g
4
s

Universiteit
“dd) Leiden
Mb The Netherlands

1

)
3|
B 3
.
=
.

4

&

o

From benchmarking optimization heuristics to dynamic

algorithm configuration
Vermetten, D.L.

Citation
Vermetten, D. L. (2025, February 13). From benchmarking optimization

heuristics to dynamic algorithm configuration. Retrieved from
https://hdl.handle.net/1887/4180395

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
) in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4180395

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4180395

Chapter 3

Benchmarking Optimization

Algorithms

With the ever-increasing number of available optimization heuristics, insights into
which algorithm effectively tackles which kinds of problem characteristics can be hard
to come by. Theoretical analysis is often limited to relatively small sets of problems
and algorithms, so researchers are forced to rely on empirical results to judge their
algorithm’s effectiveness. Benchmarking aims to bridge the gap between theory and
practice by collecting sets of problems with known characteristics, such that an al-
gorithm’s performance on these problems can be interpreted and compared to other
algorithms.

Benchmarking optimization algorithms in a robust and reproducible manner is a
key challenge in the field. In any given study, design choices regarding the used prob-
lems (including instances of the same problem), number of runs, evaluation budget,
performance criteria etc. have to be made, since each of these variables influences the
types of comparisons which are available, as well as how they can be interpreted.

To ease the barrier to robust, yet flexible benchmarking, we propose the IOHprofiler
framework in Section 3.1 and illustrate how this tool can contribute to multiple parts of
the benchmarking pipeline. Since rigorous benchmarking can result in large amounts
of performance data, we also discuss a project related to the creation of an optimization
ontology, OPTION, in Section 3.1.4. The core of this section is based on [255, 53, 136],
while the problem sets were presented in [43, 177, 242].

As one of the most critical parts of the benchmarking pipeline, we pay particular

19

3.1. IOHprofiler

attention to the choice of optimization problems used in benchmarking algorithms
for continuous optimization: the BBOB suite. In Section 3.2, we discuss an in-depth
analysis of the BBOB functions and the corresponding instance generation process,
originally published in [150].

Finally, in Section 3.3 we note that benchmarking is not limited to the performance-
oriented viewpoint by summarizing several papers on behavior-based benchmarking
in the form of structural bias detection [244, 236].

3.1 IOHprofiler

In this section, we introduce IOHprofiler, a tool developed as a collaboration between
Leiden University and Sorbonne University (France), with additional input and de-
sign help from Tel-Hai College (Isreal). IOHprofiler is a benchmarking platform that
aims to integrate elements of the entire benchmarking pipeline, ranging from problem
(instance) generators and modular algorithm frameworks over automated algorithm
configuration techniques and feature extraction methods to the actual experimenta-
tion, data analysis, and visualization [63, 255, 53|. An illustration of the interplay
between these different components is provided in Figure 3.1. Notably, IOHprofiler

provides the following components:

e IOHproblems: a collection of benchmark problems. This comprises pseudo-
Boolean, discrete, and continuous problem suites [63, 95], as well as several
parameterized problem generators [256]. Section 3.1.3 discusses this component

in more detail.

e TOHalgorithms: a collection of IOHs. For the moment, the algorithms used
for the benchmark studies presented in [63, 7, 51] are available. This sub-
sumes textbook algorithms for pseudo-Boolean optimization, an integration to
the object-oriented algorithm design framework ParadisEO [121], and the mod-
ular algorithm framework for CMA-ES variants originally suggested in [233] and
extended in [51] (discussed further in Chapter 7). Further extensions for both

combinatorial and numerical solvers are in progress.

e IOHdata: a data repository for benchmark data. This repository currently
comprises the data from the experiments performed in several benchmarking
studies [63, 134, 208|, a sample data set used to illustrate IOHanalyzer func-

tionality in Section 3.1.2, and all compatible data sets from the single-objective,

20

Chapter 3. Benchmarking Optimization Algorithms

The Role of IOHanalyzer within the Benchmarking Pipeline

Benchmark Problems Data Repositories
| Problem Generators ‘ Nevergrad
| Hand-Picked Problems | BBOB/COCO
|0Hproblems |0Hdata
+
i
I IOHexperimenter IOHanalyzer
1 Easy-to-use benchmarking of Interactive visualization of -
1 . : :
1 user-defined algorithms and algorithm behavior
H problems, with customizable Robust statistical analysis of
Algorithms tracking of performance perfarmance measures
| Home-Made Heuristics Focus of IOHprofiler
‘ Algorithm Frameworks
I0Halgorithms
| Other Tools for Benchmarking
: t ‘ Statistical Analyses
1
! : ‘ Feature Extraction
1
:____I____ | Automated Algorithm Selection ——————————

Automated Algorithm Configuration

|:| |0Hprofiler Modules

Figure 3.1: Schematic overview of the IOHprofiler, where the focus lies on the IOH-
analyzer and IOHexperimenter.

noiseless version of the COCO repository [4]. IOHdata also contains perfor-
mance data from Facebook’s Nevergrad benchmarking environment [200], which

is updated periodically.

e IOHexperimenter: the experimentation environment that executes IOHs on
IOHproblems or external problems and automatically takes care of logging the

experimental data, which will be discussed in Section 3.1.1.

e IOHanalyzer: the data analysis and visualization tool presented in Sec-
tion 3.1.2.

Related Benchmarking Environments

As argued above, benchmarking IOHs is an essential task towards a better under-

standing of IOHs. It is therefore not surprising that a large number of different tools

21

3.1. IOHprofiler

have been developed for this purpose. We summarize a few of the tools that come

closest to IOHprofiler in terms of functionality and scope.

In evolutionary computation, the arguably best established benchmarking envi-
ronment is the already mentioned COCO platform [95]. Originally designed to
compare derivative-free optimization algorithms operating on numeric optimization
problems [94], the tool has seen several extensions in the last years, e.g., towards
multi-objective optimization [228], mixed-integer optimization [227], and large-scale
optimization [238]. COCO consists of an experimentation part that produces data
files with detailed performance traces, and an automated data analysis part in which
a fixed number of standardized analyses are automatically generated. The by far most
reported performance measures from the COCO framework are empirical cumulative
distribution function (ECDF) curves, see Section 2.4 for definitions. The COCO soft-
ware has a strong focus on fized-target performances [92], i.e., on the time needed to

find a solution of a certain quality.

COCO has been a major source of inspiration for the development of IOHprofiler.
What concerns the performance assessment, the key difference between COCO and
our IOHanalyzer is in the interactive interface that allows users of IOHanalyzer to
study different performance measures, to change their ranges, and granularity. As

mentioned, COCO performance files can be conveniently analyzed by IOHanalyzer.

Another important software environment for benchmarking sampling-based opti-
mization heuristics is the Nevergrad framework [200]. As with COCO, Nevergrad
implements functionalities for both experimentation and performance analysis, accom-
modating continuous, discrete, and mixed-integer problems. It has a strong focus on
noisy optimization, but also comprises several noise-free optimization problems. In
addition to studying IOHs, Nevergrad has a special suite to compare one-shot op-
timization techniques, i.e., non-iterative solvers. The current focus of Nevergrad is
to be seen on the problem side, as it offers several new benchmark problems, rang-
ing from modified versions of BBOB to problems optimizing adversarial attacks of
image detectors. Nevergrad also provides interfaces to the following benchmark col-
lections: LSGO [143], YABBOB [145|, Pyomo [99], MLDA [199], and MuJoCo [226].
The performance evaluation, however, is much more basic than those of COCO or 10-
Hanalyzer, in that only the quality of the finally recommended point(s) is stored, but
no information about the search trajectory. That is, apart from taking a fized-budget

perspective, Nevergrad does not store performance traces, but only the final output.

22

Chapter 3. Benchmarking Optimization Algorithms

3.1.1 IOHexperimenter

To systematically collect performance data from IOHs, a robust benchmarking setup
has to be created that allows for rigorous testing of algorithms. For this purpose, we

introduce IOHexperimenter. This section is based primarily on [53].

Numerous benchmark problems have been proposed within the evolutionary com-
putation community, and these are often implemented many times over, without an
overarching structure or proper maintenance [143, 144, 221]. The importance of using
overarching frameworks to facilitate the benchmarking process has been gaining in-
creasing traction within the community in the last decade, especially after [89] showed
the benefits that these kinds of tools can provide. Since then, two of the most popular
benchmarking tools have been COCO [95] and Nevergrad [200]. While these tools
enable users to benchmark their algorithms with relative ease, their overall design has

some drawbacks.

In the case of COCO, the enforced design of a suite-based structure allows for very
robust benchmarking on problems made available by the developers. However, this
simultaneously restricts users to using only that set of available problems and adds a
complexity barrier for benchmarking algorithms on other problems. In addition, the
logging of performance data follows a fixed framework, and extending it, e.g., to keep
track of dynamic algorithm parameters, is not straightforward. Nevergrad, in contrast,
offers great flexibility with respect to adding new benchmark problems but is severely
limited in terms of the information that is tracked about algorithm performance and
behavior. As mentioned above, it essentially only stores the final solution quality after

exhausting a user-defined optimization budget.

With IOHexperimenter, we offer a benchmarking module that emphasizes extend-
ability and customizability, allowing users to easily add new problems while providing
a comprehensive set of built-in defaults. The logging of performance data is flexible
and allows users to customize the content and frequency of the data collected. To
improve ease of use, several out-of-the-box storage structures are made available, one

of which can be used to collect the same type of data as COCO.
Within the IOHprofiler pipeline, IOHexperimenter can be considered the interface

between algorithms and problems, allowing consistent collection of performance data
and algorithmic data such as the evolution of control parameters that change during
the optimization process. To perform the benchmarking, three components interact
with each other: problems, loggers, and algorithms. Within IOHexperimenter, an

interface is provided to ensure that any of these components can be modified without

23

3.1. IOHprofiler

I0Hexperimenter l

Problems

Built-in suites: + Function definition |
Solvers PBO, BBOB, W-model [ESECIEEC eI Post-Processing
I
I
I

« Transformation

C++ interface Users’ problems |0OHanalyzer

— *
I
! H
‘t
\
\
\
3 R
] \
£
=

L 4

Users’ loggers

1----

Python interface Loggers Users’ analyses
Built-in methods: Som———————g
CSV-logger, ECDF * States of tracking |
‘ ¢ Output format }
- T |
. I
R

Figure 3.2: Workflow of IOHexperimenter.

impacting the behavior of the others, in the sense that any changes to their setup will

be compatible with the other components of the benchmarking pipeline.

Functionality

At its core, IOHexperimenter provides a standard interface towards expandable bench-
mark problems and several loggers to track the performance and the behavior (in-
ternal parameters and states) of algorithms during the optimization process. The
logger is integrated into a wide range of existing tools for benchmarking, including
problem suites such as PBO [63] and the W-model [256] for discrete optimization,
COCO’s noiseless real-valued single-objective BBOB problems [95] for the continuous
case, and submodular problems for constraint optimization [176]. On the algorithms
side, IOHexperimenter has been connected to several algorithm frameworks, including
ParadisEO [121], a modular genetic algorithm [264]|, a modular CMA-ES [51], and
the optimizers in Nevergrad [200]. In [150, 135], the flexibility of IOHexperimenter
was demonstrated by generating interfaces between two aforementioned benchmark-
ing tools to execute algorithms from the Nevergrad framework on the BBOB problems
from COCO.

Figure 3.2 shows how IOHexperimenter can be placed in a typical benchmarking
workflow. The key factor here is the flexibility of its design. IOHexperimenter can be
used with any user-provided solvers and problems given a minimal overhead. It also en-
sures that the output of experimental results follows conventional standards. Because
of this, the data produced by IOHexperimenter is compatible with post-processing
frameworks like IOHanalyzer [255], enabling an efficient path from algorithm design
to performance analysis. In addition to the built-in interfaces to existing software, 10-

Hexperimenter aims at providing a user-friendly, easily accessible way to customize the

24

Chapter 3. Benchmarking Optimization Algorithms

benchmarking setup. IOHexperimenter is built in C++, with an interface to Python.
In this section, we describe the functionality of the package on a high level, without
going into implementation details.! In the following, we introduce the typical usage of
IOHexperimenter, as well as how it can be customized to fit different benchmarking

scenarios.

Problems

Single-Objective Optimization. IOHexperimenter is developed with a focus on
single-objective optimization problems, i.e., instances defined as F' = T, o f o T}, in
which f: X — R is a benchmark problem (e.g., for ONEMAX X = {0,1}¢ and the
sphere function X = R?), and T, and T, are automorphisms supported on X and
R, respectively, representing transformations in the problem’s domain and range (e.g.,
translations and rotations for X = R?). To generate a problem instance, one needs to
specify a tuple of a problem f, an instance identifier ¢ € N+, and the dimension d of
the problem. Any problem instances that reconcile with this definition of F', can easily
be integrated into IOHexperimenter, using the C++ core or the Python interface.
The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base func-
tion. They also allow the user to check algorithm invariance to transformations in
search and objective space. Built-in transformations are available for pseudo-Boolean
functions [63] and for continuous optimization, implementing the transformations used
by [95]. Problems can be combined in a suite, which allows the user to easily run solvers

on collections of selected problem instances.

Constrained Optimization. Similar to benchmark problems, constraints are de-
fined as free functions that compute a value on an evaluated solution, i.e.; C': X — R,
that is non-zero in the case the constraint is violated. IOHexperimenter supports
both hard constraints C} and soft constraints Cs, of which multiple can be added
to any given problem. The single-objective constrained problems are defined by
F. = F o Cy o C, which evaluates to oo when one of the hard constraints Cj, is
violated (given minimization). Otherwise, F, = F + Zi:ol w;(C1)*i, where k is the
number of soft constraints. The weight w; > 0 and exponent «; of a constraint C’i can
be used by the user to customize a penalty for a constraint violation. In this fashion,

arbitrary functions can be added as constraints (thus allowing for both equality and

ITechnical documentation, a getting-started, and several use-cases are available for both C++
and Python on the IOHexperimenter docs at https://iohprofiler.github.io/IOHexperimenter//.

25

https://iohprofiler.github.io/IOHexperimenter/

3.1. IOHprofiler

inequality constraints) to the benchmark problems in IOHexperimenter, allowing the

conversion of existing unconstrained problems into constrained problems.

Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during the
optimization process. These loggers can be tightly coupled with the problems: when
evaluating a solution, the attached loggers will be triggered to store relevant infor-
mation. Information about solution quality is always recorded, while the algorithm’s
control parameters are included only if specified by the user. The events that trigger
a data record are customized by the user; e.g., via specifying a frequency at which in-
formation is stored, or by choosing quality thresholds that trigger a data record when
met for the first time.

A default logger makes use of a two-part data format: meta-information such as
function ID, instance, and dimension, written to . json-files, and the performance data
that gets written to space-separated .dat-files. A full specification of this format can
be found in [255]. Additional loggers to store the data in memory or use different
file structures are available. In addition to the built-in loggers, users can also create
their own custom logging functionalities. For example, a logger storing only the final

calculated performance measure was created for algorithm configuration tasks [65].

3.1.2 IOHanalyzer

In this section, we present IOHanalyzer, a versatile, user-friendly, and highly interac-
tive platform for the assessment, comparison, and visualization of IOH performance
data. IOHanalyzer is designed to assess the empirical performance of sampling-based
optimization heuristics in an algorithm-agnostic manner. Our key design principles
are 1) an easy-to-use software interface, 2) interactive performance analysis, and 3)
convenient export of reports and illustrations.

Several other tools have been developed for displaying performance data and/or
the search behavior in decision space. However, all tools that we are aware of allow
much less flexibility with respect to the performance measures, the ranges, and the
granularity of the analysis or focus on selected aspects of performance analysis only
(e.g., [33, 68] study statistical significance, whereas |78, 209] aim to visualize perfor-
mance with respect to multiple objectives). The ability of IOHanalyzer to link the
evolution of algorithms’ parameters to the evolution of solutions’ quality seems to be

unique.

26

Chapter 3. Benchmarking Optimization Algorithms

IOHanalyzer takes as input benchmarking data sets, generated, e.g., by IOHex-
perimenter, through the COCO platform, or through the Nevergrad environment. Of
course, users can also use their own experimentation platform (IOHanalyzer has a
flexible interface for uploading custom csv-files). IOHanalyzer provides an evaluation
platform for these performance traces, which allows users to choose the performance
measures, the ranges, and the precision of the displayed data according to their needs.
In particular, IOHanalyzer supports both a fixed-target and a fixed-budget perspec-
tive, and allows various ways of aggregating performances across different problems (or
problem instances). In addition to these performance-oriented analyses, [OHanalyzer
also offers statistics about the evolution of non-static algorithmic components, such
as, for example, the hyperparameters suggested by a self-adjusting parameter control
scheme.

To illustrate the functionality of IOHanalyzer, we highlight a selected subset of the

available functionality (which is listed in more detail in Tables 3.1 and 3.2).

Fixed-Target Results » Single Function » Data Summary: This setting pro-
vides basic statistics on the distribution of the fixed-target running time, which are

grouped in 3 different tables:

e TableData Overview: This table provides a high-level summary of the currently
loaded data set. It simply summarizes the range of function values observed in
the data set, offering users a quick overview of the quality of the solutions that
were evaluated by the algorithms by showing summary statistics of the function

values found for the selected function.

e Table Runtime Statistics at Chosen Target Values: A screenshot of this
table is given in Figure 3.3. The user can set the range and the granularity of
the results in the box on the left. The table shows fixed-target running times for
evenly spaced target values.?2 More precisely, the table provides the success rate
and the number of successful runs as defined in Eq. (2.14), the sample mean,
median, standard deviation, the sample quantiles: Qo9, Q5%, - - . , Qogy, and the
expected running time (ERT) as defined in Eq. (2.17). The user can download
this table in csv format, or as a ITEX table.

2These target values are evenly spaced between the user-specified minimum and maximum values
(whose default values are set to be the extreme values found in the data) on a linear or log scale,
based on the difference in order of magnitude between the extreme values found for the specified
function. This same principle is used in all similar tables and plots where both a minimum and
maximum target can be chosen by the user. A notable exception are the cumulative distribution
functions, where arbitrary sets of target values can be chosen by the user.

27

3.1. IOHprofiler
Table 3.1: Fized-budget functionality of IOHanalyzer (v0.1.7).
[Sect104 Group [Functionality [Description
Data O . The minimum and maximum of running times for
ata Lverview selected algorithms.
Data Taroet Value Statis- The mean, median, quantiles of the function value
Summary ticsg at a sequence of budgets controlled by Bmin, Bmax
and AB.
The function value samples at an evenly spaced se-
Target Value Sam- quence of budgets controlled by Bmin, Bmax and
ples
AB.
E‘xpected Ezxpected Target Value: The progression of expected function values over
V:E’:t single function budgets, whose range is controlled by the user.
S . The histogram of the function value a user-chosen
£ Probability Histogram budget.
£ | Density The probability density functi ing the Kernel
£ Function Probability Density e probability density function (using the Kerne
; Density Estimation) of the function value at a user-
L Function
50 chosen budget.
g
n - On one function, the ECDF of the function value
BECDF: single budget at one budget specified by the user.
ggr;m.xll)attl.ve ECDF: single func- On one function, ECDFs aggregated over multiple
1stribution tion budgets.
Area Under the On one functions, the area under ECDFs of function
ECDF values that are aggregated over multiple budgets.
The progression of expected value of parameters
?/Z];;Sted Parameter over the budget, whose range is controlled by the
user.
Algorithm The mean, median, quantiles of recorded parameters
Parameters Parameter Statistics at an evenly spaced sequence of budgets controlled
by Bmin; Bmax and AB.
The sample of recorded parameters at an
Parameter Sample evenly spaced sequence of budgets controlled
by Bmin; Bmax and AB.
The two-sample Kolmogorov-Smirnov test applied
e . . on the running time at a target value for each pair
Statistics Hypothesis Testing of algorithms. A partial order among algorithms is
obtained from the test
Multi- Function Descriptive statistics for all functions at a single tar-
Data L
Statistics get value.
Summary
Multi- Function Hit- Raw hitting times for all functions at a single target
ting Times value.
Eapected Taraet The same as above expect that the expected func-
. Va?ue' all functiongs tion values are grouped by functions and the range
g rI}l‘xpectted - § of budgets are automatically determined.
= arge
1:'} Val\%e Ezpected Target fThe (;:xpectetil ffunctti'on Yalu]e A:tt C;he lz'xrgfstthbufdget
=l Value: Comparison ound on each function is plotted agains e func-
L; tion ID for each algorithm.
Zi Ranking per Func- Per-function statistical ranking procedure from the
::3 tion Deep Statistical Comparison Tool (DSCTool) [69].
= Deep Statistics) Use the results of the per-function ranking to per-
Omnibus Test form an omnibus test using DSC.
Posthoc comparison Use the results of the omnibus test to perform the
P post-hoc comparison.
For each pair of algorithms, a function value at
. ~ _ a given budget is randomly chosen from all sam-
Ranking Glzcko,@ based rank ple points in each round of the comparison. The
g glicko2-rating is used to determine the overall rank-
ing from all comparisons.

28

Chapter 3.

Benchmarking Optimization Algorithms

Table 3.2: Fized-target functionality of IOHanalyzer (v0.1.7).

l Sectiori Group [Functionality Description
. The best, worst, mean, median values and success
Data Overview :
rate of selected algorithms.
Data The mean, median, quantiles, success rate and ERT
Summary Runtime Statistics at an evenly spaced sequence of targets controlled
by fmin, fmax and Af.
. The running time sample at an evenly spaced se-
Runtime Samples quence of targets controlled by fmin, fmax and Af.
ERT: single function The progression of ERT over targets, whose range
Expected is controlled by the user.
g Runti ari 2 s a i 5
5 untime Eapected Runtime Comparing the ERT values of selected mlgo.rlthm.s at
= . pre-computed targets across all problem dimensions
9 Comparisons
g on a chosen problem.
~ . Histoaram The histogram of the running time at a target spec-
%)o i/[robablhty 9 ified by the user on one function.
-;3) Fua:stion Probability Mass | The probability mass function of the running time
Function at a target specified by the user on one function.
. L On one function, the ECDF of the running time at
C}lIIll.llatl.Ve ECDF: single target one target specified by the user.
Distribution - -
ECDF: single func- On one function, ECDFs aggregated over multiple
tion targets.
Ezxpected Parameter | The progression of expected value of parameters
Value over targets, whose range is controlled by the user.
Algorithm The mean, median, quantiles of rgcorded parameters
Parameters Parameter Statistics at an evenly spaced sequence of targets controlled
by fmin, fmax and Af.
The sample of recorded parameters at an evenly
Parameter Sample spaced sequence of targets controlled by fmin, fmax
and Af.
The two-sample Kolmogorov-Smirnov test applied
s . . on the running time at a target value for each pair
Statistics Hypothesis Testing of algorithms. A partial order among algorithms is
obtained from the test.
Multi- Function Descriptive statistics for all functions at a single tar-
Data .
Statistics get value.
Summary - - - — - - -
Multi- Function Hit- Raw hitting times for all functions at a single target
ting Times value.
ERT: all functions The progress of ERTs are groupe.d by functlonls and
Expected the range of targets are automatically determined.
Runtime . The ERTs at the best target found on each function
Ezxpected Runtime R
. (one fixed dimension) is plotted against the function
n Comparisons "
g ID for each algorithm.
el
E’ C{Jml}latl.ve ECDF: all functions On all functions, ECDFs aggregated over multi
= Distribution ple targets.
&3
K Ranking per Func- Per-function statistical ranking procedure from the
= tion Deep Statistical Comparison Tool (DSCTool) [69].
pe]
E:‘ Deep Statistics Ommibus Test Use the resul_ts of the p?r—functlon ranking to per-
form an omnibus test using DSC.
. Use the results of the omnibus test to perform the
Posthoc comparison .
post-hoc comparison.
For each pair of algorithms, a running time value
) Glicko2-based rank- at a given t.arget is randomly chosen frOI.n all sam-
Ranking in ple points in each round of the comparison. The
g glicko2-rating is used to determine the overall rank-
ing from all comparisons.
Contribution to Calculate the approximated Shapley values indicat-
Portfolio portfolio (Shapley- | ing the contribution of each algorithm to the overall
values) portfolios ECDF.

29

3.1. IOHprofiler

Runtime Statistics at Chosen Target Values =

This table summarizes for each algorithm and each target value chosen on the left:

Set the range and the granularity of the results.
The table will show fixed-target runtimes for * runs: the number of runs that have found at least one solution of the required target quality f(z),

evenly spaced target values, « mean: the average number of function evaluations needed to find a solution of function value at least f(z)

« median, 2%, 59 . ; thitine t
e median, 2%, 5%,...., 98% : the quantiles of these first-hitting times

When not all runs managed to find the target value, the statistics hold only for those runs that did. That is, the mean value is the mean of the

‘ B successful runs. Same for the quantiles. An alternative version with simulated restarts is currently in preparation.
fuax : Largest target value Show entries
- PAR-
16 D target ‘mean median sd 2% 5% 10% 25% 50% 75% 90% 95% 98%

1

Af : Granularity (step size)

133

1 RS 4 1 1 0 1 1 1 1 1 1 1 1 1 1
O fuin = fauax? Once toggled, only fuin
is used to generate the table on the 2 RS 533 128 11 128 1 1 1 1 1 1 1 2 2
right.
3 RS 6.66 164 1 16 164 1 1 1 1 1 1 2 5 5
Select which IDs to include:
4 RIS 7.99 2.36 2 218 2.36 1 1 1 1 1 3 4 7 7
RLS self_GA
5 RS 9.32 524 5 346 524 1 1 1 2 5 6 10 12 12
Format 6 RS 10.65 82 7 532 82 1 1 1 5 7 9 13 17 17
v M 7 RS 1198 1192 10 671 1192 2 2 4 8 10 15 19 23 23
& save this table 8 RS 1331 21 a7 2 5 5 7 14 18 2 34 a7 7
9 RIS 14.64 29.16 29 1047 2916 12 12 15 18 26 36 40 8 48
10 RS 15.97 46.48 48 2165 4648 13 13 19 2 2] 58 7 83 83
Showing 1to 10 of 22 entries Previous | 1 | 2 3 Next

Figure 3.3: Screenshot of the data summary table of some descriptive statistics on
the running time.

e Table Original Runtime Samples: This table uses the same principle as the
Runtime Statistics:, but instead displays the values for each individual run.
For this table, the user can choose between a “long” (all sample points are ar-
ranged in a column) and a “wide” format (all sample points are arranged in a

row).

Fixed-Target Results » Single Function » Expected Runtime: An interac-
tive plot illustrates the fixed-target running times. An example of this plot is shown
in Figure 3.4. The interactive plot can be adjusted in the menu on the left as shown
in the figure. These options include showing/hiding mean and/or median values along
with standard deviations and scaling the axes logarithmically. The user selects the
algorithms to be displayed as well as the range of target values within which the curves
are drawn. By default, this range is set as [Qa25%, Q75%) of all function values measured
in the data set. The displayed curves can be switched on and off by clicking on the
legend on the bottom of the plot.

30

Chapter 3. Benchmarking Optimization Algorithms

Expected Runtime (ERT): single function

The mean, median, standard deviation and ERT of the runtime samples are depicted against the best objective values. The displayed elements
Select which IDs to include: (] (mean, median, standard deviations and ERT) can be switched on and off by clicking on the legend on the right. A tooltip and toolbar appears
RLS ‘self_GA when hovering over the figure.

Range of the displayed target values

Fuin - Smallest target value 100 -

4
Funux : Largest target value
16

show]hide ERT

O Show/hide PARX [}

Function Evaluations
3

O show/hide mean +/- sd 4

O show/hide outer quantiles o ’

O Show/hide median

O show/hide fixed-probability line L

Scale x axis logy, 4 6 7 s 9 10 1 2B 1415 16 17

Scale y axis logg

+
_ - A

Select the figure format

Best-so-far f(x)-value

pdf -

Figure 3.4: Screenshot of the expected running time plot.

Fixed-Target Results » Single Function » Algorithm Parameters: One of
the key motivations to build IOHprofiler was the ability to analyze, in detail, the
evolution of control parameters which are adjusted during the search. Such dynamic
parameters can be found in most state-of-the-art heuristics. While in numerical opti-
mization a non-static choice of the search radius, for example, is needed to eventually
converge to a local optimum, dynamic parameters are also more and more common
in discrete and mixed-integer optimization heuristics [119, 60]. In the fifth group of
fixed-target results for a single function, the evolution of the parameters is linked to
the quality of the best-so-far solutions that have been evaluated. In the experimenta-
tion (i.e., data generation) phase, the user selects which parameters are logged along
with the evaluated function values. These values are then automatically detected by

IOHanalyzer and can be chosen in this group for analysis.

As with the interactive plots on expected running time, the user can choose the
range of targets, which parameters and algorithms to plot, and the scale (either loga-
rithmic or linear) of 2- and y-axis. We omit the example for parameters as the GUI is
similar to the one in Figure 3.4. As with “Fixed-Target Results » Single Function »

Data Summary”, this subsection also provides for each parameter tables of descriptive

31

3.1. IOHprofiler

statistics (sample mean, median, standard deviation, and some quantiles) as well as

the original parameter values.

Hypothesis Te:

The Kelmogorov-Smirnov test is performed on empirical CDFs of running times for each pair of algorithms, in order to determine which algorithm gives a significantly

Algorithms to compare smaller running time distribution. The resulting p-values are arranged in a matrix, where each cell (i, j) contains a p-value from the test with the alternative hypothesis:
(LHAA) GA (111) EAL>0 gHC (1110) EA_{/2,21} the running time of algorithm i is smaller (thus better) than that of j.
(1410]EA >0 (1+10] EA_logNormal Show[15 +|entries

(1+10) EA_normalized (1+10) EA_var_ctrl UMDA

s
1+1)fGA (30,30) vGA RLS 1+1) 101 1+10) 1410 1410 1410 1410 30,30)
¢) oy w0 o) (10) - (1420) w0 (1+10) B30 L as uwon
o EA>0 GA EA_{r/2,2¢} EA>0 EA_logNormal EA_normalized EA_var_ctrl VGA
Target function value
Jr (1+(AN)) GA NA 005451 000220 0.00220 000220 0.00220 0.00220 0.01071 0.00299 100000 100000 0.00220
5 (LEAS0 Looooo NA 024319 000220 Loooo 091847 100000 100000 000299 100000 100000 100000
significe level o (141)76A 100000 100000 NA 024319 100000 1.00000 100000 1.00000 000299 100000 100000 100000
001 ()
oo 100000 100000 100000 NA 100000 100000 1.00000 100000 000299 100000 100000 100000
Size of the bootstrap sample A
(1+10) FA >0 100000 100000 1.00000 0.01071 NA 1.00000 100000 1.00000 0.00299 100000 1.00000 1.00000
(0)
e ol 00000 100000 100000 0.24379 100000 NA 1.00000 1.00000 000299 100000 100000 100000
logNormal
Select the table format T
. 1.00000 1.00000 001071 0.00220 0.05451 0.05451 NA 1.00000 0.00299 100000 1.00000 0.05451
e - £A normalized
(1+10)
100000 100000 001071 0.00220 oown oow0n 100000 NA 000299 100000 100000 002071
& Download the table FA var_ctrl
(30,30) vGA 100000 100000 100000 100000 100000 100000 100000 100000 NA 100000 100000 100000
Select the figure format
gHC 000220 000220 000220 0.00220 000220 000220 000220 000220 000299 NA 000220 000220
pet -
RIS L0000 001071 000220 000220 000220 000220 000220 000220 000299 100000 NA 000220
& Download the heatmap
MDA 100000 100000 100000 0.01071 100000 100000 100000 100000 000299 100000 100000 NA
Showing 1 to 12 of 12 entries. Previous 1 Nex

Decisions of the test, based on the p— value matrix and the avalue, are visualized in a heatmap (left) and a network (right). In each cell (row, column) of the heatmap, the alternative hypothesis is again: the row algorithm has
smaller (better) running time than the column. The color indicates:

* Red: A row s better than the column
* Blue: Arowis worse than the column

* Gray: no significant distinction between the row and colum

On the right subplot, the partial order resulted from the test is visualized as a network, where an arrow from algorithm A to Bindicates A s siginicantly better than B with the specified o value.

oo .

(1+1) EA_>0-

(1410 A >0 sy Ga

@ ®

(1+1) foa-]
(141) BA >0

1410/ EA hp@m

(1410) EA (1/2,21)]
(1+10) EA_>0-]

(1+10) EA_logNormal |

e i sl @

(1+10) EA_normalized-}

(1+10) EA_var_ctrl-

@ v

(1410) EA var_ct

(3030)v6
o] © @

Figure 3.5: Screenshot of the multiple testing procedure applied on all 12 reference
algorithms on function f1 and dimensionality 625. The table shows the p-values
resulting from the pairwise KS-test between each pair of algorithms. Then, based on
the a = 0.01, the resulting hypothesis-rejections are shown in both the matrix-plot
and the network.

32

Chapter 3. Benchmarking Optimization Algorithms

Fixed-Target Results » Single Function » Statistics: To address the robust-
ness of empirical comparisons, the samples from all algorithm must undergo a proper
statistical test procedure [103]. In IOHanalyzer, a standard multiple testing procedure
is implemented to compare the fixed-target running time for each pair of algorithms on
a single function, for which the well-known Kolmogorov-Smirnov [161] test is applied
to the ECDFs of running times. Moreover, the Bonferroni procedure [19] is used to
correct the p-value in multiple testing. To demonstrate this functionality, we show, in
Figure 3.5, the testing outcome of a data set from running 12 reference algorithms.? It
can be loaded to the web-based GUI by selecting the PBO data set in the “upload data”
section. The data set comprises the results of the experimental study described in [63].
on the PBO problem set from [63], instead of the exemplary two-algorithm data set
used previously. Here, the test is conducted across all 12 algorithms on function f1
and dimensionality 64 with a confidence level of 0.01. The result of this procedure is
illustrated by a table of pairwise p-values, a color matrix of the statistical decision,
and a graph depicting the partial order induced by the test (i.e., an arrow pointing
from Algorithm 1 to Algorithm 2 is to be read as Algorithm 1 dominating Algorithm 2
with statistical significance). As with all tables and figures in IOHanalyzer, these can
be downloaded in several formats, including tex and csv for tables and pdf and eps

for figures.

Fixed-Target Results » Multiple Functions » Cumulative Distribution: In
this group, ECDFs of running times are aggregated across multiple functions, as de-
fined in Eq. (2.19). This functionality is illustrated in Figure 3.6: a table of pre-
calculated target values are provided for each function (all test functions are included
by default). This table of targets can easily be edited directly in the GUI, or by
a downloading-editing-uploading procedure (which should, of course, not change the
format of the tables, just the values). Note that for these ECDF-figures, the corre-
sponding Area Under the Curve (AUC) can also be calculated to get a single value for
each algorithm. These AUC-tables are available in the same tab as the ECDF plot.

3.1.3 IOHproblems: Benchmark Suites

Within the IOHprofiler environment, we have the ability to access a wide variety of
benchmark problems. Because of the emphasis on extensibility, several benchmark

suites have been integrated and used in works related to this thesis. In this section,

3This data set is available at https://github.com/IOHprofiler/IOHdata/blob/master /iohprofiler/
2019gecco-insl-11run.rds

33

https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/2019gecco-ins1-11run.rds
https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/2019gecco-ins1-11run.rds

3.1. IOHprofiler

Aggregated Empirical Cumulative D

Select which IDs to include: o
RLS self_GA

Aggregate functions

Functions to include:
121923

O Aggregate dimensions

Scale x axis log;,

The fraction of (run,target value, ...) pairs (i, v, . .) satisfying that the best solution that the algorithm has found in the i-th (run of function f
in dimension d) within the given time budget ¢ has quality at least v is plotted against the available budget t. The displayed elements can be
switched on and off by clicking on the legend on the right. A tooltip and toolbar appears when hovering over the figure. Aggregation over
functions and dimension can be switched on or off using the checkboxes on the left; when aggregation is off the selected function /
dimension is chosen according the the value in the bottom-left selection-box.

0.9-
£
O Scaleyy axis logy, (] ES
o8-
T
Refresh the figure £
g o7
e
o = 06~
Select the spacing for the 3
automatically generated ECDF- g
targets: £ os
—
linear - 2
& oa-
Select the number of ECDF-targets to
generate for each 03-
function/dimension
1 2 5 10 2 5 100 2 5 les3 2 5 lewd 2
10
Alternatively, you can download the Function Evaluations
table containing the target values for
=——RLS self GA

each (function, dimension)-pair and
edit the table as you want. Please keep
the file format when modifying it.

& Download the table of targets

The approximated Area Under the Curve of this displayed ECDF is:

Show |10 v |entries

D x auc
Upload the table you just downloaded Al Al Al
and edited
RLS 16001 0.098240261563132
Browse... Nofile selected
self_GA 16001 0.988026168968506
) Showing 10 2 of 2 entries Previous ‘ 1| Next
figure format to download
The selected targets are:
pdf M
Download the fi
RIS funcld DIM target
Al Al Al
Format
v M 1 16 4
&, Download the AUC table 1 16 5.33233332323333
1 16 6.66666666666667
1 16 8
1 16 9.33333333323333
1 16 1066666666667
1 16 12
1 16 13.2223333333322
1 16 1466666666667
1 16 16

Showing 1 to 10 of 40 entries

Previous 23 4 Next

Figure 3.6:
targets.

Screenshot of aggregated ECDF curve across multiple functions and

34

Chapter 3. Benchmarking Optimization Algorithms

we provide an overview of the available suites and highlight some of the most inter-
esting results obtained when performing several benchmarking studies. Throughout
this thesis, we place a heavy emphasis on the Black-Box Optimization Benchmarking
(BBOB) suite [96]. As such, we will discuss this suite in detail in Section 3.2.

The PBO-suite and W-model The Pseudo-Boolean Optimization (PBO) suite
was the first set of benchmarking problems integrated in IOHprofiler. This suite con-
sists of 25 problems, ranging from the well-known OneMax to N-Queens. Included
in this suite is a set of problems based on the W-model problem generator proposed
in [258] (the W-model generator is also available in IOHprofiler). The full description
of the problems, as well as results from several well-known optimizers, are available
in [63]. This paper also highlights the benefits of flexible parameter tracking, allow-
ing for a detailed analysis of self-adaptive parameters of several GA-variants. Later,
another well-known generator of pseudo-Boolean problems (MK-landscapes) was inte-
grated [225].

Submodular Optimization As part of the 2023 Competition on Submodular Op-
timization at the Genetic and Evolutionary Computation Conference (GECCO), we
integrated four different types of (constrained) submodular optimization problems into
IOHprofiler: Maximum Coverage, Maximum Influence, Maximum Cut, Packing While
Traveling. For each of these problems, we provide several underlying graph instances,
leading to a total of 66 functions. Since these functions can either be treated as un-
constrained single-objective (by integrating the constraint into the objective function),
constrained single-objective or multi-objective, they allow for an interesting compari-

son of different types of solvers [177, 80].

Star Discrepancy Discrepancy measures are designed to quantify how regularly a
point set is distributed in a given space. Among the many discrepancy measures, the
most common one is the Lo, star discrepancy (referred to as simply star discrepancy
from here on), which is especially important in numerical integration [129, 102], but
also in e.g. the design of experiments [207] or in the context of one-shot optimiza-
tion |21, 20].

The computation of star discrepancy of a set P of n points in a d-dimensional
unit-hypercube can naturally be formulated as a real-valued optimization problem on
[0,1)4. However, there is an equivalent discrete formulation [179] on the space [0,n)%.

These two formulations of the same underlying problems again allow for potential

35

3.1. IOHprofiler

0.2

o %.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 00 02 04 06 08
Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Figure 3.7: Discrepancy values of the first 5 instances of the 2-dimensional version of
F31: Uniform sampler with 20 points. The red points indicate the originally sampled
points.

comparisons of very different optimization algorithms on the same underlying problem.

To create specific problems for benchmarking, we vary the number of samples in
our point sets, as well as the sampler used to create those points. By using Uni-
form, Halton and Sobol samplers for n € {10, 25, 50, 100, 150, 200, 250, 500, 750, 1000},
resulting in 30 problems in IOHexperimenter, with function IDs 30-59. Each prob-
lem can additionally be scaled to arbitrary dimensionality, and different instance are

obtained by using different seeds for the samplers.

To illustrate the structure of the continuous version of the star discrepancy prob-
lems, we show several landscapes in Figures 3.7 and 3.8. Figure 3.7 illustrates the
local star discrepancy values for an instance in d = 2. We can already observe that
the problem of maximizing the local L., star discrepancy bears two important chal-
lenges: (1) it is a multimodal problem, i.e., there can be several local optima in which
the solvers can get trapped (this problem becomes worse with increasing dimension-
ality); (2) there are sharp discontinuities in the local discrepancy values. Slightly
increasing one parameter can result in a point falling inside the considered box, caus-
ing a 1/|P| difference in the local star discrepancy value. Figure 3.8 shows that the

problem structure also depends strongly on the point set considered.

To test the performance of our black-box optimization algorithms, we look at
the final solutions found by each of the 8 selected optimizers from the Nevergrad li-
brary [200]. In order to create a fair comparison, we transform the original discrepancy
values to a relative measure, based on the bounds found by two algorithms specifically

designed for star discrepancy computation: TA [84] and DEM [59]. Specifically, we

36

Chapter 3. Benchmarking Optimization Algorithms

X . 0. 0.6 X
Uniform Sobol Halton

Figure 3.8: Comparison of the 3 samplers for 1000 points in 2D, and the corresponding
discrepancy landscapes (instance 1 for F39, F49, and F59 in IOHexperimenter respec-
tively).

consider the following measure:

_ OPT(x) — f(x)

R(z) = OPT(7) — min,

where f(z) is the final value found after the optimization run, and OPT(z) is the
bound calculated by the parallel DEM or TA, depending on the instance size.

Using this relative measure, we can compare the final solutions found by each
optimization algorithm across a set of different values of n and d. This is visualized
in Figure 3.9. In this figure, we see that the SPSA algorithm is clearly performing
poorly, while Random Search seems to be competitive with, if not superior to, all other
algorithms for every scenario. In addition to the ranking between algorithms, we also
note a clear increase in problem difficulty as the dimensionality increases. Conversely,
the number of samples seems to have a rather limited impact on the relative difficulty.
This suggests that the structure of the point set has little influence on the performance
of the optimizers.

Overall, these results suggest that the star discrepancy benchmarks are challenging
for current black-box optimization approaches since random search outperforms every

other algorithm considered.

Strict Box Constrained BBOB The final set of benchmark problems we consider
is the suite of strict box-constrained BBOB problems (SBOX), which was introduced
as part of the workshop at GECCO 2023 under the same name. This suite does not
contain any new problems, but instead modifies the BBOB suite by adding strict box
constraints ([—5, 5], evaluating outside the domain yields a value of co). In addition,

it modifies some of the instance generation procedures to allow the optimum to be

37

3.1. IOHprofiler

E“é ot ettt gtint T

” ST I

o

T

. v’
b ééé eéééa ¢hate?

: T 2

ALaD
.
{Ip.

-

-

& -

= 2
Ya
-

il
-
=
+
|
W
-
-+

0.0

500

At T
= — ; - & T Tt
bypgt] +etet THTYE

F
<|}.
<l
4'}»
-
<4
ra

-
+

0.0

1000

-
{',

-
4'1..

s i
-
-

o

cma] -

tion
PSA

arch 4{.}
ition
CMA
PSA
arch
yla
PSO
SPSA.
PSO
EMNA
tion
ICMA.-
PSA-
arch
byla
PSO
EMNA

IIIII

DiagonalCMA.
Diagona
Diagona
RCobyla
NGOpt14
RC:
NGOpt14

RandomSearch
Randoms
Randoms
RandomSearch
Diagona
Randoms

DifferentialEvols
DifferentialEvoluti
DifferentialEvol

D=2 D=4 D=6 D=8 D=15

Figure 3.9: Relative final discrepancy value found by each of the used optimizers.
Values of 0 correspond to finding the optimal solution, while 1 corresponds to the
worst achievable value (0 discrepancy). Box-plots are aggregations of 10 runs on 10
instances, all for the uniform sampler.

located closer to the bounds of the domain. Submissions to this workshop opened up
some insightful discussions about the need for box-constraint handling and its relations
to reproducibility [242, 167, 57, 27, 114].

3.1.4 Benchmark Data: OPTION

As evident from the large number of benchmark suites and optimization problems,
rigorous benchmarking has the potential to generate vast amounts of data. Within
the current structure of IOHprofiler, we integrate data for hundreds of algorithms,
achieved by integrating with several other platforms. We incorporate COCOs histori-
cal data collected from over a decade of workshops, Nevergrads ever-expanding set of
benchmarks and optimizers, our own competitions, and much more. By making this
data easily accessible in IOHanalyzer, comparisons to existing data are made easier.
However, this technique does not fully exploit all information present in this bench-
mark data. To gain more insight from the existing data, a structured way of storing
and querying is required.

One well-established solution to the problem of managing such complex data pools

38

Chapter 3. Benchmarking Optimization Algorithms

is the use of ontologies. Ontologies are specifications of a shared conceptualization of
data from distributed and heterogeneous systems and databases, and as such, they
enable data interoperability, efficient data management and integration, and cross-
database search. For this purpose, we collaborated on the creation of the OPTi-
mization Algorithm Benchmarking ONtology (OPTION). This ontology was
designed with the main goal of standardizing and formalizing knowledge from the
domain of benchmarking optimization algorithms, where an emphasis was put on the
representation of data from the benchmark performance space. OPTION offers a com-
prehensive description of the domain, covering the benchmarking process, as well as
the core entities involved in the process, such as optimization algorithms, benchmark
problems, evaluation measures, etc. We summarize some of the key design choices for
the design of OPTION.

Performance Data There exist many different benchmarking platforms for opti-
mization, each with its own way of storing performance and algorithm data. Three

main approaches to the storage of performance data are described below:

e csv-based: The data is stored as a single file per experiment in a csv-based
format, where each column represents a performance measure or other meta-
information. An example is the format used in Nevergrad [200]. This allows
for storing data on many different functions/problems into a single file, with the

drawback that the granularity of the data is often limited.

e Textfile-based: The data is separated into a single file per function/problem,
where the meta-information is delimited in some way, followed by the perfor-
mance information. This format is easily extendable and human-readable, but
it can be hard to work with when files become large. An example of this format
is used by the SOS platform [38].

e COCO/IOH-like: The data is separated into multiple files and folders: gen-
erally, folder structure splits along algorithms and functions/problems. Each
folder then contains a file with meta-information about the runs, with links to
the files where the raw performance data is stored. This structure makes it easy
to find the data sought, but the different links to the files can be an obstacle for
practitioners who are not used to this format. Variants of this data format are
used by COCO [95] and IOHprofiler [62].

As mentioned, each of these data formats has its advantages and disadvantages. While

39

3.1. IOHprofiler

there are some commonalities between different methods, the particularities in han-
dling meta-data make interoperability of the data from different sources challenging.
Furthermore, these differences lead to more limited post-processing functionalities
available to the users of these platforms since they are only compatible with those
tools that support their particular data format. While these tools are slowly becom-
ing more interoperable, this process requires significant effort from the developers of
the individual tools to make sure all data formats are fully supported. A common
data structure would be useful to the benchmarking community to avoid each devel-
oper having to do this individually.

In order to create such a common structure, it is crucial to identify the core com-
ponents of performance data that would be needed in the analysis. Then, an explicit
conversion needs to be made for each data format, which extracts these properties
from the original data format. Some previous efforts show that it is possible to make
such conversions and then jointly analyze data which has been originally stored in
different data formats. In particular, performance data from Nevergrad, COCO, I10-
Hexperimenter, and from the SOS platform can be conveniently analyzed through the
IOHanalyzer [255].

Problem Landscape Data In addition to the performance data discussed above,
we also integrate information about the problems themselves, in the form of ELA
features (see Section 2.5). In particular, we use the dataset [202] containing pre-

calculated ELA features for the instances of the BBOB problems we consider.

Domain challenges for data integration A source of complexity in recording
performance data from black-box optimization is that we typically do not use a single
performance measure. Instead, we are interested in analyzing algorithm performance
from different perspectives: small vs. large budgets, the time needed to identify solu-
tions that meet specific quality criteria, the robustness of the algorithm in search and
performance space, etc. [§].

To enable such detailed analyses, researchers often record performance data in a
multi-dimensional fashion, spanning at least the time elapsed (measured in terms of
CPU time and/or function evaluations), solution quality, and robustness. We may also
be interested in how dynamic parameters evolve during the optimization process, in
which case we record their values along with the performance data. Both requirements
add another level of complexity to the data formats and may explain why they differ

so much in practice.

40

Chapter 3. Benchmarking Optimization Algorithms

There are several other factors that further complicate the interoperability and
re-usability of publicly available performance data from different benchmarking ex-

periments:

e Most black-box optimization algorithms are, in fact, families of various algorithm
instances. They can be selected by specifying the (hyper-)parameters of the al-
gorithm and/or the operators (e.g., one may speak of Bayesian optimization
regardless of the internal optimization algorithm that is used to search the sur-
rogate model, or one may use different acquisition functions, different techniques
to build the surrogate, etc.). Different configurations can lead to drastically dif-
ferent search behavior (and hence performance), and it is crucial to associate
the recorded data to the appropriate algorithm instance and not only to an algo-
rithm family. However, this is not an easy task, as it can happen that essentially
the same algorithm is published under different names (see [35, 218] for recent

examples and a discussion, respectively).

e A similar issue appears on the problem side. Different instances of the same
problem can be of different complexity, and it is not always clear which problem
instances were used within a given benchmark study. In addition, some bench-
marking suites automatically rotate, shift, permute, or translate the problem
instances, to test specific unbiasedness characteristics and the generalizability
of the algorithms. Other suites do not do this (e.g., because the variable order
or absolute values carry some meaning) but still refer to problems of differ-
ent complexity under the same name. As for the algorithms, we can also have
the same problem appear under different, possibly multiple, names. The ONE-
Max problem, for example, is sometimes called COUNTINGONES, ONESMAX,
the Hamming distance problem, or Mastermind with 2 colors. All these names

refer to the same problem.

Identifying such issues cannot (as of yet) be done automatically but require hu-
man expertise to annotate the data correctly. While this requires a significant amount
of effort for the large amounts of currently available benchmarking data, we aim for
the procedure to convert from different data formats to be automated where possible
(e.g., by involving the authors of the different benchmarking platforms) and clearly
structured where not. In the future, this would then become second nature when
introducing a new algorithm / problem / experimental setup, allowing the data ontol-
ogy to grow organically. The creation of reproducible and readily available data will

eventually benefit the optimization community as a whole, so the efforts invested to

41

3.1. IOHprofiler

achieve this goal would be very much worthwhile.

The Knowledge Base The OPTION ontology contains the semantic model, rep-
resented in a formal and standardized way. The OPTION Knowledge Base (KB), on
the other hand, leverages the power of the ontology and holds the actual data that
has been semantically annotated. This KB is created by annotating data from COCO
and Nevergrad for performance data, and ELA features for the BBOB functions for
the landscape data.

OPTION in IOHprofiler To query the OPTION KB, SPARQL queries can be
used. However, SPARQL queries can become very complex and sometimes are seen as
a bottleneck to the broader acceptance of Semantic Web technologies. We recognize
that SPARQL query construction is an error-prone and time-consuming task that
requires expert knowledge of the whole stack of semantic technologies. Even experts
find it sometimes challenging to query semantic data since they first must get familiar
with the data annotation schemes or the structure of the knowledge base.

To facilitate the use of the OPTION ontology, we provide a simple GUI that can
be used to gain access to performance data without needing to write SPARQL queries.
This interface is connected directly to IOHanalyzer, which enables the loaded data to
be used directly in performance analysis and visualization, and even be compared to
data that might not yet be included in OPTION or to user-submitter performance
data. Furthermore, the GUI provides access to a parameterized search process, which
can be used without any underlying knowledge about the used semantic data model.
Users can express their query by selecting from several drop-down options, which
specify the required information, such as suite, function, algorithm, etc., and load the
corresponding performance data to analyze. This interface is shown in Figure 3.10.
While this interface is static, it illustrates the power of integrating the ontology into
IOHanalyzer: users without any background knowledge can use it to gain insight into
the performance of the selected algorithms/functions.

Additionally, this interface can be easily expanded based on the community’s
wishes. To illustrate this potential, we created another entry point into OPTION,
which can be used to load all performance data which originated in a specified paper.
To this end, the user selects a paper by its title, which then populates the relevant
information about the used algorithms and functions in that study. By loading this
pre-selected data, the user has full access to the performance data of the selected

study, which they can then investigate in more detail by making use of the visualiza-

42

Chapter 3. Benchmarking Optimization Algorithms

Load from repositories

Repository i

OPTION -

Load the data from the OPTION-Ontology
Pre-select algorithms from existing study i
Benchmarking SHADE algorithm enhanced with model based optimization gn

the BBOB noiseless testbed

Please choose the data source

BBOB -

Please choose the algorithms

SHADE-LM-POP4-to-10 SHADE-LM

Please choose the functions

fl 10 fi1 f12 f13 f14 f15 f16 f17 f18 fl9 f2 f20 f21 f22 f23 f24
34 f5 f6 f1 18 1

Please choose the dimensions

2351020

Please choose the instances

12345

Load Data

Figure 3.10: The interface of the OPTION-ontology queries within IOHanalyzer (ver-
sion 1.6.3), available at https://iohanalyzer.liacs.nl/.)

tions within IOHanalyzer. This type of interactive analysis then allows the user to

look at the data from different perspectives and to compare it to other algorithms.

3.2 Benchmark Suites: BBOB

Originally developed as part of the COCO platform [95], this set of 24 continuous,
single-objective, noiseless problems has become the de facto standard when comparing
numerical optimization algorithms for continuous optimization problems. These 24
functions can be separated into five core classes based on their global properties, as
seen in Table 2.1. In fact, the suite has been designed to ensure that each problem
poses a different ‘challenge to the optimization algorithm. For example, the ellipsoidal
function adds ill-conditioning the the sphere problem, so when an algorithm performs
well on the latter but not the former the designer gains insight into the deficiencies of
their algorithm.

For each BBOB function, arbitrarily many problem instances can be generated by

applying transformations to both the search space and the objective values [96] — such

43

https://iohanalyzer.liacs.nl/

3.2. Benchmark Suites: BBOB

mechanism is implemented internally in BBOB and controlled via a unique identifier
(also known as IID) which defines the applied transformations (e.g. rotation matrices).
For most functions, the search space transformations are made up of rotations and
translations (moving the optimum, usually uniformly in [—4,4]%).* Since the objective
values can also be transformed, the performance measures used generally are relative
to the global optimum value to allow for comparison of performance between instances,
typically in logarithmic scale.

This instance generation method is certainly useful for many applications. For
instance, different instances have been considered to enable comparisons between
stochastic and deterministic optimization algorithms [189], since using a different in-
stance can in some way be considered as changing the initialization of the deterministic
algorithm. It also enables an algorithm designer to test for some invariance properties,
particularly with regard to scaling of the objective values, and rotation of the search
space [96]. Recently, instances have also been used in a more machine learning (ML)
based context, e.g., methods for algorithm selection are trained and tested based on
different sets of instances [135].

While creation of different instances of the same function has been very useful to
many benchmarking setups, the underlying assumption that the function properties are
preserved is a rather strong one. For a simple sphere function, the impact of moving
the optimum throughout the space can be reasoned about relatively easily, but the
impact of the more involved transformation methods on more complex functions is
challenging to quantify directly. In addition, the fact that black box optimization
problems are in practice often considered to be box-constrained [8], while BBOB was
originally designed based on unconstrained function definitions [95], introduces the
possibility that some transformations might change key aspects of the function. In
fact, it has been shown that the properties of box-constrained functions captured
using landscape analysis are not necessarily consistent across instances [171].

In order to analyze the resulting low-level properties of optimization problems,
various features of the landscape can be computed. This falls under the field of ex-
ploratory landscape analysis (ELA) [165]. While some analysis into the ELA features
across instances of BBOB problems has been previously performed [175], we extend
the scope of our analysis to include a much wider range of instances. In addition, we
consider several other low-level features, such as the location of the global optima, to

develop an extensive understanding of the way in which instances might differ. Since

4While the suite is originally intended to be used for unconstrained optimization, in practice
however, black box optimization functions like this are often considered to be box-constrained [8], in
the case of BBOB with domain [—5, 5]%.

44

Chapter 3. Benchmarking Optimization Algorithms

we deal with the box-constrained version of the BBOB problems, we also investigate
the performance of a set of algorithms, in order to verify that these algorithms perform
similarly on different instances of a function — this extends the approach taken in [242].

In this section, we investigate whether the problem characteristics (in the form of
ELA features) are preserved across different problem instances and whether the first
few (most commonly used) instances are representative of the wider set. In addition,
we study whether statistically significant differences in algorithm performance can be

found between different instances of the same BBOB problem.

Instance Similarity using ELA

We first focus on analyzing the problem characteristics of different BBOB problem
instances based on the ELA approach. For each BBOB instance, we generate 100
sets of DoE data with 1000 samples each using the Latin Hypercube sampling (LHS)
method (so the DoEs are identical for all instances), in order to obtain the ELA feature
distribution. We consider a total of 68 ELA features that can be computed without
additional sampling, using the package flacco [127, 125] and the pipeline developed in
[148]. Three of the ELA features, which resulted in the same value across all instances,
are deemed not informative and hence dropped out; this means that a final set of 65

ELA features is being considered here.

Comparing Distributions. To investigate how comparable the characteristics of
different problem instances are, we carry out the (pairwise) two-sample Kolmogorov-
Smirnov (KS) test [161], with the null hypothesis that the ELA distribution is similar

5005& = 124750 comparison

in both (compared) problem instances. This results in
pairs per ELA feature. To account for multiple comparisons, we apply the Benjamini-
Hochberg (BH) method [12]. To get an overview of differences for a particular ELA
feature of each BBOB function, we compute the average rejection rate of the afore-
mentioned null hypothesis of the KS test by aggregating all problem instances (i.e.
number of rejections divided by total number of tests). In other words, it shows the
fraction of tests which rejected each combination of ELA feature and BBOB function,
as shown in Figure 3.11.

On the 5d problems, we notice that some features clearly differ between instances,
in particular the ela_meta.lin_simple.intercept. However, this does not neces-
sarily indicate that all instances should indeed be considered to be different since,
as illustrated in [253], some features including this linear model intercept are not in-

variant to scaling of the objective function. For some other features, such as those

45

3.2. Benchmark Suites: BBOB

.-------EI

mean_func

25
k|
_qda_50 i

ela_level.mmce_lda_50

10 ||
mda_25

qda,

iff_mean_25
disp.diff_median_02
disp.iff_medi

mean_02
mean_05

nbe.nn_nb.sd_ra

qda
ela_level.mmce_mda_

nbe.nn_nb.mean_rat

fa_mda,

ela_level.mmce.

ela_|

ela_level. mmce_mda,

iff_mean_02

iff_mean_10

io_median_25

iff_median_25

disp.dif
nbc.nn_nb.c:

disp.dif
qd
ada
nbe.nb,_fitness.c
pea.expl_var_PC
pea.expl_var_PC1.cov,

disp.diff_mean.

dispdif
disp.dif
disp.diff_median
disp.ratio,
disp.ratio,
disp.ratio_mean
disp.rati
ela_level.ida,
level.mmce_qda.
ela_level
quad,
ela_meta.qua
d_w,

ela_level.

ela_level.mmce_mda_25

ela_level.mmce_lda,
ela_level.mmce_l

ela_level.mmce.
.qua

ela_meta.

ela_meta,

Figure 3.11: Average rejection rate of null hypothesis distribution of ELA feature
between instances is similar, aggregated over 500 BBOB problem instances in 5d (top)
and 20d (bottom). A lighter color represents higher rejection rate. An extra row
(bottom) for the mean over all BBOB functions and an extra column (right) for the
mean over all ELA features is added in each heatmap.

related to the principal component analysis (PCA), we notice that barely any test
rejections are found. This is largely explained by considering that this feature set is
built primarily on the the samples in the search-space, which are identical between
instances (the same 100 seeds are used in the calculations for each instance). While
the objective values still have an influence on some of the PCA-features, their impact
is relatively minor. For the remaining sets of features, we see some commonalities on
a per-function basis. Functions F5 (linear slope), F16 (Weierstrass), F23 (Katsuura),
and F24 (Lunacek bi-Rastrigin) show no difference between instances.

It is worthwhile to point out that even for a simple function such as F1 (sphere),
many features differ between instances. Since translation is the only transformation
applied in F1 [96], which (uniformly at random) moves the optimum to a point within

[—4,4]%, it is clear that the high-level function properties are preserved. If the problem

46

Chapter 3. Benchmarking Optimization Algorithms

is considered unconstrained, this transformation would indeed be a trivial change to
the problem. However, since for ELA analysis, we are required to draw samples in
a bounded domain, we have to consider the problems as box-constrained, and thus
moving the function can have a significant impact on the low-level landscape features.
This might explain why many ELA-features differ greatly across instances on the
sphere function.

On the other hand, the same overall patterns can be seen in d = 20 as on d = 5, al-
beit with a reduced magnitude. Moreover, functions F9 (Rosenbrock), F19 (Composite
Griewank-Rosenbrock), and F20 (Schwefel) now barely show any statistical difference

between instances.

Dimensionality Reduction. In addition to the statistical comparison approach,
we visualize the ELA features in a 2d space using the t-distributed stochastic neighbor
embedding (t-SNE) approach [230], as shown in Figure 3.12 for features standardized
beforehand by removing mean and scaling to unit variance. It is clear that most in-
stances of each problem are tightly clustered together. Nonetheless, there are outliers,
where several instances of a function are spread throughout the projected space, in-
dicating that these instances might be less similar. This is particularly noticeable in
5d, where several functions are somewhat spread throughout the reduced space. In
20d, function clusters appear much more stable, matching the conclusion from the
differences with regard to dimensionality in Figure 3.11. It is worthwhile to note that
differences between BBOB functions are indeed easier to be detected in higher dimen-
sions using ELA features, as shown in previous work [204], which matches the more

well-defined problem clusters we see in Figure 3.12.

Algorithm Performance across Instances

We now analyze the optimization algorithm performances across different BBOB prob-
lem instances. Here, we consider single-objective unconstrained continuous optimiza-
tion with the following eight derivative-free optimization algorithms available in Nev-
ergrad [200] (all with default settings as set by Nevergrad): DiagonalCMA (a vari-
ant of covariance matrix adaptation evolution strategy (CMA-ES)), differential evolu-
tion (DE), estimation of multivariate normal algorithm (EMNA), NGOpt14, particle
swarm optimization (PSO), random search (RS), constrained optimization by linear
approximation with random restart (RCobyla) and simultaneous perturbation stochas-
tic approximation (SPSA). We run each algorithm on each of the 500 instances of the
5d BBOB problems, 50 independent runs each, resulting in a total of 4.8 million

47

3.2. Benchmark Suites: BBOB

100 o 100
o F1

F2
F3

F4 751
F5

6

F7 50
F8
F9
F10
F11
F12
F13
F14
F15
F16 §
F17 251
F18

F19

F20

F21

F22

F23

F24 =751

25

t-SNE dimension 2
o

O* P FHRO*XPFERO*P+ERO
t-SNE dimension 2
)

504 -50 1

*> 4+ ER

=100
-100 -75 -50 -25 0 25 50 75 100 -75 -50 -25 0 25 50 75
t-SNE dimension 1 1-SNE dimension 1

Figure 3.12: Projection of high-dimensional ELA feature space (altogether 64 features,
without ela_meta.lin_simple.intercept) onto a 2d visualization for the BBOB
problems in 5d (left) and 20d (right) using t-SNE approach with default settings.

(= 8 x 24 x 500 x 50) algorithm runs, each run having a budget of 10000 function

evaluations.

We consider the best function values reached after a fixed budget of 1000 and
10000 evaluations. Since we have 50 runs of each algorithm on each instance, we use
a statistical testing procedure to determine whether there are significant differences in
performance between instances — here, we use the Mann-Whitney U (MWU) test [158]
with the BH correction method [12]. In addition to the pairwise testing, we consider
the same procedure in a one-vs-all setting. In other words, we repeatedly compare
the algorithm performances between the selected instance and the remaining (499)
instances. The results are visualized in Figure 3.13, as fractions of times the test

rejects the stated null-hypothesis.

We note that RS indeed seems to be invariant across instances, which is to be
expected since we make use of relative performance measure (precision from the op-
timum) rather than the absolute function values. Furthermore, with exception of
SPSA, all algorithms have stable performance on F5, F19, F20, F23 and F24, which
mostly matches the results from Figure 3.11. The fact that SPSA shows differences
in performance between these instances, even on F1, shows that this algorithm is
not invariant to the transformations used for instance generation. This matches with

previous observations that SPSA displays clear structural bias [244].

We would expect several other algorithms, specifically Diagonal CMA and DE, to

48

Chapter 3. Benchmarking Optimization Algorithms

be invariant to the types of transformation used for the BBOB instance generation.
However, for some problems, e.g. F12 (bent cigar), such assumption does not seem to
hold. This indicates that for these problems, the instances lead to statistically different
performance of these invariant algorithms. This might be explainable considering the
fact that these algorithms treat the optimization problem as being box-constrained,
while the BBOB function transformations make the assumption that the domain is
unconstrained [95]. In addition, while the algorithms might in principle be invariant to
rotation and transformation, applying these mechanisms does impact the initialization
step, which can have significant impact on algorithm performance [247]. This is an
intended feature of the BBOB suite, since it is claimed that "If a solver is translation
invariant (and hence ignores domain boundaries), this [running on different instances|
is equivalent to varying the initial solution” [95]. While this is true for unconstrained
optimization, it is mot as straightforward when box-constraints are assumed, as is
commonly done when benchmarking on BBOB, since here changing the initialization

method might significantly impact algorithm behavior.

Properties across Instances

For most functions, the general transformation mechanism consists of rotations and
translations. However, in order to preserve the high-level properties, these transfor-

mations are not applied in the same manner for each problem. While translation and

- 0.50
- 0.25

- 0.00
-1.00

- 0.75
- 0.50

- 0.25

- 0.00

mean_func -
mean_func -

Figure 3.13: Average rejection rate of null hypothesis algorithm performances are
similar across instances, aggregated over problem instances per function. Left and
right column show results for 1000 and 10000 function evaluations, respectively. Top
and bottom rows show pairwise and one-vs-all comparisons, respectively. Average
values are shown in the last column and row of each figure.

49

3.2. Benchmark Suites: BBOB

Figure 3.14: Locations of global optima of 500 instances for selected BBOB functions
in 2d. Each dot represents the optimum of a BBOB-problem instance. The remaining
16 BBOB functions (not shown here) have a similar distribution pattern as F1. Dashed
lines mark the commonly used boundary of search domain, i.e., [—5, 5]2.

rotation are indeed the core search space transformations, the order in which they are
applied in the chain of transformation which creates the final problem can change. For
simple functions such as the sphere, the transformation is straightforward (a trans-
lation only, since rotating a sphere has no impact). For other functions, such as the
Schaffers10 function (F17), one rotation is applied, followed by an asymmetric function
and another rotation, after which the final translation is applied. The precise trans-
formations and their ordering is shown in [96]. While these different transformation
processes are necessary to preserve the global properties of the problems, their impact
on the low-level features of the problem can not always be as easily interpreted. As
a result, the amount of difference between instances on each function is impacted by
its associated transformation procedure, which can make some functions much more
stable than others.

One aspect of the instances which is treated differently across problems is the
location of the global optimum. By construction, for most BBOB problems, location of
this optimum is uniformly sampled in [—4,4]¢. This is achieved by using a translation
to this location, since for the default function the optimum is located in the origin.
However, for some other problems, such as the linear slope (F5), a different procedure
is used. Here, we visualize true locations of optima across the first 500 instances of the

BBOB functions in 2d in Figure 3.14. We note that on most functions the situation

50

Chapter 3. Benchmarking Optimization Algorithms

is equivalent to that of F1, with some exceptions: (i) the asymmetric pattern for F4
(Biiche-Rastrigin) stems from the even coordinates by construction being used in a
different way from the odd ones; (ii) on F8 (Rosenbrock), a scaling transformation
is applied before the final translation, resulting in the optimum being confined to
a smaller space around the origin; (iii) for the remaining functions (F9, F19, F20,
F24), construction of the problem requires a different setup (to ensure the relevant
challenges of the problem remain fully inside the domain), and as such the optima will
be distributed differently.

In addition to considering the location of the optimum, we aggregate the instances
together, resulting in an overview of regions of the space which are on average better
performing, across multiple instances. This highlights potential bias in the function
definition, see Figure 3.15. We observe, e.g., that for sphere function (F1), the domain
center has a much lower function value on average than the boundaries, which matches
our intuition. This also indicates that initializing a (reasonably designed) algorithm
close to the center might more likely result in good algorithm performance, as we on
average directly start with better function values. For the BBOB suite overall, we
see a clear skew towards the center of the space. While this is reasonable given the
construction of problems (and the underlying implicit assumption that optimization is
unconstrained), it potentially hints towards a set of functions which are not represented
in the suite, namely those which have optima located near the boundaries, or in general
give lower fitness to points close to the bounds. It is also worth mentioning that,
unexpectedly, instance generation on some functions, such as the linear slope (F5)
does not lead to equal treatment of dimensions, which results in consistently better
regions along the boundary of one dimension only. Such a skew is clearly an artefact

of a particular choice of slopes for Fb5.

51

3.2. Benchmark Suites: BBOB

Figure 3.15: Geometric average of relative function value (precision) across the first
500 instances of each BBOB function in 2d.

52

Chapter 3. Benchmarking Optimization Algorithms

3.3 Benchmarking Algorithm Behavior: Structural
Bias

In addition to the performance or internal state of an algorithm, analyzing the be-
haviour in terms of points sampled in the domain can lead to important insights into
the nature of the optimization procedure. One aspect which we can investigate is
whether the algorithm is inherently pulled to some region of the domain, even when
there is no selective pressure present. This bias towards a specific part of the search
space is called Structural Bias (SB) [133]. In this section, we will discuss how SB
can be detected, and show some analysis of the SB of several types of optimization
algorithms.

The notion of structural bias is built on the assumption that we cannot practically
make any assumptions on the location of the optimum within our domain — having
an algorithm that consistently finds an optimum only located in the origin is of no
use. Therefore, good algorithms should not be biased towards specific locations of the
search space, e.g., towards solutions at the origin, centre, or in the borders of the search
space. Extrapolating such reasoning, a good optimisation algorithm should be able
to find the optima regardless where exactly they are located within the domain. Or,
even stronger, a good algorithm should ideally locate solutions anywhere in its domain
with equal ‘effort’, assuming no prior knowledge about the problem is available.

In iterative optimisation heuristics, we can view points sampled during the initiali-
sation as being ‘moved’ within the domain over time. This movement occurs under the
influence of algorithm’s operators, which are aiming to find improvements in fitness
value. In effect, such movement of the algorithm towards the optima gets steered by
the differences in the values of the objective function in the sampled points or their
derivatives of some kind. Any feedback that is external to the objective function or do-
main knowledge might hinder such progression to the optima. Such external feedback
stemming from the iterative nature of the algorithm is referred to here as Structural
Bias (SB).

Because of the high interdependence between the fitness landscape and the informa-
tion on the fitness obtained from this cyclical application of the algorithm’s operators,
the structural bias contribution during the search for optima cannot be easily unveiled
if not by means of a specific objective function capable of nullifying such interaction
over multiple optimisation runs. The fy function serves this purpose and can be used
to decouple these effects, thus separating the bias component, arising from algorithmic

design choices, from the main driving force represented by the sampled differences in

53

3.3. Benchmarking Algorithm Behavior: Structural Bias

the fitness landscape [133]. Function fy is defined as follows:

fo:[0,1]% = [0,1], where Vz, fo(z) ~ U(0,1). (3.1)

To identify the structural bias of an algorithm we can thus run it on fy and inves-
tigate the resulting points found at the end of the optimization run.® Up until now,
methods to check the uniformity of the distribution of best solutions over multiple
runs included visual or statistical inspections.

Displaying locations of the best solutions collected from multiple runs in the so-
called ‘parallel coordinates’ [105] appears to be the most effective way for visualising SB
on a multidimensional problem [133]. This approach is easily reproducible, graphically
valid and hence convenient. However, when a large number of images is generated
[39, 235], visual inspection can become too laborious. Such an approach is also clearly
subjective and therefore not reliable for cases where graphical artefacts or unclear
patterns cannot be judged by a naked eye.

Instead, we can consider the problem of testing uniformity from the statistical
perspective. Assume that a heuristic optimisation algorithm was run N times to
minimise fy. At the end of each run 7, the best solution x(¥ found by the algorithm

by the end of the run is recorded, where naturally x(* € [0,1]¢. The random sample

{X(l),X(Q), ‘e ,X(N)} represents the set of best solutions retrieved by the N runs of
the algorithm. Assume that {x§1)7x§2), e ,xg-N)}, je{1,2,---,d} was drawn from

a probability distribution with a continuous cumulative distribution function Fy. A
goodness-of-fit test can be used to test the null hypothesis Hy : Fy ~ U(0,1).

The Kolmogorov—Smirnov test [130] was employed with a sample of size N = 50
and significance level o = 0.01 in [133]. Subsequently, following the ‘power analysis’
performed in [131] across three common tests, namely Kolmogorov-Smirnov, Cramér-
Von Mises [47], and Anderson-Darling [1] tests, the latter test was chosen and used in
combination with the Benjamini-Hochberg [11] correction method for multiple com-
parisons to achieve higher statistical power. However, it was noted that the original
sample size was not adequate for testing all algorithms under investigation. Hence,
a higher number N = 100 of runs had to be used for some algorithms in order to
achieve a satisfactory level of statistical power. Similar problems were encountered in
a further study on SB in a subclass of Estimation of Distribution Algorithms [132],
even when using an aggregated measure of SB defined as the sum of the statistically

significant (across all dimensions) test statistics of the Anderson-Darling test.

5 Alternatively, the best-so-far point can be used, to track the emergence of SB over time [235]

54

Chapter 3. Benchmarking Optimization Algorithms

It was concluded that the described statistical approaches can effectively detect
most cases of ‘strong’ SB but are deficient on other scenarios, including clear ‘mild’
SB that can be identified with the visual approach. Reasons for these discrepancies
between the two methodologies might be a conservative nature of the employed tests
combined with the relatively low sample size. Indeed, more accurate SB detection
results could be obtained with N = 600, as used in [235], instead of N = 100.

Using a large sample size (N = 600) indeed seems to catch bias more often, but
still gives no guarantee to detect all different kinds of SB, at any significance level
[235]. Even larger sample sizes are necessary for smaller levels of significance, higher
desired power and smaller sizes of the deviations to be identified [118]. However, given
the limited computational resources to run heuristic optimisation algorithms, it is not
always possible to obtain (very) large sample sizes. Therefore, tests better able to
detect significant deviations from uniformity given limited sample sizes are desirable
for detecting SB.

The BIAS Toolbox As can be concluded from the above, there is a clear need for
a better automated statistical testing procedure to detect SB readily available to the
community as a software package. We thus propose a toolbox, called BIAS (Bias in
Algorithms, Structural), to improve the detection of SB based on algorithm runs on
fo- Based on a large set of statistical tests, BIAS provides an indication of whether
or not structural bias is present in the sample of final positions and, in case some SB
is found, an assessment of the possible type of SB observed using a random forest
model. In addition to the structural bias detection, the toolbox also contains the
needed functionality to benchmark other statistical tests for detecting structural bias.

The BIAS toolbox is available as a Python package.

Tests

BIAS makes use of statistical tests on the final solutions found by many runs of the
algorithm on fy (denoted as F4). These tests all have the null hypothesis Hy : Fy; ~
U(0,1). Since the algorithm can work on search spaces of arbitrary dimensionality, we
have two types of tests: per-dimension tests and across-dimension tests.

The following tests are designed to work on an individual dimension. However,
by aggregating all data we can run these tests on a sample size which is effectively d
times larger. If these tests are run on a per-dimension basis, correction strategies
need to be applied to deal with the multiple-comparison problem. For this purpose,

the Benjamini-Holberg (BH) method was proposed originally, since it is less stringent

55

3.3. Benchmarking Algorithm Behavior: Structural Bias

Table 3.3: Tests present in the BIAS toolbox for per-dimension (top) and across-
dimension (bottom) detection of uniformity.

Test Name Shorthand Reference
1l-spacing-based test 1-spacing 194
2-spacing-based test 2-spacing 194
3-spacing-based test 3-spacing 194
Sample Range-based test range 244
Sample Minimum-based test min 244
Sample Maximum-based test max 244
Anderson-Darling AD 1, 75|
Transformed Anderson-Darling test tAD 241]
Shapiro test Shapiro 214]
Jarque—Bera test JB 111, 220]
Minimum Linear Distance-based test LD-min 244
Maximum Linear Distance-based test LD-max 244
Kurtosis-based test Kurt 185
Minimal Minimum Pairwise Distance-based test MPD-min 244
Maximal Mininimum Pairwise Distance-based test MPD-max 244
Wasserstein distance-based test Wasserstein 117
Neyman-Smooth test NS 178, 14]
Kolmogorov-Smirnov test KS 130, 75]
Cramer-Von Mises test CvM 44, 50]
Durbin test Durbin 67, 50]
Kuiper test Kuiper 30, 50]
1st Hegazy-Green test HG1 101, 50]
2nd Hegazy-Green test HG2 101, 50]
Greenwood test Greenwood 86, 50]
Quesenberry-Miller test M 196, 50]
Read-Cressie test RC 46, 50]
Moran test Moran 169, 50]
1st Cressie test Cressiel 45, 50]
2nd Cressie test Cressie2 45, 50]
Vasicek test Vasicek 239, 50|
Swartz test Swartz 222, 50]
Morales test Morales 168, 50]
Pardo test Pardo 184, 50]
Marhuenda test Marhuenda 159, 50]
1st Zhang test Zhangl 265, 50]
2nd Zhang test Zhang2 265, 50]
The mutual information-based test MI 213, 186]
Maximum Minimum Pair-wise Distance-based test MMPD 244]
Maximum Difference per Dimension between a linear uniform distribution-based test MDDLUD 244]

than the standard Bonferroni method. However, in this chapter, we also investigate
the effects of other multiple comparison correction methods.

We consider a total of 36 per-dimension tests, listed in Table 3.3. In addition
to the tests which work on a per-dimension basis, we can also perform tests on the
full set of 30-dimensional data at once. This can be done by grouping together the
samples or distances and performing the same test as the per-dimension testing on the
aggregated data. For this purpose, we use all per-dimension tests, with the exception
of the sample limits-based tests, LD, MPD, and Wasserstein tests. Alternatively, we
can use tests which are explicitly designed to handle multiple dimensions at once. In
this toolbox, we consider three of these tests, listed at the bottom of Table 3.3.

56

Algorithms

ion

imizat

Benchmarking Opt

Chapter 3.

uorsuourp-rod sdep 03 JuS[EAINDY ST 31 ST ‘§3503 UOISUDWIIP-SSOIOT UL A[UQ o

sdep) sdeS juoroyrp 'sa (sdep jus3sTsuo)) uUOISUDWIT oeo ul sdeS owres UsoMIO(q DIRBIJUDIDYIP OF PoI9U ‘S1S9] UOISUDWIP-SSOIDR IO,
HIP ! Py ! q oer BIP 03 P ! 1P d g1

worsusmIIp-10d $103SNTD 04 JUS[RAIMDO ST 31 ST ‘§959) UOISHOW[P-SS0IOR UL Posn A[UO 1

(sae3sny)) sdeS juoroyIp 'SA (SI9ISNT) JUSASISUO)) UOISUDWIP (OB UI SOIJUDD-IDJSN[O DUWIBS UDOMID(DIRIJUDISPYIP O POOU ‘S1S9] UOISUIWIP-SSOIDR 10, o1

opIs 10y3o o3 03 JuL[EAMDO ST 31 P0uUIS OpIS OO 03 A[uo T LIeA o

(sopts qjoq wo 3no Frey) Suryges ejowresed
owres oq YIIm ‘OuIy OUILS OYY JT XLW PUT UM Yloq FIPOW g {(SWY 0ARS 03 PoS Sf ouO AU 0s ‘xww A[Uo FuikIea 0 JuS[EAMDO) U A[UO AJIPOW ‘T iSOLIBULOSANS OM, o

§1599 93} WO} pepnoxe ‘oeyo Ajrueg 2

£'¢ uomoog vog g

(o 0N
serq {00 ‘¥0°0 ‘€00 09 Surp1o2oe pagyyrys Ajuspuadaput are
—uoI3RZI3RIOSIP ST/8¥ ‘20°0 ‘10°0 ‘G00°0} > o sroqe se oures suorgeoo] oxids jnq ‘esoqe se owes soytdg Aston
{ooot [1 ‘0]
serq ‘00S ‘092 ‘00T ‘09T ‘00T ‘0§ ur soyids pooe[d Ajuiiojrun se o[eosol
—uOI3eZI30I0SIP 8/8 ‘gz} O Su soyids jo roqunu ‘[Swr] ur sioSojur o[dures A[wopues soxtdg
seiq-des gz/0 oAoqe se owres oAOqe se oures mﬁmmmo 1U83ISTSUOD
g P71 ordures [y [3un (1 °0)2 era
sdes oprsyno syurod Surssiw ojdwesol
‘(a4 Pz b — *x] ur syurod pordures
{g0°0 ‘¥0°0 ‘€0°0 ‘20°0 {¢‘vec} e eaowex ‘Pz syurod perdures 2u 309]
serq-des gz/se ‘10°0} > 64 snipex des S 2w seijued jo Iequunu -os ‘(T ‘0) 71 e1a ozis ajduwres [[n} ojdwes sden
(o tz) N
ordwres pue *x jurod Surysixe ue 309]
{g'0‘¢z'0 ‘1°0} D "=z -os ‘qurod Sururewrax yoes 104 (1 ‘0)N
se1q-193sN[D> 21/t {10 ‘50°0 ‘20°0 ‘10°0} > © sojduwres WIojIun jo UoI3owly eia ozts ojdwes jo uoryrod Mz ordwres s1838NT) 95007
{e0 ‘z0
serq-109snyd 0€/0 ‘I°0 ‘90°0 ‘S20°0 ‘10°0} D o aAO0qe se owres [S39ISUTD JULISTSUODY
01 (® “*2) N e1a woyy punore
{e0 ‘g {g‘v‘e‘z 1t} sruod Suurewosa sidwes ‘(T ‘0)N elA
se1q-193sN[D> og/0g “1°0 ‘G0°0 ‘SZ0°0 ‘10°0} D © S 9w seysnd jo Ivqunu %> sjutod erjuso resn(o 2u orduwres s193s0TD
spunoq je ssew jsow
serq-punoq cr/g1 oAO0qe se owes aAoqe se owres 9A®Y O} WIIOJSURIJ JN(Q ‘DAOQER Se dUWes Ayonep 3n) esisaur
uonNqLIIsIp
SeIq-213U8D cr/g1 2AO0qe se awes aAOqe se owes Ayone 10j 3jng TewIoN In) O} JIR[IWIS Ayoney 3Inp
spunoq je sseuw jsour
seliq-punoq MH\Mﬁ 2A0qe se osuwres 2A0Qqe se swes 2A®Y Oj) wIojsuer) ng r®>OD‘m se awes TewIoN 3In) o9sIdAUT
oz1s aidwes [[nj [13un jesd
-ox1 pue [1 ‘0] eprsyno sjutod [[e SaowaI
S®Iq-013U2D ST/ST {20 ‘90 ‘¢0} > {s'0‘P0‘c0‘c0‘T0} Do ‘(o M)y ea ozis ojdwes [[ny ojduwres BTN 30
(& - 1°&)n w14 ozis opdwes [y
{z'0 ‘170 ‘g0°0 ‘gz0O'0 oidwres iz owmreusdsqus (T ?z)p e
serq-eajuoo 0T/0T ‘10'0} 3 2z 3no uorouy oz1s ojdwes [[nj ojdwres :] OLIRULOSANS QUIOFTU 3MD
selrq ou T - (1 ‘0)n e1a oz1s odwes [[ng ojdures ,mIoFTIn
sisouSerp s8urgjes jo roquunu ¢ 1ojowrered 1 1ojouwrered pordures moy sureu orreusos

9

*971s a[dures pa1apisuod Iad ‘(suolsuswiip ssoroe / uorsuowip Iod) sSuI}}es oLreusds 0 [e30} 9
IS 9] poIopl ! p ! p [}3es o1 6VC / 761 JO [B103 o3
‘[1 ‘0] ut sorreusds Surjdures eyep postojourered Jo MOIAIOA() :F°E O[qR],

57

3.3. Benchmarking Algorithm Behavior: Structural Bias

To determine rejection based on the test statistic, we need to either calculate the
corresponding p-values, or check if the test statistic exceeds the corresponding critical
value. Several of the test we include calculate the p-value by default, but for the
others we will use the critical values. To get accurate estimates of these values, we
use a 100000 samples Monte Carlo simulation of the test statistic under the uniform
distribution, from which we determine the a-quantiles for o € {0.01,0.05}. The
Monte Carlo test is a well known procedure for implementing hypothesis tests [181].
It enables calculating the critical values when the true (sampling) distribution of the
test statistic is unknown. The resulting critical values calculated using this procedure

are made available.

Methodology

To effectively judge the performance of the proposed tests for different types of SB, we
have defined a large portfolio of bias scenarios according to which we can generate an
arbitrary number of samples. This set of scenarios is chosen in such a way that most
common types of SB are represented. Additionally, these scenarios are parameterised
to control the level of bias, which enables us to better judge the robustness of tests.

The specification of these scenarios is shown in Table 3.4.

Adding up all parameterizations gives us 194 scenarios to consider in the per-
dimension case, and 249 scenarios in the across-dimension case. For each of these
scenarios, we generate data with sample sizes {30, 50, 100,600}. In the per-dimension
case, we collect 1500 independent sets of samples for each use-case, while the across-

dimension cases all use 100 sets of 30-dimensional samples.

For each of the generated sets of samples, we apply the corresponding test-battery
with o € {0.05,0.01}: 36 tests for per-dimension case and 32 for the across-dimension
case.'* Using this setup, we thus collect 194 - 1500 - 4 - 36 = 4.19 x 107 test statistics
/ p-values for the per-dimension tests, and 249 - 100 - 4 - 32 = 3.19 x 10° for the

across-dimension tests.

We show an example of the set of statistical tests applied to an instance of the Cut
Normal scenario in Figure 3.16. This figure shows the rejections for each dimension
individually, as well as the corresponding sample on which this decision is based. This
visualisation is available as part of the BIAS toolbox, and provides a visual way to

inspect the structural bias present in the scenario.

MSeveral per-dimension tests can not be used for the across-dimension case, full details in [244].

58

Chapter 3. Benchmarking Optimization Algorithms

0

HG2 -
Greenwood -
M -

C-

Moran -
Cressjel -
Cressie2 -
Vasicek-

Swartz -
Morales -

Marhuenda -
Zhangl -
212N 2 - e S S e s s s S O e

1 2 k] a 5 [7 R Qq 10 11 12 13 14 15 16 17 1R 19 20 Eal 22 23 24 25 26 27 28 29 20

Figure 3.16: Example of an instantiation of the Normal Cut scenario with g = 0.5 and
o = 0.2, with 100 samples in each of 30 dimensions. The top figure shows the assumed
distribution of the final positions potentially returned by an optimisation algorithm
in each dimension. Jitter is applied here to reveal vertically overlapping points. The
colour scheme is used to highlight different dimensions. The binary heatmap in the
bottom figure shows in green which tests reject the null-hypothesis of uniformity per
dimension with = 0.01 (no multiple comparison correction applied).

Sample size

To study the impact of the available sample size on the overall performance of different
statistical tests, we can aggregate the number of rejections over all parameterizations
of each scenario. This allows us to show the fraction of cases of a scenario which
are rejected by each test given a certain sample size. Figure 3.17 shows this for the
Shifted Spikes scenario. From this figure, we can see that the effect of sample size is
not the same across all tests. As an example, the 4D test has a relatively high number
of rejections at 30 samples, but doesn’t reach the same precision as other tests when
increasing sample size to 600. This indicates that analysis of the performance of the
tests should take the number of available samples into account, as this will influence

which tests are more distinguishing.

59

3.3. Benchmarking Algorithm Behavior: Structural Bias

1.0 |
n_samples
30
0.8 . 50
=
© |
0.6
o
k]
504
b=
1%
o
'S
0.2

0.0

Cressie2

— o~
o o
c c
© ©
< <
N N

Cressiel
1-spacing
Greenwood
2-spacing

Figure 3.17: Fraction of rejections for each test on the Shifted Spikes scenario, with
a = 0.01 and no multiple comparison correction method applied. Data is aggregated
over all parameterizations of the scenario, as described in Table 3.4. This figure shows
15 tests with the most rejections (when aggregated over the different sample sizes).
Note that the negative space over each bar (1 — x) is equivalent to the false negative
rate of the test.

From Figure 3.17, we can also see that the Moran test significantly outperforms all
others on this scenario, but even this test does not reject all cases when the sample
size is small. This reinforces the notion that if possible, increasing the sample size
is beneficial to the ability to detect less clear cases of structural bias. However, we
also note that for most scenarios, a sample size of 50 seems to be sufficient to detect
the presence of structural bias. While increasing the sample size would increase the
ability to detect less obvious cases of SB, N = 50 should be able to correctly identify

the most blatant ones.

Overall analysis

With the rejection data, we can investigate the interplay between statistical tests
and the scenarios, in order to find what set of tests is more suitable to each kind of
structural bias. For this analysis, we make use of the concept of Shapley values [215]
to assess the contribution of each test to a portfolio of tests for finding bias in each

type of scenario. In particular, we define the marginal contribution of a test ¢ to a

60

Chapter 3. Benchmarking Optimization Algorithms

portfolio of tests T/ C T on scenario S as follows:

n—1
C(t7 T‘/7 S7 n, Oé) = ZSES Zi:o maxt/e(T/ Uit Ilt’(s-;)<a _
D ses Z?:_ol maxyers Ly (s;)<a (3.2)

where n is the number of realizations s; of scenario s. The indicator function 1
corresponds to the test ¢ rejecting the null hypothesis with significance o on the data

from realization s;.

Based on this definition of marginal contribution, we can compute approximate
Shapley values by sampling random permutations calculating the marginal contribu-
tion for each test at each position within this permutation [229, 41]. This can be

formulated as follows:

S(t,S,n,a)= ZZC(LT’,S,TL, a): T CT,|T'| =i (3.3)

r =0

where 7 is the number of repetitions used, and m is the maximum size of these per-
mutations, which is introduced to ease with computations and because the impact of

larger permutations on the total sum is relatively minor — in this paper, we set m = 10.

From our experiments, we have found that no single test is clearly preferable over
all others. Moreover, an analysis of the Kendall-Tau [122] correlations between the
rejections of tests across all scenarios shows that very few tests are highly correlated.
Figure 3.18 shows the correlation heatmaps for sample size 600 and o = 0.01. We
can observe relatively higher correlations among some of the tests listed from NS to
Greenwood, and among some of the tests listed from ¥ to Pardo. However, these
higher correlations involve very few of the tests and the correlations among the other
tests are very low. Therefore, it is likely that different tests are best suited to recognise
different types of deviations from uniformity. For this reason, we include all considered
tests in the BIAS toolbox.

For the per-dimension tests, we should take into account the fact that multiple tests
are being done, and thus the p-values should be changed using a correction procedure.
For this purpose, we use the Benjamini-Yekutieli (BY) [13] correction method, which

we found to obtain the best tradeoff between false positives and false negatives [244].

61

3.3. Benchmarking Algorithm Behavior: Structural Bias

-1.0

1-spacing- [
2-spacing
3-spacing{ |

Cressiel

Figure 3.18: Cluster plot showing the Kendall-Tau correlations [122] between test
rejections on all scenarios, with sample size 600, o = 0.01.

Estimation of the SB type

Since we use the results of many statistical tests to find bias in artificially generated
samples and different tests may be better at capturing different deviations from uni-
formity, we can use these tests to not only check if structural bias is present, but
also to identify what the most likely form of bias is. This provides an answer to
RQ2. To achieve this, we build a random forest (RF) model, which takes as input
the test-rejections from all per-dimension tests. This is done to allow scaling to arbi-
trary dimensions while having one model for all sample sizes. Specifically, if we use
statistical test values directly, we would need one model per sample size, and a way
to aggregate the resulting predictions. Instead, a RF based on rejections only needs
to deal with the aggregation problem.

The data used to train and evaluate the random forest model consists of the full
set of scenario results (per-dimension version) on all tests, with the output being the
scenario-type it comes from. However, if for a specific sample no test rejects the null-

hypothesis, these samples are discarded, since we have no evidence of structural bias.

62

Chapter 3. Benchmarking Optimization Algorithms

Cut Cauchy
Clusters

0.8

Gaps

Inverse Cut Cauchy
Inverse Cut Normal
Cut Normal

Loose Clusters
Noisy Spikes
Spikes

Cut Uniform

Cut Cauchy
Clusters

Inverse Cut Cauchy
Inverse Cut Normal
Cut Normal

Loose Clusters
Noisy Spikes

Cut Uniform-

Figure 3.19: Confusion matrix for the random forest model trained on test rejections,
aggregated over all sample sizes. The true scenario is shown on the y-axis, while the
predicted scenario is on the x-axis.

This two-stage approach leaves us with 1158 000 biased samples, on which we train
the RF model with 100 trees and balanced class weights. A confusion matrix created
from an 80-20 test split is shown in Figure 3.19 (Fl-score of 0.56). We see that the
distinction between the Cut Uniform and the other scenarios can be challenging to
accurately detect. However, this doesn’t have to be an issue for practical detection
of SB, since the scenarios misidentified as Cut Uniform might show similar types of

bias, even though their initial creation mechanism is different.

To provide a more practical estimation of SB in our toolbox, we create an additional
model to predict the type of bias, as shown in the final column of Table 3.4. These 5
categories are more distinct from each other, removing overlap between some similar
classes, i.e. between Spikes and Noisy Spikes. Overall, this model gives us an

improved F1-score of 0.79 on a similar 80-20 split.

To use these models in the BIAS toolbox to predict bias of the multi-dimensional
test, we need to perform some aggregation across dimensions to transform it into
a binary vector. We do this by checking the number of false positive tests in 30D
uniform samples. We run 10000 simulations, where we record the maximum number

of test rejections by each test. This gives us a total of 92 cases where a test gives 2

63

3.3. Benchmarking Algorithm Behavior: Structural Bias

False Positive Rate False Negative Rate
Y [}
040 o o
-2
K 0.35 . * ®
L 4
10-3 f‘ * 0.30
[0}
3 0.25
I} A
0 1na 2 A A
10 o 020 A
_s5 0.15
10 A 2
| | 0.10
1076 A .l E n n n
10 20 30 40 ‘ 10 20 30 40
Dimensionality Dimensionality

Figure 3.20: Evaluation of toolbox in different dimensions at & = 0.01: fraction of false
positives (on the left) and aggregated fraction of False Negatives across all scenarios
(on the right). On both figures, markers identify the used sample size: O, ¢, A and
[0 are 30, 50, 100 and 600, respectively.

rejections, and 2 cases where a test gives 3 rejections. As such, we set the threshold
for the aggregation of multi-dimensional data to 0.1 -d. If no test is rejected in this
aggregation, we consider the samples to be non-biased. This threshold value is then
used to create the binary input vector for the RF model.

To verify that this works for other dimensionalities as well, and to gauge the overall
performance of the toolbox, we simulate the false positive and false negative rates. This
is achieved by sampling (with replacement) from the set of test-statistics on each of
our used scenarios and applying this aggregation rule. For false positives, this is done
100000 times on the (true) uniform data, while for false negatives it is done 10000
times on every non-uniform scenario. The results, shown in Figure 3.20, indicate that
while the 0.1 - d threshold is rather conservative on higher dimensionalities, the FPR

is well below the selected o = 0.01, while the FNR is not needlessly increased.

Benchmarking SB of real algorithmic data

We use data from a heterogeneous pool of heuristics executed over f; at dimensionality
d = 30 for a maximum of 10000 - d fitness function calls. In total, we consider 432
optimisation heuristics, which fall into the following categories (all except the latter
use N = 100, while the latter uses N = 50 runs each):

e Variants of Differential Evolution (195 configurations),

64

Chapter 3. Benchmarking Optimization Algorithms

GAcarcP100 NMA (t) -1.0
GAcarcP20
GAcarcP5 NMA (s)
GAcarsP100 (1+1)CMAES (s)
GAcarsP20 (1+1)CMAES (d)
Ghmip100 RIS (s)
ca
GAcartP20 ISPO (d)
GAcartP5 ISPO (s) 08

GAcatcP100 nuSA (d)
GAcatcP20 NUSA (s)
GAcatsP100
GAcatsP20 nuSA (t)
GAcatsP5 Rosenbrock (d)
GAcattP100 Rosenbrock (s)
GSAgatF};’(Z)g Solis-Wets (d)
cdrs)
GAcdrsP20 Solis-Wets (s)
GAcdrsP5 SPSA (d)
GAcdtsP100 SPSA (s)
GAcdtsP20 Powell (C)
GAcdtsP5
GAgarcP100 Powell (m)
GAgarcP20 Powell (s)
GAgarcP5 (1+1)ESv1 (s)
Gé\/@_l\arspégg (1+1)ESV2 (s)
gars
GAgarsP5 SPSA (C)
GAgartP100 SPSA (m)
GAgartP20 RIS (C)
GAgartP5 RIS (m)
GAgatcP100
GAgatcP20 nusA (C)
GAgatsP100 NuSA (m)
GAgatsP20 NMA (m)
GAGz_:g?taF’tfg(sJ Powell (d)
GAgattP20 (1+1)ESv1 (d)
GAgdrsP100 (1+1)ESv2 (d)
GAgdrsP20 NMA (d)
GAgdrsP5
GAgdtsP100 SPSA"; ©
GAgdtsP20 SPSAV2 (d)
GAgdtsP5 SPSAV2 (s)

Bounds
Center
Gaps

Clusters
Clusters

Discretization-
Discretization-

Figure 3.21: Predicted SB class probabilities of the biased GA configurations (left,
sorted alphabetically) and the biased single-solution algorithms (right), using the ran-
dom forest model. Names for the GA are structured as mutation—crossover—selection—
SDIS—population size. For the single-solution algorithms, the character in brackets
refers to the used SDIS.

65

3.3. Benchmarking Algorithm Behavior: Structural Bias

e Compact optimisation algorithms (81 configurations),
e Single-solution algorithms (60 configurations),
e Variants of Genetic Algorithms (96 configurations).

For each of the considered algorithm configurations, we collect their final positions
and feed these into the BIAS toolbox. In Figure 3.21 (left side), we show the outcome
from the RF predicting the type of structural bias present in the different GA con-
figurations (only the biased ones are shown). This shows that there are quite some
differences in the detected bias, even within this limited algorithm design space. It is
also interesting to note that the population size seems to have a relatively small im-
pact on the type of predicted bias, which seems to be mostly impacted by the operator
configuration.

For the single-solution algorithms, we see in the right part of Figure 3.21 that the
strategy of dealing with infeasible solutions (SDIS) seems to drastically change the type
of detected bias. For example, the Powell algorithm is classified as ‘discretization’ bias
when using mirror strategy, while the classification changes completely with a COTN
strategy. Such differences can give us useful insight into the effect of these SDIS

methods on the optimisation behaviour of these algorithms.

DEEP BIAS In addition to the statistical approach used in the BIAS toolbox, we
can make use of deep learning techniques to identify deviations from uniformity. To
this end, we extended the BIAS toolbox with DEEP-BIAS: a convolutional neural
network which detects both the presence and type of structural bias. This network
structure is visualized in Figure 3.22.

By not going through the intermediary step of getting test statistics from the per-
dimension test, this setup allows for a better classification of the type of bias detected,
while remaining competitive with the statistical test in terms of bias detection, as is
highlighted in Figure 3.23.

66

Chapter 3.

Benchmarking Optimization Algorithms

gl Ml Beletadin s 1 sa3
i }ﬁ%‘?@@wqmw i

)

=
5

1o _Prediction probabilities

§ (© e &
e R
« o

@¥

Figure 3.22: General one-dimensional CNN architecture with optimal hyper-
parameters per sample size. The network takes as input a sorted distribution fixed
sample size. Yellow layers are 1d-CNN layers, red layers are max-pooling layers, green
layer is a dense layer and finally a classification head with SoftMax activation function
resulting in five class probabilities per sample.

False Positive

False Negative

0.08 @ e 1.00 - m []5]
0.07 A 0.25 . = A
A
0.06] @ ° @ 020 4 ® ° e 095 A A oA
0.05{ a A o
Y . . > &
£0.0a A ® 0.15] L 2 0.90{ A L 3
N 0.03 @A A © e
: 0.10 ° ° °
o A Ay 0.85 ¢
0.02 A A @ L 4 Type
0.05
0.01{- = A A bias
0.80 ° .
0.00 A @ me@E 000 . - = ° deep
1 10 20 30 1 10 20 30 1 10 20 30

Dimensionality

Dimensionality

Dimensionality

Figure 3.23: Comparison (with o = 0.01) of the original BIAS toolbox (blue) and
the Deep-BIAS (teal) in terms of false positives (left), false negatives (middle) and
Fl-score (right). On all figures, markers identify the used sample size: o, {, A and O

are 30, 50, 100 and 600, respectively.

67

3.3. Benchmarking Algorithm Behavior: Structural Bias

68

