
From benchmarking optimization heuristics to dynamic
algorithm configuration
Vermetten, D.L.

Citation
Vermetten, D. L. (2025, February 13). From benchmarking optimization
heuristics to dynamic algorithm configuration. Retrieved from
https://hdl.handle.net/1887/4180395

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4180395

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4180395

Chapter 2

Preliminaries

In this chapter, we provide background information on several key aspects related to
benchmarking and designing optimization algorithms. In particular, we outline many
of the techniques we use throughout the remainder of the thesis to evaluate, analyze
and configure optimization heuristics.

2.1 Iterative Optimization Heuristics

Throughout this thesis, we study optimization (minimization unless stated otherwise)
of problems of the type f : S → R, i.e., we assume our problem to be a single-objective,
real-valued objective function (i.e., problems for which the quality of possible solutions
is rated by real numbers), defined over a search space S. While some of the methods
discussed are independent of S (it can be discrete or continuous, constrained or un-
constrained), we consider the case where S ⊂ Rd unless stated otherwise. Generally,
when dealing with benchmark problems, we assume S = [lbi, ubi]

d, which we refer to
as a box-constrained problem where lbi and ubi are the lower and upper bound of the
i-th decision variable respectively.

These problems are often considered to be black-box problems: we don’t assume any
information about the underlying structure of the problem. For this type of problem,
the only way to get information about it is to evaluate the quality of points x ∈ S.
This type of problem is common in many real-world problems, e.g. when dealing with
simulations of complex processes or physical experiments.

For some problems, some intermediate information about the problem structure is
available, in which case we speak of gray-box optimization. This can be the case when

5

2.2. Benchmark Problems: BBOB

Algorithm 1 Blueprint of an iterative optimization heuristic (IOH) optimizing a
function f : S → R.
1: procedure ioh
2: t← 0 ▷ iteration counter
3: H(0) ← ∅ ▷ search history information
4: choose a distribution Λ(0) on N ▷ distribution of the number of samples
5: while termination criterion not met do
6: t← t+ 1
7: sample λ(t) ∼ Λ(t−1) ▷ number of points to be evaluated
8: Based on H(t−1), choose a distribution D(t) on Sλ(t)
9: sample

(
x(t,1), . . . ,x(t,λ(t))

)
∼ D(t) ▷ candidate generation

10: evaluate f
(
x(t,1)

)
, . . . , f

(
x(t,λ(t))

)
▷ function evaluation

11: choose H(t) and Λ(t) ▷ information update
12: end while
13: end procedure

information about variable interactions can be extracted from the problem formula-
tion [259]. To ease notation, we will still consider these problems as black-box in this
thesis. We emphasize that the sampling-based optimization algorithms studied in this
thesis can be competitive even when the problem f is explicitly known. In pseudo-
Boolean optimization, the low auto-correlation binary sequence (LABS) problem is a
good example of such a problem that can be defined in two lines, but for which the
best-known solvers are sampling-based [182].

The class of algorithms that we are interested in are Iterative Optimization Heuris-
tics (IOHs). IOHs are entirely sampling-based, i.e., they sample the search space S
and use the function values f(x) of the evaluated samples x to guide the search. Al-
gorithm 1 provides a blueprint for IOHs. Classical examples for IOHs are local search
algorithms (this class includes Simulated Annealing [128] and Threshold Accepting [66]
as two prominent examples), genetic and evolutionary algorithms [71], Bayesian Opti-
mization and related global optimization algorithms [113], Estimation of Distribution
algorithms [139], and Ant Colony Optimization algorithms [64]. In Section 2.3, we
discuss the algorithms which this thesis focuses on.

2.2 Benchmark Problems: BBOB

This thesis is focused on continuous, single-objective, noiseless black-box optimization.
As such, we make extensive use of the Black-Box Optimization Benchmarking (BBOB)
suite. Originally developed as part of the COCO platform [95], BBOB is one of

6

Chapter 2. Preliminaries

the most used benchmark suites for continuous optimization. This suite contains 24
functions, which can be separated into five core classes based on their global properties,
which are listed in Table 2.1.

While the suite is originally intended to be used for unconstrained optimization,
in practice however, black box optimization functions like this are often considered to
be box-constrained [8], in the case of BBOB with domain [−5, 5]d.

Table 2.1: Classification of the noiseless BBOB functions based on their properties
(multi-modality, global structure, separability, variable scaling, homogeneity, basin-
sizes, global to local contrast). Predefined groups are separated by horizontal lines [96].
Table taken from [164].

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc.
1 Sphere none none high none high none none
2 Ellipsoidal separable none none high high high none none
3 Rastrigin separable high strong none low high low low
4 Bueche-Rastrigin high strong high low high med. low
5 Linear Slope none none high none high none none
6 Attractive Sector none none high low med. none none
7 Step Ellipsoidal none none high low high none none
8 Rosenbrock low none none none med. low low
9 Rosenbrock rotated low none none none med. low low
10 Ellipsoidal high-cond. none none none high high none none
11 Discus none none none high high none none
12 Bent Cigar none none none high high none none
13 Sharp Ridge none none none low med. none none
14 Different Powers none none none low med. none none
15 Rastrigin multi-modal high strong none low high low low
16 Weierstrass high med. none med. high med. low
17 Schaffer F7 high med. none low med. med. high
18 Schaffer F7 mod. ill-cond. high med. none high med. med. high
19 Griewank-Rosenbrock high strong none none high low low
20 Schwefel med. deceptive none none high low low
21 Gallagher 101 Peaks med. none none med. high med. low
22 Gallagher 21 Peaks low none none med. high med. med.
23 Katsuura high none none none high low low
24 Lunacek bi-Rastrigin high weak none low high low low

For each BBOB function, arbitrarily many problem instances can be generated
by applying transformations to both the search space and the objective values [96]
– such mechanism is implemented internally in BBOB and controlled via a unique
identifier (usually referred to as instance identifier or IID) which defines the applied
transformations. For most functions, the search space transformation is made up of
rotations and translations (moving the optimum, usually uniformly in [−4, 4]d). Since
the objective values are also transformed (through shifting the function values), the
performance measures used are generally relative to the global optimum value to allow
for comparison of performance between instances, typically in a logarithmic scale.

While this instance generation method is certainly useful for many applications, it
has not been without critique. In particular, the stability of low-level features under
the used transformations might not be guaranteed [175]. In Section 3.2, we analyze
the features of the BBOB instance generation mechanism in more detail.

7

2.3. Core Algorithms

2.3 Core Algorithms

For continuous optimization, there are several popular algorithm families that have
been shown to be effective in the decades since they have been introduced. In this
thesis, we focus on two evolutionary algorithms in particular: Differential Evolution
(DE) [219] and Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [98].
In addition to these two families, we often make use of a wider set of algorithms, many
of them accessed via the Nevergrad framework [200], which are briefly introduced as
well.

2.3.1 CMA-ES

One of the most commonly used types of evolutionary algorithms is the CMA-ES [98].
As with most ES, its sampling is based on a d-dimensional normal distribution, from
which we can sample as follows:

y(t+1,i) = N (0,C(t)) (2.1)

x(t+1,i) = m(t) + σ(t)y(t+1,i) (2.2)

Where m is the center of mass, C is the covariance matrix, σ is the step-size and i is
the index of the individual in the population. The CMA-ES adapts these parameters
based on the relative success of the previously sampled points. For the center of mass,
an intermediate recombination strategy is used: the new mean is placed according to
a weighted sum of the µ best individuals from the previous generation as follows:

m(t+1) = m(t) +

µ∑
i=0

wi(x
(t+1,i) −m(t)) (2.3)

Several variants for the recombination weights wi have been proposed, but the most
common variants use exponential decaying weights.

To update the covariance matrix, the CMA-ES incorporates not just information
from the current step, but a weighted combination of information collected in the
search so far, in the form of the rank-µ update:

C(t+1) = (1− cµ)C(t) + cµ

µ∑
i=0

y(t+1,i)(y(t+1,i))T (2.4)

Incorporating this previous information allows for a more robust estimation of the

8

Chapter 2. Preliminaries

covariance matrix which is most likely to lead to improving steps. However, the
used weighted sum causes signs to be lost, which have to be reintroduced to preserve
directionality. This is done in the form of the rank-one update, which utilizes the
evolution path pc, which is an aggregation of the search path (selected steps) of the
population through a number of successive generations. In practice, pc is computed
as an exponential moving average of the mean of the search distribution:

p(t+1)
c = (1− cc)p(t)

c +
√
cc(2− cc)µeff

m(t+1) −m(t)

σ(t)
(2.5)

Where cc is the learning rate for the exponential smoothing of pc, and µeff denotes
the variance effective selection mass.

The full update of the covariance matrix then reads:

C(t+1) = (1− c1 − cµ
µ∑

i=0

wi) C
(t) (2.6)

+ c1p
(t+1)
c (p(t+1)

c)T rank-one update (2.7)

+ cµ

µ∑
i=0

wiy
(t+1,i)(y(t+1,i))T rank-µ update (2.8)

Finally, the stepsize σ has to be adapted. This is one of the most commonly
modified aspects of the CMA-ES procedure, since the covariance adaptation procedure
described above does not directly produce a corresponding stepsize update. However,
implementations of CMA-ES usually employ the Cumulative Step length Adaptation
(CSA), which also employs a form of evolution path: the conjugate evolution path
p
(t+1)
σ , which is constructed via:

p(t+1)
σ = (1− cσ)p(t)

σ +
√
cσ(2− cσ)µeffC

(t)−
1
2 m

(t+1) −m(t)

σ(t)
(2.9)

Here, the inverse square root of the covariance matrix is used, which can be calculated
via eigendecomposition. However, this inversion is still computationally expensive, and
thus it is recommended to only update this inverse every max(1, ⌊1/(10n(c1 + cµ))⌋)
generations [90].

To update σ, the length of the conjugate evolution path is compared with its
expected length under random selection, i.e.: E||N (0, I)||. If the evolution path is
too short, this means that single steps are not making enough progress and cancel
each other out, thus the step-size should be decreased. If the evolution path is long,

9

2.3. Core Algorithms

the progress made in previous steps is correlated, and thus could have been made
with fewer steps, and requires an increase in step-size. With an additional dampening
parameter dσ, this allows σ(t+1) to be computed as:

σ(t+1) = σ(t)exp
(cσ
dσ

(p
(t+1)
σ)

E||N (0, I)|| − 1
))

(2.10)

Throughout the years, many other step-size adaptation strategies have been pro-
posed [72, 91]. In fact, given its popularity, a wide range of modifications and addi-
tional components for the CMA-ES have been published [3, 254, 155, 5]. This explosion
of algorithm variants has been the catalyst for the development of modular versions
of CMA-ES, starting with modEA [234, 232], which transformed into modCMA [51]
and will be discussed in Chapter 4.1.2.

2.3.2 DE

As opposed to CMA-ES, DE does not make use of normal distributions for its candidate
generation at all [219]. Instead, DE relies on differences between individuals in its
population in the creation of its offspring. In the context of DE, each individual in the
population undergoes crossover with a mutant individual, which is in turn created by
adding one or more difference vectors to a reference vector. The most basic mutation
operator is rand/1, where a mutant vector is created as follows:

v = x1 + F · (x2 − x3) (2.11)

Where x1,x2,x3 are three random (distinct from x and each other) individuals from
the population, and F is the mutation strength. This dependence on differences within
the current population enables DE to implicitly scale its mutation without explicitly
relying on a step-size mechanism.

Based on the created mutant vector, crossover is performed with the current indi-
vidual x as follows:

x′
i ←

{
vi if U(0, 1) ≤ Cr or i = irand

xi otherwise
(2.12)

Where Cr is the crossover rate, i ∈ {0 . . . d} and irand is a randomly selected index
to ensure at least one component from the mutant vector is used. After crossover,
the created trial solution competes directly against its parent to determine which

10

Chapter 2. Preliminaries

individual is added to the next generation.
The structure of DE is modular by design, with the mutation and crossover opera-

tors functioning completely separately. This has led to the proposal of many different
versions of these operators [266, 73, 106, 49, 37], in addition to a wide range of adap-
tation mechanisms for their corresponding parameters [224, 266]. In Chapter 4.1.1 we
propose a modular version of DE that incorporates a large selection of these modifi-
cations.

2.3.3 Other Common Algorithms

PSO Particle Swarm Optimization (PSO) [123] is population-based method where
individuals are moved in the search space based on a velocity that is updated
according to an individual’s search history and the history of its connected in-
dividuals.

BFGS Broyden-Fletcher-Goldfarb-Shannon (BFGS) [29, 77, 85, 212] is a Quasi-Newton
method that approximates the Jacobian or the Hessian instead of actually com-
puting them.

MLSL Multi-Level Single Linkage (MLSL) [147, 183] is an algorithm that combines
global search phases based on clustering with more focused, local search proce-
dures.

Cobyla Constrained optimization by linear approximation (Cobyla) [191] is an algorithm
that iteratively optimizes linear approximations of the objective function using
trust regions.

EMNA Estimation of Multivariate Normal Algorithm (EMNA) [140] is an estimation of
distribution algorithm that uses a multivariate normal distribution.

NGopt An algorithm selection wizard implemented in the Nevergrad platform that se-
lects the optimizer to use based on high-level features such as available budget
and problem dimensionality [166].

2.4 Performance Indicators

Since the iterative optimization heuristics only query the objective function through
sampling, we use function evaluations as the basis for most performance measures.
While this is different from many other disciplines in which solutions are generated

11

2.4. Performance Indicators

constructively, it allows for much easier ways to compare performance than measures
such as CPU time, since function evaluation counts are independent of the used hard-
ware [92].

Generally, we have two axes in which we can consider performance. The first is
to consider a fixed-budget setting: we have a limited number of function evaluations
available and want to find the best possible solution within this budget. This is
orthogonal to the fixed-target setting, where we have a given quality target and want
to reach this threshold with the fewest possible function evaluations.

As discussed earlier, many state-of-the-art IOHs are randomized in nature, there-
fore yielding random performance traces even when the underlying problem f is de-
terministic. The performance space is spanned by the number of evaluations, by the
quality of the assessed solutions, and by the probability that the algorithm has found
within a given budget of function evaluations a solution that is at least as good as a
given quality threshold.

Basic Notation To define the performance measures used in this thesis, we use the
following notation.

• F denotes the set of problems under consideration. Each problem (or problem
instance, depending on the context) f ∈ F is assumed to be a function f : S → R.
The dimensionality of S is denoted by d. We often consider scalable functions
that are defined for several or all dimensions d ∈ N. In such cases, we make the
dimension explicit.

• A = {A1, A2, . . .} is the set of algorithms under consideration. A can be finite
or infinite. Often, A is a configurable meta-algorithmic framework, which allows
users to specify parameters such as the degree of parallelism, the intensity of
the local perturbations, the memory size, the use (or not) of recombination
operators, etc.

• We denote by r the number of independent runs of an algorithm A ∈ A on
problem f ∈ F in dimension d.

• T (A, f, d,B, v, i) ∈ N ∪ {∞} is a fixed-target measure. It denotes the number
of function evaluations that algorithm A performed, in its i-th run and when
minimizing the d-dimensional variant of problem f , to find a solution x satisfying
f(x) ≤ v. When A did not succeed in finding such a solution within the maximal
allocated budget B, T (A, f, d,B, v, i) is set to ∞. Several ways to deal with

12

Chapter 2. Preliminaries

such failures are considered in the literature, as we shall discuss in the next
paragraphs.

• Similar to the above, V (A, f, d, t, i) ∈ R is a fixed-budget measure. It denotes
the function value of the best solution that algorithm A evaluated within the
first t evaluations of its i-th run, when minimizing the d-dimensional variant of
problem f .

Descriptive Statistics We next recall some basic descriptive statistics.

• The average function value over r runs given a budget value t is simply

V̄ (t) = V̄ (A, f, d, t) =
1

r

r∑
i=1

V (A, f, d, t, i).

As we do with all other measures, we omit explicit mention of A, f , and d when
they are clear from the context.

• The Penalized Average Runtime (PAR-c score, where c ≥ 1 is the penalty factor)
for a given target value v is defined as

PAR-c(v) = PAR-c(A, f, d,B, v) =
1

r

r∑
i=1

min {T (A, f, d,B, v, i), cB} , (2.13)

i.e., the PAR-c score is identical to the sample mean when all runs successfully
identified a solution of quality at least v within the given budget B, whereas
non-successful runs are counted as cB. In IOHanalyzer, we typically study the
PAR-1 score, which, in abuse of notation, we also refer to as the mean runtime.

• Apart from mean values, we are often interested in quantiles, and in particular in
the sample median of the r values {T (A, f, d,B, v, i)}ri=1 and {V (A, f, d, t, i)}ri=1,
respectively.

• We also study the sample standard deviation of the running times and function
values, respectively.

• The empirical success rate is the fraction of runs in which algorithm A reached
the given target v within the maximal number B of allowed function evaluations.

13

2.4. Performance Indicators

That is, in the case of a minimization problem,

p̂s = p̂s(A, f, d,B, v) (2.14)

=
1

r

r∑
i=1

1(V (A, f, d,B, i) < v) (2.15)

=
1

r

r∑
i=1

1(T (A, f, d,B, v, i) <∞), (2.16)

where 1(E) is the characteristic function of the event E .

Expected Running Time An alternative to the PAR-c score is the expected
running time (ERT). ERT assumes independent restarts of the algorithm when-
ever it did not succeed in finding a solution of quality at least v within the allo-
cated budget B. Practically, this corresponds to sampling indices i ∈ {1, . . . , r}
(i.i.d. uniform sampling with replacement) until hitting an index i with a corre-
sponding value T (A, f, d,B, v, i) < ∞. The running time would then have been
mB + T (A, f, d,B, v, i), where m is the number of sampled indices of unsuccessful
runs. The average running time of such a hypothetically restarted algorithm is then
estimated as

ERT(A, f, d,B, v) =

∑r
i=1 min {T (A, f, d,B, v, i), B}

rp̂s

=

∑r
i=1 min {T (A, f, d,B, v, i), B}∑r
i=1 1(T (A, f, d,B, v, i) <∞)

. (2.17)

Note that ERT can take an infinite value when none of the runs was successful in
identifying a solution of quality better than v.

Cumulative Distribution Functions For the fixed-target and fixed-budget anal-
ysis, we can also estimate probability density (mass) functions and compute empirical
cumulative distribution functions (ECDFs). For the fixed-budget function value, its
probability density function is estimated via the well-known Kernel Density Estima-
tion (KDE) method [100], which approximates the density function by a superposition
of kernel functions (e.g., Gaussian functions with a fixed width) centred at each data
point. Intuitively, a set of crowded data points would lead to a very peaky empirical
density due to massive superpositions of the kernel, while a set of distant points can
only generate a relatively flat curve. For the fixed-target running time (an integer-

14

Chapter 2. Preliminaries

valued random variable), we estimate its probability mass function by treating it as
a real value and applying the KDE method. For a set {T (A, f, d, v, i)}ri=1 of fixed-
target running times, its ECDF is defined as the fraction of runs that successfully
found a solution of quality at least as good as v within a budget of at most t function
evaluations. That is,

ECDF(A, f, d, v, t) =
1

r

r∑
i=1

1(T (A, f, d, v, i) ≤ t).

ECDF values are most typically used in aggregated form. We use the following
two aggregations:

• The aggregation over a set V of target values:

ECDF(A, f, d,V, t) = 1

r|V|
∑
v∈V

r∑
i=1

1(T (A, f, d, v, i) ≤ t), (2.18)

i.e., the fraction of (run,target value) pairs (i, v) for which algorithm A has
identified a solution of quality at least v within a budget of at most t function
evaluations.

• Given a set of functions F and a mapping V : F → 2R that specifies the target
values to consider for each function, the ECDF can be further aggregated by the
following definition:

ECDF(A,F , d,V, t) = 1

r
∑

f∈F |V(f)|
∑
f∈F

∑
v∈V(f)

r∑
i=1

1(T (A, f, d, v, i) ≤ t).

(2.19)

For the BBOB suite in particular, we have a default setting for the set of targets to
consider: V = {102− x

5 }x∈0...51.

Area Over/Under the ECDF (AOC/AUC) The ECDF can be further aggre-
gated by taking the area under the ECDF (AUC), which results in a measure of anytime
performance over the included (function, target) pairs included in the ECDF [93]. By
taking the difference between the maximal budget and the AUC, we get the area over
the ECDF (AOC) instead, which is useful in two ways. First, it allows us to stick to
minimization, simplifying visualizations. Second, the AOC is an approximation of the
geometric average running time. As such, we often make use of (normalized) AOC in
this thesis.

15

2.5. Exploratory Landscape Analysis

Area Over the Convergence Curve (AOCC) The AOCC is an anytime per-
formance measure, which is equivalent to the area under the cumulative distribution
curve (AUC) given infinite targets for the construction of the ECDF [78]. This mea-
sure is thus slightly more precise than the AUC, and does not require the selection
of the targets to use. Instead, we only need to define the lower (fl) and upper (fu)
bounds for the function values, as well as an optional scaling function Sf .

AOCC(A, f, d,B) =
1

B · r
r∑

i=1

B∑
t=1

(
1− clip((Sf (V (A, f, d, t, i))), fl, fu)− fl

fu − fl

)

, where the clip function caps the function value to the range [fl, fu]. To remain
consistent with the values used for AUC, and analysis of results on BBOB in general,
we generally use 102 and 10−8 as the bounds for our function values, and perform
a log-scaling after subtracting the global optimum before calculating the AOCC. We
thus calculate the normalized AOCC as follows:

AOCC(A, f, d,B) =
1

B · r
r∑

i=1

B∑
t=1

(
1− clip((log10(V (A, f, d, t, i)− f(x∗)),−8, 2) + 8

10

)

2.5 Exploratory Landscape Analysis

Since the performance of optimization algorithms relies on the problems which are
being solved, it is important to focus our analysis not only on the algorithm, but also
to look at the structure of the problems themselves. In our black-box context, we can
not rely on any outside information about the problem, and thus we can only gain
insights through sampling. The field of Exploratory Landscape Analysis [164] (ELA)
aims to use information obtained through sampling to estimate the complexity of an
optimization problem, by capturing its topology or landscape characteristics. More
precisely, the high-level landscape characteristics of optimization problems, such as
multi-modality, global structure and separability, are numerically quantified through
classes of manually designed low-level features. These landscape characteristics, com-
monly referred to as ELA features, can be cheaply computed based on a Design of
Experiments (DoE), consisting of some samples and their corresponding objective val-
ues.

In recent years, ELA has gained increasing attention in the landscape-aware algo-
rithm selection problem (ASP) tasks, where the correlation between landscape char-
acteristics and optimization algorithm performances has been intensively researched.

16

Chapter 2. Preliminaries

In fact, previous works have revealed that ELA features are indeed informative in
explaining algorithm behaviors and can be exploited to reliably predict algorithm per-
formances, e.g., using machine learning approaches [18, 107, 126]. Apart from ASP
tasks, ELA has shown promising potential in other application domains, for instance,
classification of the BBOB functions [204] and instance space analysis of different
benchmark problem sets [216].

One of the most popular implementations of ELA is the Flacco package [127] (and
its Python version pFlacco [192]), which incorporates several hundred features. We
focus on the set of features which do not require additional sampling after the DoE.
In particular, we consider features from six different classes: y-distribution, level set,
meta-model, local search, curvature and convexity [164, 165]. While we are fully aware
that these ELA features are highly sensitive to sample size [175] and sampling strategy
[202, 253], they remain the best tool available at the moment for analyzing the low-level
features of black-box problems.

2.6 Reproducibility

Reproducibility is an important aspect in any scientific domain, and evolutionary
computation is no different [151]. In this field, many new algorithms are proposed or
benchmarked without accompanying code being made public. At best, this hinders
the usage of the method by other researchers, but more often it is combined with an
underspecification of the algorithm, leading to ambiguities in its working principles.

To ensure the reproducibility of the results presented in this thesis, most publica-
tions discussed are linked to a repository on Zenodo. While the individual references
to these repositories have been removed from this thesis, they can be found under the
Zenodo profile "Diederick Vermetten".1 In addition to these repositories, many of the
datasets discussed throughout this thesis can be accessed directly on the IOHanalyzer
website.2

1https://tinyurl.com/39v642nw
2https://iohanalyzer.liacs.nl

17

https://tinyurl.com/39v642nw
https://iohanalyzer.liacs.nl

2.6. Reproducibility

18

