
From benchmarking optimization heuristics to dynamic
algorithm configuration
Vermetten, D.L.

Citation
Vermetten, D. L. (2025, February 13). From benchmarking optimization
heuristics to dynamic algorithm configuration. Retrieved from
https://hdl.handle.net/1887/4180395

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4180395

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4180395

Chapter 4

Algorithm Configuration and
Selection

In the previous chapter, we have seen that benchmarking plays a critical role in the
understanding of optimization algorithms. By observing the performance of an algo-
rithm on a variety of different problems, we can gain insights into its strengths and
weaknesses. Critically, different algorithms naturally take advantage of different kinds
of problem structures. A greedy hill-climbing algorithm for example is very efficient
on a sphere-model, while it would perform poorly on highly multi-modal functions.
Compare this to a purely random search, and it is clear that we want to choose a
different algorithm to solve our sphere problem than our multi-modal example.

It should be noted that the notion of exploiting algorithm complementarity is not
limited to the optimization context [217]. For example, in machine learning, comple-
mentarity between predictors is a large source of improvement, and top-performing
frameworks for automated machine learning rely on the ensembling of complemen-
tary models to achieve state-of-the-art performance [76, 74]. Similarly, SAT-solving
is a context in which the exploitation of algorithm complementarity has led to big
improvements in the state-of-the-art [261, 104].

In general, algorithm selection aims to exploit these kinds of complementary
strengths of algorithms by selecting a different optimization algorithm for each prob-
lem [205]. In the optimization context, algorithm selection attempts to find the best
algorithm A from a portfolio A to solve a specific function f from a set of functions
F . Specifically, this static version of algorithm selection can be defined as follows:

69

4.0.

Definition 4.1 (Static Algorithm Selection). Given an algorithm portfolio A and a
function f ∈ F , we aim to find:

argmin
A∈A

PERF(A, f) ,

where PERF : A × F → R is a performance measure (which assigns lower values to
better-performing algorithms).

One key aspect of algorithm selection in the context of black-box optimization is
the representation of the problem. The black-box nature of the functions implies that
we have very limited information available to base our decisions on. While algorithm
selection approaches based only on the available information (problem dimensionality,
variable types, evaluation budget) are being developed [166], the amount of comple-
mentarity these approaches can exploit is naturally limited. As such, the most common
setup is to spend part of the total evaluation budget to collect samples from the func-
tion and use information from these samples as the problem representation [174]. In
this setup, an algorithm selector is a machine learning model trained on a dataset
containing the performance of each algorithm from A on each function from F , where
the function is characterized by a set of features [124]. These features are usually
extracted via Exploratory Landscape Analysis (ELA, see Section 2.5), which needs
relatively low sample sizes to calculate large sets of problem characteristics [164].

In addition to algorithm selection, we consider the algorithm configuration sce-
nario. In this setup, we have a parameterized algorithm or algorithm family, and we
aim to find the parameter setting which performs best on the selected (set of) prob-
lem(s). Where algorithm selection exploits complementarity between the algorithms
in the portfolio, algorithm configuration benefits from the sensitivity of an algorithm’s
performance to its parameter settings.

Definition 4.2 (Static Algorithm Configuration). Given an algorithm A with param-
eterization ΘA and a function f ∈ F , we aim to find:

argmin
θ∈ΘA

PERF(Aθ, f)

Where many algorithm selection techniques rely on the availability of a complete
enumeration of all algorithms and functions, this is generally not feasible in an algo-
rithm configuration context. Algorithm configuration is thus treated as an optimiza-
tion problem in its own right, where noisy evaluations, mixed-variable and conditional

70

Chapter 4. Algorithm Configuration and Selection

search spaces, and expensive evaluations are common. Nevertheless, applying algo-
rithm configuration to optimization heuristics has been very successful, and a wide
variety of specific tools have been developed for this purpose.

In this chapter, we illustrate how we apply modular design principles to create large
parameterized search spaces for both differential evolution and evolution strategies.
We then apply a state-of-the-art algorithm configurator to these spaces and show
what insights we gain into the impact of different algorithmic components on the final
performance in certain landscapes. We end the chapter by illustrating some of the
limitations we still face, with a particular focus on the large variability in performance
of algorithm configuration when applied to the modular CMA-ES.

This chapter is based on the following publications: [51, 240, 247].

4.1 Modular Algorithm Design

Many popular optimization algorithms have been well-studied over the last decades.
This has led to significant improvement and allowed for a great deal of specialization
to different types of problems. While these modifications are all interesting in isola-
tion, the true impact they have on the state-of-the-art is often hard to assess. One
particular reason for this arises from the fact that algorithms can be inherently chal-
lenging to implement. Inconsistencies in the description, ignored edge cases, and even
potential bugs can have a significant impact on the behaviour of an algorithm and the
interpretation of results [26, 16]. Issues such as these have raised questions regard-
ing the reproducibility of research in computer science as a whole, and evolutionary
computation is no exception [151]. Because of this, comparing different variants of
algorithms can be difficult to do fairly. Since researchers often implement the under-
lying algorithm from scratch, to then add their proposed modification (and in most
cases a selected set of other algorithm variants for comparison), clear comparisons are
often hard to find.

In an ideal setting, the community would maintain standardised implementations
of core algorithms and the proposed modifications would be compared against the
same set of state-of-the-art algorithm variants. Unfortunately, this might still be an
impossible goal. However, algorithm modifications can still be fairly compared, as long
as they are implemented in one common framework. This can be achieved through
modular algorithms. From one common core algorithm, the variants are implemented
as modules that can easily be swapped out.

The ideas behind modular algorithms have been around for decades [32, 153, 156],

71

4.1. Modular Algorithm Design

but although they have been shown to be extremely useful [65], their adoption in
evolutionary computation has been relatively slow. In recent years, several new mod-
ular implementations of popular algorithms have been released, including the modular
CMA-ES [51, 234] and the Particle Swarm Optimisation framework [34]. These works
highlight the benefits of modular algorithms not only for fair comparisons, but also
hint at the potential to study interactions between modules.

4.1.1 Modular DE

In this section, we propose a first step towards a modular version of Differential Evo-
lution (DE), a heuristic originally introduced in [219] to optimise a single-objective
real-valued fitting problem, and whose design took into consideration elements from
evolutionary algorithms and swarm intelligence optimisation (see [40, 242] for some
insights on these aspects) and a simple core mechanism based on computing difference
vectors through linear combinations of candidate solutions. DE has been around for
almost 30 years and its popularity means that a wide variety of modifications have
been proposed over the years [49]. However, when comparing the benchmark data, the
relative benefits of many of these modifications seem to vary widely. Our objective is
to provide an initial analysis of the performance of a set of 14 independent modules.
This does not cover the full space of DE variants, but nonetheless highlights the po-
tential of modular algorithms to aid in understanding the contributions made by these
algorithmic variations.

Included Modules

Similar to other heuristic optimisers, DE naturally lends itself to a reformulation as
a modular algorithm made up of a number of connected modules/operators where
every independently made choice for a module is fully compatible with all choices
for other modules. In fact, previous work has shown the usefulness of considering
these operators as independent modules, e.g. to rigorously analyse the impact of the
crossover operator [36]. In this section, we use this modularity to create a framework
which we call Modular DE where a full combinatorial range of modules is available for
each algorithm component, see Table 4.1.

Initialisation

To create the initial population, we implemented several sampling strategies (Sampler,
see Table 4.1). The most common is to create a uniform distribution across the

72

Chapter 4. Algorithm Configuration and Selection

entire domain. Alternatives are to use other distributions or low-discrepancy sampling
methods. We choose to include the Halton and Sobol sequences to represent low-
discrepancy sampling and a Gaussian distribution (centred around the origin, with
σ = (U − L)/6, where U and L are the upper and lower bounds, respectively) to
represent other kinds of distribution. Furthermore, a previous study has proposed
using an oppositional initialisation strategy [197] (Opposition), where each time we
generate an individual for the initial population, we also generate its mirror image
around the origin.

Mutation

The mutation operator has been the focus of many modifications of DE, see,
e.g. [266, 73, 106, 49, 37]. To capture the most established mutation variations of
the kind x/y (where x is the base vector and y the number of differences), and to give
flexibility in adding new variants, we implement the mutation operator through the
combination of 3 modules. The first two modules, namely Base and Ref, help define
the strategy x. Note that the reference solution Ref can be set to none, while the Base
solution is not optional. In this scenario x = Base. Conversely, when Ref is one of
the admissible reference solutions displayed in Table 4.1, a scaled version of the vector
directed from target to the reference point is generated and added to Base, i.e. Base
+ F(Ref-target). Therefore, when Ref is not none, one obtains any of the classic
strategies of the kind x = target-Refs, plus new ones by varying the base vector.
The third module, namely Diffs, is used to set the number y of difference vectors.

In addition to this restructuring of the definition of the mutation operator, we
implement the option of using WeightedF, which reduces F at the beginning of the
search and then increases it towards the end [25].

One more modification makes use of an archive of external solutions, as done, e.g.,
in [266], where one of the solutions in the archive is chosen to be part of one of the
difference vectors - a scheme that has been shown to lead to improvements in the past
and is activated via the module Archive.

73

4.1. Modular Algorithm Design

T
ab

le
4.

1:
A
va

ila
bl

e
m

od
ul

es
an

d
pa

ra
m

et
er

s
fo

r
th

e
m

od
ul

ar
D

E
,t

he
ir

ty
pe

(‘
c’

fo
r

ca
te

go
ri

ca
l,

‘i’
fo

r
in

te
ge

r
or

‘r
’f

or
re

al
)

an
d

th
ei

r
do

m
ai

n.
T

he
ch

oi
ce

s
sh

ow
n

in
bo

ld
co

rr
es

po
nd

to
th

e
de

fa
ul

t
se

tt
in

gs
.

Fo
r

th
e

nu
m

er
ic

al
pa

ra
m

et
er

s,
th

e
de

fa
ul

t
va

lu
es

ar
e

ad
de

d
af

te
r

th
ei

r
do

m
ai

n.
T

he
‘S

ho
rt

ha
nd

’
co

lu
m

n
in

di
ca

te
s

th
e

na
m

es
us

ed
fo

r
th

es
e

m
od

ul
es

in
th

e
fig

ur
es

th
ro

ug
ho

ut
th

is
pa

pe
r.

O
p
er

at
io

n
M

od
u
le

N
am

e
S
h
or

th
an

d
T

yp
e

D
om

ai
n

In
it

ia
liz

at
io

n
B

as
e

sa
m

pl
er

Sa
mp

le
r

c
{‘

ga
us

si
an

’,
‘s

ob
ol

’,
‘h

al
to

n’
,
‘u

n
if
or

m
’}

In
it

ia
liz

at
io

n
O

pp
os

it
io

na
li

ni
ti

al
is

at
io

n
Op

po
si

ti
on

c
{t

ru
e,

fa
ls

e}
M

ut
at

io
n

B
as

e
ve

ct
or

Ba
se

c
{‘

ra
n
d
’,

‘b
es

t’
,‘

ta
rg

et
’}

M
ut

at
io

n
R

ef
er

en
ce

ve
ct

or
Re

f
c

{n
on

e,
‘p

be
st

’,
‘b

es
t’

,‘
ra

nd
’}

M
ut

at
io

n
N

um
be

r
of

di
ffe

re
nc

es
Di

ff
s

c
{1

,2
}

M
ut

at
io

n
U

se
w

ei
gh

te
d

F
We

ig
ht

ed
F

c
{t

ru
e,

fa
ls

e}
M

ut
at

io
n

U
se

ar
ch

iv
e

Ar
ch

iv
e

c
{t

ru
e,

fa
ls

e}
C

ro
ss

ov
er

C
ro

ss
ov

er
m

et
ho

d
Cr

os
so

ve
r

c
{‘

b
in

’,
‘e

xp
’}

C
ro

ss
ov

er
E

ig
en

va
lu

e
tr

an
sf

or
m

at
io

n
Ei

ge
nX

c
{t

ru
e,

fa
ls

e}
B

ou
nd

co
rr

ec
ti

on
B

ou
nd

co
rr

ec
ti

on
SD

IS
c

{n
on

e,
’s

at
u
ra

te
’,

‘u
ni

f-
re

sa
m

pl
e’

,
‘C

O
T

N
’,

‘t
or

oi
da

l’,
‘m

ir
ro

r’
,‘

hv
b’

,‘
ex

pc
-t

ar
ge

t’
,‘

ex
pc

-c
en

te
r’

,‘
ex

ps
’}

A
da

pt
at

io
n

F
ad

ap
ta

ti
on

m
et

ho
d

Ad
ap

tF
c

{n
on

e,
‘s

ha
de

’,
‘s

ha
de

-m
od

ifi
ed

’,
‘jD

E
’}

A
da

pt
at

io
n

C
R

ad
ap

ta
ti

on
m

et
ho

d
Ad

ap
tC

R
c

{n
on

e,
‘s

ha
de

’,
‘jD

E
’}

A
da

pt
at

io
n

P
op

ul
at

io
n

si
ze

re
du

ct
io

n
LP

SR
c

{t
ru

e,
fa

ls
e}

A
da

pt
at

io
n

U
se

JS
O

ca
ps

fo
r

F
an

d
C

R
Ca

ps
c

{t
ru

e,
fa

ls
e}

P
ar

am
et

er
P
op

ul
at

io
n

si
ze

λ
i

{4
,.

..
,2

00
}

(4
+
⌊(
3
lo
g
(d

))
⌋)

P
ar

am
et

er
Sc

al
e

fa
ct

or
F

r
[0

,2
](

0.
5)

P
ar

am
et

er
C

ro
ss

ov
er

ra
te

C
R

r
[0

,1
](

0.
5)

74

Chapter 4. Algorithm Configuration and Selection

Crossover

The classical studies in DE generally consider two types of crossover: binomial (z=bin)
and exponential (z=exp) [193], where the names refer to the distributions used for the
probability of exchanging design variables between target and mutant. Both these
types of crossover are included in this work.

Furthermore, we also include the option of performing the procedure from [87],
by activating the eigenvalues transformation module EigenX, which allows using the
bin or the exp operator and still maintaining rotational invariant behaviour. This
is obtained by producing a covariance matrix from the individuals that make up the
current population and diagonalising it with the Jacobi method [54] to calculate the
eigenvalues and eigenvectors. These are real-valued and form an orthogonal basis
(since the covariance matrix is symmetric and surely diagonalisable) and are arranged
in a matrix R used to rotate target and mutant before performing the crossover. Note
that the obtained trial has to be transformed back to the original coordinate system.
This is an easy task, as the conjugate matrix R∗ is equivalent to RT in this scenario.
Therefore, the multiplication between the transposed transformation matrix RT and
the newly generated point returns the desired trial.

Boundary Correction

There exist several mechanisms for boundary correction in the literature that allow
us to deal with infeasible solutions. The most used within the DE community can be
found in [17, 134]. For the proposed modular DE framework, we selected a varied set
of 10 strategies for box-constrained problems.

Parameter Adaptation

Most state-of-the-art DE variants make use of adaptive parameters. So, in the pro-
posed modular framework we implement adaptation methods for the DE core pa-
rameters, namely F , CR, and λ. The simplest is LPSR, which linearly reduces the
population size over time [24]. For F and CR, we implement the adaptation mecha-
nisms of SHADE and jDE [23, 223]. For F , we add an additional mechanism which
uses the mean of the memory, instead of generating a different distribution for each
individual, in the SHADE’s adaptation strategy.

One final option to change the adaptation process is to use JSO [25] caps for F
and CR (Caps), which, once activated, caps the values of these two parameters with
different thresholds depending on conditions on the used computational budget.

75

4.1. Modular Algorithm Design

4.1.2 Modular CMA-ES

Similar to the modular Differential Evolution, we also consider a modular variant of
CMA-ES. This framework is in large part a redesign of the Modular Evolutionary
Algorithms (ModEA) framework introduced in [234]. The modifications focus on the
CMA-ES family of algorithms, to such an extent that the design of other evolutionary
algorithms is no longer possible, thus requiring the change of names. The new frame-
work was dubbed the Modular CMA-ES (modCMA) and is available as an open-source
Python package within the IOHprofiler [63] environment.1

To design the Modular CMA-ES, we use the implementation from the popular
CMA-ES tutorial [90] as a starting point. This work provides a detailed description of
the CMA-ES algorithm, including a practical guide to its implementation. From this
basic design, we separate the CMA-ES in a number of functionally related blocks, in
order to allow a customization of a specific part of the algorithm. This allows us to
implement algorithmic variants of the CMA-ES as functional modules. From a user
perspective, any of these modules could then be combined in order create a custom
instantiation of the CMA-ES, by selecting an option for each available module.

In ModEA, eleven of such modules were already implemented. These were all
reimplemented in the Modular CMA-ES, with a few changes to the structure of the
options. Specifically, we removed the Pairwise Selection as a module. Instead, we
incorporated this option in the Mirrored Sampling module as the option Mirrored
Sampling with Pairwise Selection, converting this module from binary to ternary. This
is done because the pairwise selection method is not suited for use without mirrored
sampling [3].

We implemented a new module for performing boundary correction, and added five
alternative options for performing step-size adaptation. These two extensions to the
framework will be the focus of our analysis through out this work. This set of changes
give us the following list of modules for the redesigned Modular CMA-ES:

1. Active Update: Bad candidate solutions are penalized in the covariance matrix
update using negative weights [112]. Note that in [90], this is given as the default
version, here we consider it to be optional.

2. Elitism: (µ+ λ) - selection instead of (µ, λ) - selection.

3. Orthogonal Sampling: All the newly sampled points in the population are
orthonormalized using a Gram-Schmidt procedure [254].

1https://github.com/IOHprofiler/ModularCMAES

76

https://github.com/IOHprofiler/ModularCMAES

Chapter 4. Algorithm Configuration and Selection

4. Sequential Selection: Candidate solutions are immediately ranked and com-
pared with the current best solution. If an improvement is found, no additional
objective function evaluations are performed [28].

5. Threshold Convergence: A method for balancing exploration with exploita-
tion, scaling the mutation vectors to a required length threshold, which decays
over time [187].

6. Step-Size Adaptation: Supplementary to the default Cumulative Step-size
Adaptation (CSA), Two Point step-size Adaption (TPA) [88] is implemented.
TPA requires two additional objective function evaluations, used for evaluating
both a shorter and a longer version of the population’s center of mass. The
version which shows the higher objective function value determines whether the
step-size should be increased or decreased. Five newly added mechanisms for
performing step-size adaptation are implemented.

7. Mirrored Sampling: For every newly sampled point, its mirror image is added
to the population, by reversing its sign [3]. This can be turned on or off, or as a
third option this module can be set to Mirrored Pairwise Selection, where only
the best point of each mirrored pair is used in recombination.

8. Quasi-Gaussian Sampling: Instead of performing the simple random sam-
pling from the multivariate Gaussian, new solutions can alternatively be drawn
from quasi-random sequences (a.k.a. low-discrepancy sequences) [6]. We imple-
mented two options for this module, the Halton and Sobol sequences.

9. Recombination Weights: Three options are implemented; 1) default weights
(see [90]), 2) equal weights: wi = 1/µ, and 3) wi = 1/2i + 1/(λ2λ) for i =

1, 2, . . . , λ.

10. Restart Strategy: When the optimization process stagnates, the CMA-ES can
be restarted using a restart strategy. Two strategies are implemented in addition
to the default ’off’ setting. IPOP [5] increases the size population after every
restart by a constant factor. BIPOP [155] also changes the size of the population,
but alternates between larger and smaller population sizes.

11. Boundary Correction: If candidate solutions are sampled outside the search
domain, they can be transformed back into the search domain by applying a
boundary correction operation. In Section 4.1.2, we describe six options for
performing boundary correction which have been implemented.

77

4.1. Modular Algorithm Design

Table 4.2: The modules available for the Modular CMA-ES. The numeric index for
each module corresponds to the index used in the text of Section 4.1.2. Newly added
modules/options are given in bold.

0 (default) 1 2 3 4 5 6

1 off on - - - - -
2 off on - - - - -
3 off on - - - - -
4 off on - - - - -
5 off on - - - - -
6 CSA TPA MSR PSR xNES m-xNES p-xNES
7 off on on w. PS - - - -
8 off Sobol Halton - - - -
9 default 1

λ
1
2i

+ 1
λ2λ

- - - -
10 off IPOP BIPOP - - - -
11 off UR MCS COTN SCS TCS -

In Table 4.2, an overview is given of all currently implemented modules and their
options in the Modular CMA-ES framework.

Boundary Correction

In the original modEA framework [233], a boundary correction function taken
from [141] was implemented, and always applied after each mutation. In some cases,
however, this operator can degrade the performance of the algorithm quite drastically.
We therefore decided to make the boundary correction optional, and to implement it
as a module, for it to only be used when beneficial. A number of different boundary
correction strategies were implemented, taken from [40]:

1. None: No correction is applied to infeasible coordinates of solutions.

2. Uniform Resample (UR): Replaces all infeasible coordinates of a solution
with new coordinates sampled uniformly at random within the search space.

3. Mirror Correction Strategy (MCS): Mirrors all infeasible coordinates of a
solution with respect to its closest boundary.

4. Complete One-tailed Normal Correction Strategy (COTN): All infea-
sible coordinates are replaced with new coordinates inside the search space ac-
cording to a rescaled one-sided normal distribution centered on the boundary.

5. Saturation Correction Strategy (SCS): All infeasible coordinates is set to
the closest corresponding bound.

78

Chapter 4. Algorithm Configuration and Selection

6. Toroidal Correction Strategy (TCS): All infeasible coordinates get reflected
off the opposite boundary.

Step-Size Adaptation

We consider a number of alternative step-size adaptation mechanisms for the Modular
CMA-ES. We take inspiration from [137], which provides a qualitative evaluation of
multiple step-size adaptation mechanisms used in ES. In addition to the CSA and TPA
step-size adaptation methods, which were already available, we added the following
procedures:

1. Median success rule (MSR) [72]: The MSR mechanism adapts the step-
size σ as follows: it firstly computes a success rate by checking the number
of current individuals that are better than some user-defined quantile of the
function values in the previous population, then accumulates such success rates
in every iteration, and finally decides to increase the step-size if the cumulated
value is bigger than 1/2 and decrease it otherwise.

2. Population success rule (PSR) [154]: PSR determines the success rate of the
current population using a rank-based approach. It firstly sorts all individuals
in the current and previous population together, then retrieves the set of ranks
of individuals belonging to the current iteration and the one for the previous
iteration, and finally calculates the average rank difference between those two
sets as the population success rate, which controls the step-size updates.

3. xNES step-size adaptation (xNES) [83, 260, 137]: This method calculates
the length of each standardized mutation vector and subtracts from it the ex-
pected length of the standard Gaussian vector. The resulting difference is then
scalarized using the same weights used in the recombination, which is finally fed
into an exponential function to generate a multiplicative coefficient to modify
the step-size.

4. mean-xNES step-size adaptation (m-XNES) [137]: This mechanism func-
tions similarly to xNES, with the exception that it takes the standardized differ-
ential vector between current center of mass and the one in the previous iteration
and compares it to the expected length of the standard Gaussian vector.

5. xNES with log normal prior step-size adaptation (p-xNES) [137]: This
approach resembles the principle of self-adaptation for step-sizes, where λ trial

79

4.2. Algorithm Configuration for Modular Algorithms

Table 4.3: Set of 11 commonly used DE variants and the way they are implemented
in modular DE. Empty cells indicate default values are used.

Name/Author Mutation Settings F CR λ Other Settings

L-SHADE [223] Base : target, Ref : pbest adaptive 18 · d LPSR, Archive, AdaptF_CR : shade
SHADE Base : target, Ref : pbest adaptive 10 · d Archive, AdaptF_CR : shade
DAS1 [48] 0.8 0.9 10 · d
DAS2 Base : target, Ref : best 0.8 0.9 10 · d

Qin1

[195]

0.9 0.9 50
Qin2 0.5 0.3 50
Qin3 Ref : best 0.5 0.3 50
Qin4 Ref : best, Diffs : 2 0.5 0.3 50

Gamperle1 [82] Ref : best, Diffs : 2 0.45 0.4 2 · d
Gamperle2 Ref : best, Diffs : 2 0.6 0.9 2 · d

jDE [23] adaptive 100 AdaptF_CR : jDE

step-sizes are generated from a log-normal distribution which takes the current
step-size as its mean and each trial step-size is used to sample a candidate point.
To determine the new step-size, this method calculates the weighted sum of
the log-transformed trial step-sizes, where those assigned to their corresponding
candidate points in the recombination.

4.2 Algorithm Configuration for Modular Algo-

rithms

4.2.1 Results of Configuring ModDE

Experimental Setup

Experiment 1 In order to analyse the potential of modular implementation of DE,
we recreate a set of 11 known versions of DE within our framework (referred to as
common variants). These algorithms are shown in Table 4.3, where all non-default
parameters are mentioned. In addition to this, we can create a set of 30 single-module
variations: DE versions where all modules are set to their default value, except for
one. As such, each non-default module option is enabled in exactly one single-module
variant. For these single-module variants, we set F = CR = 0.7, and λ = 10 · d, based
on the recommendations of [146].

For each DE variant, we collect performance data on all 24 BBOB problems (Sec-
tion 3.2), using IOHexperimenter [53] for data collection. We perform 50 runs per
function, spread over 10 instances (5 independent runs per instance). We repeat this
for dimensionalities d ∈ {5, 10, 20}, where we give each run a budget of 50 000 function
evaluations.

To evaluate the performance of each algorithm, we opt to use the Empirical Cumu-
lative Distribution Function (ECDF). In particular, we use a normalized Area Over

80

Chapter 4. Algorithm Configuration and Selection

the ECDF Curve (AOC) as an anytime performance measure [93] (more details in
Section 2.4).

Experiment 2 For our second set of experiments, we use the algorithm config-
uration tool irace [152] to tune the performance of the modular DE on the same set
of BBOB problems. Each irace run uses a budget of 10 000 evaluations, where each
evaluation corresponds to running a DE variant with the selected parameter setting.
We use irace, with its first-test parameter set to 5, and the remaining parameters kept
at their default values.

We perform 10 independent runs of irace on each function from the BBOB suite,
for dimensionalities d ∈ {5, 10, 20}, where irace has access to the first 5 instances of
the function. We set the targets for ECDF to 81 logarithmically spaced values between
108 and 10−8. We use AOC as the target since it has been shown that the increased
signal it captures relative to measures such as Expected Running Time (ERT) can lead
to overall performance improvements, even when evaluating the result with a different
measure [264].

In addition to these per-function tuning runs, we also perform 10 tuning runs where
we tune for aggregated performance over all the functions by setting the irace instance
set to the 24 BBOB problems.

The resulting elite configurations for the across-function tuning are validated using
the same settings as the DE variants from the first experiment: 5 independent runs on
10 instances of each BBOB problem. For the per-function tuning, we instead perform
5 independent runs on 50 instances of the problem on which the tuning was performed.

Single-Module and Common DE Variants

First, we investigate the single-module DE variants, which can be used to illustrate the
impact of each module in isolation. We achieve this by comparing the performance of
the default DE (all modules at their default value as seen in Table 4.1) to the variant
with the identified best options enabled for each module. The resulting distribution
of improvements is shown in Figure 4.1a.

From Figure 4.1a, we can see that some modules have relatively minor impact
when the optimal option is selected independently from any other modules. This
is the case for e.g. the number of difference components (Diffs) and the use of an
archive population (Archive). In fact, if we instead consider the performance deteri-
oration when making the worst choice for each module, these ones show a significant
change over the default setting, as can be seen in Figure 4.1b. The combination of
these two figures gives an overall importance of each module, in the sense that if only

81

4.2. Algorithm Configuration for Modular Algorithms

Ad
ap

tCR
Ad

ap
tF

Sa
mple

r
SD

IS

Cros
sov

er
LPS

R
Base Diffs Re

f

Weig
hte

dF

Opp
osi

tio
n

Arch
ive Cap

s

Module

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

AO
C

im
pr

ov
em

en
t

dim
5
10
20

(a) Improvement in AOC over the default
setting when selecting the best-performing
option for each module.

Ad
ap

tCR
Ad

ap
tF

Sa
mple

r
SD

IS

Cros
sov

er
LPS

R
Base Diffs Re

f

Weig
hte

dF

Opp
osi

tio
n

Arch
ive Cap

s

Module

−0.4

−0.3

−0.2

−0.1

0.0

AO
C

im
pr

ov
em

en
t

dim
5
10
20

(b) Reduction in AOC over the default set-
ting when selecting the worst-performing op-
tion for each module.

Figure 4.1: Impact of selecting the best (a) and worst (b) option for each individual
module, measured as the difference in AOC relative to the default configuration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

AdaptCR

AdaptF

Sampler

SDIS

Crossover

LPSR

Base

Diffs

Ref

WeightedF

Opposition

Archive

Caps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 4.2: Importance of each module to
the AOC on each of the 24 BBOB func-
tions, aggregated over the used dimen-
sions. Importance is calculated as the
sum of absolute values from Figures 4.1a
and 4.1b.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

0.8

AO
C

Type
Single Module
Common Variant

Figure 4.3: Performance distribution
(AOC) of the 30 single-module DE vari-
ants and the 11 common DE variants
from Table 4.3, for the 10-dimensional
BBOB problems.

one module can be modified, some modules will likely have a much larger impact on
the overall performance of the algorithm than others. The aggregation of maximum
improvements and deteriorations for the selection of different module options is visu-
alized in Figure 4.2. This figure shows the way in which these module importances
are distributed across functions. For some functions, all single-module configurations
perform similarly poorly, e.g. for F24, so no differences are detected. For most others,
differences are present, with a clear impact on the choice of the base vector used for
mutation (Base). In general, the mutation modules have relatively more impact than
most others. Somewhat surprisingly, the impact of the adaptation methods for F , CR
and population size λ is rather small. This might indicate that these settings work
best when combined with other modules or more specific parameter settings. Also

82

Chapter 4. Algorithm Configuration and Selection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6

AO
C

Type
Specialist
Generalist

Figure 4.4: Performance distribution (AOC) of the configurations tuned for an in-
dividual function (specialist) and the configurations tuned for the full BBOB suite
(generalist), for the 10-dimensional BBOB problems. The green line shows the AOC
of the best DE version from the union of single-module DE and common DE variants
from Table 4.3.

worth noting is that boundary correction is usually not impactful, with the exception
of F5 (linear slope). For this function, the optimum lies directly on the boundary, so
the boundary correction will be triggered often when close to the optimum, and thus
have a large impact on the algorithm’s performance [134]. All other BBOB functions
are known not to have optima in the relative vicinity of domain boundaries [150].

To get insight into how hand-crafted DE versions, such as L-SHADE, compare
to the single-module ones, we look at the performance distributions on the 24 BBOB
problems. This is visualised in Figure 4.3. From this figure, we see that there is a fairly
wide distribution of performance in both groups. Overall, the common DE variants
seem to contain better configurations, although the set of configurations is relatively
much smaller.

Performance of Tuned DE

Next, we compare the hand-crafted and single-module DE versions to those resulting
from tuning the modular DE using irace. The resulting performance on the 10D BBOB
problems is visualized in Figure 4.4. From this figure, we can see that generally, both

83

4.2. Algorithm Configuration for Modular Algorithms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

0.0

0.2

0.4

0.6

AU
C

Im
pr

ov
em

en
t o

ve
r D

ef
au

lt Type
Single Module
Common
Specialist
Generalist

Figure 4.5: Relative improvement in AOC value between the best configuration of
each type and the default setting, in 20D.

of the tuned DE settings outperform the hand-crafted ones. As expected, tuning for
a particular function improves the performance on that function rather significantly.

Next, we aim to understand the impact of tuning relative to picking the best
configuration from the set of common variants. To investigate this, we look at the
relative gain in AOC over the default, for each set of configurations (common variants,
single-module variants, specialists and generalists). For each type, we look at the
performance of the best configuration of that type on each function and take the
improvement it makes over the default setting. These improvements, for the 20D
BBOB functions, are visualized in Figure 4.5. From this figure, we can see that the
default setting performs particularly poorly on most of the unimodal problems, as even
the best single-module configuration can outperform it significantly. However, this also
shows the additional benefit which can be gained from tuning, which is particularly
noticeable e.g. F3 and F4. We should also note that the performance gains shown here
are slightly larger than those seen in Figure 4.4, which in turn are slightly larger than
those achieved on the 5D version of these problems.

One more important note from Figure 4.4 is the wide distribution of AOC val-
ues. For the generalist configurations, this is natural, as configurations with different
strengths can achieve similar performance when aggregated over the whole BBOB
suite, resulting in a large per-function variance when grouped together. However, for
the configurations tuned on a single function, the variance on some functions is still
clearly visible. This might be caused by the inherent stochasticity of DE which poten-
tially misleads the algorithm configurator when limited samples are available [247].

This variance might also explain why for F21 one of the hand-crafted DE vari-
ants outperforms almost all configurations which were tuned on that function. When
considering Figure 4.3, we see that the performance might be considered an outlier,
which performs much better than the remaining common variants. This observation
might indicate that using the common DE variants to initialize irace could provide

84

Chapter 4. Algorithm Configuration and Selection

None

SDIS

'expc_target'

'hvb'

'expc_center'

'exps'

'unif_resample'

'COTN'

'toroidal'

'gaussian'

Sampler

'target'

Base

'rand'

'best'

Ref

'pbest'

None

1

Diffs

true

WeightedF

false

false

Archive

true

'bin'

Crossover

'exp'

true

EigenX

false

'shade'

AdaptF

'shade_modified'

None

AdaptCR

'shade'

'jDE'

false

Caps

true

true

Opposition

false

true

LPSR

false
0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

AOC

Figure 4.6: Parallel coordinate plot showing the modules activated in the elite config-
uration found across 10 runs of irace, on F19 in 5D. Configurations are colored based
on normalized AOC.

some additional benefits over the current random sampling.

Analysis of Elite Configurations

Since multiple repetitions of irace are performed for each problem, we have a set of
between 10 and 50 elite configurations for each setting. By analysing the commonalities
between these elites, we can get an overview of the benefit of different parameter
settings. This can be done on a global level by aggregating the activations of certain
module options across runs and dimensionalities.

To understand which modules are selected often, we consider the module activa-
tions of a single function and visualise them as a parallel coordinate plot. Figure 4.6
shows this for Function 19 in 5D. In this figure, we see that all elite configurations
make use of a Gaussian sampler for initialisation (Sampler). This makes sense when
we consider the properties of F19 in more detail. In particular, we should note that
for this function, the location of the optimum is not uniformly distributed in [−4, 4]D
as for most BBOB problems, but it is instead limited to the shell of the hypersphere
of radius 1, centred at the origin [150]. Because of this, a Gaussian initialisation will
significantly outperform any uniform or low-discrepancy initialisation strategy.

In Figure 4.6 we also observe that all configurations, except one, make use of the
SHADE-based adaptation for F (AdaptF), with ‘target’ based mutation mechanism
(Base). This suggests that, unlike the common belief of adding many components in
the mutation operator to deal with such problems, adaptation systems based on the
history of successful control parameter values are beneficial for multimodal problems
similar to F19, especially when combined with ‘target’-based mutations and Diffs= 1.

85

4.2. Algorithm Configuration for Modular Algorithms

4.2.2 Incremental Assessment of Module Performance: Mod-
CMA

While the expansion of modular algorithms leads to an exponential increase in the
number of possible configurations, we can still use algorithm configuration techniques
to gain insight into the combinations of modules which perform well. When new
modules are added we can retain the performance data from earlier experiments, and
incrementally build upon this. Rather than looking at the new module in isolation, we
use our algorithm configuration setup with the expanded search space and compare
the resulting high-performing configurations to find interactions resulting from the
modules inclusion.

We propose the following roadmap to formalize this procedure, which is designed
to be generic, so that it can function with any modular algorithm, hyperparameter
tuner, and performance metric:

1. Select a modular implementation of the base algorithm to which the new module
has been added, a hyperparameter optimizer and a performance metric.

2. Collect a list of the existing modules and relevant hyperparameters (without the
new module to assess). This will be the search space for the hyperparameter
optimization.

3. Run the selected hyperparameter optimizer on this search space, ideally for a
wide set of relevant benchmark functions. This data will then serve as the
baseline performance.

4. Extend the original search space by including the new module to assess, and run
the hyperparameter optimization on this extended search space (using the exact
same setup as the baseline).

5. Compare the data from the baseline to the experiment with the extended search
space. This should not only be done from a performance perspective, but also
from the resulting configurations themselves. This allows for the analysis of
potential interactions between modules.

Experimental Overview

To illustrate our proposed approach, we make use of the modular CMA-ES framework
introduced in Section 4.1.2. Specifically, we consider the stepsize adaptation and

86

Chapter 4. Algorithm Configuration and Selection

boundary correction, which were added on top of the previously implemented modules
as shown in Table 4.1.

For our experiments, we stick with irace as our algorithm configurator. Four runs
of irace are performed for each of the 24 objective functions in the BBOB single
objective noiseless problem suite [96, 95], of which the first 5-dimensional function
instance is used. Each run of irace is given a budget of 1 000 algorithm evaluations,
which themselves have a budget of 10 000 · d function evaluations. We use the AOC
attained by a run of a given configuration as the objective function value. Irace will
designate one or more configurations as elites, which are the best configurations found.
We validate the performance of these elite configurations by performing 25 validation
runs, with the same random seeds for all configurations. We use the results of these
runs to assess the final performance.

Following our roadmap, we define a baseline by tuning the existing modules from
modCMA, which are shown in Table 4.2. In addition, we tune four continuous hy-
perparameters c1, cµ, cc, and cσ, which control the dynamics of the adaption of the
covariance matrix (c1, cµ, and cc) and of the step-size (cσ).

We compare two experiments to our baseline where in addition to the existing
modules, 1) several new step-size adaptation methods (see Section 4.1.2) are included,
and 2) a new boundary correction module (see Section 4.1.2) is added to the tuned
parameters. Both of these experiments use the same experimental setup as the baseline
experiment (excluding the tuned parameters). Note that in the boundary correction
experiment, the new step-size adaptation methods cannot be selected and vice versa.

Single Module Performance

Before considering our proposed method, we run a basic benchmarking experiment on
each of the individual module options (including the new options). This is similar to
the common approach of benchmarking a new module against a set of other algorithm
variants. We show the resulting best single-module configurations (a.k.a. the virtual
best solver, VBS for short) relative to the default CMA-ES in Table 4.4. In this
table, we see that among the new modules, only two have been selected: MSR for F23
and m-XNES for F5. We can further look at the overall contributions of the newly
introduced step-size settings by plotting the ECDF-curves over all functions, as done in
Figure 4.7. In this figure, we can clearly see that most methods are quite competitive,
with the only exception being xNES, which has an overall worse performance than the
others. Overall, the MSR method seems to be quite effective, but there is no strict
domination over the other settings.

87

4.2. Algorithm Configuration for Modular Algorithms

Table 4.4: Table showing the AOC of the best single-module configuration for each
function (VBS), compared to that of the default CMA-ES. The name of the solver
corresponds to the module which is active, e.g. <module_name>_<option_value>.
Note that these values does not include benefits from tuning the continuous hyperpa-
rameters, which are set to the default values for all configurations in this table.

Fid VBS AOC of VBS AOC of Default Improvement

1 elitist_True 247 326 24%
2 active_True 1 272 1 659 23%
3 local_restart_BIPOP 38 374 44 518 14%
4 local_restart_IPOP 41 746 44 613 6%
5 step_size_adaptation_m-xnes 43 63 31%
6 elitist_True 655 904 28%
7 step_size_adaptation_tpa 1 312 39 199 97%
8 base_sampler_halton 1 186 4 544 74%
9 base_sampler_sobol 959 2 470 61%

10 active_True 1 309 1 729 24%
11 active_True 1 162 1 749 34%
12 base_sampler_sobol 2 186 2 980 27%
13 active_True 1 627 2 191 26%
14 active_True 601 831 28%
15 local_restart_BIPOP 30 380 43 313 30%
16 local_restart_BIPOP 8 172 34 132 76%
17 threshold_convergence_True 12 464 26884 54%
18 threshold_convergence_True 15 764 33724 53%
19 mirrored_mirrored 33567 36 688 9%
20 threshold_convergence_True 36 482 40691 10%
21 local_restart_IPOP 38 028 40 371 6%
22 mirrored_mirrored 566 8 632 93%
23 step_size_adaptation_msr 11 060 34 433 68%
24 local_restart_IPOP 42 099 44 351 5%

Analysis and Results

In this section, we present the results of our hyper-parameter tuning experiment. We
consider two paths to analyze the contributions of the newly introduced modules:
the performance-perspective and the perspective of the selected modules. We start by
examining our baseline. This is followed by an analysis of the performance-perspective
and a deeper analysis of the selected modules.

Baseline

As mentioned in Section 4.2.2, we conduct a baseline tuning experiment.
Since we run four runs of irace for each function, this results in 4 sets of elites (each

set has up to five configurations), for which we then perform the verification runs. We
plot the distribution of the AOC for each of these configurations in Figure 4.8, in
addition to this, the AOC of the default CMA-ES and the VBS is shown. From this
figure, it is clear that the tuning of all parameters at once is much better than simply
selecting a single-module variant, as is to be expected. This plot also highlights the

88

Chapter 4. Algorithm Configuration and Selection

1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4 2 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

csa lp-xnes m-xnes msr psr tpa xnes

Function Evaluations

Pr
op

or
tio

n
of

 (r
un

, t
ar

ge
t,

...
) p

ai
rs

Figure 4.7: ECDF-curve of all single-module stepsize options. Figure generated using
IOHanalyzer [255].

variance in performance of the final found configurations. There are two main reasons
for this fact: the inherent stochasticity of the CMA-ES itself, and the large impact of
the initially generated configurations of irace. We discuss these challenges in detail in
Section 4.3.

From this baseline data, we can also study the resulting configurations themselves.
This can be done by aggregating the modules which have been selected in the final elite
configurations in the separate irace runs, as is visualized in Figure 4.9. In this figure,
we can see that there is a large variability in the selected module options, which seems
to indicate that they are all usable for at least some functions. One notable exception
is the weights option “equal”, which is chosen in less than 1% of configurations.

Performance analysis

First, we visualize the distributions of the AOC of the single best configuration found
in each run of irace (based on the verification runs) in Figure 4.10. In this plot, we can
see that the effect of introducing the new modules is quite mixed. For some functions,
performance decreases (e.g., on F8) after introducing new modules, while for others

89

4.2. Algorithm Configuration for Modular Algorithms

Figure 4.8: Distribution of the area over the ECDF curve for the final elite configu-
ration of the baseline irace runs. All AOC’s are averages of 25 verification runs. The
VBS single-module configurations can be seen in Table 4.4.

Active
Elitist Orthogonal

Sequential
Threshold

SSA Mirrored
Sampler

Weights
Restart

0

100

200

300

400

M
od

ul
e

Co
un

t

Option 0
Option 1
Option 2

Figure 4.9: Module counts of all elites found in the baseline-experiment, over all 24
BBOB-functions. The option numbers correspond to those in Table 4.2

we see the desired improvement (e.g. on F23).

In order to better show these differences, we show in Figure 4.12 the AOC of the
single best configurations found in both the SSA and bound-experiments relative to

90

Chapter 4. Algorithm Configuration and Selection

Figure 4.10: Distribution of the single best elites from the baseline and the tuning with
the additional modules. AOC values are the result of averaging over 25 verification
runs.

100 1 0.01 1e−4 1e−6 1e−8

2

3

4

5

6

7

8

9
1e+3

2

3

Baseline_c60 SSA_c63

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 4.11: Comparison of the Expected Running Time of the best configurations
found on F12 by both the baseline and the SSA experiments. Shaded areas indicate
the outer quantiles (20-80).

91

4.2. Algorithm Configuration for Modular Algorithms

the best configuration from the baseline. Here we observe a generally negative trend,
with outliers in both directions. This seems to indicate that these new modules are
not always beneficial to the final performance. For example, we can consider F12,
where the configuration found by the baseline has an average AOC of 1 159, while the
best configuration found when including the new SSA-methods in the search space
reaches an average AOC of 1 480. We show the expected running time of these two
configurations in Figure 4.11, where we can clearly observe this difference. However, we
can observe a large variance between runs, which can partly explain poor performance.
Indeed, if we look at the average AOC as found during the irace run (instead of the
later verification runs), the difference between these two configurations is only 7%, even
though the distance between them in the verification runs is much larger. This leads to
an important observation about the assessment of the new algorithmic modules: when
judging results purely from the average performance measures, it is necessary to also
consider the overall variability of the experiment, as well as the inherent stochasticity
of the base algorithm.

We perform the same procedure for the boundary correction methods. The impact
of this module is expected to be smaller, since for most of the “easier” functions, the
boundary condition is rarely violated. For some of the more challenging functions how-
ever, the penalty value given by BBOB function itself might not be sufficient to “guide”
the algorithm back in bounds, but an explicit boundary correction could be benefi-
cial in these cases. We can see that this seems to indeed be the case in Figure 4.12,
where on the more complex functions, e.g., F21, the performance is improved when
the boundary correction module is tuned.

In Figure 4.12, we also see that the inclusion of the new SSA methods manages
to improve the overall performance for some functions. As an example, on F23 we
saw an improvement of 17.1% over the best baseline configuration. If we consider all
four elite configurations and compare the average performance differences, the average
improvement is even higher, at 22.3%. The stability of this improvement is promis-
ing, but in order to fully grasp how the inclusion of the new SSA mechanisms leads
to this improvement, we need to analyze the selected modules across these different
experiments.

Module Analysis

We have seen that the performance of the elite configuration found on F23 improves
when we include the new SSA modules in the search space. In order to identify what
this performance can tell us about the new modules themselves, we should study the

92

Chapter 4. Algorithm Configuration and Selection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

−0.4

−0.2

0.0

0.2

0.4

Im
pr

ov
em

en
t o

ve
r B

as
el

in
e

Bounds
SSA

Figure 4.12: The relative improvements per function of the best configuration found
by irace relative to the baseline experiment’s best configuration.

configurations in more detail. The obvious way to see the difference is by looking at
how often the new module options have been selected in the final elite configurations.
Over 20 elites, the PSR update was selected 14 times, MSR once, and CSA five
times. This shows that these new modules are indeed used in successful configurations.
To see how the inclusion of these module options changes the interactions with the
other modules, we look at the combined module activation plot, which is shown in
Figure 4.13. From this figure, we can see that there are some interesting differences
between the two sets of configurations: the options for the restart and mirrored module
are not as uniform when using the new SSA methods, and the weights option is changed
completely. These observations show that there is a clear interplay between these
modules.

We can extend this module analysis to all functions by aggregating the most im-
portant differences found between the baseline and SSA-experiments. First, we can
plot how often each new module option is selected in the elites for each function, as is
done in Figure 4.14. We can use the same principle to study the interaction with the
other modules. For the binary modules, we can directly capture the module difference
by looking at which modules occur more or less often in the final set of elites, as is
visualized in Figure 4.15. From this figure, it becomes clear that the elites on some
functions are barely affected by the inclusion of the new modules, while others require
completely different module settings to properly exploit the changed search space.

93

4.3. Selected Challenges in Algorithm Configuration

Figure 4.13: Combined module activation plot for the elites found in the baseline and
SSA experiments, for function 23. The lower the line, the better its performance,
scaled within each band according to the AOC. The option numbers correspond to
those in Table 4.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

CSA
TPA

MSR
xNES

m-xNES
lp-xNES

PSR
None

SCS
UR

COTN
TCS
MCS 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.14: Heatmap showing the fraction of the elite configuration in which each of
the options for either SSA (top) or boundary correction (bottom) are active.

4.3 Selected Challenges in Algorithm Configuration

While Section 4.2 highlights some of the benefits of algorithm configuration in the
context of modular algorithms, our approach still faces some inherent limitations. In
this section, we discuss some selected challenges, and illustrate specifically how the
inherent stochasticity of the iterative optimization heuristics impacts the results of
algorithm configuration.

The cost of tuning The first thing we should note about the incremental tuning
approach is that only considering the final elite configurations does not tell the full
story of a module’s contribution. As noted previously, introducing a new module

94

Chapter 4. Algorithm Configuration and Selection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

Active
Elitist

Orthogonal
Sequential
Threshold

−0.50

−0.25

0.00

0.25

0.50

Figure 4.15: Heatmap showing difference in the fraction of the elite configuration in
which each the of the binary modules are active, between the baseline and the SSA
experiment. Positive values indicate a module is turned on more often in the SSA
experiments.

increases the size and complexity of the search space, which has a large impact on
the hyperparameter tuning task. If a module is very dependent on the settings of
other hyperparameters, this can lead to deterioration of the final results, since the
initially sampled configurations are likely to have worse performance than those in
the baseline. This is visualized in Figure 4.16, where this is clearly seen on function
F5. This is a linear slope function, but the BBOB-specification does not include a
sufficient penalty for leaving the search space. As a result, an algorithm which quickly
leaves the search space will reach the required objective value very quickly. Thus,
when adding boundary correction methods, five out of six random configurations are
not able to abuse this loophole, leading to a worse initial performance. While for F5,
the function is simple enough that the good configurations can still be found (and the
inclusion of the default CMA-ES settings in the initial population means that there
is always at least one good configuration present), the same issue exists to a lesser
extent in other functions. Figure 4.16 also shows that the “tunability” of modules on
different functions varies widely. For instance, on functions F16 - F18, the spread of
AOC values is significantly larger than those on functions F19 - F21, suggesting that
it is relatively more difficult to tune the modules in the latter since the tuner will very
likely take a considerably larger budget to identify optimal configurations. Also, while
on some functions it is trivial to get improvement (e.g., F7) over the default CMA-ES,
it is a lot more challenging on others, for example on functions F16 - F18.

Limits of the per-instance analysis: As is commonly done, our performance
assessment is done on a per-instance basis. While this can be preferred over tuning
for large sets of functions/instances [9], it does have some drawbacks. Specifically, if
a module is designed to have a good performance over a wide set of functions, but
other settings exist for each individual function which outperform it, this new module
would not be seen as beneficial. Because of this, we argue that module assessment

95

4.3. Selected Challenges in Algorithm Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Fid

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

AO
C

im
pr

ov
em

en
t o

ve
r d

ef
au

lt

Type
bounds
ssa
baseline

Figure 4.16: Distribution of the relative AOC values found in the initial race of irace
(relative to the default CMA-ES configuration; positive values equate to lower AOC.)

by hyperparameter tuning should not replace the traditional assessments, but rather
complement it for more in-depth, per-instance analysis.

Influence and stochasticity of the hyperparameter tuning: While we
showed that assessing the impact of an algorithmic component by using a hyperpa-
rameter tuning approach provides useful insights, there are several factors which can
complicate this approach. Since hyperparameter tuning is a very challenging problem,
with many different approaches to solving it, the kind of tuner used will have a large
impact on the resulting assessment [221]. In this chapter, we used irace, which tends to
focus on converging to a single configuration, instead of covering a large set of different
solutions. This necessitates running multiple repetitions of the irace procedure itself,
as the initialization might otherwise have too much impact on the final configurations.
This can quickly become computationally expensive.

4.3.1 Noise in Algorithm Configuration

The final, and perhaps most relevant, limitation we discuss is the inherent stochas-
ticity in the algorithm which we are using. The amount of variance of the algorithm
configurations on a certain function has a large impact on the search procedure of
irace. Since we generally end up selecting elites based on average performance, we
are inherently underestimating the AOC of the final configuration. Even though irace
largely mitigates this by using statistical testing in the races to decide when to discard

96

Chapter 4. Algorithm Configuration and Selection

ad
ap

t-N
el

de
r-M

ea
d-

sc
ip

y-
20

19
AL

PS
BB

DE
-b

es
t

BB
DE

-N
BB

DE
BF

GS
-P

-In
st

an
ce

s
BF

GS
-s

cip
y-

20
19

BI
PO

P-
aC

M
A-

ST
EP

BI
PO

P-
sa

AC
M

-k
BI

PO
Ps

aA
CM

CM
A-

ES
-p

yt
ho

n-
Ba

ud
is

CM
A-

ES
 m

ul
tis

ta
rt

CM
A-

ES
PL

US
SE

L
CM

A_
m

ah

DE
-b

es
t

DE
-ra

nd
DE

-tt
b DE

DE
_P

al

DE
AE

 C
CO

VF
AC

 st
ud

y
DE

b
DE

ct
pb

DT
S-

CM
A-

ES
_0

05
-2

po
p_

v2
6_

1m
od

el

fm
in

co
n

fm
in

un
c

FU
LL

NE
W

UO
A

G3
PC

X
GL

OB
AL

HM
LS

L
IP

OP
-S

EP
-C

M
A-

ES
IP

OP
CM

Av
3p

61
KL

-B
IP

OP
-C

M
A-

ES
KL

-R
es

ta
rt-

CM
A-

ES
LS

fm
in

bn
d

M
CS

M
LS

L
NE

LD
ER

DO
ER

R
ON

EF
IF

TH
OQ

NL
P

PS
Aa

Lm
D-

CM
A-

ES
RG

A-
RD

D
RL

-S
HA

DE
-1

0e
5

SS
EA

BC
ST

EP
ife

g
uB

BD
E-

be
st

uB
BD

E-
ttb

uD
E-

be
st

uD
E-

ra
nd

uD
E-

ttb

102

103

104

105

AO
C

Figure 4.17: Distribution of the AOC values of 15 independent runs of algorithms from
the BBOB archive [4] on F21 in 5D.

configurations, there will always be some degree of underestimation of the perfor-
mance (for example, the median performance in the verification runs from our Section
on modCMA is 3.4% worse than predicted from the irace runs).

In this section, we highlight this challenge inherent in comparing the performance
of stochastic optimization algorithms. While our focus is on algorithm configura-
tion methods, we show that, for several cases including standard benchmarking-based
comparisons, the currently recommended values for the number of samples and testing
procedure can lead to mistakes. We show that the distribution of performance values
has a large impact on algorithm configuration methods, indicating that there is not
one method of performance comparison that dominates all others. Importantly, our
results demonstrate that we must identify better ways to handle the stochasticity of
iterative optimization heuristics when applying algorithm configuration methods.

Why 15 runs are not enough

While it is clear that any aggregated performance measure used to compare random-
ized algorithms is an empirical estimation of their true performance, the variance of
this estimation is not necessarily equal for all algorithms on all functions. However,
for a practical benchmarking setup, this nuance is often ignored in favour of simpler
guidelines, such as aggregating a fixed number of samples (i.e., individual performance
values from independent runs) for each algorithm on each function. The usual rec-
ommendation of 15 samples [95] is often enough to make clear decisions on simple

97

4.3. Selected Challenges in Algorithm Configuration

0 5 10 15 20 25 30
Original Means

Resampled Means

Figure 4.18: Changes in ranking of 33 random modCMA configurations based on
calculating the mean over a sample of 15 AOC values (Resampled Means) versus the
200 verification run samples (Original Means), on F21.

uni-modal functions, but the situation is much less clear on more challenging opti-
mization problems.

We illustrate the significant variation in performance between runs by showing in
Figure 4.17 the distribution of 15 independent AOC-values for a wide variety of algo-
rithms from the BBOB-repository (https://numbbo.github.io/data-archive/bbob/) on
F21 in 5D. This figure also shows that the normality assumption, commonly taken for
granted in benchmarking studies, is not well supported by the apparent distribution
of the 15 performance values shown for each algorithm.

For some algorithms, the performance distributions even appear to show signs of
bi-modality. As such, any analyses made based on this set of samples should be treated
with care. While this large amount of variance is very pronounced in F21, it is not
limited to this function, as other functions display similar effects but to a slightly lesser
extent.

The impact of performance variability can potentially be even larger when consid-
ering the task of algorithm configuration. It has previously been observed that the
performance of an algorithm configuration on verification runs can differ significantly
from the runs performed during the configuration task [51].

We illustrate this effect by showing in Figure 4.18 the changes in the ranking of
the 33 high-quality modCMA configurations described in Section 4.1.2 when
calculating mean performance using a small sample size (15) and a larger number of
verification runs (200) on F21.

While this might be considered a rather extreme case, it is by no means the only
scenario in which behaviours like this can occur. Since algorithm configuration often
generates similarly performing configurations near the end of a configuration run (while
exploiting promising regions), making decisions about which configuration to select

98

https://numbbo.github.io/data-archive/bbob/

Chapter 4. Algorithm Configuration and Selection

Figure 4.19: Evolution of the cumulative mean over sample sizes of 3 selected high-
quality modCMA configurations on F18. The vertical lines indicate sample sizes
15, 25 and 200 respectively. Means are based on sampling with replacement from the
original 200 samples of each configuration.

might become very noisy when using relatively low sample sizes. This phenomenon is
exemplified in Figure 4.19, where we show the evolution of the mean AOC of 3 selected
high-quality modCMA configurations relative to an incremental number of AOC
values. Each horizontal line of the same color corresponds to the cumulative mean
of a sequence of values sampled with replacement from the same 200 AUC values.
Despite sampling from the same 200 AUC values, the variance of the means of 15
and 25 samples is quite large and those means often poorly estimate the true mean
performance.

In practice, making an incorrect decision between two configurations matters less
when their true performance is very similar. However, when the set of configurations
which are being compared increases in size, the risk of making incorrect decisions be-
tween more distinct configurations could potentially grow as well. In some situations
in algorithm configuration tasks, we have observed significant differences between the
performance of the selected elite configurations, and the best one from all configura-
tions sampled according to the verification runs.

In Figure 4.20, we show the distribution of AOC values for each configuration
sampled during a run of irace on each of the 24 BBOB functions. The performance
of each configuration is based on the mean of 200 verification runs, and the plot

99

4.3. Selected Challenges in Algorithm Configuration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Fid

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 L

os
s

Figure 4.20: Performance losses between all modCMA configurations explored during
the execution of one irace run on each function, and the best one from this set of
configurations. The final elites of each irace run are marked in larger red triangles.
All data points shown are based on 200 independent samples.

shows the relative performance loss to the best of these means. The (up to five) elite
configurations returned by irace are marked with a red triangle. The lowest of these
elites corresponds to the level of performance loss achieved by irace compared to the
best-performing configuration sampled during the configuration process. From this
figure, it can be seen that for some of the more complex functions, a 10% performance
loss or more can occur, clearly demonstrating that the variability of performance can
severely hinder the outcome of the configuration efforts.

Impact on Benchmarking

To simulate a common algorithm comparison scenario, we make use of the set of 33
high-quality modCMA configurations from Section 4.1.2 and simulate the bench-
marking procedure by randomly re-sampling with replacement AOC values, for sample
sizes 2, 5, 10, 15, 25 and 50 from the set of 200. Then, we select the configuration
with the best mean for each particular sample size as the winner, and compare its true
performance (i.e., over 200 runs) to that of the actual best configuration to get an
estimate for the performance loss. This process is repeated 5000 times for each sample
size and each function, and the resulting performance loss per function is shown in
Figure 4.21. We conclude that using means to determine the best-performing algo-

100

Chapter 4. Algorithm Configuration and Selection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Fid

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 L

os
s

Sample Size
2
15
50

Figure 4.21: Performance loss, relative to the configuration with the best mean calcu-
lated over 200 samples, when comparing 33 high-quality modCMA configurations
based on mean calculated from different number of samples. Each bar represents 5000
repetitions of the experiment.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Fid

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Un
de

re
st

im
at

io
n

Sample Size
2
5

10
15

25
50

Figure 4.22: Underestimation when comparing 33 high-quality modCMA config-
urations based on mean calculated from different numbers of samples. Each bar
represents 5000 repetitions of the experiment.

101

4.3. Selected Challenges in Algorithm Configuration

rithm is not always reliable, and can lead to selecting configurations that are clearly
sub-optimal. Many benchmarking studies use non-parametric statistical tests to assess
significant differences without assuming normality, yet they still rely on the compari-
son of means to rank the algorithms. While we can see that increasing the used sample
size is always beneficial, even using as many as 50 samples can still see performance
losses of 10% and more on some functions.

One possible explanation for these results is that, when we are determining the best
algorithm from a large set of algorithms of wide performance variability, our decision
is prone to underestimate the true mean due to the small sample size, i.e., we might
“luckily” sample many good values for an algorithm with sub-optimal performance.

We quantify this impact by calculating, for each selected configuration and a given
sample size, the underestimation error, that is, the relative error of the mean estimated
from the selected samples relative to its true mean performance (based on the 200
verification runs). Positive values indicate that the sample mean is lower, i.e., better,
than the true mean. We plot in Figure 4.22 the underestimation error for high-quality
modCMA configurations.

We observe large underestimation errors in almost all functions. In some functions,
such as F8, the underestimation error is large even for a sample size of 50. We also
notice that large underestimation errors in Figure 4.22 often coincide with a large
performance loss seen in Figure 4.21. This observation can be explained by looking in
more detail at the performance distribution of the used configurations on a particular
function, as is done in Figure 4.23 for F8.

We see in this figure that all configurations have a fraction of runs where the AOC
value is very large, indicating that these were very poorly performing runs. When
calculating the mean value of a configuration from a limited number of samples, if
none of these poor runs appears in the samples, then the mean of the configuration will
be lower than its true mean, leading to the large underestimation seen in Figure 4.22.

Additionally, since the difference in a configuration’s performance seen during con-
figuration and its true mean is often larger than the difference in the means of config-
urations as estimated from a small number of samples, a relatively poor-performing
configuration can end up being chosen simply because it got ‘lucky’, which can explain
the performance losses we observed previously.

Another common way in which the mean is used in benchmarking is in the basic
pairwise comparison scenario, where two algorithms are directly compared to each
other. To investigate this scenario, we simulate pairwise comparisons based on a lim-
ited sample size, and correlate the decisions made by the pairwise comparison to the

102

Chapter 4. Algorithm Configuration and Selection

Figure 4.23: Distribution of AOC values of 200 individual runs of high-quality mod-
CMA configurations on F8. The line indicates the mean AOC value of each con-
figuration, and is the basis for the sorting on the x-axis.

(a) F9 (b) F15 (c) F22

Figure 4.24: Fraction of incorrect decisions when using the sample mean to compare
pairs of modCMA configurations. Each subplot contains 10 000 points. Each point
compares two configurations selected uniformly at random from the available config-
urations. The x-axis indicates the normalized difference between their true means
(based on the 200 AOC values per configuration). The y-axis indicates the fraction of
incorrect decisions based on 500 independent samplings of 15 AUC values for each of
the two selected configurations. Original samples refers to sampling with replacement
from the 200 AOC values available, while Normal distributions refers to sampling val-
ues from a normal distribution with the same mean and standard deviation as the 200
values of the corresponding configuration.

103

4.3. Selected Challenges in Algorithm Configuration

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.2

0.4

0.6

0.8

1.0

wrong
nan
correct

(a) t-test

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.2

0.4

0.6

0.8

1.0

wrong
nan
correct

(b) Wilcoxon ranked-sum
test

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.2

0.4

0.6

0.8

1.0

wrong
nan
correct

(c) Comparison means

Figure 4.25: Correctness of decisions made in pairwise comparisons between modular
CMA-ES configurations on F9, using different procedures. The x-axis shows the rela-
tive difference in true mean between the selected configurations. The y-axis shows the
fraction of comparisons, out of 500 repetitions, that the decision was correct, incor-
rect or inconclusive (nan) when comparing configurations with this difference. Each
repetition samples 15 values out of the 200 available for each configuration compared.

difference in true means between the selected configurations. To achieve this simu-
lation, we use the full set of modCMA configurations generated during an irace run,
which totals over 200 configurations on each function. From this set of configurations,
we take 10 000 pairs, drawn uniformly at random, to perform the pairwise comparison.
Then, for each pair of configurations, we sample a number of AOC values from the
200 values available, calculate the sample means and compare them to decide which
configuration is the best. The comparison is correct if it gives the same conclusion as
comparing the true means. We repeat the sampling and comparison step 500 times
to calculate the fraction of times that the comparison is correct. The results of this
experiment on F9, F15, and F22, with sample size 15, are displayed in Figure 4.24.

We observe in this figure that, as expected, the fraction of incorrect decisions
decreases when the difference in true means increases. However, the decrease is much
faster for F15 than for F9 or F22. There are also notable differences when comparing
the fraction of incorrect decisions generated by sampling with replacement from the
200 AOC values available (Original samples) versus sampling values from the normal
distribution that has the same mean and standard deviation as those 200 values. These
distributions are almost identical for F15 but different for F9 and F22, which suggests
that the fraction of incorrect decisions made by comparing means for F9 and F22 is
impacted by the non-normality of the sample distribution.

104

Chapter 4. Algorithm Configuration and Selection

0.00 0.25 0.50 0.75 1.00
Performance Loss

0.0

0.2

0.4

0.6

0.8

1.0 t-test
f-test
Sampling Only
SHA-3
SHA-2

(a) F9

0.00 0.25 0.50 0.75 1.00
Performance Loss

0.0

0.2

0.4

0.6

0.8

1.0 t-test
f-test
Sampling Only
SHA-3
SHA-2

(b) F15

0.00 0.25 0.50 0.75 1.00
Performance Loss

0.0

0.2

0.4

0.6

0.8

1.0 t-test
f-test
Sampling Only
SHA-3
SHA-2

(c) F22

Figure 4.26: Cumulative performance loss of 5 variants of the racing procedure using
FirstTest = 2: t-test, Friedman-test, sampling and selecting based on mean, and
successive halving with reduction factors 2 and 3.

Statistical testing

When considering pairwise comparisons between algorithms, we often use statistical
tests to determine if one algorithm outperforms the other. Two of the most common
tests are the t-test and the non-parametric Wilcoxon rank-sum test.

To more closely analyze these two testing procedures, we re-sample with replace-
ment, for sample size 15, from the set of 200 AOC values of the 33 high-quality
modCMA configurations. Then, we apply a one-sided t-test to the samples of size
15 and measure the fraction of pairs in which the test was “correct”, “incorrect” or
“inconclusive”. We consider here that the test is “incorrect” when, for a pair of algo-
rithms A and B, the null hypothesis that A has a lower mean than B is rejected but
the mean of A is indeed lower than the mean of B based on the 200 values. When
neither of the two one-sided null hypotheses (A has a lower mean than B nor B has a
lower mean than A) are rejected, the test is considered “inconclusive”.

We zoom in on function F9 in Figure 4.25, and look at the difference between
making decisions based on means, t-test and Wilcoxon rank-sum test. We note that
both statistical tests show an error rate that is larger than α for pairs of configurations
with a difference in means up to 60%. We also note that even though the t-test is less
frequently incorrect, it is also more frequently inconclusive compared to the Wilcoxon
rank-sum test, even for configurations whose means differ significantly.

Inconclusiveness is not a factor when comparing based on means, but that comes
with the cost of making more incorrect decisions as well. While the number of incorrect
decisions decreases when adding more samples, the overall observations for the three
comparison procedures remain similar.

105

4.3. Selected Challenges in Algorithm Configuration

102 103 104

Average Used Samples

0

1

2

3

4

5

6

7

8

AU
C

Test
SHA-2
SHA-3
Sampling Only
f-test
t-test
FT
2
5
10
15
25
50

(a) F9

102 103 104

Average Used Samples

0

1

2

3

4

AU
C

Test
SHA-2
SHA-3
Sampling Only
f-test
t-test
FT
2
5
10
15
25
50

(b) F15

102 103 104

Average Used Samples

0

1

2

3

4

5

6

AU
C

Test
SHA-2
SHA-3
Sampling Only
f-test
t-test
FT
2
5
10
15
25
50

(c) F22

Figure 4.27: Comparison of AUC value of Cumulated performance loss (Figure 4.26),
relative to the average amount of samples used by each process.

Racing

To investigate the impact of performance variability on algorithm configuration, we fo-
cus on the racing procedures used by irace, which we simulate using the high-quality
modCMA configurations from Section 4.1.2. In particular, we consider two vari-
ants of the racing procedure [160] using either the t-test or the Friedman-test. In
addition to these racing variants, we also consider two variants of Successive HAlving
(SHA) [120] with reduction factors 2 and 3, respectively. For the races using statis-
tical tests, we loosen the total budget restriction, which is usually used as stopping
criteria [152], (e.g., in irace) to 10 000 total samples, which means we continue the race
until 5 or fewer configurations remain, or until we exceed 10 000 sampled runs (‘target
runs’ in irace terminology). We simulate this race 1000 times for each function and
several values of FirstTest, and show the resulting performance loss for F9, F15, and
F22 in Figure 4.26. In this figure, the performance loss is defined as the difference in
the true mean of the best elite (configuration with the best sampled mean during the
race) against the best configuration which was present in the race.

The cumulative performance loss is compared for both the Friedman-test and t-test
variants of the racing procedure, as well as a naive sampling-only approach that selects
based on means after FirstTest samples have been collected for each configuration.

When comparing the different approaches, we note that there is not a clear winner
across all functions and values of FirstTest. Interestingly, for some of the functions
where Figure 4.20 shows the largest performance losses of irace elites, the races using
the Friedman test seem to perform relatively poorly. This might indicate that for these
functions, we could regain some of the lost performance, if it can be detected during
the algorithm configuration that a different testing strategy would be required.

From Figure 4.26, we can clearly see that any variant of racing or SHA is much more
reliable than the sampling-only approach. However, racing uses more total samples,

106

Chapter 4. Algorithm Configuration and Selection

since it adds runs when needed, while the sampling-only approach uses a fixed number
of samples. The SHA method uses a fixed number of samples as well, but this number
is significantly larger than the sampling-only approach and depends on the reduction
factor used.

In order to account for the differences in total budget, we summarize cumulative
performance loss curves, such as those in Figure 4.26, using their corresponding AUC
values, and plot these AUC values against the total samples used in Figure 4.27.

Here, we see an explanation for the great performance of the t-test: it uses sig-
nificantly more samples for the same FirsTest value than any of the other methods.
This can happen when the test can not make any conclusive decision between the con-
figurations and thus fails to reject enough configurations to reach the 5 elites, using
up the full budget of 10 000 evaluations in the process. This matches our findings
from Figure 4.25a, where we could see that the pairwise t-test often does not give any
decision, even when the difference in true means between configurations is relatively
large.

107

4.3. Selected Challenges in Algorithm Configuration

108

