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Chapter 5

Dynamic Algorithm

Configuration and Selection

Exploiting complementarity between algorithms or configurations of algorithms can
lead to significant gains in performance, as illustrated in the previous chapter. It is
also known that, when solving an optimization problem, different stages of the pro-
cess require different search behavior. For example, while exploration is needed in the
initial phases, the algorithm needs to eventually converge to a solution (exploitation).
State-of-the-art optimization algorithms therefore often incorporate mechanisms to
adjust their search behavior while optimizing, by taking into account the information
obtained during the run. These techniques are studied under many different umbrellas,
such as parameter control [70], meta-heuristics [22], adaptive operator selection [162],
or hyper-heuristics [31]. The probably best-known and most widely used techniques
for achieving a dynamic search behavior are the one-fifth success rule [201, 56, 211] and
the covariance adaptation technique that the family of CMA-ES algorithms [97, 98] is
built upon. While each of these control mechanisms tackles the problem of balancing
performance in different phases of the search in its own way, they are mostly working
with a specific algorithm, aiming to tune its performance by changing internal parame-
ters or algorithm modules. This inherently limits the potential of these methods, since
different algorithms can have widely varying performances during different phases of
the optimization process. By switching between these algorithms during the search,
these differences could potentially be exploited to get even better performance. We

refer to the problem of choosing which algorithms to switch between, and under which
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5.1. Complementarity in Anytime Performance

circumstances, as the Dynamic Algorithm Selection (dynAS) problem.

Solving the dynAS problem would be an important milestone towards tackling
the more general dynamic Algorithm Configuration (dynAC) problem, which also ad-
dresses the problem of selecting (and possibly adjusting) suitable algorithm configura-
tions. Specifically, dynAS is limited to switching between algorithms from a discrete
portfolio of pre-configured heuristics, whereas for dynAC, the algorithms come with
(possibly several) parameters whose settings can have a significant influence on the
performance.

While dynamically changing between algorithms or algorithm configurations can be
tackled in a variety of ways. For example, in the context of machine learning, there are
a variety of works which utilize principles from meta-learning to allow their algorithms
to handle data streams which change over time [206] or where choices have to be made
at multiple time points [231]. These problems can similarly be tackled using portfolios
of algorithms, with bandit algorithms running during the optimization determining
how to allocate resources between them [81].

In our work, we focus on a reinforcement-learning-based formulation of the Dy-
nAS problem [2]. In particular, we follow the principles outlined in [15] to represent
the switching between algorithms as a policy function. This results in the following

problem definition:

Definition 5.1 (Dynamic Algorithm Selection (dynAS)). Given an algorithm port-
folio A, a function f € F and a state description s; € $ at time step ¢ of an algorithm

run. We want to find a policy 7 : § — A which minimizes a performance measure
PERF(A,, f).

Note that this definition can be extended to dynamic algorithm configuration by
changing the policy to be 7 : § — (A x ©4), where O4 is the configuration space of
algorithm A.

This chapter is based on the following publications: [245, 243, 110, 135, 248]|

5.1 Complementarity in Anytime Performance

Before tackling the dynAS problem, we first aim to show the potential of this approach
for numerical optimization. We do this by taking a data-driven approach, where we
identify the complementarity between algorithms from a large portfolio purely based
on their performance profiles, for a simplified version of dynAS where we can switch

between algorithms only once during the optimization run. As in previous chapters,
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Chapter 5. Dynamic Algorithm Configuration and Selection

we stick to the BBOB suite from the COCO environment [95], and in particular we
make use of its rich collection of algorithm performance data [4].

Our considerations are purely based on a theoretical investigation of the potential,
which might be too optimistic for the single-switch dynAS case — most importantly,
because of the problem of warm-starting the algorithms: since the heuristics are adap-
tive themselves, their states need to be initialized appropriately at the switch. This
may be a difficult problem when changing between algorithms of very different struc-
ture. We do not consider, on the other hand, the possibility to switch more than once,
so that our bounds may be too pessimistic for the full dynAS setting, in which an
arbitrary number of switches is allowed.

Given the above limitations, we therefore also provide a critical assessment of our

approach, and highlight ideas for addressing the main challenges in dynAS.

5.1.1 Analysis of Available data

Since the set of available algorithms from the BBOB competitions is quite large, several
issues in terms of data consistency arise. When processing the algorithms, we found
that a small subset has issues such as incomplete files or missing data. We decided
to ignore these algorithms and work only with the ones which were made available
within the IOHanalyzer tool [62]. This leaves us with a set of 182 out of 226 possible
algorithms to do our analysis.

There are some caveats to this data, mostly related to the lack of a consistent
policy for submission to the competitions over the years. For example, the 2009
competition required the submission of 3 runs on 5 instances each, while the 2010
version changed this to 1 run on 15 instances. In theory, the instances should have
very little impact on the performance of the algorithms, as they are selected in such a
way as to preserve the characteristics of the functions. However, in practice there has
been some debate about the impact of instances on algorithm performance, claiming
that the landscapes of different instances of the same function can look significantly
different to an algorithm [173, 170, 127] (see Chapter 3.2 for more discussion on this
topic). In the following, we ignore this discussion and assume that performance is not
significantly impacted by the instances.

Another issue with the dataset is the usage of widely inconsistent budgets for the
different algorithms. These can be as low as 50D and as large as 107 D. However, since
we use a fixed-target perspective to study the performance of the algorithms, these

differences are not very impactful.
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Figure 5.1: Number of algorithms with at least 15 independent runs and at least one
of them reaching the target ¢ = 1075,

Since the BBOB competitions see an optimizer as having ‘solved’ an optimization
problem when reaching a target precision of 10~%, many of the algorithms will stop
their runs after reaching this point to avoid unnecessary computation. Because of
this, we will use the same target value in our computations. However, for some of the
more difficult functions, this target can be challenging to reach within their budget.
To avoid the problem of dealing with algorithms without any finished runs, we only
consider an algorithm in our analysis when it has at least 15 runs on the function, of
which at least one managed to reach the target 108, Figure 5.1 plots the number
of algorithms per each function/dimensionality pair that satisfy all the requirements
mentioned above. We observe large discrepancies between functions and dimensional-
ities, with the number of admissible algorithms ranging from 4 to 155, and note that

there are no algorithms which are admissible on all functions in all dimensionalities.

5.1.2 DynAS for BBOB-Functions

In this section, we will restrict the dynAS problem on BBOB-functions to using policies
which switch algorithms based on the target precisions hit. To get an indication for
the amount of improvement which can be gained by dynAC over static algorithm

configuration, we use the BBOB-data to theoretically simulate a simple policy which
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Chapter 5. Dynamic Algorithm Configuration and Selection

only implements a single switch of algorithm. We can define this as follows:

Definition 5.2 (Single-Switch dynAS). Let (9 be a d-dimensional BBOB-function
and A the corresponding portfolio of admissible algorithms. A single-switch policy is
defined as the triple (A1, A2, 7) € A x A x &, where & = {102_0'2i)\i e {o,.. .,50}}
is the set of admissible switchpoints. This corresponds to the policy which starts the
optimization procedure with algorithm A;, and run this until target 7 is reached, after
which the algorithm is changed to As.

The performance of this single switch method can then be calculated as follows:

T(f(d)7 Ala A2> T, ¢) = ERT(A17 f(d)’ T)
+ERT(42, /¥, ¢) — ERT (A, £V, 7)

Here, ¢ is the final target precision we want to reach. For the BBOB-functions, we set
¢ = 1078, as noted in Section 5.1.1.

Generally, to assess the performance of an algorithm selection method, its perfor-
mance can be compared to the Single Best Solver (SBS), which can be defined as

follows:
Definition 5.3 (Single Best Solver). For each dimensionality d € D, we have:

SBSwaric(F() = arg min > | PERF(4, £, 9)
feF

Often, ERT is used as the performance function, but this value can differ widely
between functions, leading to a biased weighting. To avoid this, we can instead use
the ranking of ERT per function, to give equal importance to every function. Note

that we have final target precision ¢ = 1078,

While this SBS has a good average performance, it can easily be beaten by a decent
algorithm selection technique. As such, a better baseline for performance is needed.
This is the theoretically best algorithm selection method, which is called the Virtual

Best Solver. This can defined as follows:

Definition 5.4 (Static Virtual Best Solver (VBSstatic)). For each function f € F and

dimensionality d € D, we have:
VBSstatic(f(d)) = arg Lnelg PERF(A? f(d))

For the BBOB functions, we use PERF(A, f(?) = ERT(A, f(D, ¢) with ¢ = 1078,
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5.1. Complementarity in Anytime Performance

F2- 3.1 5 3.2 3.2 8.3

4.7

Figure 5.2: Relative ERT of the SBS over the VBSgtatic- The selected SBS are: Nelder-
Doerr (2D), HCMA(3, 10 and 20D) and BIPOP-aCMA-STEP (5D). dimensionality
40 was removed because no algorithm hit the final target on all functions in this
dimensionality.

Note that the VBSgiatic will always perform at least as good as the SBS, and
theoretically gives an upper bound for the performance of any real implementation
of algorithm selection techniques. Thus, the difference between SBS and VBSgiatic
gives an indication of the maximal possible performance gained by algorithm selection.
For the BBOB-data, the relative ERT between these two methods is visualized in
Figure 5.2. From this, we see that the differences can be extremely large, highlighting
the importance of algorithm selection.

Similar to the way we defined VBSgiatic, we can define a Dynamic Virtual Best

Solver, VBSg4yn, as follows:

Definition 5.5 (Dynamic Virtual Best Solver). For each BBOB-function f € F and
dimensionality d € D, we have:

VBden(f(d)) = arg min T(f(d)a Al; A27 T, ¢)

(A1,A2,7)E(AXAXD)

5.1.3 Results

Since the number of algorithms considered in this paper is relatively large, many of

the results are only shown for a subset of functions, dimensionalities or algorithms.
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Figure 5.3: Distribution of ERTs among all algorithms for all 24 BBOB-functions in
dimensionality 5. Please recall from Figure 5.1 that the number of data points varies
between functions. Also shown are the ERTs of the VBSgatic and VBSgyn.

Overall Gain of Single-Switch DynAS

Before investigating the possible improvements to be gained by dynamic algorithm
selection, we investigate the performance of the static algorithms from the BBOB-
dataset. To achieve this, we look at the distribution of ERTs among the BBOB-
functions. For dimensionality 5, this is visualized in Figure 5.3.! This figure shows
the large differences in performance, both between the algorithms as well as between
the different functions. We marked the performance of the VBSgtatic and VBSgyy, and
see that their differences also vary largely between functions.

To zoom in on the differences between the VBSgiatic and VBS4yn, we see in Fig-
ure 5.3, we can compute for each function, dimensionality and corresponding algorithm

portfolio the relative ERT of a the Single-Switch VBSg4yy, over VBSgatic. Specifically,
ERT(VBSdynamic(f?))

ERT(VBSstatic (f(@D)) °
dimensionality)-pair in Figure 5.4. From this figure, we can see that for most func-

This value is shown for each (function,

this is calculated as

1 Note that for function F05, the linear slope, most algorithms simply move outside the search-space
to find an optimal solution, which is accepted by the BBOB-competitions, but leads to a disadvantage
to those algorithms which respect the bounds.
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Figure 5.4: Heatmap of the ratio Figure 5.5: Relative ERT of configu-

of ERTs between the Virtual Best ration switches relative to VBSgiatic,

Static Solver and the Virtual Best for 10-dimensional function 21. The

Dynamic Solver, for each (function, X- and Y-axes indicate algorithms

dimensionality)-pair. selected as As and A; respectively.
Larger values (red) indicate better al-
gorithm combinations.

tions, the improvements when using a single configuration change are quite large.
Especially for the functions which are traditionally considered more difficult for a
black-box optimization algorithm to solve, the possible improvement is massive. In
terms of the median over all (function, dimensionality)-pairs, the VBSgy, is 1.49 faster
than the VBSgatic.

Selected Algorithm Combinations

Since the VBSg4yy shows a lot of potential improvement over the classical VBSgatic,
it makes sense to study its behaviour in more detail. To achieve this, we can zoom
in on a single (function, dimensionality)-pair and study the behaviour of the VBSgy,
and switching algorithm configurations in general. In Figure 5.5, we show the ERT of
the best possible switch between any combination of algorithms in our portfolio A, on
function 21 in dimensionality 10. This figure shows some clear patterns in the horizon-
tal and vertical lines. A horizontal line, such as the one for the MLSL-algorithm [147],
indicates that an algorithm adds to the performance of most algorithms by being the
Aj-algorithm.

This can be interpreted as having a good exploratory search behaviour, but poor

exploitation. There are also vertical lines present, which indicate the algorithms which
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Chapter 5. Dynamic Algorithm Configuration and Selection

perform well as As-algorithms. These are less pronounced than the horizontal lines,
which might indicate that the choice of As algorithms has less impact on the perfor-

mance than the choice of Aj.

Small Portfolio: Case Study

Since the algorithm space we consider is quite large, it can be challenging to gain
insights into the individual algorithms. To show that dynamic algorithm selection is
also applicable to smaller portfolio’s, we limit ourselves to 5 algorithms. These are rep-
resentative of some widely used algorithm families: Nelder-Doerr [61], DE-Auto [252],
Bipop-aCMA-Step [155], HMLSL [183], and PSO-BFGS [142]. With this reduced al-
gorithm portfolio, we can study the improvements over their respective VBSgtatic in

more detail, and find interesting algorithms combinations to explore further.

To illustrate the configuration switches which can be considered in this algorithm
portfolio, we can zoom in on function 12 in dimensionality 3 and look at the fixed-
target curve showing ERT. This is done in Figure 5.6, where we also indicate the best
switching points between algorithms. This figure highlights the different behaviors of
the algorithms in the portfolio, and thus indicates where switching algorithms would
be beneficial. The best possible switch in this function would occur from PSO-BFGS
to Nelder-Doerr, at target 1064, leading to a relative speedup of 1.76 over VBStatic-

To decide which algorithms to use in an algorithm portfolio such as the one used
here, two main ways of selecting the algorithms are possible. The first is to use some
knowledge about the algorithms to determine which are important. This is useful for
initial exploration, but might lead to useful algorithms being ignored. Instead, one
can use performance information, such as the I; and Is-values, to provide some initial
representation of the usefulness of algorithms to the portfolio. This approach is much
more generic, however the choice of measures can be challenging. For example, the I;
and I» measures are hard to extend to more general k-switch dynAS methods. Instead,
an extension of marginal contributions [262] and related concepts such as measures
building on Shapley values (like those suggested in [79]) would capture algorithm
contribution to a portfolio in a much more robust sense, and thus be useful additions
to the dynAS setting.
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ERT
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100 1 0.01 le—4 le=6 le=8

Target
—— BIPOP-aCMA-STEP DE-AUTO HMLSL
NELDERDOERR == PSO-BFGS

Figure 5.6: ERT-curves for a selected algorithm portfolio of size 5 on F12 in 3D.
Markers indicate optimal switch points between algorithms. Their color and symbol
indicate the starting and finishing algorithms respectively. (star = Nelder-Doerr, tri-
angle = DE-AUTO, cross = BIPOP-aCMA-STEP, square = HMLSL and pentagon =
PSO-BFGS).

5.2 Switching Between Algorithm Variants

To achieve dynAS, we need to tackle the problem of warmstarting: initializing the
internal state of the secondary algorithm after the first has been terminated. Depend-
ing on the used algorithms, this can be an extremely challenging task. To limit the
effort needed to warmstart an algorithm, we can ensure all algorithms share the same
internal state, as is the case when we limit ourselves to a single modular algorithm
framework. In this section, we work within the modCMA framework to implement
the single-switch version of dynAS, where we exploit the complementarity between
the many module combinations, as was illustrated in Chapter 4. In particular, we
aim to switch between different configurations of modCMA (without the local restart

module).
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Chapter 5. Dynamic Algorithm Configuration and Selection

5.2.1 Selecting Adaptive Configurations

To determine which switches we should make, we start by gathering benchmark data
from all 24 BBOB functions (5-dimensional versions only). We then gather the AHTSs
for targets ® = {10729 | j € {0...50}}. Based on these AHT values, the adaptive

configurations suggested in [232] are chosen as follows:

e For each configuration ¢, each of the 24 BBOB functions f, and each of the 51
target values ¢, we calculate the AHT over all 25 runs (5 runs for each of the

first five instances).

e From this data, we determine the best target value ¢, for which there exists

at least one configuration whose 25 runs all reached this target.

e For every target value ¢ € ® satisfying ¢ > ¢nin we calculate the best configu-
ration before this target, i.e., we select the configuration ¢ for which AHT (¢, ¢)
is minimized. We denote this configuration C7. We then compute the best con-
figuration c¢ from this target until ¢i,, which we denote as Cy, ie., Cy is the
configuration for which AHT(f, ¢, dmin)—AHT (f, ¢, Pmin) is minimized. In [232],
the theoretical performance (TH for 'theoretical hitting time’) is then calculated

as TH(fv 01702a¢) = AHT(fv Cl»QS) - AHT(fa C27¢) + AHT(fv 02a¢min)~

e From this data we compute the target value 7 for which the overall perfor-
mance TH(f,C1,Ca, ¢) is minimized. This gives us the adaptive configuration

(C1,Co, 7). We refer to 7 as the ‘switchpoint’ of the adaptive configuration.

5.2.2 Two-Stage Configuration Selection

We introduce a procedure to make the selection process more robust to noise in the
performance data. This is based on the finding that the static configurations are not
quite stable enough to be used as a baseline. The first step in this process consists
of selecting some static configurations for which we should gather more data. The
configurations we will consider are made up of two parts. The first part consists of
the 50 best-performing static configurations.? We then extend this set by looking at
the configurations which have been selected to be a part of the 50 theoretically best

adaptive configurations. Since this might not be a diverse set of configurations, as one

2The best static configurations are determined by their AHT at the final reached target. If fewer
than 50 configurations reach this target for a function, we extend these configurations by the ones
that have the lowest AHT for the previous target. We repeat this process until we have selected 50
configurations.
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—— Best static (1566.50)
18001 Best common static (2314.84)
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Figure 5.7: F10: ERT of adaptive configurations compared to the best static and
“common” static configurations.

configuration might be chosen as C; 50 times, we decide to limit the number of times
a certain configuration can be selected as C; and as Co to three times each ("limited
selection method’). This should give us a more diverse set of configurations which
might contribute to good adaptive configurations. We then rerun these configurations

using 50 runs on each of the 5 instances, for a total of 250 runs each.

5.2.3 Performance Comparison

The results of the two-stage method are shown in more detail in Figure 5.7 for F10.
From this figure, we can see that the fit between theory and practice is quite good,
and many of the adaptive configurations manage to outperform the best static config-
uration by around 10%. Some outliers are present, but the general trend is positive.
In this figure, we also note the ERT of the best “common” CMA-ES variant as defined
in [234].

An overview of the performance comparison between these groups of configurations
can be seen in Figure 5.8. One important point to note is the fact that the best
“common” static configuration can outperform the general best static. This is caused
by the fact that these common configurations can have (B)IPOP enabled, which is not
the case for the best static. In these cases, we assume that this (B)IPOP module is
important to finding the optimum, and an adaptive configuration without this module
will not be able to perform very well.

Next, we consider the functions for which the best static ERT is lower than that
of the common variants. For these functions, we manage to improve upon this best

static configuration when using an adaptive configuration. More specifically, we can
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vs common
s non-IPOP common
25 I s best static

Improvement %

1% 15% 1% 6% 24% 21% 14% 1% -0% 12% 9% 6% 9% 3% -

44% 47% 49% -43% 35% 37% 9% 16% 23% 40% 41% 28% 2% 46% -35% 65% 1B838% 100% 100% 3%  100% 179% 100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23
Function ID

4% 4% @% -19% 13% 10% 51% 21% 5%

Figure 5.8: Comparison of the best achieved switching ERT relative to the ERTs of
the common statics (with and without IPOP; 5 x 5 runs) and the best non-IPOP static
on 5 x 50 runs. Improvements are cut off at 60% and -50%, respectively. The precise
values of the improvements are shown above the x-axis for the improvement relative
to the best static (top) and relative to the best common (bottom) configuration.

see that when the best static configuration from the entire configuration space does not
have (B)IPOP enabled, we can reliably achieve an improvement when using adaptive
configurations.

We also note that when the best static configuration with (B)IPOP significantly
outperforms the best rerun configuration, we do not manage to get the same improve-
ments. If we consider the best static configurations to include those with (B)IPOP
and compare the performance of the adaptive configurations to those, no improvement
is made at all.

In total, we find performance gains on 18 out of 24 functions of the BBOB bench-
mark, with stable advantages of up to 23%.

5.2.4 Module Activation Plots

We will now study two functions in more detail. The functions we will analyze are
F10, for which we see a decent improvement for most adaptive configurations, and
F24, for which we see very negative results.

First, we look at which static configurations have been selected, and how they
are used within the adaptive configurations. To do this, we introduce what we call
combined module activation plots. These plots consist of two parts, corresponding to Cy
and C5 respectively. In each of these subplots, every line indicates a configuration. The
lowest line corresponds with the theoretically best adaptive configuration, increasing
from there.

In Figure 5.9a and 5.9b we see these combined module activation plots for the
selected adaptive configurations for F10 and F24 respectively. These figures clearly

show that for F10 there is a pattern present among the adaptive configurations: the
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Figure 5.9: Combined module activation plots for the 50 best adaptive configurations
for F10 and F24.

modules TPA and threshold start activated and in almost all cases get turned off after
the switchpoint. Such patterns are not present in the adaptive configurations for F24.
This seems to indicate that for F24 the switches are mostly chosen because of small
variances between the different configurations, instead of actual inherent properties of

the configurations to perform well at certain points of the search.

5.2.5 Summary of Results

From our experiments, we found large differences in the potential of our approach
between functions. For some functions, such as F10, our approach seems quite stable,
resulting in improvements of over 10% for several adaptive configurations, as can
be seen in Figure 5.7. However, this is not representative of all functions, as for
several functions few (or any) adaptive configurations manage to outperform the static

configurations.

5.3 Per-run Dynamic Algorithm Selection

Since we have now verified that switching between configurations of a single algorithm
can achieve performance gains on some benchmark functions, we now place our focus

on the problem of switching between different algorithm families. Our goal here is
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to create a switching procedure where the algorithm to switch to is based on infor-
mation collected during the optimization process, rather than a fixed, predetermined
algorithm. We coin this per-run algorithm selection to refer to the fact that we
make use of information gained by running an initial optimization algorithm (A1)
during a single run to determine which algorithm should be selected for the remainder
of the search. This second algorithm (A2) can then be warm-started, i.e., initialized
appropriately using the knowledge of the first one. The pipeline of the approach is
shown in Figure 5.10.

To extract relevant information about the problem instances, we rely on ELA
features computed using samples and evaluations observed by the initial algorithm’s
search trajectory, i.e., local landscape features. Intuitively, we consider the problem
instance as perceived from the algorithm’s viewpoint. In addition, we make use of
an alternative aspect that seems to capture critical information during the search
procedure — the algorithm’s internal state, quantified through a set of state variables
at every iteration of the initial algorithm. To this end, we choose to track their
evolution during the search by computing their corresponding time-series features.

Using the aforementioned values to characterize problem instances, we build al-
gorithm selection models based on the prediction of the fixed-budget performance of
the second solver on those instances, for different budgets of function evaluations. We
train and test our algorithm selectors on the BBOB problems, and extend the testing
on the YABBOB collection of the Nevergrad platform [200]. We show that our ap-
proach leads to promising results with respect to the selection accuracy and we also

point out interesting observations about the particularities of the approach.

5.3.1 Data Collection

Problem Instance Portfolio. To implement and verify our proposed approach, we
make use of a set of black-box, single-objective, noiseless problems. The data set is the
BBOB suite from the COCO platform [95], which is a very common benchmark set
within numerical optimization community. This suite consists of a total of 24 functions,
and each of these functions can be changed by applying pre-defined transformations
to both its domain and objective space, resulting in a set of different instances of each
of these problems that share the same global characteristics [96].

Another considered benchmark set is the YABBOB suite from the Nevergrad plat-
form [200], that contains 21 black-box functions, out of which we keep 17. By defini-

tion, YABBOB problems do not allow for generating different instances.
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Figure 5.10: Per-run algorithm selection pipeline. The overhead cost of computing
ELA features per problem instance is circumvented via collecting information about
the instance during the default optimization algorithm run.

Algorithm Portfolio. As our algorithm portfolio, we consider the one used in [110,
210]. This gives us a set of 5 black-box optimization algorithms: MLSL [115, 116],
BFGS [29, 77, 85, 212], PSO [123], DE [219] and CMA-ES [88]. Since for the CMA-
ES we consider two versions from the modular CMA-ES framework [51] (elitist and

non-elitist), this gives us a total portfolio of 6 algorithm variants.

Warm-starting. To ensure we can switch from our initial algorithm (A1) to any
of the others (A2), we make use of a basic warm-starting approach specific to each
algorithm. For the two versions of modular CMA-ES, we do not need to explicitly
warm-start, since we can just continue the run with the same internal parameters
and turn on elitist selection if required. The detailed warm-start mechanisms are
discussed in [110].Performance Data. For our experiments, we consider a number
of data collection settings, based on the combinations of dimensionality of the problem,
where we use both 5- and 10-dimensional versions of the benchmark functions, and
budget for Al, where we use 30 - d budget for the initial algorithm. This is then
repeated for all functions of both the BBOB and the YABBOB suite. For BBOB, we
collect 100 runs on each of the first 10 instances, resulting in 1000 runs per function.
For YABBOB (only used for testing), we collect 50 runs on each function (due to no
instances in Nevergrad).

In Figure 5.11, we show the performance of the six algorithms in our portfolio in the
5-dimensional case. Since the A1l budget is 30-d = 150, the initial part of the search is
the same for all switching algorithms until this point. In the figure, we can see that, for
some functions, clear differences in performance between the algorithms appear very

quickly, while for other functions the difference only becomes apparent after some more
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evaluations are used. This difference leads us to perform our experiments with three
budgets for the A2 algorithm, namely 20 - d, 70 - d, and 170 - d.

To highlight the differences between the algorithms for each of these scenarios, we
can show in what fraction of runs each algorithm performs best. This is visualized in
Figure 5.12. Here we can see that while some algorithms are clearly more impactful
than others, the differences between them are still significant. This indicates that
there would be a significant difference between a virtual best solver which selects the
best algorithm for each run and a single best solver which uses only one algorithm for

every run.

5.3.2 Experimental Setup

Adaptive Exploratory Landscape Analysis. As previously discussed, the per-run
trajectory-based algorithm selection method consists of extracting ELA features from
the search trajectory samples during a single run of the initial solver. A vector of
numerical ELA feature values is assigned to each run on the problem instance, and
can be then used to train a predictive model that maps it to different algorithms’ per-
formances on the said run. To this end, we use the ELA computation library named
FLACCO [127].

Among over 300 different features (grouped in feature sets) available in FLACCO, we
only consider features that do not require additional function evaluations for their com-
putation, also referred to as cheap features [10]. They are computed using the fixed
initial sample, while expensive features, in contrast, need additional sampling during
the run, an overhead that makes them more inaccessible for practical use. For the
purpose of this work, as suggested in preliminary studies [109, 110], we use 38 cheap
features most commonly used in the literature, namely those from y-Distribution,
Levelset, Meta-Model, Dispersion, Information Content and Nearest-Better Clustering
feature sets.

We perform this per-run feature extraction using the initial A1 = 30 - d budget of
samples and their evaluations per each run of each of the first 10 instances of each of
the 24 BBOB problems, as well as 17 YABBOB problems (that have no instances) in
dimensionalities 5 and 10.

Time-Series Features. In addition to ELA features computed during the optimiza-
tion process, we consider an alternative — time-series features of the internal states
of the CMA-ES algorithm. Since the internal variables of an algorithm are adapted

during the optimization, they could potentially contain useful information about the
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Figure 5.11: Mean best-so-far function value (precision to global optimum) for each of
the six algorithms in the portfolio. For computational reasons, each line is calculated
based on a subset of 10 runs on each of the 10 instances used, for a total of 100 runs.
Note that the first 150 evaluations for each algorithm are identical, since this is the
budget used for Al. Figure generated using IOHanalyzer [255].

current state of the optimization. Specifically, we consider the following internal vari-
ables: the step-size o, the eigenvalues of covariance matrix v, the evolution path p, and
its conjugate p,, the Mahalanobis distances from each search point to the center of the
sampling distribution ¥, and the log-likelihood of the sampling model £ (Tﬁ, a2, C).
We consider these dynamic strategy parameters of the CMA-ES as a multivariate real-
valued time series, for which at every iteration of the algorithm, we compute one data

point of the time series as follows: Vt € [L]:
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Figure 5.12: Heatmap showing for each scenario (with respect to the dimensionality
and A2 budget, encoded in that order in the x-axis labels) in what proportion of runs
each algorithm reaches the best function value. Note that these value per scenario can
add to more than 1 because of ties.

B = (0. £007, 02, C) |[61], 17 1 17/ 1711, mean 5, mean 7, mean i, mean) ",
where L represents the number of iterations these data points were sampled, which
equals the A1 budget divided by the population size of the CMA-ES. In order to store
information invariant to the problem dimensionality, we compute the component-wise
average mean & and norm ||Z|| = VZT T of each vector variable.

Given a set of m feature functions {¢; },~, from TSFRESH [42] (where ¢;: Rl — R), we
apply each feature function over each variable in the collected time series. Examples
of such feature functions are autocorrelation, energy and continuous wavelet transform
coefficients. In this paper, we take this entire time series (of length L) as the feature
window. We employ all 74 feature functions from the TSFRESH library, to compute a
total of 9444 time-series features per run. After the feature generation, we perform
a feature selection method using a Random Forests classifier trained to predict the
function ID, for computing the feature importance. We then select only the features
whose importance is larger than 2 x 1073, This selection procedure yields 129 features,
among which features computed on the Mahalanobis distance and the step-size o are
dominant. More details on this approach can be found in [52].

Regression Models. To predict the algorithm performance after the A2 budget, we
use as performance metric the target precision reached by the algorithm in the fixed-
budget context (i.e., after some fixed number of function evaluations). We create a
mapping between the input feature data, which can be one of the following: (1) the
trajectory-based representation with 38 ELA features per run (ELA-based AS), (2) the
trajectory-based representation with 129 time-series (TS) features per run (T'S-based
AS), or (3) a combination of both (ELA+TS-based AS), and the target precision of

different algorithm runs. We then train supervised machine learning (ML) regression
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models that are able to predict target precision for different algorithms on each of the
trajectories involved in the training data. Following some strong insights from [107]
and subsequent studies, we aim at predicting the logarithm (log;) of the target preci-
sion, in order to capture the order of magnitude of the distance from the optimum. In
our case, since we are dealing with an algorithm portfolio, we have trained a separate
single target regression (STR) model for each algorithm involved in our portfolio. We
opt for using a random forest (RF) regression, as previous studies have shown that it
provides promising results for automated algorithm performance prediction [108]. To
this end, we use the RF implementation from the Python package SCIKIT-LEARN [186].
Evaluation Scenarios. To find the best RF hyperparameters and to evaluate the
performance of the algorithm selectors, we have investigated two evaluation scenarios:
(1) Leave-instance out validation: in this scenario, 70% of the instances from each
of the 24 BBOB problems are randomly selected for training and 30% are selected for
testing. Put differently, all 100 runs for the selected instance will either appear in the
training or the test set. We thus end up with 16 800 trajectories used for training and
7200 trajectories for testing.

(2) Leave-run out validation: in this scenario, 70% of the runs from each BBOB
problem instance are randomly selected for training and 30% are selected for testing.
Again, we end up with 16 800 trajectories used for training and 7200 trajectories for
testing.

We repeat each evaluation scenario five independent times, in order to analyze the
robustness of the results. Each time, the training data set was used to find the best
RF hyperparameters, while the test set was used only for evaluation of the algorithm
selector.

Hyperparameter Tuning for the Regression Models. The best hyperparame-
ters are selected for each RF model via grid search for a combination of an algorithm
and a fixed A2 budget. The training set for finding the best RF hyperparameters for
each combination of algorithm and budget is the same. Four different RF hyperpa-
rameters are selected for tuning: (1) n_ estimators: the number of trees in the random
forest; (2) maz_features: the number of features used for making the best split; (3)
max_ depth: the maximum depth of the trees, and (4) min_ samples_ split: the mini-
mum number of samples required for splitting an internal node in the tree. The search
spaces of the hyperparameters for each RF model utilized in our study are presented
in Table 5.1.

Per-run Algorithm Selection. In real-world dynamic AS applications, we rely on

the information obtained within the current run of the initial solver on a particular
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Table 5.1: RF hyperparameter names and their corresponding values considered in
the grid search.

Hyperparameter Search space
n_estimators [100, 300]
max_features [AUTO, SQRT, LOG2]

max_depth [3,5,15, NONE]
min_samples_split [2,5,10]

problem instance to make our decision to switch to a better suited algorithm. A ran-
domized component of black-box algorithms comes into play here, as one algorithm’s
performance can vastly differ from one run to another on the very same problem in-
stance.

We estimate the quality of our algorithm selectors by comparing them to standard
baselines, the virtual best solver (VBS) and the single best solver (SBS). As we make
a clear distinction between per-run and per-instance perspective, in order to compare
we need to suitably aggregate the results. Our baseline is the per-run VBS, which is
the selector that always chooses the real best algorithm for a particular run on a cer-
tain problem (i.e., function) instance. We then define V BS;;q and V BSy;q as virtual
best solvers on instance and problem levels, i.e., selectors that always pick the real
best algorithm for a certain instance (across all runs) or a certain problem (across all
instances). Last, we define the SBS as the algorithm that is most often the best one
across all runs.

For each of these methods, we can define their performance relative to the per-run
VBS by considering their performance ratio, which is defined on each run as taking
the function value achieved by the VBS and dividing it by the value reach by the con-
sidered selector. As such, the performance ratio for the per-run VBS is 1 by definition,
and in [0, 1] for each other algorithm selector.

To measure the performance ratio for the algorithm selectors themselves, we calculate
this performance ratio on every run in the test-set of each of the 5 folds, and average
these values. We point out here that the performance of different AS models are not
statistically compared, since the obtained performance values from the folds are not

independent [55].
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Figure 5.13: Heatmap showing for each scenario the average performance ratio rela-
tive to the per-run virtual best solver of different versions of VBS, SBS, and algorithm
selectors (based on the per-instance folds). Scenario names show the problem dimen-
sionality and the total used budget.

5.3.3 Evaluation Results: BBOB

For our first set of experiments, we train our algorithm selectors on BBOB functions
using the evaluation method described in Section 5.3.2. Since we consider 2 dimen-
sionalities of problems and 3 different A2 budgets, we have a total of 6 scenarios for
each of the 3 algorithm selectors (ELA-, TS-, and ELA+TS-based). In Figure 5.13,
we show the performance ratios of these selectors, as well as the performance ratios of
the previously described VBS and SBS baselines. Note that for this figure, we make
use of the per-instance folds, but results are almost identical for the per-run case.
Based on Figure 5.13, we can see that the ELA-based algorithm selector performs
almost as well as the per-function VBS, which itself shows only minor performance
differences to the per-instance VBS. We also notice that as the total evaluation bud-
get increases, the performance of every selector deteriorates. This seems to indicate
that as the total budget becomes larger, there are more cases where runs on the same
instance have different optimal switches.

To study the performance of the algorithm selectors in more detail, we can consider
the performance ratios for each function separately, as is visualized in Figure 5.14.
From this figure, we can see that for the functions where there is a clearly optimal A2,
all algorithm selectors are able to achieve near-optimal performance. However, for the
cases where the optimal A2 is more variable, the discrepancy between the ELA and

TS-based algorithm selectors increases.
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Figure 5.14: Heatmap showing for each 5-dimensional BBOB function the mean per-
formance ratio at 500 total evaluations relative to the per-run virtual best solver, as
well as the average performance ratio of each of the 3 algorithm selectors.

5.3.4 Evaluation Results: YABBOB

We now study how a model trained on BBOB problem trajectories can be used to
predict the performances on trajectories not included in the training. We do so by
considering the YABBOB suite from the Nevergrad platform. While there is some
overlap between these two problem collections, introducing another sufficiently dif-
ferent validation/test suite allows us to verify the stability of our algorithm selection
models. We recall that for the performance data of the same algorithm portfolio on
YABBOB functions, we have target precisions for 850 runs, 50 runs per 17 problems,
in all considered A2 budgets.

Training on COCO, testing on Nevergrad. This experiment has resulted
in somewhat poorer performance of the algorithm selection models on an inherently
different batch of problems. The comparison of the similarity between BBOB and
YABBOB problems presented below nicely shows how the YABBOB problems are
structurally more similar to one another than to the BBOB ones. To investigate per-
formance flaws of our approach when testing on Nevergrad, we compare, for each
YABBOB problem, how often a particular algorithm is selected by the algorithm se-
lection model trained on the BBOB data with how often that algorithm was actually
the best one. This comparison is exhibited in Figure 5.15. We observe that MLSL
in particular is not selected often enough in the case of a large A2 budget, as well
as a somewhat strong preference of the selector towards BFGS. An explanation for
these results may be the (dis)similarities between the benchmarks. An analysis of
the Pearson correlation between the trajectories on the BBOB and YABBOB suites

showed limited correlation between these two suites, which might explain the poor
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Figure 5.15: Heatmap showing for each 5-dimensional YABBOB /Nevergrad function
the fraction of times each algorithm was optimal to switch to when considering a total
budget of 500 evaluations (bottom) and how often each of these algorithm was selected
by the algorithm selector trained on BBOB/COCO (top). Note that the columns of
the bottom part can sum to more than 1 in case of ties.

generalization results [135].

5.4 When to Switch?

In the previous section, we have illustrated a way in which we can perform a sin-
gle switch between optimization algorithm by using information collected during the
search. While this information was only used to determine which algorithm should
be switched to, we can extend this usage by not just deciding what to switch to, but
whether to switch at all. In this final section of the DynAS chapter, we look at whether
the search trajectories contain sufficient information to predict how beneficial a switch
would be in the near future. Such a predictive model would be a first step towards a
truly dynamic switching algorithm, as the model can be applied consistently during
the search to detect whether switching is useful, without being restricted to a single

pre-determined switching point.

5.4.1 Algorithm Portfolio

Since the potential of switching between algorithms seems to be highly dependent on

the set of algorithms considered in the used portfolio [245], we consider a set of 5
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algorithms:

e Covariance Matrix Adaptation Evolution Strategy CMA-ES [97] (implementa-
tion from the modCMA package [51])

o Differential Evolution DE [219] (implementation from nevergrad [200])
e Particle Swarm Optimization PSO [123] (implementation from nevergrad)

o Success-History based Adaptive Differential Evolution SHADEFE [223] (implemen-
tation from pyade [198])

e Constrained Optimization By Linear Approximation Rcobyla [190] (implemen-

tation from nevergrad)

We show the performance of these 5 algorithms on the 10-dimensional BBOB prob-
lems from the fixed-budget perspective in Figure 5.16. We see that there are significant
differences in the performances of these algorithms, with no algorithm consistently
dominating all others.

In addition to the algorithms, we implement warm-starting mechanisms to be able
to switch between them. For the Nevergrad-based algorithms, we make use of the
built-in ask-not-told functionality, which adapts the state of the algorithm based on
a set of observations ({z, f(z)}). For starting the CMA-ES we use the warmstarting
mechanism proposed in [210], which sets the center of mass and stepsize based on the
3 best solutions found so far. For switching to SHADE, we initialize the population
as the last N points seen by the previous algorithm, where N is the population size.

To illustrate the usability of these warmstarting mechanisms, we investigate the
performance achieved by switching from each algorithm to itself, using the described
warm-starting mechanism. Since each of these warmstarting mechanisms inherently
loses some information about the search process, we assume the warm-started versions
will have slightly worse performance than their equivalent non-warmstarted runs. The
results of running each of the 5 algorithms with 5 different points at which they
are warm-started, are visualized in Figure 5.17. From this figure, we see that the
performance loss from warm-starting is relatively minor, indicating that most of the

relevant information is passed to the second part of the search.

5.4.2 Finding use cases using irace

To identify whether the selected portfolio can benefit from dynamically switching

between algorithms, we view the problem of dynamic algorithm selection from the
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Figure 5.16: Mean function value reached, relative to the used budget, for 24 BBOB
functions. Figure generated using IOHanalyzer [255]. Data available for interactive vi-
sualization at iohanalyzer.liacs.nl (IOHanalyzer dataset source ‘DynAS _EvoStar23’).
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Figure 5.17: The log-distance between geometric mean of function value reached after
10000 evaluations (limited to 1078). Differences are computed as mean with restart
minus mean without restart, so negative values indicate restarts improve performance.
Each box represents 24 10-dimensional BBOB problems, for each of the 5 algorithms
in the portfolio for the set of 5 tested switching points.

perspective of hyperparameter tuning. We consider the dynamic algorithm to consist
of three distinct parts: the first algorithm, the point at which to switch, and the second
algorithm. We use irace [152] to find the configurations which reach the best function
value after 5000 function evaluations. Since irace is inherently stochastic, we perform
5 independent runs, and for each of the sets of elite configurations we perform 250
verification runs (50 runs on 5 instances). The performance of these configurations is
then compared to the best static algorithm in the portfolio for each function (virtual
best solver). This relative measure is visualized in Figure 5.18.

From this figure, we can see that on most problems, there are sets of configurations
which seem to outperform the static algorithms. However, for some cases we see dete-
rioration in performance compared to the VBS, indicated by negative values. This can
be explained partly by the stochasticity of the algorithms: the performance observed
by irace is based on a limited number of runs, and by selecting based on these limited
samples can be sub-optimal when looking at the true performance distribution [247].
Additionally, there might be some cost associated with the warmstarting when the
samples are collected from an initial algorithm which is not the same as the algorithm
being switched to.

Since we see that there are some cases where a switch between algorithms appears
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Figure 5.20: Fraction of cases in which a switch from algorithm 1 (y-axis) to algorithm
2 (x-axis) is beneficial.

beneficial, we can delve deeper into the configurations which show these benefits. In
particular, we can look at the distribution of the used switch point and its correlation
to the relative performance improvement, as is shown in Figure 5.19. Here, we ob-
serve that the switch points are fairly widely distributed, and that multiple different

switching points can lead to similar improvements in performance.

5.4.3 Predicting Benefits of Switching

While the setup as described in Section 5.4.1 allows us to investigate the dependence of
performance of a dynamic algorithm selection on the time at which the switch occurs,
it does not provide directly usable insights into how this switch might be detected
during the search. In order to investigate this online detection, we require a set of
data where multiple switching points are attempted, such that we are able to identify
on a per-run basis how beneficial each decision is. In addition, we collect features at
each decision point, which can then be used to create a model to predict the observed
benefits.

5.4.4 Setup

To achieve these insights into the impact of the switching point, we set up a large-
scale experiment collecting the performance data for a reduced portfolio of 3 algorithms
(CMA-ES, PSO and DE) on all 24 10-dimensional BBOB problems. This reduction is
done to reduce computation costs. We collect 5 runs on each of the first 5 instances, and
collect the full trajectory of the static algorithm up to 10000 evaluations. Then, for all
switch points linearly spaced from 50 to 9500, we collect the performance data achieved
when switching to each of the 3 algorithms (so we include a switch to the selected

algorithm to itself) in the portfolio after another 500 evaluations.We then consider the
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best fitness value reached in these 500 evaluations as the achieved performance of the
dynamic algorithm. This short time-window is used to allow for the eventual creation
of a dynamic switching regime which can perform more than one change during the

optimization process.

In Figure 5.20 we show the fraction of cases in which a switch provides benefit
over continuing the first algorithm in these 500 evaluations. From this, we see that
switching is often beneficial, particularly in the case of switching to CMA. This matches
our observations from Section 5.4.1, where we saw that our chosen version of DE often

benefits from restarts, while the CMA-ES is the best preforming algorithm overall.

To enable an easier comparison between the algorithms, we define the target value
for our model to be the relative benefit of switching after 500 evaluations, which is

defined as follows:

min(as, ar)

r(assay) = (1 - ) (2 Taca, — 1) (5.1)

max(as, a,)

where ag is the performance when a switch is performed, and a, is the performance
when no switch occurs. This measure takes values in [—1,1], where positive values

correspond to situations where switching is beneficial, while a negative value indicates
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detrimental effect of the switch.

To highlight the overall importance of the switching point, we can visualize the
mean relative benefit of switching at each point in a heatmap, as is done in Fig-
ure 5.21 for the case of switching from CMA-ES to DE. Here, we see that even though
the individual algorithm performance from Figure 5.16 showed that CMA-ES dom-
inates DE in most problems, and Figure 5.20 showed that this combination is not
the most promising overall, there are still many cases where a switch would still be
beneficial for the performance in the next 500 evaluations. In particular, we see some
clear distinctions between functions where switching is detrimental and some functions
where benefits are observed, although not for all possible switching points.

In order to predict the benefit of switching at each decision point, we train a
random forest model for each switch combination which outputs the relative benefit of
performing the switch. The input for this model consists of the ELA features calculated
on the trajectory of the first algorithm during the last {50, 150, 250} evaluations before
the switching point. We exclude the ELA features that require addition sample points,
e.g., the so-called cell mapping features, resulting in 68 features in total.

This set is extended by including the diversity in the samples, both the mean
component-wise standard deviation of the full set of samples (pop_ div) and the stan-
dard deviation from their corresponding fitness values (fit _ div).

Features which are constant for all samples or give NaN values for more than 90%
of samples are removed from consideration. Features are then normalized (to zero
mean and unit variance).

The random forest models use the default hyperparameters from sklearn [186].
Their performance is evaluated using the leave-one-function out strategy, where we
train on the data from 23 BBOB functions and use the remaining one for testing.
This is repeated for each function, and the results shown in this section are always
on this unseen function. For our accuracy measure, we make use of the mean square

error.

5.4.5 Results

In Figure 5.22, we show the overall model quality per decision point, aggregated over
the algorithm which is being switched to. This aggregation allows us to gain an
overview of the potential to learn the relative benefit of switching from data, which
illustrates significant differences among test functions and the choice of the first algo-

rithm. From this figure, we can see that some settings lead to very poor MSE values.
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Figure 5.22: Distribution of model quality (Mean Square Error) for each function,
colored according to the algorithm from which the switch occurs. Aggregated across
the secondary algorithms and switch points.

v

This can either indicate that the model is not able to extract the needed information
from the training features, or that the set of features seen on the validation-function is
not consistent with the ones in the training set. For the former, it could be attributed
by highly noisy feature values coming from the randomness of the first algorithm;
For the latter, it is very likely that the landscape (hence the ELA features) of the
test function is dissimilar to the ones in the training set. Further analyses per func-
tion/algorithm pair (Figure 5.23) aims to investigate these two possible factors. This
could in part be an artifact of the leave-one-function-out validation, since the BBOB
function have been originally created such that each function has distinct high-level
properties [96]. However, we should note that the features we consider are trajectory-
based, and are thus not necessarily as different between functions as the global version

of the same features would be.

Figure 5.23 show this dependence on F7 and F15. In the top subfigure (DE to
PSO on F7) we see that the actual switch (blue dots) is mostly detrimental, while the
predicted value is somewhat positive, which is also reflected by quite high MSE scores
of the model. Note that, the relative benefit values are not considerably noisy from
the chart as the majority the sample concentrates at the very bottom, which should
be learnable if the RF model were trained on this function. Hence, in this case, we
conclude that, in our leave-one-function-out procedure, the model fails to generalize

to function F7.

In contrast, in the bottom part of Figure 5.23 (PSO to CMA on F15), we see that
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Figure 5.23: Relation between improvement and point at which the switch occurs in,
for both the real improvement and the improvement predicted by the RF model. Top:
switching from DE to PSO on F7. Bottom: switching from PSO to CMA on F15. The
thick black line shows the MSE of the model evaluated on the selected switch point
only. X-axis is shared between the two subfigures.

the overall behavior of benefit decreasing as the search continues is quite well captured
by the predictions. There are two interesting aspects of the results: (1) the model
seems to yield unbiased predictions of the relative benefit, which is strong support that
the model generalizes well to F15; (2) The variance of the predictions are much smaller
than that of the actual values, implying the possibility of a substantially large random
noise when measuring the relative benefits (this observation matches with previous
studies on the intrinsic large stochasticity of iterative optimization heuristics [247]).
The impact of this noise might be reduced in future by performing the switch multiple

times from the same switching point, leading to more stable training data.

5.4.6 Impact of Features

In addition to considering the accuracy of the trained models, we can also use the
models themselves to get insights into the underlying structure of the local landscapes
as seen by the algorithms. In particular, we make use of Shapley additive explanations
(SHAP [157]) to gain insight into the contribution of the ELA features to the final
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Figure 5.24: Shapley values of the features in each of the models which predict the
real-valued improvement of the switch. Each dot corresponds to one model, trained
on 23 functions, where the SHAP-values are calculated on the function which has been
left out. Since we have 3 Al algorithms, this leads to a total of 72 data points per
feature.

predictions. Since we consider a multitude of models, we consider the distributions of
Shapley values of each feature, aggregated across functions and algorithms. This is
visualized in Figure 5.24.

Since Figure 5.24 is colored according to the algorithm being switched to, we can
observe some interesting differences. Specifically, we see that the largest Shapley values
are clearly present for different features depending on the A algorithm considered.
This seems to indicate that the state of the local landscape has a different effect on each
algorithm. Thus, the models are indeed taking into account some specific information
about the potential performance of the specific algorithm combination on which it is
trained, rather than only identifying whether continuing with the current algorithm is
useful in general.

By considering the local landscape features themselves without taking the models
into account, we can perform dimensionality reduction to judge whether there are
any patterns present in the landscape which could potentially be exploited. We make
use of UMAP [163], and visualize the features obtained during the runs of CMA-ES
in Figure 5.25. While this figure shows some clear clusters of similar values of the
relative benefit of switching, there exist some regions where this distinction is not as
clear. Based on this observation, it seems likely that the model quality can be further
improved, although it is still limited by the inherent stochasticity in the dynamic

algorithm selection task.
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Figure 5.25: UMAP embedding of all datapoints from the CMA to DE model, where
the color corresponds to the relative benefit of performing the switch.
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