samples
and evaluate them. We then aggregate the resulting function values (transformed to
log-precision) in several ways: min, mean, max, (max-+min)/2. In Figure 6.2, we
show the differences between these methods for a selected problem in 2d. Somewhat
subjectively, we select the (max+ min)/2 scaling as the technique to use for the MA-
BBOB generator. To ensure we don’t have to repeat this sampling procedure each
time we instantiate the problem in a new dimensionality, we investigate the relation
between dimensionality and the chosen scale factor calculation. This is visualized in

Figure 6.3, where we see that, with an exception for the smallest dimensionalities, the

148

Chapter 6. Testing Generalizability: MA-BBOB

N
o

Log(max)+Log(min))/2
[
o

o

2 5 10 15 20 25 30 35 40
Dimension

Figure 6.3: Evolution of the log-scaled (max+ min)/2 scaling factor, relative to the
problem dimensionality. The values are based on 50000 samples. Each line corre-
sponds to one of the 24 BBOB functions.

Function ID 1 2 3 4 5 6 7 8 9 10 11 12
Scale Factor 11.0 17.5 12.3 12.6 11.5 15.3 12.1 15.3 15.2 17.4 13.4 20.4
Function ID 13 14 15 16 17 18 19 20 21 22 23 24
Scale Factor 12.9 10.4 12.3 10.3 9.8 10.6 10.0 14.7 10.7 10.8 9.0 12.1

Table 6.1: Final scale factors used to generate MA-BBOB problems.

values remain quite stable. Because of this, we make use of a static scale factor rather
than defining one for each dimensionality individually. The final factors used are

calculated as a rounded median of the values from Figure 6.3, and shown in Table 6.1.

Instance Creation

Another design choice we made was to place the optimum of the combined function
uniformly in the domain ([-5,5]¢). This differs from the earlier versions used for
pairwise combinations of BBOB functions [58, 251], where the optimum of one of the
component functions was re-used. However, the biases in the original BBOB instance
generation procedure would then be transferred into the combinations as well [150].
Since our function generator does not have to guarantee the preservation of global
function properties, we take the risk of moving parts of the regions of interest outside
the domain to have a less biased location of the global optimum. Figure 6.4 shows

how a 2d-function changes when moving the optimum location.

Sampling Random Functions

To allow for the usage of MA-BBOB as a function generator, we need to create a default
setting to generate useful weight-vectors. This could be done uniformly at random
(given a normalization step). However, in this way, the weight for every component

is likely to be non-zero, so most functions contribute to the final combination, erasing

149

6.2. Pairwise Affine Combinations

3 4 -4 2 0 2 4 2 o0 pa—— 3 -4 2 3

Figure 6.4: Log-scaled fitness values of an example of a single many-affine function
with changed location of optimum.

the possibility of generating unimodal problems since some multimodality will always
be included from some of the multimodal component functions.

To address this issue, we adapt the sampling technique to combine fewer component
functions on average. Our approach is based on a threshold value to determine which
functions contribute to the problem. The procedure for generating weights is thus as
follows: (1) Generate initial weights uniformly at random, (2) adapt the threshold to
be the minimum of the user-specified threshold and the third-highest weight, (3) this
threshold is subtracted from the weights, all negative values are set to 0. The second
step is to ensure that at least two problems always contribute to the new problem.
We decide to set the default value at T' = 0.85, such that on average 3.6 (i.e., 15% of
24) problems will have a non-zero weight.

6.2 Pairwise Affine Combinations

For the first analysis of the MA-BBOB functions, we limit ourselves to the combination
of pairs of functions. This allows a more low-level investigation into the transition of

both landscape features and algorithm performance.

6.2.1 Setup

For the algorithm performance-based analysis, we make use of a portfolio of five algo-
rithms. Of these, three are accessed through the Nevergrad framework [200]:

e Differential Evolution (DE) |[219]

e Constrained Optimization By Linear Approximation (Cobyla) [191]

150

Chapter 6. Testing Generalizability: MA-BBOB

e Diagonal Covariance Matrix Adaptation Evolution Strategy (ACMA-ES) [98]

The remaining algorithms are two modular algorithm families: modular Differential
Evolution [240] (modDE) and modular CMA-ES [51] (modCMA). All algorithms, in-
cluding the modular ones, use default parameter settings. Each run we perform has
a budget of 2000d, where d is the dimensionality of the problem. We perform 50
independent runs per function. For the pairwise function combinations, we stick to
the terminology introduced in Section 6.1.1 for easier comparison with the previous
results in [251].

In the remainder of this section, we set Iy = 1. As such, when discussing the
instance of a pairwise affine combination C(Fy,I1, Fy, I, a), we are referring to I.
Note that we also introduce the uniform sampling of the optima for these experiments,
following the description in Section 6.1.2. For our performance measure, we make use
of the normalized area over the convergence curve (AOCC), to be maximized. The
AOCC is an anytime performance measure, which is equivalent to the area under the
cumulative distribution curve (AUC) given infinite targets for the construction of the
ECDF. This measure is thus slightly more precise than the AUC, and can easily be
computed online. To remain consistent with the performance measures used in our
previous work, and analysis of results on BBOB in general, we use 102 and 1072 as
the bounds for our function values, and perform a log-scaling before calculating the
AOCC. We thus calculate the normalized AOCC of a single run as follows:

AoCC(y

Uu \

i min(max((logyo(v:), —8),2) + 8
10

where ¢/ is the sequence of best-so-far function values reached, B is the budget of the

run. To obtain the AOCC over multiple runs, we simply take the average.

For the landscape analysis, we make use of the pFlacco [192] package to calculate
the ELA features. We use a sample size of 1000d points, sampled using a Sobol’
sequence. We note this large sample size is used to remove some of the inherent
variability in the ELA features, even though practical applications usually rely on
much smaller budgets. To be consistent with our previous work [250], we don’t include
features which require additional samples and remove all features which lead to NaN-

values or remain static for all functions, resulting in a set of 44 features.

151

6.2. Pairwise Affine Combinations

0.00- -1.0 0.001 1.0

1 |
.20- - 0.20- -
.25 025+ .
.30- 0.30- [|
.35 035+
.40- X 0.40+ | .
.45 ©0.45-
.50- §050-
.55 < 0.55- I
.60- } 060+ }
.65 065+
.70- 0704
.75 075+
.80- 0.80+
0.85- § 085+ §
0.90- 0.90+
0.95- 0.95-
1.00- 1.00- . . .

23456 78 91011121314151617 1819 2021222324 23456 78 91011121314151617 1819 2021222324
Function ID Function ID

(a) AOCC values for Diagonal CMA-ES. (b) AOCC values for Differential Evolution.

0.00
! (1.0 o modde
ot 0.15
oo 0.20
.15 [| 0.25
20 . 030 modcma
.25~ 035
. i X RCobyla
. . DifferentialEvolution
. ||
. ; DiagonalCMA

2345678 9101112131415161718192021222324
Function ID

23456 78 91011121314151617 1819 2021222324
Function ID

(d) Best performing algorithm from the
(c¢) AOCC values for Cobyla. portfolio, based on AOCC.

Figure 6.5: Normalized area under the ECDF curve of three selected algorithms (a-c)
and best-ranking algorithm from the full portfolio (d) for each combination of the
BBOB-function (x-axis) with a sphere model, for given values of « (y-axis) AOCC is
calculated after 10000 function evaluations, based on 50 runs on 50 instances (and
location of optimum). Note that o = 0 corresponds to the sphere function.

6.2.2 Adding Global Structure

For the first set of experiments, we make use of affine combinations where we combine
each function with F1: the sphere model (as the F» function in the combination).
As can be seen in Figure 6.1, adding a sphere model to another function creates an
additional global structure that can guide the optimization toward the global optimum.
As such, these kinds of combinations might allow us to investigate the influence of
an added global structure on the performance of optimization algorithms. While
to some extent this can already be investigated by comparing results on the function
groups of the original BBOB with different levels of global structure, the affine function

combinations allow for a much more fine-grained investigation.

In Figure 6.5a, we can see that the performance of CMA-ES does indeed seem to

move smoothly between the sphere and the function with which it is combined. It is

152

Chapter 6. Testing Generalizability: MA-BBOB

however interesting to note the differences in speed at which this transition occurs. For
example, while the final performance on functions 3 and 10 seems similar, the transition
speed differs significantly. This seems to indicate that for F10, the addition of some
global structure has a relatively weak influence on the challenges of this landscape
from the perspective of the CMA-ES, while even small amounts of global structure
significantly simplify the landscape of F3.

We can perform a similar analysis on other optimization algorithms. In Figures 6.5b
and 6.5¢, we show the same heatmap as Figure 6.5a, but for Differential Evolution
and Cobyla, respectively. It is clear from these heatmaps that the performance of DE
is more variable than that of CMA-ES, while Cobyla’s performance drops off much
more quickly. The overall trendlines for DE do seem to be somewhat similar to those
seen for diagonal CMA-ES: the transition points between high and low AOCC in
Figure 6.5b are comparable to those seen in Figure 6.5a. There are however still some
differences in behavior, especially relative to Cobyla. These differences then lead to
the question of whether there exist transition points in ranking between algorithms
as well. Specifically, if one algorithm performs well for « = 0 but gets overtaken as
a — 1, exploring this change in ranking would give further insight into the relative
strengths and weaknesses of the considered algorithms.

To study the impact on the relative ranking of algorithms, we make use of the full
portfolio of 5 algorithms and rank them based on AOCC on each affine function com-
bination. We then visualize the top ranking algorithm on each setting in Figure 6.5d.
From this figure, we can see that Cobyla deals well with the sphere model, managing
to outperform the other algorithms when the weighting of the sphere is relatively high.
Then, after a certain threshold, the CMA-ES variants consistently outperform the rest
of the portfolio, with dCMA taking over when Cobyla is no longer preferred. However,
as « increases further, and the influence of the sphere model diminishes, an interesting
pattern seems to occur. For several problems, there is a second transition point to
modCMA, indicating that the differences in default parameterizations between the
used libraries have a large impact on the algorithms’ behavior. One significant factor
is related to the initial stepsize, which is smaller for dCMA, and thus might lead to it
becoming more easily stuck in local optima when the global structure is not as strong.

In order to better understand what the transitions in algorithm ranking look like,
we can zoom in on one of the functions and plot the distribution of AOCC for all
values of o. This is done in Figure 6.6, where we look at the combination between
F10 and the sphere model. In this figure, we observe that Cobyla is very effective at

optimizing the sphere and the combinations with low a. However, when « increases,

153

6.2. Pairwise Affine Combinations

Il DiagonalCMA [modde I DifferentialEvolution I RCobyla I modcma
1.0

g 07 Gg.”§.§g§ez§ ; ;;; | d QZ ?Sgg Ozgé OS i §og f
‘ ‘: . LEITEE

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Alpha

o

o
Q
8

[S,]

o
o
o

:
;

0.2

[O,]

Figure 6.6: Distribution of AOCC values for 5 algorithms on the affine combinations
between F10 (o = 1) and F1 (o = 0), for selected values of a.

Cobyla quickly starts to fail, while, for example, Diagonal CMA still manages to solve
most instances at o = 0.25 with similar AOCC. As « increases further, the modCMA’s
performance remains stable, showing only a minor drop in performance relative to the
one seen in ACMA.

6.2.3 Impact on ELA Features

In addition to the performance perspective, we can also look at what happens to the
landscape feature of the BBOB functions as we add increasingly more influence from
the sphere function. Since we measure 44 different ELA features, our analysis of the
impact is rather more high-level than the algorithm performance viewpoint, as we
first aim to capture the overall stability of the features for increasing « values. This
is measured as the sum of absolute differences in feature mean for consecutive a’s,
which is plotted in Figure 6.7. From this figure, we can see that the mean of most
features remains quite stable, with a few notable exceptions. In particular, functions
16 and 23 show many feature changes from the sphere, which matches observations
from e.g. [203, 216].

In addition to the differences between functions, it is also clear to see that features
don’t all behave in the same way. Since Figure 6.7 only shows absolute changes in
mean, the deviation between instances might also play a role. To analyze this in
some more detail, we select a single function (F10) and look at the evolution of both
the feature mean and its standard deviation in Figure 6.8. From this figure, we can
see that the mean of each feature seems to transition rather smoothly between the
two component functions, in a similar way to the performance plots in Section 6.2.2.

However, we should note that the standard deviation of many features is relatively

154

Chapter 6. Testing Generalizability: MA-BBOB

=]
<
s
T
2
2

Figure 6.7: Total changes in each ELA feature when transitioning from the sphere
to the function indicated in the row. Fach cell represents the sum of differences in
mean between pairs of consecutive values of «, so high values indicate a large total
change in mean, while low values indicate features which remain stable throughout
the transition.

<o NNNNNENENNNENNERNNEEE

 mean_25 | NN ENNEEEEERENNNNEN

icm0{ NEEENEEEN NN

Figure 6.8: Evolution of ELA features with changing between Sphere (o = 0) and F10
(o =1). The color indicates the mean of the feature over the 50 instances (lighter =
larger), while the size indicates the variance (larger = higher variance).

large for each a value.

6.2.4 Impact of Optimum Location and the Instance

As can be seen from the relatively large variance in both ELA features and algorithm
performance, the instance and location of the optimum can have a major impact on
both the landscape and the corresponding algorithm behaviour. In particular, the
way in which we defined an instance in our setup is not necessarily equivalent to the
common interpretation, e.g., from BBOB. Since we allow the optimum of a component
function to be moved anywhere in the domain, this can lead to large parts of the
original function no longer being reachable. This is the main reason why some BBOB

functions have very restricted distributions for their optima, which can be seen by

155

6.2. Pairwise Affine Combinations

. 4
Sos’s %y o % 0

o we oo
» P

-5 -4 -2 0 2 5

Figure 6.9: Location of optima of the 24 2d BBOB functions (1000 random instances).
The red lines mark the commonly used box-constraints of [—5, 5]%.

analyzing the overall distribution of optima across all BBOB functions, visualized in

Figure 6.9 and previously observed in e.g.[150].

To analyse how much the algorithms in our portfolio are influenced by the choice
of instance and location of optimum, we determine the relative impact of different
instances for each function (F; and « value). This is done by first averaging the
performance across all 50 runs on each instance. By dividing this by the total variance
present across all runs on all instances of that function, we obtain a relative measure of
‘stability’ across instances, which is visualized in Figure 6.10. This figure shows that
some algorithms are inherently more impacted by the instance/location of the optimum
(modDE), while, for example, for Cobyla, the variance increases with increasing a,
which suggests that it is very stable on the sphere problem, but becomes much more

impacted by variations in the landscape when more non-sphere influence is added.

To further analyse the impact of this increased flexibility in terms of function
generation, we perform an experiment involving two versions of the original BBOB
functions. The first is the data from Section 6.2.2 where « € {0, 1}, which corresponds
to data for 50 instances of each function, with each of them having its optimum moved
to a random point in the domain. The second set of instances are created by taking the
same instances of the BBOB functions, but not shifting their optimum (the rescaling
from Section 6.1.2 is still applied). This allows us to compare the influence of moving
the optimum on the landscape of the resulting problem. In Figure 6.11, we compare

the distribution of all features on these two versions of BBOB function 23.

Finally, we can take an aggregated view of the features, and project the 44 dimen-

156

Chapter 6. Testing Generalizability: MA-BBOB

@® DiagonalCMA ©® DifferentialEvolution ® RCobyla ® modcma

Relative Deviation from Xopt

10 11 12 13 14 15 16 19 20 21 22 23
Function ID (+Alpha)

Figure 6.10: Relative deviation in AOCC caused by the change of the global optimum
for all combinations of BBOB functions with the sphere model (calculated as deviation
per instance divided by deviation across all instances). The x-axis indicates changing
function ID, and within each function ID the transition goes from a = 0 to o = 1 (left
to right).

variable

Figure 6.11: Distribution of normalized ELA features for the BBOB instance creation
procedure and the same instance moved to have an optimum location uniformly in the
domain, for F23.

157

6.2. Pairwise Affine Combinations

. « moved 15
-
125 orig S <%

5 6 7 8 9 10 11 12

(b) Projection of all BBOB functions con-
necting the original (circles) and moved
(crosses) versions of each function.

(a) Projection of the moved and original ver-
sion of F'18 (50 instances).

Figure 6.12: UMAP projection trained on original BBOB, then used to plot both the
moved and original functions in 2D.

sional space into two dimensions using PCA on the original BBOB versions. Then, we
can plot the moved versions of the function into the same space, and observe the dif-
ferences. The result of this projection is shown in Figure 6.12, where we see that many
functions are moved much closer to the center of the projected space. This suggests
that some of the ‘unique’ feature combinations present in the original BBOB functions
are being lost when moving their optimum. This happens because large parts of the
function are moved outside of the domain, and replaced by parts which were originally
located outside the bounds. For some functions, these components are exponentially
increasing, leading to a large part of the space which is dominated by these artifacts,

which is represented in the ELA-features.

6.2.5 Pairwise Combinations

While combining functions with a sphere model can be viewed as adding global struc-
ture to a problem, combinations between other functions can provide interesting in-
sights into the transition points between different types of problems. To illustrate the
kinds of insights that can be gained from these combinations, we select a subset of
5 functions and collect performance data on each combination with the same 21 «
values (with both orderings of the function). We show the performance in terms of
normalized AOCC of diagonal CMA-ES on these function combinations in Figure 6.13.
Note that for a = 1, we are using the function specified in the column label, while for
«a = 0 we have the function specified in the row label.

When comparing this figure to its equivalent from the GECCO paper [251], it is

158

Chapter

6.

Testing Generalizability: MA-BBOB

0.5
F2.0

ol

10

[

[T

0.5 1
F9.0

Iammmaanmnt

il
Al
-
-

Tl

0 0.5 1
F11.0

]

0 0.5
F16.0

10

0.5 1
F21.0

Figure 6.13: Normalized area over the convergence curve for Diagonal CMA-ES on
each of the affine combinations between the selected BBOB problems. Each facet
corresponds to the combination of the row and column function, with the x-axis in-
dicating the used . AOCC values are calculated based on 50 runs on 25 instances,
with a budget of 10000 function evaluations.

159

6.3. Combining Multiple Functions: Testing Generalizability

important to note the fact that Figure 6.13 is almost fully symmetric around the di-
agonal, which was not the case in the GECCO paper. Even though we might expect
(Fy, Py, @) to be similar to (Fy, Fy,1 —), this was not the case when the location of
the global optimum was selected as the optimum of one of the component functions,
as different BBOB functions can have significantly different distributions of potential
global optima [150]. This is in large part the reason why we enabled the MA-BBOB
generator to sample the optimum uniformly at random in the domain. While Sec-
tion 6.2.4 showed that this can potentially move interesting parts of some component
functions outside the domain, we view this as a worthwhile tradeoff to achieve fully
unbiased global optima.

From Figure 6.13, we can also see that the transition of performance between the
two extreme « values is mostly smooth. While there are some rather quick changes,
e.g., for the transition between F2 and F11, these seem to be the exception rather
than the rule. Particularly interesting are the settings where the performance of affine
combinations between two functions proves to be much easier or harder than the
functions which are being combined. For example, this is the case for the combinations
of F21 and F9.

6.3 Combining Multiple Functions: Testing General-
izability

For our final set of experiments, we make use of a set of 1000 functions generated
using the setup described in Section 6.1.2. This data is taken directly from [250], and
contains both ELA and performance data (for the same set of algorithms described in
Section 6.2.1, but using the original AUC measure instead of the AOCC). In [250] we
analyzed this data to understand the MA-BBOB instance generation procedure, with
the goal of generating a wide set of benchmark problems on which algorithm selection
and other automated machine learning techniques can be tested.

In this experiment, we take the perspective of algorithm selection and train a
random forest model to predict the best algorithm to use for each function, based
either on the ELA features of the problem or the weights of the component functions.
We can then compare the loss in terms of AUC relative to the virtual best solver
(VBS) for both of these models, in different training contexts. We can either use
the common cross-validation setup, or attempt to test for generalization ability based

only on the original BBOB functions. In Figure 6.14a we show the cumulative loss

160

Chapter 6. Testing Generalizability: MA-BBOB

Method

—— Shuffled
DiagonalCMA

—— DifferentialEvolution

— modcma

—— modde

—— RCobyla 0.2
ELA

—— Weights

Method
—— Shuffled
DiagonalCMA
—— DifferentialEvolution
— modcma
—— modde
—— RCobyla
ELA
—— Weights

Proportion
Proportion

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
loss loss

(a) AUC loss for 5 dimensional functions. (b) AUC loss for 2 dimensional functions.

Figure 6.14: Cumulative loss (AUC) for different models: cross-validation (mixture of
BBOB + MA-BBOB generated combinations) based on weights and ELA, and each
of the single-algorithm models.

for the cross-validation setup on the 5-dimensional functions. From this, we can see
that the ELA-based selector performs worse than the one based on the weights. This
confirms the previous observation that the ELA features might not be sufficiently
representative to accurately represent the problems in a way which is relevant for

ranking optimization algorithms.

In order to better estimate how much the structure of the ELA features helps the
prediction, we can add in a naive baseline. This is created by shuffling the labels (best
ranked algorithm) of all samples before training. This shuffled model is in essence
just a selector based on the frequency of labels in the training data, and the difference
between this version and the original ELA-based selector shows how much the structure
of the ELA-features helps improve the predictions. The results for the cross-validation
setup in 2D are shown in Figure 6.14b, where we see that the benefit over most
of the individual algorithms is inherent to the selected portfolio, since the shuffled
model outperforms all algorithms except modCMA. This suggests that our algorithm

portfolio is severely unbalanced.

When looking at the generalization task, this imbalance is exacerbated further,
since for MA-BBOB the modCMA is ranked first on an even larger fraction of functions
than on BBOB, as shown in Figure 6.15. In combination with the added challenge
of transferring to a new suite, this leads to our algorithm selection models being
outperformed by the modCMA, which is the Single Best Solver (SBS) in this case, as
illustrated in Figure 6.16. While the algorithm portfolio is partly responsible for this
shortcoming, the generalization ability does not significantly improve when removing

the modCMA from our portfolio. This suggests that training on the original BBOB

161

6.3. Combining Multiple Functions: Testing Generalizability

o
>

Method
—— DiagonalCMA

—— DifferentialEvolution
—— modcma

— modde

—— RCobyla

— ELA

—— Weights

Proportion

I
=

D
B DiagonalCMA

=1 DifferentialEvolution
[RCobyla

= modcma

=1 modde 00 02 0.4 06 08
loss

o
N

Rzank ?BBOg) R%':mk (3Affin2!)

Figure 6.16: Cumulative loss (AUC)
Figure 6.15: Distribution of ranks on the 5 dimensional MA-BBOB prob-
based on per-function AUC after lems for models trained on the BBOB
10000 evaluations. functions, and each of the single-

algorithm models.

instances does not sufficiently represent the challenges faced in the MA-BBOB suite.
An important aspect of the challenge of this transfer is the location of the optima, as

discussed in Section 6.2.4.

162

