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“He said that most men were in their lives like the carpenter whose work went so
slowly for the dullness of his tools that he had not time to sharpen them.”

- Cormac McCarthy, ‘The Crossing’
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Chapter 1

Introduction

Optimization problems can be found in a wide variety of contexts, from complex
industrial problems where we aim to increase the crashworthiness of a car body to daily
life where we want to choose the shortest route home. While we are always looking
for better solutions, it is usually impossible to try every possible option. Instead of
an exhaustive evaluation, we can introduce a heuristic search procedure to efficiently
explore the solution space. At the cost of potentially missing the ‘perfect’ solution,
these types of methods prove to be rather effective in practice.

Because of the prevalence and variety of optimization problems, heuristic opti-
mization algorithms are continuously being developed to solve subsets of problems
more effectively than before. This development has led to a thriving research area,
and the resulting algorithms have significantly benefited a wide range of real-world
applications.

The variety of available optimization heuristics is a clear indication of the strengths
of this class of algorithms. However, with so many methods to choose from, it can
be hard to gauge which algorithms excel in a given setting. In order to support
the continued development and understanding of heuristic optimization algorithms,
standardized practices for testing and comparing their results are a necessity. Bench-
marking tools support this aim by providing access to sets of problems with known
properties and fixed pipelines for logging the optimization process. The resulting data
can then be compared fairly to data from existing algorithms in a variety of ways,
including aggregated visualizations and statistical testing procedures.

In this thesis, we will focus on the IOHprofiler benchmarking environment, and
show how this tool supports robust research in a variety of manners. In particular,
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1.1. Research Questions

we highlight the ways in which we can use benchmarking in combination with the
modularization of algorithms to gain insight into the benefits of individual algorithmic
components, as well as shine a light on the interplay between pairs of components. This
shows the inherent complementarity between different algorithmic principles, where
some combinations of components outperform others on one type of problem, while
the reverse is true for problems with different overarching properties. This notion of
complementarity between algorithms lies at the core of algorithm selection, where we
aim to first identify some functional properties of the problems to be optimized, to then
determine which algorithm would be most appropriate to use for the optimization.

By combining the ideas of algorithm selection with the detailed insights gained
from tracking the full performance trajectory during benchmarking, we finally get
into the domain of dynamic algorithm selection. Here, we don’t merely exploit dif-
ferences between algorithms on different types of problems, but instead, we aim to
utilize the information about the local state of the optimization algorithm to decide
whether to continue optimizing the same way or to switch to a completely different
algorithm. Depending on the way in which this problem is framed, we can also con-
sider the combination with algorithm configuration, where we tune the parameters of
the optimization algorithm, leading to an even larger space of potential choices and
corresponding benefits.

1.1 Research Questions

The overarching question of this thesis is: How can benchmark data be used to gain
insights into, and subsequently exploit, different levels of algorithm complementarity?
Since this question encompasses a wide range of topics, we further specify a set of
underlying research questions which shine a light on a selected set of components
ranging from benchmarking software to dynamic algorithm selection.

RQ1 How can robust benchmarking pipelines be made accessible and resulting data
be made usable by the wider community? This is the core focus of Chapter 3
(based on [255, 53, 177, 43, 136, 150, 244, 236]), where we introduce IOHprofiler,
a benchmarking environment with a modular design which aims to lower the
barrier of entry to robust experimental design. By examining the wide range of
problems made available in IOHprofiler, we show the way in which benchmark
design influences the types of conclusions which can be drawn from studies which
use these types of problems. In addition to the common performance-oriented
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Chapter 1. Introduction

benchmarks, we also discuss behavior-based benchmarking, illustrating the ways
in which this difference of perspective can change the ways in which we look at
the differences between iterative optimization heuristics.

RQ2 How can a modular design aid in the exploration of interactions between different
algorithmic ideas? Most new algorithmic ideas are not proposed in isolation, but
instead build upon existing algorithm families. While these modifications are
usually compared to a baseline implementation of the original algorithm, their
potential interactions with other modifications are usually hard to judge. In
Chapter 4 (based on [51, 240, 247, 246]), we explore how the usage of modular
design principles can be combined with algorithm configuration techniques to
explore the strengths of different modifications within an algorithm family.

RQ3 To what extent can we exploit performance complementarity between different
algorithms by switching between them? While performance complementarity is
classically exploited by algorithm selection or algorithm configuration techniques,
we expand these ideas to account for the potential benefit of switching between
algorithms during the search process. By switching algorithms in this way, we can
potentially speed up convergence by combining algorithms’ strengths in different
phases of the optimization. In Chapter 5 (based on [245, 243, 110, 135, 248]), we
explore this potential from a data-driven perspective, as well as by performing
switching both within a fixed algorithm family and between completely different
optimizers.

RQ4 How can we fairly judge the performance of meta-learning methods in the con-
text of black-box optimization? While the previously discussed research ques-
tions focus on methods for exploiting algorithm complementarity, it is impor-
tant to note how the efficacy of these meta-learning techniques depends on the
used benchmark suites. In particular, the generalizability of results from algo-
rithm selection and configuration remains an open problem. In Chapter 6 (based
on [250, 251, 249]), we discuss MA-BBOB, a new benchmark problem generator,
which we introduce to create larger sets of training and testing functions for
these kinds of meta-learning methods.

1.2 Other Contributions by the Author

While this thesis covers a variety of aspects of data-driven benchmarking and its role
in dynamic algorithm selection, a set of other tangentially related research directions
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1.3. Thesis Outline

have been omitted for reasons of space. A full list of publications can be found at the
end of this thesis.

1.3 Thesis Outline

In Chapter 2, we provide information on a variety of background topics related to
the work in the thesis. In particular, we discuss continuous optimization and ways in
which we can characterize these types of problems. Chapter 3 discusses benchmarking
optimization algorithms, with a focus on the benchmarking platform IOHprofiler. This
section also discusses more behaviour-based benchmarking in the form of structural
bias detection. Chapter 4 focuses on the problems of algorithm configuration and selec-
tion, highlighting the challenges in configuring the inherently stochastic optimization
algorithms discussed throughout this thesis. In particular, we show how taking a mod-
ular approach to algorithm design can lead to significant improvement in performance
when algorithm configuration methods are used. Chapter 5 then introduces dynamic
algorithm selection and configuration, highlighting the potential benefits to be gained
by switching between optimization algorithms. This section shows several use cases,
including the promising per-run trajectory-based selection method. Finally, Chapter 6
discusses the problem of generalizability in the context of continuous optimisation and
proposes a new test suite on which this aspect can be further investigated. The core
results from the thesis are then summarized in Chapter 7, where we finally discuss
future research directions based on the insights obtained.
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Chapter 2

Preliminaries

In this chapter, we provide background information on several key aspects related to
benchmarking and designing optimization algorithms. In particular, we outline many
of the techniques we use throughout the remainder of the thesis to evaluate, analyze
and configure optimization heuristics.

2.1 Iterative Optimization Heuristics

Throughout this thesis, we study optimization (minimization unless stated otherwise)
of problems of the type f : S → R, i.e., we assume our problem to be a single-objective,
real-valued objective function (i.e., problems for which the quality of possible solutions
is rated by real numbers), defined over a search space S. While some of the methods
discussed are independent of S (it can be discrete or continuous, constrained or un-
constrained), we consider the case where S ⊂ Rd unless stated otherwise. Generally,
when dealing with benchmark problems, we assume S = [lbi, ubi]

d, which we refer to
as a box-constrained problem where lbi and ubi are the lower and upper bound of the
i-th decision variable respectively.

These problems are often considered to be black-box problems: we don’t assume any
information about the underlying structure of the problem. For this type of problem,
the only way to get information about it is to evaluate the quality of points x ∈ S.
This type of problem is common in many real-world problems, e.g. when dealing with
simulations of complex processes or physical experiments.

For some problems, some intermediate information about the problem structure is
available, in which case we speak of gray-box optimization. This can be the case when
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2.2. Benchmark Problems: BBOB

Algorithm 1 Blueprint of an iterative optimization heuristic (IOH) optimizing a
function f : S → R.
1: procedure ioh
2: t← 0 ▷ iteration counter
3: H(0) ← ∅ ▷ search history information
4: choose a distribution Λ(0) on N ▷ distribution of the number of samples
5: while termination criterion not met do
6: t← t+ 1
7: sample λ(t) ∼ Λ(t−1) ▷ number of points to be evaluated
8: Based on H(t−1), choose a distribution D(t) on Sλ(t)
9: sample

(
x(t,1), . . . ,x(t,λ(t))

)
∼ D(t) ▷ candidate generation

10: evaluate f
(
x(t,1)

)
, . . . , f

(
x(t,λ(t))

)
▷ function evaluation

11: choose H(t) and Λ(t) ▷ information update
12: end while
13: end procedure

information about variable interactions can be extracted from the problem formula-
tion [259]. To ease notation, we will still consider these problems as black-box in this
thesis. We emphasize that the sampling-based optimization algorithms studied in this
thesis can be competitive even when the problem f is explicitly known. In pseudo-
Boolean optimization, the low auto-correlation binary sequence (LABS) problem is a
good example of such a problem that can be defined in two lines, but for which the
best-known solvers are sampling-based [182].

The class of algorithms that we are interested in are Iterative Optimization Heuris-
tics (IOHs). IOHs are entirely sampling-based, i.e., they sample the search space S
and use the function values f(x) of the evaluated samples x to guide the search. Al-
gorithm 1 provides a blueprint for IOHs. Classical examples for IOHs are local search
algorithms (this class includes Simulated Annealing [128] and Threshold Accepting [66]
as two prominent examples), genetic and evolutionary algorithms [71], Bayesian Opti-
mization and related global optimization algorithms [113], Estimation of Distribution
algorithms [139], and Ant Colony Optimization algorithms [64]. In Section 2.3, we
discuss the algorithms which this thesis focuses on.

2.2 Benchmark Problems: BBOB

This thesis is focused on continuous, single-objective, noiseless black-box optimization.
As such, we make extensive use of the Black-Box Optimization Benchmarking (BBOB)
suite. Originally developed as part of the COCO platform [95], BBOB is one of
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Chapter 2. Preliminaries

the most used benchmark suites for continuous optimization. This suite contains 24
functions, which can be separated into five core classes based on their global properties,
which are listed in Table 2.1.

While the suite is originally intended to be used for unconstrained optimization,
in practice however, black box optimization functions like this are often considered to
be box-constrained [8], in the case of BBOB with domain [−5, 5]d.

Table 2.1: Classification of the noiseless BBOB functions based on their properties
(multi-modality, global structure, separability, variable scaling, homogeneity, basin-
sizes, global to local contrast). Predefined groups are separated by horizontal lines [96].
Table taken from [164].

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc.
1 Sphere none none high none high none none
2 Ellipsoidal separable none none high high high none none
3 Rastrigin separable high strong none low high low low
4 Bueche-Rastrigin high strong high low high med. low
5 Linear Slope none none high none high none none
6 Attractive Sector none none high low med. none none
7 Step Ellipsoidal none none high low high none none
8 Rosenbrock low none none none med. low low
9 Rosenbrock rotated low none none none med. low low
10 Ellipsoidal high-cond. none none none high high none none
11 Discus none none none high high none none
12 Bent Cigar none none none high high none none
13 Sharp Ridge none none none low med. none none
14 Different Powers none none none low med. none none
15 Rastrigin multi-modal high strong none low high low low
16 Weierstrass high med. none med. high med. low
17 Schaffer F7 high med. none low med. med. high
18 Schaffer F7 mod. ill-cond. high med. none high med. med. high
19 Griewank-Rosenbrock high strong none none high low low
20 Schwefel med. deceptive none none high low low
21 Gallagher 101 Peaks med. none none med. high med. low
22 Gallagher 21 Peaks low none none med. high med. med.
23 Katsuura high none none none high low low
24 Lunacek bi-Rastrigin high weak none low high low low

For each BBOB function, arbitrarily many problem instances can be generated
by applying transformations to both the search space and the objective values [96]
– such mechanism is implemented internally in BBOB and controlled via a unique
identifier (usually referred to as instance identifier or IID) which defines the applied
transformations. For most functions, the search space transformation is made up of
rotations and translations (moving the optimum, usually uniformly in [−4, 4]d). Since
the objective values are also transformed (through shifting the function values), the
performance measures used are generally relative to the global optimum value to allow
for comparison of performance between instances, typically in a logarithmic scale.

While this instance generation method is certainly useful for many applications, it
has not been without critique. In particular, the stability of low-level features under
the used transformations might not be guaranteed [175]. In Section 3.2, we analyze
the features of the BBOB instance generation mechanism in more detail.
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2.3. Core Algorithms

2.3 Core Algorithms

For continuous optimization, there are several popular algorithm families that have
been shown to be effective in the decades since they have been introduced. In this
thesis, we focus on two evolutionary algorithms in particular: Differential Evolution
(DE) [219] and Covariance Matrix Adaptation Evolution Strategies (CMA-ES) [98].
In addition to these two families, we often make use of a wider set of algorithms, many
of them accessed via the Nevergrad framework [200], which are briefly introduced as
well.

2.3.1 CMA-ES

One of the most commonly used types of evolutionary algorithms is the CMA-ES [98].
As with most ES, its sampling is based on a d-dimensional normal distribution, from
which we can sample as follows:

y(t+1,i) = N (0,C(t)) (2.1)

x(t+1,i) = m(t) + σ(t)y(t+1,i) (2.2)

Where m is the center of mass, C is the covariance matrix, σ is the step-size and i is
the index of the individual in the population. The CMA-ES adapts these parameters
based on the relative success of the previously sampled points. For the center of mass,
an intermediate recombination strategy is used: the new mean is placed according to
a weighted sum of the µ best individuals from the previous generation as follows:

m(t+1) = m(t) +

µ∑
i=0

wi(x
(t+1,i) −m(t)) (2.3)

Several variants for the recombination weights wi have been proposed, but the most
common variants use exponential decaying weights.

To update the covariance matrix, the CMA-ES incorporates not just information
from the current step, but a weighted combination of information collected in the
search so far, in the form of the rank-µ update:

C(t+1) = (1− cµ)C(t) + cµ

µ∑
i=0

y(t+1,i)(y(t+1,i))T (2.4)

Incorporating this previous information allows for a more robust estimation of the
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covariance matrix which is most likely to lead to improving steps. However, the
used weighted sum causes signs to be lost, which have to be reintroduced to preserve
directionality. This is done in the form of the rank-one update, which utilizes the
evolution path pc, which is an aggregation of the search path (selected steps) of the
population through a number of successive generations. In practice, pc is computed
as an exponential moving average of the mean of the search distribution:

p(t+1)
c = (1− cc)p(t)

c +
√
cc(2− cc)µeff

m(t+1) −m(t)

σ(t)
(2.5)

Where cc is the learning rate for the exponential smoothing of pc, and µeff denotes
the variance effective selection mass.

The full update of the covariance matrix then reads:

C(t+1) = (1− c1 − cµ
µ∑

i=0

wi) C
(t) (2.6)

+ c1p
(t+1)
c (p(t+1)

c )T rank-one update (2.7)

+ cµ

µ∑
i=0

wiy
(t+1,i)(y(t+1,i))T rank-µ update (2.8)

Finally, the stepsize σ has to be adapted. This is one of the most commonly
modified aspects of the CMA-ES procedure, since the covariance adaptation procedure
described above does not directly produce a corresponding stepsize update. However,
implementations of CMA-ES usually employ the Cumulative Step length Adaptation
(CSA), which also employs a form of evolution path: the conjugate evolution path
p
(t+1)
σ , which is constructed via:

p(t+1)
σ = (1− cσ)p(t)

σ +
√
cσ(2− cσ)µeffC

(t)−
1
2 m

(t+1) −m(t)

σ(t)
(2.9)

Here, the inverse square root of the covariance matrix is used, which can be calculated
via eigendecomposition. However, this inversion is still computationally expensive, and
thus it is recommended to only update this inverse every max(1, ⌊1/(10n(c1 + cµ))⌋)
generations [90].

To update σ, the length of the conjugate evolution path is compared with its
expected length under random selection, i.e.: E||N (0, I)||. If the evolution path is
too short, this means that single steps are not making enough progress and cancel
each other out, thus the step-size should be decreased. If the evolution path is long,
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the progress made in previous steps is correlated, and thus could have been made
with fewer steps, and requires an increase in step-size. With an additional dampening
parameter dσ, this allows σ(t+1) to be computed as:

σ(t+1) = σ(t)exp
( cσ
dσ

( p
(t+1)
σ )

E||N (0, I)|| − 1
))

(2.10)

Throughout the years, many other step-size adaptation strategies have been pro-
posed [72, 91]. In fact, given its popularity, a wide range of modifications and addi-
tional components for the CMA-ES have been published [3, 254, 155, 5]. This explosion
of algorithm variants has been the catalyst for the development of modular versions
of CMA-ES, starting with modEA [234, 232], which transformed into modCMA [51]
and will be discussed in Chapter 4.1.2.

2.3.2 DE

As opposed to CMA-ES, DE does not make use of normal distributions for its candidate
generation at all [219]. Instead, DE relies on differences between individuals in its
population in the creation of its offspring. In the context of DE, each individual in the
population undergoes crossover with a mutant individual, which is in turn created by
adding one or more difference vectors to a reference vector. The most basic mutation
operator is rand/1, where a mutant vector is created as follows:

v = x1 + F · (x2 − x3) (2.11)

Where x1,x2,x3 are three random (distinct from x and each other) individuals from
the population, and F is the mutation strength. This dependence on differences within
the current population enables DE to implicitly scale its mutation without explicitly
relying on a step-size mechanism.

Based on the created mutant vector, crossover is performed with the current indi-
vidual x as follows:

x′
i ←

{
vi if U(0, 1) ≤ Cr or i = irand

xi otherwise
(2.12)

Where Cr is the crossover rate, i ∈ {0 . . . d} and irand is a randomly selected index
to ensure at least one component from the mutant vector is used. After crossover,
the created trial solution competes directly against its parent to determine which

10



Chapter 2. Preliminaries

individual is added to the next generation.
The structure of DE is modular by design, with the mutation and crossover opera-

tors functioning completely separately. This has led to the proposal of many different
versions of these operators [266, 73, 106, 49, 37], in addition to a wide range of adap-
tation mechanisms for their corresponding parameters [224, 266]. In Chapter 4.1.1 we
propose a modular version of DE that incorporates a large selection of these modifi-
cations.

2.3.3 Other Common Algorithms

PSO Particle Swarm Optimization (PSO) [123] is population-based method where
individuals are moved in the search space based on a velocity that is updated
according to an individual’s search history and the history of its connected in-
dividuals.

BFGS Broyden-Fletcher-Goldfarb-Shannon (BFGS) [29, 77, 85, 212] is a Quasi-Newton
method that approximates the Jacobian or the Hessian instead of actually com-
puting them.

MLSL Multi-Level Single Linkage (MLSL) [147, 183] is an algorithm that combines
global search phases based on clustering with more focused, local search proce-
dures.

Cobyla Constrained optimization by linear approximation (Cobyla) [191] is an algorithm
that iteratively optimizes linear approximations of the objective function using
trust regions.

EMNA Estimation of Multivariate Normal Algorithm (EMNA) [140] is an estimation of
distribution algorithm that uses a multivariate normal distribution.

NGopt An algorithm selection wizard implemented in the Nevergrad platform that se-
lects the optimizer to use based on high-level features such as available budget
and problem dimensionality [166].

2.4 Performance Indicators

Since the iterative optimization heuristics only query the objective function through
sampling, we use function evaluations as the basis for most performance measures.
While this is different from many other disciplines in which solutions are generated

11



2.4. Performance Indicators

constructively, it allows for much easier ways to compare performance than measures
such as CPU time, since function evaluation counts are independent of the used hard-
ware [92].

Generally, we have two axes in which we can consider performance. The first is
to consider a fixed-budget setting: we have a limited number of function evaluations
available and want to find the best possible solution within this budget. This is
orthogonal to the fixed-target setting, where we have a given quality target and want
to reach this threshold with the fewest possible function evaluations.

As discussed earlier, many state-of-the-art IOHs are randomized in nature, there-
fore yielding random performance traces even when the underlying problem f is de-
terministic. The performance space is spanned by the number of evaluations, by the
quality of the assessed solutions, and by the probability that the algorithm has found
within a given budget of function evaluations a solution that is at least as good as a
given quality threshold.

Basic Notation To define the performance measures used in this thesis, we use the
following notation.

• F denotes the set of problems under consideration. Each problem (or problem
instance, depending on the context) f ∈ F is assumed to be a function f : S → R.
The dimensionality of S is denoted by d. We often consider scalable functions
that are defined for several or all dimensions d ∈ N. In such cases, we make the
dimension explicit.

• A = {A1, A2, . . .} is the set of algorithms under consideration. A can be finite
or infinite. Often, A is a configurable meta-algorithmic framework, which allows
users to specify parameters such as the degree of parallelism, the intensity of
the local perturbations, the memory size, the use (or not) of recombination
operators, etc.

• We denote by r the number of independent runs of an algorithm A ∈ A on
problem f ∈ F in dimension d.

• T (A, f, d,B, v, i) ∈ N ∪ {∞} is a fixed-target measure. It denotes the number
of function evaluations that algorithm A performed, in its i-th run and when
minimizing the d-dimensional variant of problem f , to find a solution x satisfying
f(x) ≤ v. When A did not succeed in finding such a solution within the maximal
allocated budget B, T (A, f, d,B, v, i) is set to ∞. Several ways to deal with

12



Chapter 2. Preliminaries

such failures are considered in the literature, as we shall discuss in the next
paragraphs.

• Similar to the above, V (A, f, d, t, i) ∈ R is a fixed-budget measure. It denotes
the function value of the best solution that algorithm A evaluated within the
first t evaluations of its i-th run, when minimizing the d-dimensional variant of
problem f .

Descriptive Statistics We next recall some basic descriptive statistics.

• The average function value over r runs given a budget value t is simply

V̄ (t) = V̄ (A, f, d, t) =
1

r

r∑
i=1

V (A, f, d, t, i).

As we do with all other measures, we omit explicit mention of A, f , and d when
they are clear from the context.

• The Penalized Average Runtime (PAR-c score, where c ≥ 1 is the penalty factor)
for a given target value v is defined as

PAR-c(v) = PAR-c(A, f, d,B, v) =
1

r

r∑
i=1

min {T (A, f, d,B, v, i), cB} , (2.13)

i.e., the PAR-c score is identical to the sample mean when all runs successfully
identified a solution of quality at least v within the given budget B, whereas
non-successful runs are counted as cB. In IOHanalyzer, we typically study the
PAR-1 score, which, in abuse of notation, we also refer to as the mean runtime.

• Apart from mean values, we are often interested in quantiles, and in particular in
the sample median of the r values {T (A, f, d,B, v, i)}ri=1 and {V (A, f, d, t, i)}ri=1,
respectively.

• We also study the sample standard deviation of the running times and function
values, respectively.

• The empirical success rate is the fraction of runs in which algorithm A reached
the given target v within the maximal number B of allowed function evaluations.
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That is, in the case of a minimization problem,

p̂s = p̂s(A, f, d,B, v) (2.14)

=
1

r

r∑
i=1

1(V (A, f, d,B, i) < v) (2.15)

=
1

r

r∑
i=1

1(T (A, f, d,B, v, i) <∞), (2.16)

where 1(E) is the characteristic function of the event E .

Expected Running Time An alternative to the PAR-c score is the expected
running time (ERT). ERT assumes independent restarts of the algorithm when-
ever it did not succeed in finding a solution of quality at least v within the allo-
cated budget B. Practically, this corresponds to sampling indices i ∈ {1, . . . , r}
(i.i.d. uniform sampling with replacement) until hitting an index i with a corre-
sponding value T (A, f, d,B, v, i) < ∞. The running time would then have been
mB + T (A, f, d,B, v, i), where m is the number of sampled indices of unsuccessful
runs. The average running time of such a hypothetically restarted algorithm is then
estimated as

ERT(A, f, d,B, v) =

∑r
i=1 min {T (A, f, d,B, v, i), B}

rp̂s

=

∑r
i=1 min {T (A, f, d,B, v, i), B}∑r
i=1 1(T (A, f, d,B, v, i) <∞)

. (2.17)

Note that ERT can take an infinite value when none of the runs was successful in
identifying a solution of quality better than v.

Cumulative Distribution Functions For the fixed-target and fixed-budget anal-
ysis, we can also estimate probability density (mass) functions and compute empirical
cumulative distribution functions (ECDFs). For the fixed-budget function value, its
probability density function is estimated via the well-known Kernel Density Estima-
tion (KDE) method [100], which approximates the density function by a superposition
of kernel functions (e.g., Gaussian functions with a fixed width) centred at each data
point. Intuitively, a set of crowded data points would lead to a very peaky empirical
density due to massive superpositions of the kernel, while a set of distant points can
only generate a relatively flat curve. For the fixed-target running time (an integer-
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valued random variable), we estimate its probability mass function by treating it as
a real value and applying the KDE method. For a set {T (A, f, d, v, i)}ri=1 of fixed-
target running times, its ECDF is defined as the fraction of runs that successfully
found a solution of quality at least as good as v within a budget of at most t function
evaluations. That is,

ECDF(A, f, d, v, t) =
1

r

r∑
i=1

1(T (A, f, d, v, i) ≤ t).

ECDF values are most typically used in aggregated form. We use the following
two aggregations:

• The aggregation over a set V of target values:

ECDF(A, f, d,V, t) = 1

r|V|
∑
v∈V

r∑
i=1

1(T (A, f, d, v, i) ≤ t), (2.18)

i.e., the fraction of (run,target value) pairs (i, v) for which algorithm A has
identified a solution of quality at least v within a budget of at most t function
evaluations.

• Given a set of functions F and a mapping V : F → 2R that specifies the target
values to consider for each function, the ECDF can be further aggregated by the
following definition:

ECDF(A,F , d,V, t) = 1

r
∑

f∈F |V(f)|
∑
f∈F

∑
v∈V(f)

r∑
i=1

1(T (A, f, d, v, i) ≤ t).

(2.19)

For the BBOB suite in particular, we have a default setting for the set of targets to
consider: V = {102− x

5 }x∈0...51.

Area Over/Under the ECDF (AOC/AUC) The ECDF can be further aggre-
gated by taking the area under the ECDF (AUC), which results in a measure of anytime
performance over the included (function, target) pairs included in the ECDF [93]. By
taking the difference between the maximal budget and the AUC, we get the area over
the ECDF (AOC) instead, which is useful in two ways. First, it allows us to stick to
minimization, simplifying visualizations. Second, the AOC is an approximation of the
geometric average running time. As such, we often make use of (normalized) AOC in
this thesis.
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Area Over the Convergence Curve (AOCC) The AOCC is an anytime per-
formance measure, which is equivalent to the area under the cumulative distribution
curve (AUC) given infinite targets for the construction of the ECDF [78]. This mea-
sure is thus slightly more precise than the AUC, and does not require the selection
of the targets to use. Instead, we only need to define the lower (fl) and upper (fu)
bounds for the function values, as well as an optional scaling function Sf .

AOCC(A, f, d,B) =
1

B · r
r∑

i=1

B∑
t=1

(
1− clip((Sf (V (A, f, d, t, i))), fl, fu)− fl

fu − fl

)

, where the clip function caps the function value to the range [fl, fu]. To remain
consistent with the values used for AUC, and analysis of results on BBOB in general,
we generally use 102 and 10−8 as the bounds for our function values, and perform
a log-scaling after subtracting the global optimum before calculating the AOCC. We
thus calculate the normalized AOCC as follows:

AOCC(A, f, d,B) =
1

B · r
r∑

i=1

B∑
t=1

(
1− clip((log10(V (A, f, d, t, i)− f(x∗)),−8, 2) + 8

10

)

2.5 Exploratory Landscape Analysis

Since the performance of optimization algorithms relies on the problems which are
being solved, it is important to focus our analysis not only on the algorithm, but also
to look at the structure of the problems themselves. In our black-box context, we can
not rely on any outside information about the problem, and thus we can only gain
insights through sampling. The field of Exploratory Landscape Analysis [164] (ELA)
aims to use information obtained through sampling to estimate the complexity of an
optimization problem, by capturing its topology or landscape characteristics. More
precisely, the high-level landscape characteristics of optimization problems, such as
multi-modality, global structure and separability, are numerically quantified through
classes of manually designed low-level features. These landscape characteristics, com-
monly referred to as ELA features, can be cheaply computed based on a Design of
Experiments (DoE), consisting of some samples and their corresponding objective val-
ues.

In recent years, ELA has gained increasing attention in the landscape-aware algo-
rithm selection problem (ASP) tasks, where the correlation between landscape char-
acteristics and optimization algorithm performances has been intensively researched.
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In fact, previous works have revealed that ELA features are indeed informative in
explaining algorithm behaviors and can be exploited to reliably predict algorithm per-
formances, e.g., using machine learning approaches [18, 107, 126]. Apart from ASP
tasks, ELA has shown promising potential in other application domains, for instance,
classification of the BBOB functions [204] and instance space analysis of different
benchmark problem sets [216].

One of the most popular implementations of ELA is the Flacco package [127] (and
its Python version pFlacco [192]), which incorporates several hundred features. We
focus on the set of features which do not require additional sampling after the DoE.
In particular, we consider features from six different classes: y-distribution, level set,
meta-model, local search, curvature and convexity [164, 165]. While we are fully aware
that these ELA features are highly sensitive to sample size [175] and sampling strategy
[202, 253], they remain the best tool available at the moment for analyzing the low-level
features of black-box problems.

2.6 Reproducibility

Reproducibility is an important aspect in any scientific domain, and evolutionary
computation is no different [151]. In this field, many new algorithms are proposed or
benchmarked without accompanying code being made public. At best, this hinders
the usage of the method by other researchers, but more often it is combined with an
underspecification of the algorithm, leading to ambiguities in its working principles.

To ensure the reproducibility of the results presented in this thesis, most publica-
tions discussed are linked to a repository on Zenodo. While the individual references
to these repositories have been removed from this thesis, they can be found under the
Zenodo profile "Diederick Vermetten".1 In addition to these repositories, many of the
datasets discussed throughout this thesis can be accessed directly on the IOHanalyzer
website.2

1https://tinyurl.com/39v642nw
2https://iohanalyzer.liacs.nl
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Chapter 3

Benchmarking Optimization
Algorithms

With the ever-increasing number of available optimization heuristics, insights into
which algorithm effectively tackles which kinds of problem characteristics can be hard
to come by. Theoretical analysis is often limited to relatively small sets of problems
and algorithms, so researchers are forced to rely on empirical results to judge their
algorithm’s effectiveness. Benchmarking aims to bridge the gap between theory and
practice by collecting sets of problems with known characteristics, such that an al-
gorithm’s performance on these problems can be interpreted and compared to other
algorithms.

Benchmarking optimization algorithms in a robust and reproducible manner is a
key challenge in the field. In any given study, design choices regarding the used prob-
lems (including instances of the same problem), number of runs, evaluation budget,
performance criteria etc. have to be made, since each of these variables influences the
types of comparisons which are available, as well as how they can be interpreted.

To ease the barrier to robust, yet flexible benchmarking, we propose the IOHprofiler
framework in Section 3.1 and illustrate how this tool can contribute to multiple parts of
the benchmarking pipeline. Since rigorous benchmarking can result in large amounts
of performance data, we also discuss a project related to the creation of an optimization
ontology, OPTION, in Section 3.1.4. The core of this section is based on [255, 53, 136],
while the problem sets were presented in [43, 177, 242].

As one of the most critical parts of the benchmarking pipeline, we pay particular
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attention to the choice of optimization problems used in benchmarking algorithms
for continuous optimization: the BBOB suite. In Section 3.2, we discuss an in-depth
analysis of the BBOB functions and the corresponding instance generation process,
originally published in [150].

Finally, in Section 3.3 we note that benchmarking is not limited to the performance-
oriented viewpoint by summarizing several papers on behavior-based benchmarking
in the form of structural bias detection [244, 236].

3.1 IOHprofiler

In this section, we introduce IOHprofiler, a tool developed as a collaboration between
Leiden University and Sorbonne University (France), with additional input and de-
sign help from Tel-Hai College (Isreal). IOHprofiler is a benchmarking platform that
aims to integrate elements of the entire benchmarking pipeline, ranging from problem
(instance) generators and modular algorithm frameworks over automated algorithm
configuration techniques and feature extraction methods to the actual experimenta-
tion, data analysis, and visualization [63, 255, 53]. An illustration of the interplay
between these different components is provided in Figure 3.1. Notably, IOHprofiler
provides the following components:

• IOHproblems: a collection of benchmark problems. This comprises pseudo-
Boolean, discrete, and continuous problem suites [63, 95], as well as several
parameterized problem generators [256]. Section 3.1.3 discusses this component
in more detail.

• IOHalgorithms: a collection of IOHs. For the moment, the algorithms used
for the benchmark studies presented in [63, 7, 51] are available. This sub-
sumes textbook algorithms for pseudo-Boolean optimization, an integration to
the object-oriented algorithm design framework ParadisEO [121], and the mod-
ular algorithm framework for CMA-ES variants originally suggested in [233] and
extended in [51] (discussed further in Chapter 7). Further extensions for both
combinatorial and numerical solvers are in progress.

• IOHdata: a data repository for benchmark data. This repository currently
comprises the data from the experiments performed in several benchmarking
studies [63, 134, 208], a sample data set used to illustrate IOHanalyzer func-
tionality in Section 3.1.2, and all compatible data sets from the single-objective,
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Figure 3.1: Schematic overview of the IOHprofiler, where the focus lies on the IOH-
analyzer and IOHexperimenter.

noiseless version of the COCO repository [4]. IOHdata also contains perfor-
mance data from Facebook’s Nevergrad benchmarking environment [200], which
is updated periodically.

• IOHexperimenter: the experimentation environment that executes IOHs on
IOHproblems or external problems and automatically takes care of logging the
experimental data, which will be discussed in Section 3.1.1.

• IOHanalyzer: the data analysis and visualization tool presented in Sec-
tion 3.1.2.

Related Benchmarking Environments

As argued above, benchmarking IOHs is an essential task towards a better under-
standing of IOHs. It is therefore not surprising that a large number of different tools
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have been developed for this purpose. We summarize a few of the tools that come
closest to IOHprofiler in terms of functionality and scope.

In evolutionary computation, the arguably best established benchmarking envi-
ronment is the already mentioned COCO platform [95]. Originally designed to
compare derivative-free optimization algorithms operating on numeric optimization
problems [94], the tool has seen several extensions in the last years, e.g., towards
multi-objective optimization [228], mixed-integer optimization [227], and large-scale
optimization [238]. COCO consists of an experimentation part that produces data
files with detailed performance traces, and an automated data analysis part in which
a fixed number of standardized analyses are automatically generated. The by far most
reported performance measures from the COCO framework are empirical cumulative
distribution function (ECDF) curves, see Section 2.4 for definitions. The COCO soft-
ware has a strong focus on fixed-target performances [92], i.e., on the time needed to
find a solution of a certain quality.

COCO has been a major source of inspiration for the development of IOHprofiler.
What concerns the performance assessment, the key difference between COCO and
our IOHanalyzer is in the interactive interface that allows users of IOHanalyzer to
study different performance measures, to change their ranges, and granularity. As
mentioned, COCO performance files can be conveniently analyzed by IOHanalyzer.

Another important software environment for benchmarking sampling-based opti-
mization heuristics is the Nevergrad framework [200]. As with COCO, Nevergrad
implements functionalities for both experimentation and performance analysis, accom-
modating continuous, discrete, and mixed-integer problems. It has a strong focus on
noisy optimization, but also comprises several noise-free optimization problems. In
addition to studying IOHs, Nevergrad has a special suite to compare one-shot op-
timization techniques, i.e., non-iterative solvers. The current focus of Nevergrad is
to be seen on the problem side, as it offers several new benchmark problems, rang-
ing from modified versions of BBOB to problems optimizing adversarial attacks of
image detectors. Nevergrad also provides interfaces to the following benchmark col-
lections: LSGO [143], YABBOB [145], Pyomo [99], MLDA [199], and MuJoCo [226].
The performance evaluation, however, is much more basic than those of COCO or IO-
Hanalyzer, in that only the quality of the finally recommended point(s) is stored, but
no information about the search trajectory. That is, apart from taking a fixed-budget
perspective, Nevergrad does not store performance traces, but only the final output.
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3.1.1 IOHexperimenter

To systematically collect performance data from IOHs, a robust benchmarking setup
has to be created that allows for rigorous testing of algorithms. For this purpose, we
introduce IOHexperimenter. This section is based primarily on [53].

Numerous benchmark problems have been proposed within the evolutionary com-
putation community, and these are often implemented many times over, without an
overarching structure or proper maintenance [143, 144, 221]. The importance of using
overarching frameworks to facilitate the benchmarking process has been gaining in-
creasing traction within the community in the last decade, especially after [89] showed
the benefits that these kinds of tools can provide. Since then, two of the most popular
benchmarking tools have been COCO [95] and Nevergrad [200]. While these tools
enable users to benchmark their algorithms with relative ease, their overall design has
some drawbacks.

In the case of COCO, the enforced design of a suite-based structure allows for very
robust benchmarking on problems made available by the developers. However, this
simultaneously restricts users to using only that set of available problems and adds a
complexity barrier for benchmarking algorithms on other problems. In addition, the
logging of performance data follows a fixed framework, and extending it, e.g., to keep
track of dynamic algorithm parameters, is not straightforward. Nevergrad, in contrast,
offers great flexibility with respect to adding new benchmark problems but is severely
limited in terms of the information that is tracked about algorithm performance and
behavior. As mentioned above, it essentially only stores the final solution quality after
exhausting a user-defined optimization budget.

With IOHexperimenter, we offer a benchmarking module that emphasizes extend-
ability and customizability, allowing users to easily add new problems while providing
a comprehensive set of built-in defaults. The logging of performance data is flexible
and allows users to customize the content and frequency of the data collected. To
improve ease of use, several out-of-the-box storage structures are made available, one
of which can be used to collect the same type of data as COCO.

Within the IOHprofiler pipeline, IOHexperimenter can be considered the interface
between algorithms and problems, allowing consistent collection of performance data
and algorithmic data such as the evolution of control parameters that change during
the optimization process. To perform the benchmarking, three components interact
with each other: problems, loggers, and algorithms. Within IOHexperimenter, an
interface is provided to ensure that any of these components can be modified without
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Figure 3.2: Workflow of IOHexperimenter.

impacting the behavior of the others, in the sense that any changes to their setup will
be compatible with the other components of the benchmarking pipeline.

Functionality

At its core, IOHexperimenter provides a standard interface towards expandable bench-
mark problems and several loggers to track the performance and the behavior (in-
ternal parameters and states) of algorithms during the optimization process. The
logger is integrated into a wide range of existing tools for benchmarking, including
problem suites such as PBO [63] and the W-model [256] for discrete optimization,
COCO’s noiseless real-valued single-objective BBOB problems [95] for the continuous
case, and submodular problems for constraint optimization [176]. On the algorithms
side, IOHexperimenter has been connected to several algorithm frameworks, including
ParadisEO [121], a modular genetic algorithm [264], a modular CMA-ES [51], and
the optimizers in Nevergrad [200]. In [150, 135], the flexibility of IOHexperimenter
was demonstrated by generating interfaces between two aforementioned benchmark-
ing tools to execute algorithms from the Nevergrad framework on the BBOB problems
from COCO.

Figure 3.2 shows how IOHexperimenter can be placed in a typical benchmarking
workflow. The key factor here is the flexibility of its design. IOHexperimenter can be
used with any user-provided solvers and problems given a minimal overhead. It also en-
sures that the output of experimental results follows conventional standards. Because
of this, the data produced by IOHexperimenter is compatible with post-processing
frameworks like IOHanalyzer [255], enabling an efficient path from algorithm design
to performance analysis. In addition to the built-in interfaces to existing software, IO-
Hexperimenter aims at providing a user-friendly, easily accessible way to customize the
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benchmarking setup. IOHexperimenter is built in C++, with an interface to Python.
In this section, we describe the functionality of the package on a high level, without
going into implementation details.1 In the following, we introduce the typical usage of
IOHexperimenter, as well as how it can be customized to fit different benchmarking
scenarios.

Problems

Single-Objective Optimization. IOHexperimenter is developed with a focus on
single-objective optimization problems, i.e., instances defined as F = Ty ◦ f ◦ Tx, in
which f : X → R is a benchmark problem (e.g., for OneMax X = {0, 1}d and the
sphere function X = Rd), and Tx and Ty are automorphisms supported on X and
R, respectively, representing transformations in the problem’s domain and range (e.g.,
translations and rotations for X = Rd). To generate a problem instance, one needs to
specify a tuple of a problem f , an instance identifier i ∈ N>0, and the dimension d of
the problem. Any problem instances that reconcile with this definition of F , can easily
be integrated into IOHexperimenter, using the C++ core or the Python interface.

The transformation methods are particularly important for robust benchmarking,
as they allow for the creation of multiple problem instances from the same base func-
tion. They also allow the user to check algorithm invariance to transformations in
search and objective space. Built-in transformations are available for pseudo-Boolean
functions [63] and for continuous optimization, implementing the transformations used
by [95]. Problems can be combined in a suite, which allows the user to easily run solvers
on collections of selected problem instances.

Constrained Optimization. Similar to benchmark problems, constraints are de-
fined as free functions that compute a value on an evaluated solution, i.e.; C : X → R,
that is non-zero in the case the constraint is violated. IOHexperimenter supports
both hard constraints Ch and soft constraints Cs, of which multiple can be added
to any given problem. The single-objective constrained problems are defined by
Fc = F ◦ Ch ◦ Cs, which evaluates to ∞ when one of the hard constraints Ch is
violated (given minimization). Otherwise, Fc = F +

∑k−1
i=0 wi(C

i
s)

αi , where k is the
number of soft constraints. The weight wi ≥ 0 and exponent αi of a constraint Ci

s can
be used by the user to customize a penalty for a constraint violation. In this fashion,
arbitrary functions can be added as constraints (thus allowing for both equality and

1Technical documentation, a getting-started, and several use-cases are available for both C++
and Python on the IOHexperimenter docs at https://iohprofiler.github.io/IOHexperimenter/.
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inequality constraints) to the benchmark problems in IOHexperimenter, allowing the
conversion of existing unconstrained problems into constrained problems.

Data Logging

IOHexperimenter provides loggers to track the performance of algorithms during the
optimization process. These loggers can be tightly coupled with the problems: when
evaluating a solution, the attached loggers will be triggered to store relevant infor-
mation. Information about solution quality is always recorded, while the algorithm’s
control parameters are included only if specified by the user. The events that trigger
a data record are customized by the user; e.g., via specifying a frequency at which in-
formation is stored, or by choosing quality thresholds that trigger a data record when
met for the first time.

A default logger makes use of a two-part data format: meta-information such as
function ID, instance, and dimension, written to .json-files, and the performance data
that gets written to space-separated .dat-files. A full specification of this format can
be found in [255]. Additional loggers to store the data in memory or use different
file structures are available. In addition to the built-in loggers, users can also create
their own custom logging functionalities. For example, a logger storing only the final
calculated performance measure was created for algorithm configuration tasks [65].

3.1.2 IOHanalyzer

In this section, we present IOHanalyzer, a versatile, user-friendly, and highly interac-
tive platform for the assessment, comparison, and visualization of IOH performance
data. IOHanalyzer is designed to assess the empirical performance of sampling-based
optimization heuristics in an algorithm-agnostic manner. Our key design principles
are 1) an easy-to-use software interface, 2) interactive performance analysis, and 3)
convenient export of reports and illustrations.

Several other tools have been developed for displaying performance data and/or
the search behavior in decision space. However, all tools that we are aware of allow
much less flexibility with respect to the performance measures, the ranges, and the
granularity of the analysis or focus on selected aspects of performance analysis only
(e.g., [33, 68] study statistical significance, whereas [78, 209] aim to visualize perfor-
mance with respect to multiple objectives). The ability of IOHanalyzer to link the
evolution of algorithms’ parameters to the evolution of solutions’ quality seems to be
unique.
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IOHanalyzer takes as input benchmarking data sets, generated, e.g., by IOHex-
perimenter, through the COCO platform, or through the Nevergrad environment. Of
course, users can also use their own experimentation platform (IOHanalyzer has a
flexible interface for uploading custom csv-files). IOHanalyzer provides an evaluation
platform for these performance traces, which allows users to choose the performance
measures, the ranges, and the precision of the displayed data according to their needs.
In particular, IOHanalyzer supports both a fixed-target and a fixed-budget perspec-
tive, and allows various ways of aggregating performances across different problems (or
problem instances). In addition to these performance-oriented analyses, IOHanalyzer
also offers statistics about the evolution of non-static algorithmic components, such
as, for example, the hyperparameters suggested by a self-adjusting parameter control
scheme.

To illustrate the functionality of IOHanalyzer, we highlight a selected subset of the
available functionality (which is listed in more detail in Tables 3.1 and 3.2).

Fixed-Target Results ▶ Single Function ▶ Data Summary: This setting pro-
vides basic statistics on the distribution of the fixed-target running time, which are
grouped in 3 different tables:

• Table Data Overview: This table provides a high-level summary of the currently
loaded data set. It simply summarizes the range of function values observed in
the data set, offering users a quick overview of the quality of the solutions that
were evaluated by the algorithms by showing summary statistics of the function
values found for the selected function.

• Table Runtime Statistics at Chosen Target Values: A screenshot of this
table is given in Figure 3.3. The user can set the range and the granularity of
the results in the box on the left. The table shows fixed-target running times for
evenly spaced target values.2 More precisely, the table provides the success rate
and the number of successful runs as defined in Eq. (2.14), the sample mean,
median, standard deviation, the sample quantiles: Q2%, Q5%, . . . , Q98%, and the
expected running time (ERT) as defined in Eq. (2.17). The user can download
this table in csv format, or as a LATEX table.

2These target values are evenly spaced between the user-specified minimum and maximum values
(whose default values are set to be the extreme values found in the data) on a linear or log scale,
based on the difference in order of magnitude between the extreme values found for the specified
function. This same principle is used in all similar tables and plots where both a minimum and
maximum target can be chosen by the user. A notable exception are the cumulative distribution
functions, where arbitrary sets of target values can be chosen by the user.
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Table 3.1: Fixed-budget functionality of IOHanalyzer (v0.1.7).

Section Group Functionality Description

Si
ng

le
F
un

ct
io

n

Data
Summary

Data Overview The minimum and maximum of running times for
selected algorithms.

Target Value Statis-
tics

The mean, median, quantiles of the function value
at a sequence of budgets controlled by Bmin, Bmax
and ∆B.

Target Value Sam-
ples

The function value samples at an evenly spaced se-
quence of budgets controlled by Bmin, Bmax and
∆B.

Expected
Target
Value

Expected Target Value:
single function

The progression of expected function values over
budgets, whose range is controlled by the user.

Probability
Density
Function

Histogram The histogram of the function value a user-chosen
budget.

Probability Density
Function

The probability density function (using the Kernel
Density Estimation) of the function value at a user-
chosen budget.

Cumulative
Distribution

ECDF: single budget On one function, the ECDF of the function value
at one budget specified by the user.

ECDF: single func-
tion

On one function, ECDFs aggregated over multiple
budgets.

Area Under the
ECDF

On one functions, the area under ECDFs of function
values that are aggregated over multiple budgets.

Algorithm
Parameters

Expected Parameter
Value

The progression of expected value of parameters
over the budget, whose range is controlled by the
user.

Parameter Statistics
The mean, median, quantiles of recorded parameters
at an evenly spaced sequence of budgets controlled
by Bmin, Bmax and ∆B.

Parameter Sample
The sample of recorded parameters at an
evenly spaced sequence of budgets controlled
by Bmin, Bmax and ∆B.

Statistics Hypothesis Testing

The two-sample Kolmogorov-Smirnov test applied
on the running time at a target value for each pair
of algorithms. A partial order among algorithms is
obtained from the test

M
ul

ti
pl

e
F
un

ct
io

ns

Data
Summary

Multi-Function
Statistics

Descriptive statistics for all functions at a single tar-
get value.

Multi-Function Hit-
ting Times

Raw hitting times for all functions at a single target
value.

Expected
Target
Value

Expected Target
Value: all functions

The same as above expect that the expected func-
tion values are grouped by functions and the range
of budgets are automatically determined.

Expected Target
Value: Comparison

The expected function value at the largest budget
found on each function is plotted against the func-
tion ID for each algorithm.

Deep Statistics

Ranking per Func-
tion

Per-function statistical ranking procedure from the
Deep Statistical Comparison Tool (DSCTool) [69].

Omnibus Test Use the results of the per-function ranking to per-
form an omnibus test using DSC.

Posthoc comparison Use the results of the omnibus test to perform the
post-hoc comparison.

Ranking Glicko2-based rank-
ing

For each pair of algorithms, a function value at
a given budget is randomly chosen from all sam-
ple points in each round of the comparison. The
glicko2-rating is used to determine the overall rank-
ing from all comparisons.
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Table 3.2: Fixed-target functionality of IOHanalyzer (v0.1.7).

Section Group Functionality Description

Si
ng

le
F
un

ct
io

n

Data
Summary

Data Overview The best, worst, mean, median values and success
rate of selected algorithms.

Runtime Statistics
The mean, median, quantiles, success rate and ERT
at an evenly spaced sequence of targets controlled
by fmin, fmax and ∆f .

Runtime Samples The running time sample at an evenly spaced se-
quence of targets controlled by fmin, fmax and ∆f .

Expected
Runtime

ERT: single function The progression of ERT over targets, whose range
is controlled by the user.

Expected Runtime
Comparisons

Comparing the ERT values of selected algorithms at
pre-computed targets across all problem dimensions
on a chosen problem.

Probability
Mass
Function

Histogram The histogram of the running time at a target spec-
ified by the user on one function.

Probability Mass
Function

The probability mass function of the running time
at a target specified by the user on one function.

Cumulative
Distribution

ECDF: single target On one function, the ECDF of the running time at
one target specified by the user.

ECDF: single func-
tion

On one function, ECDFs aggregated over multiple
targets.

Algorithm
Parameters

Expected Parameter
Value

The progression of expected value of parameters
over targets, whose range is controlled by the user.

Parameter Statistics
The mean, median, quantiles of recorded parameters
at an evenly spaced sequence of targets controlled
by fmin, fmax and ∆f .

Parameter Sample
The sample of recorded parameters at an evenly
spaced sequence of targets controlled by fmin, fmax
and ∆f .

Statistics Hypothesis Testing

The two-sample Kolmogorov-Smirnov test applied
on the running time at a target value for each pair
of algorithms. A partial order among algorithms is
obtained from the test.

M
ul
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pl

e
F
un

ct
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ns

Data
Summary

Multi-Function
Statistics

Descriptive statistics for all functions at a single tar-
get value.

Multi-Function Hit-
ting Times

Raw hitting times for all functions at a single target
value.

Expected
Runtime

ERT: all functions The progress of ERTs are grouped by functions and
the range of targets are automatically determined.

Expected Runtime
Comparisons

The ERTs at the best target found on each function
(one fixed dimension) is plotted against the function
ID for each algorithm.

Cumulative
Distribution

ECDF: all functions On all functions, ECDFs aggregated over multi-
ple targets.

Deep Statistics

Ranking per Func-
tion

Per-function statistical ranking procedure from the
Deep Statistical Comparison Tool (DSCTool) [69].

Omnibus Test Use the results of the per-function ranking to per-
form an omnibus test using DSC.

Posthoc comparison Use the results of the omnibus test to perform the
post-hoc comparison.

Ranking Glicko2-based rank-
ing

For each pair of algorithms, a running time value
at a given target is randomly chosen from all sam-
ple points in each round of the comparison. The
glicko2-rating is used to determine the overall rank-
ing from all comparisons.

Portfolio
Contribution to
portfolio (Shapley-
values)

Calculate the approximated Shapley values indicat-
ing the contribution of each algorithm to the overall
portfolios ECDF.
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Figure 3.3: Screenshot of the data summary table of some descriptive statistics on
the running time.

• Table Original Runtime Samples: This table uses the same principle as the
Runtime Statistics:, but instead displays the values for each individual run.
For this table, the user can choose between a “long” (all sample points are ar-
ranged in a column) and a “wide” format (all sample points are arranged in a
row).

Fixed-Target Results ▶ Single Function ▶ Expected Runtime: An interac-
tive plot illustrates the fixed-target running times. An example of this plot is shown
in Figure 3.4. The interactive plot can be adjusted in the menu on the left as shown
in the figure. These options include showing/hiding mean and/or median values along
with standard deviations and scaling the axes logarithmically. The user selects the
algorithms to be displayed as well as the range of target values within which the curves
are drawn. By default, this range is set as [Q25%, Q75%] of all function values measured
in the data set. The displayed curves can be switched on and off by clicking on the
legend on the bottom of the plot.
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Figure 3.4: Screenshot of the expected running time plot.

Fixed-Target Results ▶ Single Function ▶ Algorithm Parameters: One of
the key motivations to build IOHprofiler was the ability to analyze, in detail, the
evolution of control parameters which are adjusted during the search. Such dynamic
parameters can be found in most state-of-the-art heuristics. While in numerical opti-
mization a non-static choice of the search radius, for example, is needed to eventually
converge to a local optimum, dynamic parameters are also more and more common
in discrete and mixed-integer optimization heuristics [119, 60]. In the fifth group of
fixed-target results for a single function, the evolution of the parameters is linked to
the quality of the best-so-far solutions that have been evaluated. In the experimenta-
tion (i.e., data generation) phase, the user selects which parameters are logged along
with the evaluated function values. These values are then automatically detected by
IOHanalyzer and can be chosen in this group for analysis.

As with the interactive plots on expected running time, the user can choose the
range of targets, which parameters and algorithms to plot, and the scale (either loga-
rithmic or linear) of x- and y-axis. We omit the example for parameters as the GUI is
similar to the one in Figure 3.4. As with “Fixed-Target Results ▶ Single Function ▶

Data Summary”, this subsection also provides for each parameter tables of descriptive
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statistics (sample mean, median, standard deviation, and some quantiles) as well as
the original parameter values.

Figure 3.5: Screenshot of the multiple testing procedure applied on all 12 reference
algorithms on function f1 and dimensionality 625. The table shows the p-values
resulting from the pairwise KS-test between each pair of algorithms. Then, based on
the α = 0.01, the resulting hypothesis-rejections are shown in both the matrix-plot
and the network.
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Fixed-Target Results ▶ Single Function ▶ Statistics: To address the robust-
ness of empirical comparisons, the samples from all algorithm must undergo a proper
statistical test procedure [103]. In IOHanalyzer, a standard multiple testing procedure
is implemented to compare the fixed-target running time for each pair of algorithms on
a single function, for which the well-known Kolmogorov-Smirnov [161] test is applied
to the ECDFs of running times. Moreover, the Bonferroni procedure [19] is used to
correct the p-value in multiple testing. To demonstrate this functionality, we show, in
Figure 3.5, the testing outcome of a data set from running 12 reference algorithms.3 It
can be loaded to the web-based GUI by selecting the PBO data set in the “upload data”
section. The data set comprises the results of the experimental study described in [63].
on the PBO problem set from [63], instead of the exemplary two-algorithm data set
used previously. Here, the test is conducted across all 12 algorithms on function f1

and dimensionality 64 with a confidence level of 0.01. The result of this procedure is
illustrated by a table of pairwise p-values, a color matrix of the statistical decision,
and a graph depicting the partial order induced by the test (i.e., an arrow pointing
from Algorithm 1 to Algorithm 2 is to be read as Algorithm 1 dominating Algorithm 2
with statistical significance). As with all tables and figures in IOHanalyzer, these can
be downloaded in several formats, including tex and csv for tables and pdf and eps

for figures.

Fixed-Target Results ▶ Multiple Functions ▶ Cumulative Distribution: In
this group, ECDFs of running times are aggregated across multiple functions, as de-
fined in Eq. (2.19). This functionality is illustrated in Figure 3.6: a table of pre-
calculated target values are provided for each function (all test functions are included
by default). This table of targets can easily be edited directly in the GUI, or by
a downloading-editing-uploading procedure (which should, of course, not change the
format of the tables, just the values). Note that for these ECDF-figures, the corre-
sponding Area Under the Curve (AUC) can also be calculated to get a single value for
each algorithm. These AUC-tables are available in the same tab as the ECDF plot.

3.1.3 IOHproblems: Benchmark Suites

Within the IOHprofiler environment, we have the ability to access a wide variety of
benchmark problems. Because of the emphasis on extensibility, several benchmark
suites have been integrated and used in works related to this thesis. In this section,

3This data set is available at https://github.com/IOHprofiler/IOHdata/blob/master/iohprofiler/
2019gecco-ins1-11run.rds
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Figure 3.6: Screenshot of aggregated ECDF curve across multiple functions and
targets.
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we provide an overview of the available suites and highlight some of the most inter-
esting results obtained when performing several benchmarking studies. Throughout
this thesis, we place a heavy emphasis on the Black-Box Optimization Benchmarking
(BBOB) suite [96]. As such, we will discuss this suite in detail in Section 3.2.

The PBO-suite and W-model The Pseudo-Boolean Optimization (PBO) suite
was the first set of benchmarking problems integrated in IOHprofiler. This suite con-
sists of 25 problems, ranging from the well-known OneMax to N-Queens. Included
in this suite is a set of problems based on the W-model problem generator proposed
in [258] (the W-model generator is also available in IOHprofiler). The full description
of the problems, as well as results from several well-known optimizers, are available
in [63]. This paper also highlights the benefits of flexible parameter tracking, allow-
ing for a detailed analysis of self-adaptive parameters of several GA-variants. Later,
another well-known generator of pseudo-Boolean problems (MK-landscapes) was inte-
grated [225].

Submodular Optimization As part of the 2023 Competition on Submodular Op-
timization at the Genetic and Evolutionary Computation Conference (GECCO), we
integrated four different types of (constrained) submodular optimization problems into
IOHprofiler: Maximum Coverage, Maximum Influence, Maximum Cut, Packing While
Traveling. For each of these problems, we provide several underlying graph instances,
leading to a total of 66 functions. Since these functions can either be treated as un-
constrained single-objective (by integrating the constraint into the objective function),
constrained single-objective or multi-objective, they allow for an interesting compari-
son of different types of solvers [177, 80].

Star Discrepancy Discrepancy measures are designed to quantify how regularly a
point set is distributed in a given space. Among the many discrepancy measures, the
most common one is the L∞ star discrepancy (referred to as simply star discrepancy
from here on), which is especially important in numerical integration [129, 102], but
also in e.g. the design of experiments [207] or in the context of one-shot optimiza-
tion [21, 20].

The computation of star discrepancy of a set P of n points in a d-dimensional
unit-hypercube can naturally be formulated as a real-valued optimization problem on
[0, 1)d. However, there is an equivalent discrete formulation [179] on the space [0, n)d.
These two formulations of the same underlying problems again allow for potential
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Figure 3.7: Discrepancy values of the first 5 instances of the 2-dimensional version of
F31: Uniform sampler with 20 points. The red points indicate the originally sampled
points.

comparisons of very different optimization algorithms on the same underlying problem.

To create specific problems for benchmarking, we vary the number of samples in
our point sets, as well as the sampler used to create those points. By using Uni-
form, Halton and Sobol samplers for n ∈ {10, 25, 50, 100, 150, 200, 250, 500, 750, 1000},
resulting in 30 problems in IOHexperimenter, with function IDs 30–59. Each prob-
lem can additionally be scaled to arbitrary dimensionality, and different instance are
obtained by using different seeds for the samplers.

To illustrate the structure of the continuous version of the star discrepancy prob-
lems, we show several landscapes in Figures 3.7 and 3.8. Figure 3.7 illustrates the
local star discrepancy values for an instance in d = 2. We can already observe that
the problem of maximizing the local L∞ star discrepancy bears two important chal-
lenges: (1) it is a multimodal problem, i.e., there can be several local optima in which
the solvers can get trapped (this problem becomes worse with increasing dimension-
ality); (2) there are sharp discontinuities in the local discrepancy values. Slightly
increasing one parameter can result in a point falling inside the considered box, caus-
ing a 1/|P | difference in the local star discrepancy value. Figure 3.8 shows that the
problem structure also depends strongly on the point set considered.

To test the performance of our black-box optimization algorithms, we look at
the final solutions found by each of the 8 selected optimizers from the Nevergrad li-
brary [200]. In order to create a fair comparison, we transform the original discrepancy
values to a relative measure, based on the bounds found by two algorithms specifically
designed for star discrepancy computation: TA [84] and DEM [59]. Specifically, we
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Figure 3.8: Comparison of the 3 samplers for 1000 points in 2D, and the corresponding
discrepancy landscapes (instance 1 for F39, F49, and F59 in IOHexperimenter respec-
tively).

consider the following measure:

R(x) =
OPT (x)− f(x)

OPT (x)
→ min,

where f(x) is the final value found after the optimization run, and OPT (x) is the
bound calculated by the parallel DEM or TA, depending on the instance size.

Using this relative measure, we can compare the final solutions found by each
optimization algorithm across a set of different values of n and d. This is visualized
in Figure 3.9. In this figure, we see that the SPSA algorithm is clearly performing
poorly, while Random Search seems to be competitive with, if not superior to, all other
algorithms for every scenario. In addition to the ranking between algorithms, we also
note a clear increase in problem difficulty as the dimensionality increases. Conversely,
the number of samples seems to have a rather limited impact on the relative difficulty.
This suggests that the structure of the point set has little influence on the performance
of the optimizers.

Overall, these results suggest that the star discrepancy benchmarks are challenging
for current black-box optimization approaches since random search outperforms every
other algorithm considered.

Strict Box Constrained BBOB The final set of benchmark problems we consider
is the suite of strict box-constrained BBOB problems (SBOX), which was introduced
as part of the workshop at GECCO 2023 under the same name. This suite does not
contain any new problems, but instead modifies the BBOB suite by adding strict box
constraints ([−5, 5]d, evaluating outside the domain yields a value of ∞). In addition,
it modifies some of the instance generation procedures to allow the optimum to be
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Figure 3.9: Relative final discrepancy value found by each of the used optimizers.
Values of 0 correspond to finding the optimal solution, while 1 corresponds to the
worst achievable value (0 discrepancy). Box-plots are aggregations of 10 runs on 10
instances, all for the uniform sampler.

located closer to the bounds of the domain. Submissions to this workshop opened up
some insightful discussions about the need for box-constraint handling and its relations
to reproducibility [242, 167, 57, 27, 114].

3.1.4 Benchmark Data: OPTION

As evident from the large number of benchmark suites and optimization problems,
rigorous benchmarking has the potential to generate vast amounts of data. Within
the current structure of IOHprofiler, we integrate data for hundreds of algorithms,
achieved by integrating with several other platforms. We incorporate COCOs histori-
cal data collected from over a decade of workshops, Nevergrads ever-expanding set of
benchmarks and optimizers, our own competitions, and much more. By making this
data easily accessible in IOHanalyzer, comparisons to existing data are made easier.
However, this technique does not fully exploit all information present in this bench-
mark data. To gain more insight from the existing data, a structured way of storing
and querying is required.

One well-established solution to the problem of managing such complex data pools
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is the use of ontologies. Ontologies are specifications of a shared conceptualization of
data from distributed and heterogeneous systems and databases, and as such, they
enable data interoperability, efficient data management and integration, and cross-
database search. For this purpose, we collaborated on the creation of the OPTi-
mization Algorithm Benchmarking ONtology (OPTION). This ontology was
designed with the main goal of standardizing and formalizing knowledge from the
domain of benchmarking optimization algorithms, where an emphasis was put on the
representation of data from the benchmark performance space. OPTION offers a com-
prehensive description of the domain, covering the benchmarking process, as well as
the core entities involved in the process, such as optimization algorithms, benchmark
problems, evaluation measures, etc. We summarize some of the key design choices for
the design of OPTION.

Performance Data There exist many different benchmarking platforms for opti-
mization, each with its own way of storing performance and algorithm data. Three
main approaches to the storage of performance data are described below:

• csv-based: The data is stored as a single file per experiment in a csv-based
format, where each column represents a performance measure or other meta-
information. An example is the format used in Nevergrad [200]. This allows
for storing data on many different functions/problems into a single file, with the
drawback that the granularity of the data is often limited.

• Textfile-based: The data is separated into a single file per function/problem,
where the meta-information is delimited in some way, followed by the perfor-
mance information. This format is easily extendable and human-readable, but
it can be hard to work with when files become large. An example of this format
is used by the SOS platform [38].

• COCO/IOH-like: The data is separated into multiple files and folders: gen-
erally, folder structure splits along algorithms and functions/problems. Each
folder then contains a file with meta-information about the runs, with links to
the files where the raw performance data is stored. This structure makes it easy
to find the data sought, but the different links to the files can be an obstacle for
practitioners who are not used to this format. Variants of this data format are
used by COCO [95] and IOHprofiler [62].

As mentioned, each of these data formats has its advantages and disadvantages. While
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there are some commonalities between different methods, the particularities in han-
dling meta-data make interoperability of the data from different sources challenging.
Furthermore, these differences lead to more limited post-processing functionalities
available to the users of these platforms since they are only compatible with those
tools that support their particular data format. While these tools are slowly becom-
ing more interoperable, this process requires significant effort from the developers of
the individual tools to make sure all data formats are fully supported. A common
data structure would be useful to the benchmarking community to avoid each devel-
oper having to do this individually.

In order to create such a common structure, it is crucial to identify the core com-
ponents of performance data that would be needed in the analysis. Then, an explicit
conversion needs to be made for each data format, which extracts these properties
from the original data format. Some previous efforts show that it is possible to make
such conversions and then jointly analyze data which has been originally stored in
different data formats. In particular, performance data from Nevergrad, COCO, IO-
Hexperimenter, and from the SOS platform can be conveniently analyzed through the
IOHanalyzer [255].

Problem Landscape Data In addition to the performance data discussed above,
we also integrate information about the problems themselves, in the form of ELA
features (see Section 2.5). In particular, we use the dataset [202] containing pre-
calculated ELA features for the instances of the BBOB problems we consider.

Domain challenges for data integration A source of complexity in recording
performance data from black-box optimization is that we typically do not use a single
performance measure. Instead, we are interested in analyzing algorithm performance
from different perspectives: small vs. large budgets, the time needed to identify solu-
tions that meet specific quality criteria, the robustness of the algorithm in search and
performance space, etc. [8].

To enable such detailed analyses, researchers often record performance data in a
multi-dimensional fashion, spanning at least the time elapsed (measured in terms of
CPU time and/or function evaluations), solution quality, and robustness. We may also
be interested in how dynamic parameters evolve during the optimization process, in
which case we record their values along with the performance data. Both requirements
add another level of complexity to the data formats and may explain why they differ
so much in practice.
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There are several other factors that further complicate the interoperability and
re-usability of publicly available performance data from different benchmarking ex-
periments:

• Most black-box optimization algorithms are, in fact, families of various algorithm
instances. They can be selected by specifying the (hyper-)parameters of the al-
gorithm and/or the operators (e.g., one may speak of Bayesian optimization
regardless of the internal optimization algorithm that is used to search the sur-
rogate model, or one may use different acquisition functions, different techniques
to build the surrogate, etc.). Different configurations can lead to drastically dif-
ferent search behavior (and hence performance), and it is crucial to associate
the recorded data to the appropriate algorithm instance and not only to an algo-
rithm family. However, this is not an easy task, as it can happen that essentially
the same algorithm is published under different names (see [35, 218] for recent
examples and a discussion, respectively).

• A similar issue appears on the problem side. Different instances of the same
problem can be of different complexity, and it is not always clear which problem
instances were used within a given benchmark study. In addition, some bench-
marking suites automatically rotate, shift, permute, or translate the problem
instances, to test specific unbiasedness characteristics and the generalizability
of the algorithms. Other suites do not do this (e.g., because the variable order
or absolute values carry some meaning) but still refer to problems of differ-
ent complexity under the same name. As for the algorithms, we can also have
the same problem appear under different, possibly multiple, names. The One-

Max problem, for example, is sometimes called CountingOnes, OnesMax,
the Hamming distance problem, or Mastermind with 2 colors. All these names
refer to the same problem.

Identifying such issues cannot (as of yet) be done automatically but require hu-
man expertise to annotate the data correctly. While this requires a significant amount
of effort for the large amounts of currently available benchmarking data, we aim for
the procedure to convert from different data formats to be automated where possible
(e.g., by involving the authors of the different benchmarking platforms) and clearly
structured where not. In the future, this would then become second nature when
introducing a new algorithm / problem / experimental setup, allowing the data ontol-
ogy to grow organically. The creation of reproducible and readily available data will
eventually benefit the optimization community as a whole, so the efforts invested to
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achieve this goal would be very much worthwhile.

The Knowledge Base The OPTION ontology contains the semantic model, rep-
resented in a formal and standardized way. The OPTION Knowledge Base (KB), on
the other hand, leverages the power of the ontology and holds the actual data that
has been semantically annotated. This KB is created by annotating data from COCO
and Nevergrad for performance data, and ELA features for the BBOB functions for
the landscape data.

OPTION in IOHprofiler To query the OPTION KB, SPARQL queries can be
used. However, SPARQL queries can become very complex and sometimes are seen as
a bottleneck to the broader acceptance of Semantic Web technologies. We recognize
that SPARQL query construction is an error-prone and time-consuming task that
requires expert knowledge of the whole stack of semantic technologies. Even experts
find it sometimes challenging to query semantic data since they first must get familiar
with the data annotation schemes or the structure of the knowledge base.

To facilitate the use of the OPTION ontology, we provide a simple GUI that can
be used to gain access to performance data without needing to write SPARQL queries.
This interface is connected directly to IOHanalyzer, which enables the loaded data to
be used directly in performance analysis and visualization, and even be compared to
data that might not yet be included in OPTION or to user-submitter performance
data. Furthermore, the GUI provides access to a parameterized search process, which
can be used without any underlying knowledge about the used semantic data model.
Users can express their query by selecting from several drop-down options, which
specify the required information, such as suite, function, algorithm, etc., and load the
corresponding performance data to analyze. This interface is shown in Figure 3.10.
While this interface is static, it illustrates the power of integrating the ontology into
IOHanalyzer: users without any background knowledge can use it to gain insight into
the performance of the selected algorithms/functions.

Additionally, this interface can be easily expanded based on the community’s
wishes. To illustrate this potential, we created another entry point into OPTION,
which can be used to load all performance data which originated in a specified paper.
To this end, the user selects a paper by its title, which then populates the relevant
information about the used algorithms and functions in that study. By loading this
pre-selected data, the user has full access to the performance data of the selected
study, which they can then investigate in more detail by making use of the visualiza-
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Figure 3.10: The interface of the OPTION-ontology queries within IOHanalyzer (ver-
sion 1.6.3), available at https://iohanalyzer.liacs.nl/.)

tions within IOHanalyzer. This type of interactive analysis then allows the user to
look at the data from different perspectives and to compare it to other algorithms.

3.2 Benchmark Suites: BBOB

Originally developed as part of the COCO platform [95], this set of 24 continuous,
single-objective, noiseless problems has become the de facto standard when comparing
numerical optimization algorithms for continuous optimization problems. These 24
functions can be separated into five core classes based on their global properties, as
seen in Table 2.1. In fact, the suite has been designed to ensure that each problem
poses a different ‘challenge‘ to the optimization algorithm. For example, the ellipsoidal
function adds ill-conditioning the the sphere problem, so when an algorithm performs
well on the latter but not the former the designer gains insight into the deficiencies of
their algorithm.

For each BBOB function, arbitrarily many problem instances can be generated by
applying transformations to both the search space and the objective values [96] – such
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mechanism is implemented internally in BBOB and controlled via a unique identifier
(also known as IID) which defines the applied transformations (e.g. rotation matrices).
For most functions, the search space transformations are made up of rotations and
translations (moving the optimum, usually uniformly in [−4, 4]d).4 Since the objective
values can also be transformed, the performance measures used generally are relative
to the global optimum value to allow for comparison of performance between instances,
typically in logarithmic scale.

This instance generation method is certainly useful for many applications. For
instance, different instances have been considered to enable comparisons between
stochastic and deterministic optimization algorithms [189], since using a different in-
stance can in some way be considered as changing the initialization of the deterministic
algorithm. It also enables an algorithm designer to test for some invariance properties,
particularly with regard to scaling of the objective values, and rotation of the search
space [96]. Recently, instances have also been used in a more machine learning (ML)
based context, e.g., methods for algorithm selection are trained and tested based on
different sets of instances [135].

While creation of different instances of the same function has been very useful to
many benchmarking setups, the underlying assumption that the function properties are
preserved is a rather strong one. For a simple sphere function, the impact of moving
the optimum throughout the space can be reasoned about relatively easily, but the
impact of the more involved transformation methods on more complex functions is
challenging to quantify directly. In addition, the fact that black box optimization
problems are in practice often considered to be box-constrained [8], while BBOB was
originally designed based on unconstrained function definitions [95], introduces the
possibility that some transformations might change key aspects of the function. In
fact, it has been shown that the properties of box-constrained functions captured
using landscape analysis are not necessarily consistent across instances [171].

In order to analyze the resulting low-level properties of optimization problems,
various features of the landscape can be computed. This falls under the field of ex-
ploratory landscape analysis (ELA) [165]. While some analysis into the ELA features
across instances of BBOB problems has been previously performed [175], we extend
the scope of our analysis to include a much wider range of instances. In addition, we
consider several other low-level features, such as the location of the global optima, to
develop an extensive understanding of the way in which instances might differ. Since

4While the suite is originally intended to be used for unconstrained optimization, in practice
however, black box optimization functions like this are often considered to be box-constrained [8], in
the case of BBOB with domain [−5, 5]d.
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we deal with the box-constrained version of the BBOB problems, we also investigate
the performance of a set of algorithms, in order to verify that these algorithms perform
similarly on different instances of a function – this extends the approach taken in [242].

In this section, we investigate whether the problem characteristics (in the form of
ELA features) are preserved across different problem instances and whether the first
few (most commonly used) instances are representative of the wider set. In addition,
we study whether statistically significant differences in algorithm performance can be
found between different instances of the same BBOB problem.

Instance Similarity using ELA

We first focus on analyzing the problem characteristics of different BBOB problem
instances based on the ELA approach. For each BBOB instance, we generate 100

sets of DoE data with 1 000 samples each using the Latin Hypercube sampling (LHS)
method (so the DoEs are identical for all instances), in order to obtain the ELA feature
distribution. We consider a total of 68 ELA features that can be computed without
additional sampling, using the package flacco [127, 125] and the pipeline developed in
[148]. Three of the ELA features, which resulted in the same value across all instances,
are deemed not informative and hence dropped out; this means that a final set of 65
ELA features is being considered here.

Comparing Distributions. To investigate how comparable the characteristics of
different problem instances are, we carry out the (pairwise) two-sample Kolmogorov-
Smirnov (KS) test [161], with the null hypothesis that the ELA distribution is similar
in both (compared) problem instances. This results in 500·499

2 = 124 750 comparison
pairs per ELA feature. To account for multiple comparisons, we apply the Benjamini-
Hochberg (BH) method [12]. To get an overview of differences for a particular ELA
feature of each BBOB function, we compute the average rejection rate of the afore-
mentioned null hypothesis of the KS test by aggregating all problem instances (i.e.
number of rejections divided by total number of tests). In other words, it shows the
fraction of tests which rejected each combination of ELA feature and BBOB function,
as shown in Figure 3.11.

On the 5d problems, we notice that some features clearly differ between instances,
in particular the ela_meta.lin_simple.intercept. However, this does not neces-
sarily indicate that all instances should indeed be considered to be different since,
as illustrated in [253], some features including this linear model intercept are not in-
variant to scaling of the objective function. For some other features, such as those
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Figure 3.11: Average rejection rate of null hypothesis distribution of ELA feature
between instances is similar, aggregated over 500 BBOB problem instances in 5d (top)
and 20d (bottom). A lighter color represents higher rejection rate. An extra row
(bottom) for the mean over all BBOB functions and an extra column (right) for the
mean over all ELA features is added in each heatmap.

related to the principal component analysis (PCA), we notice that barely any test
rejections are found. This is largely explained by considering that this feature set is
built primarily on the the samples in the search-space, which are identical between
instances (the same 100 seeds are used in the calculations for each instance). While
the objective values still have an influence on some of the PCA-features, their impact
is relatively minor. For the remaining sets of features, we see some commonalities on
a per-function basis. Functions F5 (linear slope), F16 (Weierstrass), F23 (Katsuura),
and F24 (Lunacek bi-Rastrigin) show no difference between instances.

It is worthwhile to point out that even for a simple function such as F1 (sphere),
many features differ between instances. Since translation is the only transformation
applied in F1 [96], which (uniformly at random) moves the optimum to a point within
[−4, 4]d, it is clear that the high-level function properties are preserved. If the problem
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is considered unconstrained, this transformation would indeed be a trivial change to
the problem. However, since for ELA analysis, we are required to draw samples in
a bounded domain, we have to consider the problems as box-constrained, and thus
moving the function can have a significant impact on the low-level landscape features.
This might explain why many ELA-features differ greatly across instances on the
sphere function.

On the other hand, the same overall patterns can be seen in d = 20 as on d = 5, al-
beit with a reduced magnitude. Moreover, functions F9 (Rosenbrock), F19 (Composite
Griewank-Rosenbrock), and F20 (Schwefel) now barely show any statistical difference
between instances.

Dimensionality Reduction. In addition to the statistical comparison approach,
we visualize the ELA features in a 2d space using the t-distributed stochastic neighbor
embedding (t-SNE) approach [230], as shown in Figure 3.12 for features standardized
beforehand by removing mean and scaling to unit variance. It is clear that most in-
stances of each problem are tightly clustered together. Nonetheless, there are outliers,
where several instances of a function are spread throughout the projected space, in-
dicating that these instances might be less similar. This is particularly noticeable in
5d, where several functions are somewhat spread throughout the reduced space. In
20d, function clusters appear much more stable, matching the conclusion from the
differences with regard to dimensionality in Figure 3.11. It is worthwhile to note that
differences between BBOB functions are indeed easier to be detected in higher dimen-
sions using ELA features, as shown in previous work [204], which matches the more
well-defined problem clusters we see in Figure 3.12.

Algorithm Performance across Instances

We now analyze the optimization algorithm performances across different BBOB prob-
lem instances. Here, we consider single-objective unconstrained continuous optimiza-
tion with the following eight derivative-free optimization algorithms available in Nev-
ergrad [200] (all with default settings as set by Nevergrad): DiagonalCMA (a vari-
ant of covariance matrix adaptation evolution strategy (CMA-ES)), differential evolu-
tion (DE), estimation of multivariate normal algorithm (EMNA), NGOpt14, particle
swarm optimization (PSO), random search (RS), constrained optimization by linear
approximation with random restart (RCobyla) and simultaneous perturbation stochas-
tic approximation (SPSA). We run each algorithm on each of the 500 instances of the
5d BBOB problems, 50 independent runs each, resulting in a total of 4.8 million
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Figure 3.12: Projection of high-dimensional ELA feature space (altogether 64 features,
without ela_meta.lin_simple.intercept) onto a 2d visualization for the BBOB
problems in 5d (left) and 20d (right) using t-SNE approach with default settings.

(= 8 × 24 × 500 × 50) algorithm runs, each run having a budget of 10 000 function
evaluations.

We consider the best function values reached after a fixed budget of 1 000 and
10 000 evaluations. Since we have 50 runs of each algorithm on each instance, we use
a statistical testing procedure to determine whether there are significant differences in
performance between instances – here, we use the Mann-Whitney U (MWU) test [158]
with the BH correction method [12]. In addition to the pairwise testing, we consider
the same procedure in a one-vs-all setting. In other words, we repeatedly compare
the algorithm performances between the selected instance and the remaining (499)
instances. The results are visualized in Figure 3.13, as fractions of times the test
rejects the stated null-hypothesis.

We note that RS indeed seems to be invariant across instances, which is to be
expected since we make use of relative performance measure (precision from the op-
timum) rather than the absolute function values. Furthermore, with exception of
SPSA, all algorithms have stable performance on F5, F19, F20, F23 and F24, which
mostly matches the results from Figure 3.11. The fact that SPSA shows differences
in performance between these instances, even on F1, shows that this algorithm is
not invariant to the transformations used for instance generation. This matches with
previous observations that SPSA displays clear structural bias [244].

We would expect several other algorithms, specifically DiagonalCMA and DE, to

48



Chapter 3. Benchmarking Optimization Algorithms

be invariant to the types of transformation used for the BBOB instance generation.
However, for some problems, e.g. F12 (bent cigar), such assumption does not seem to
hold. This indicates that for these problems, the instances lead to statistically different
performance of these invariant algorithms. This might be explainable considering the
fact that these algorithms treat the optimization problem as being box-constrained,
while the BBOB function transformations make the assumption that the domain is
unconstrained [95]. In addition, while the algorithms might in principle be invariant to
rotation and transformation, applying these mechanisms does impact the initialization
step, which can have significant impact on algorithm performance [247]. This is an
intended feature of the BBOB suite, since it is claimed that "If a solver is translation
invariant (and hence ignores domain boundaries), this [running on different instances]
is equivalent to varying the initial solution" [95]. While this is true for unconstrained
optimization, it is not as straightforward when box-constraints are assumed, as is
commonly done when benchmarking on BBOB, since here changing the initialization
method might significantly impact algorithm behavior.

Properties across Instances

For most functions, the general transformation mechanism consists of rotations and
translations. However, in order to preserve the high-level properties, these transfor-
mations are not applied in the same manner for each problem. While translation and

Figure 3.13: Average rejection rate of null hypothesis algorithm performances are
similar across instances, aggregated over problem instances per function. Left and
right column show results for 1 000 and 10 000 function evaluations, respectively. Top
and bottom rows show pairwise and one-vs-all comparisons, respectively. Average
values are shown in the last column and row of each figure.
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Figure 3.14: Locations of global optima of 500 instances for selected BBOB functions
in 2d. Each dot represents the optimum of a BBOB-problem instance. The remaining
16 BBOB functions (not shown here) have a similar distribution pattern as F1. Dashed
lines mark the commonly used boundary of search domain, i.e., [−5, 5]2.

rotation are indeed the core search space transformations, the order in which they are
applied in the chain of transformation which creates the final problem can change. For
simple functions such as the sphere, the transformation is straightforward (a trans-
lation only, since rotating a sphere has no impact). For other functions, such as the
Schaffers10 function (F17), one rotation is applied, followed by an asymmetric function
and another rotation, after which the final translation is applied. The precise trans-
formations and their ordering is shown in [96]. While these different transformation
processes are necessary to preserve the global properties of the problems, their impact
on the low-level features of the problem can not always be as easily interpreted. As
a result, the amount of difference between instances on each function is impacted by
its associated transformation procedure, which can make some functions much more
stable than others.

One aspect of the instances which is treated differently across problems is the
location of the global optimum. By construction, for most BBOB problems, location of
this optimum is uniformly sampled in [−4, 4]d. This is achieved by using a translation
to this location, since for the default function the optimum is located in the origin.
However, for some other problems, such as the linear slope (F5), a different procedure
is used. Here, we visualize true locations of optima across the first 500 instances of the
BBOB functions in 2d in Figure 3.14. We note that on most functions the situation
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is equivalent to that of F1, with some exceptions: (i) the asymmetric pattern for F4
(Büche-Rastrigin) stems from the even coordinates by construction being used in a
different way from the odd ones; (ii) on F8 (Rosenbrock), a scaling transformation
is applied before the final translation, resulting in the optimum being confined to
a smaller space around the origin; (iii) for the remaining functions (F9, F19, F20,
F24), construction of the problem requires a different setup (to ensure the relevant
challenges of the problem remain fully inside the domain), and as such the optima will
be distributed differently.

In addition to considering the location of the optimum, we aggregate the instances
together, resulting in an overview of regions of the space which are on average better
performing, across multiple instances. This highlights potential bias in the function
definition, see Figure 3.15. We observe, e.g., that for sphere function (F1), the domain
center has a much lower function value on average than the boundaries, which matches
our intuition. This also indicates that initializing a (reasonably designed) algorithm
close to the center might more likely result in good algorithm performance, as we on
average directly start with better function values. For the BBOB suite overall, we
see a clear skew towards the center of the space. While this is reasonable given the
construction of problems (and the underlying implicit assumption that optimization is
unconstrained), it potentially hints towards a set of functions which are not represented
in the suite, namely those which have optima located near the boundaries, or in general
give lower fitness to points close to the bounds. It is also worth mentioning that,
unexpectedly, instance generation on some functions, such as the linear slope (F5)
does not lead to equal treatment of dimensions, which results in consistently better
regions along the boundary of one dimension only. Such a skew is clearly an artefact
of a particular choice of slopes for F5.
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Figure 3.15: Geometric average of relative function value (precision) across the first
500 instances of each BBOB function in 2d.
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3.3 Benchmarking Algorithm Behavior: Structural

Bias

In addition to the performance or internal state of an algorithm, analyzing the be-
haviour in terms of points sampled in the domain can lead to important insights into
the nature of the optimization procedure. One aspect which we can investigate is
whether the algorithm is inherently pulled to some region of the domain, even when
there is no selective pressure present. This bias towards a specific part of the search
space is called Structural Bias (SB) [133]. In this section, we will discuss how SB
can be detected, and show some analysis of the SB of several types of optimization
algorithms.

The notion of structural bias is built on the assumption that we cannot practically
make any assumptions on the location of the optimum within our domain – having
an algorithm that consistently finds an optimum only located in the origin is of no
use. Therefore, good algorithms should not be biased towards specific locations of the
search space, e.g., towards solutions at the origin, centre, or in the borders of the search
space. Extrapolating such reasoning, a good optimisation algorithm should be able
to find the optima regardless where exactly they are located within the domain. Or,
even stronger, a good algorithm should ideally locate solutions anywhere in its domain
with equal ‘effort’, assuming no prior knowledge about the problem is available.

In iterative optimisation heuristics, we can view points sampled during the initiali-
sation as being ‘moved’ within the domain over time. This movement occurs under the
influence of algorithm’s operators, which are aiming to find improvements in fitness
value. In effect, such movement of the algorithm towards the optima gets steered by
the differences in the values of the objective function in the sampled points or their
derivatives of some kind. Any feedback that is external to the objective function or do-
main knowledge might hinder such progression to the optima. Such external feedback
stemming from the iterative nature of the algorithm is referred to here as Structural
Bias (SB).

Because of the high interdependence between the fitness landscape and the informa-
tion on the fitness obtained from this cyclical application of the algorithm’s operators,
the structural bias contribution during the search for optima cannot be easily unveiled
if not by means of a specific objective function capable of nullifying such interaction
over multiple optimisation runs. The f0 function serves this purpose and can be used
to decouple these effects, thus separating the bias component, arising from algorithmic
design choices, from the main driving force represented by the sampled differences in
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the fitness landscape [133]. Function f0 is defined as follows:

f0 : [0, 1]d → [0, 1], where ∀x, f0(x) ∼ U(0, 1). (3.1)

To identify the structural bias of an algorithm we can thus run it on f0 and inves-
tigate the resulting points found at the end of the optimization run.5 Up until now,
methods to check the uniformity of the distribution of best solutions over multiple
runs included visual or statistical inspections.

Displaying locations of the best solutions collected from multiple runs in the so-
called ‘parallel coordinates’ [105] appears to be the most effective way for visualising SB
on a multidimensional problem [133]. This approach is easily reproducible, graphically
valid and hence convenient. However, when a large number of images is generated
[39, 235], visual inspection can become too laborious. Such an approach is also clearly
subjective and therefore not reliable for cases where graphical artefacts or unclear
patterns cannot be judged by a naked eye.

Instead, we can consider the problem of testing uniformity from the statistical
perspective. Assume that a heuristic optimisation algorithm was run N times to
minimise f0. At the end of each run i, the best solution x(i) found by the algorithm
by the end of the run is recorded, where naturally x(i) ∈ [0, 1]d. The random sample
{x(1),x(2), · · · ,x(N)} represents the set of best solutions retrieved by the N runs of
the algorithm. Assume that {x(1)j , x

(2)
j , · · · , x(N)

j }, j ∈ {1, 2, · · · , d} was drawn from
a probability distribution with a continuous cumulative distribution function Fd. A
goodness-of-fit test can be used to test the null hypothesis H0 : Fd ∼ U(0, 1).

The Kolmogorov–Smirnov test [130] was employed with a sample of size N = 50

and significance level α = 0.01 in [133]. Subsequently, following the ‘power analysis’
performed in [131] across three common tests, namely Kolmogorov-Smirnov, Cramér-
Von Mises [47], and Anderson-Darling [1] tests, the latter test was chosen and used in
combination with the Benjamini–Hochberg [11] correction method for multiple com-
parisons to achieve higher statistical power. However, it was noted that the original
sample size was not adequate for testing all algorithms under investigation. Hence,
a higher number N = 100 of runs had to be used for some algorithms in order to
achieve a satisfactory level of statistical power. Similar problems were encountered in
a further study on SB in a subclass of Estimation of Distribution Algorithms [132],
even when using an aggregated measure of SB defined as the sum of the statistically
significant (across all dimensions) test statistics of the Anderson-Darling test.

5Alternatively, the best-so-far point can be used, to track the emergence of SB over time [235]
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It was concluded that the described statistical approaches can effectively detect
most cases of ‘strong’ SB but are deficient on other scenarios, including clear ‘mild’
SB that can be identified with the visual approach. Reasons for these discrepancies
between the two methodologies might be a conservative nature of the employed tests
combined with the relatively low sample size. Indeed, more accurate SB detection
results could be obtained with N = 600, as used in [235], instead of N = 100.

Using a large sample size (N = 600) indeed seems to catch bias more often, but
still gives no guarantee to detect all different kinds of SB, at any significance level
[235]. Even larger sample sizes are necessary for smaller levels of significance, higher
desired power and smaller sizes of the deviations to be identified [118]. However, given
the limited computational resources to run heuristic optimisation algorithms, it is not
always possible to obtain (very) large sample sizes. Therefore, tests better able to
detect significant deviations from uniformity given limited sample sizes are desirable
for detecting SB.

The BIAS Toolbox As can be concluded from the above, there is a clear need for
a better automated statistical testing procedure to detect SB readily available to the
community as a software package. We thus propose a toolbox, called BIAS (Bias in
Algorithms, Structural), to improve the detection of SB based on algorithm runs on
f0. Based on a large set of statistical tests, BIAS provides an indication of whether
or not structural bias is present in the sample of final positions and, in case some SB
is found, an assessment of the possible type of SB observed using a random forest
model. In addition to the structural bias detection, the toolbox also contains the
needed functionality to benchmark other statistical tests for detecting structural bias.
The BIAS toolbox is available as a Python package.

Tests

BIAS makes use of statistical tests on the final solutions found by many runs of the
algorithm on f0 (denoted as Fd). These tests all have the null hypothesis H0 : Fd ∼
U(0, 1). Since the algorithm can work on search spaces of arbitrary dimensionality, we
have two types of tests: per-dimension tests and across-dimension tests.

The following tests are designed to work on an individual dimension. However,
by aggregating all data we can run these tests on a sample size which is effectively d
times larger. If these tests are run on a per-dimension basis, correction strategies
need to be applied to deal with the multiple-comparison problem. For this purpose,
the Benjamini-Holberg (BH) method was proposed originally, since it is less stringent
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Table 3.3: Tests present in the BIAS toolbox for per-dimension (top) and across-
dimension (bottom) detection of uniformity.

Test Name Shorthand Reference
1-spacing-based test 1-spacing [194]
2-spacing-based test 2-spacing [194]
3-spacing-based test 3-spacing [194]
Sample Range-based test range [244]
Sample Minimum-based test min [244]
Sample Maximum-based test max [244]
Anderson-Darling AD [1, 75]
Transformed Anderson-Darling test tAD [241]
Shapiro test Shapiro [214]
Jarque–Bera test JB [111, 220]
Minimum Linear Distance-based test LD-min [244]
Maximum Linear Distance-based test LD-max [244]
Kurtosis-based test Kurt [185]
Minimal Minimum Pairwise Distance-based test MPD-min [244]
Maximal Mininimum Pairwise Distance-based test MPD-max [244]
Wasserstein distance-based test Wasserstein [117]
Neyman-Smooth test NS [178, 14]
Kolmogorov-Smirnov test KS [130, 75]
Cramer-Von Mises test CvM [44, 50]
Durbin test Durbin [67, 50]
Kuiper test Kuiper [30, 50]
1st Hegazy-Green test HG1 [101, 50]
2nd Hegazy-Green test HG2 [101, 50]
Greenwood test Greenwood [86, 50]
Quesenberry-Miller test QM [196, 50]
Read-Cressie test RC [46, 50]
Moran test Moran [169, 50]
1st Cressie test Cressie1 [45, 50]
2nd Cressie test Cressie2 [45, 50]
Vasicek test Vasicek [239, 50]
Swartz test Swartz [222, 50]
Morales test Morales [168, 50]
Pardo test Pardo [184, 50]
Marhuenda test Marhuenda [159, 50]
1st Zhang test Zhang1 [265, 50]
2nd Zhang test Zhang2 [265, 50]
The mutual information-based test MI [213, 186]
Maximum Minimum Pair-wise Distance-based test MMPD [244]
Maximum Difference per Dimension between a linear uniform distribution-based test MDDLUD [244]

than the standard Bonferroni method. However, in this chapter, we also investigate
the effects of other multiple comparison correction methods.

We consider a total of 36 per-dimension tests, listed in Table 3.3. In addition
to the tests which work on a per-dimension basis, we can also perform tests on the
full set of 30-dimensional data at once. This can be done by grouping together the
samples or distances and performing the same test as the per-dimension testing on the
aggregated data. For this purpose, we use all per-dimension tests, with the exception
of the sample limits-based tests, LD , MPD , and Wasserstein tests. Alternatively, we
can use tests which are explicitly designed to handle multiple dimensions at once. In
this toolbox, we consider three of these tests, listed at the bottom of Table 3.3.
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3.3. Benchmarking Algorithm Behavior: Structural Bias

To determine rejection based on the test statistic, we need to either calculate the
corresponding p-values, or check if the test statistic exceeds the corresponding critical
value. Several of the test we include calculate the p-value by default, but for the
others we will use the critical values. To get accurate estimates of these values, we
use a 100 000 samples Monte Carlo simulation of the test statistic under the uniform
distribution, from which we determine the α-quantiles for α ∈ {0.01, 0.05}. The
Monte Carlo test is a well known procedure for implementing hypothesis tests [181].
It enables calculating the critical values when the true (sampling) distribution of the
test statistic is unknown. The resulting critical values calculated using this procedure
are made available.

Methodology

To effectively judge the performance of the proposed tests for different types of SB, we
have defined a large portfolio of bias scenarios according to which we can generate an
arbitrary number of samples. This set of scenarios is chosen in such a way that most
common types of SB are represented. Additionally, these scenarios are parameterised
to control the level of bias, which enables us to better judge the robustness of tests.
The specification of these scenarios is shown in Table 3.4.

Adding up all parameterizations gives us 194 scenarios to consider in the per-
dimension case, and 249 scenarios in the across-dimension case. For each of these
scenarios, we generate data with sample sizes {30, 50, 100, 600}. In the per-dimension
case, we collect 1 500 independent sets of samples for each use-case, while the across-
dimension cases all use 100 sets of 30-dimensional samples.

For each of the generated sets of samples, we apply the corresponding test-battery
with α ∈ {0.05, 0.01}: 36 tests for per-dimension case and 32 for the across-dimension
case.14 Using this setup, we thus collect 194 · 1 500 · 4 · 36 = 4.19× 107 test statistics
/ p-values for the per-dimension tests, and 249 · 100 · 4 · 32 = 3.19 × 106 for the
across-dimension tests.

We show an example of the set of statistical tests applied to an instance of the Cut
Normal scenario in Figure 3.16. This figure shows the rejections for each dimension
individually, as well as the corresponding sample on which this decision is based. This
visualisation is available as part of the BIAS toolbox, and provides a visual way to
inspect the structural bias present in the scenario.

14Several per-dimension tests can not be used for the across-dimension case, full details in [244].
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Figure 3.16: Example of an instantiation of the Normal Cut scenario with µ = 0.5 and
σ = 0.2, with 100 samples in each of 30 dimensions. The top figure shows the assumed
distribution of the final positions potentially returned by an optimisation algorithm
in each dimension. Jitter is applied here to reveal vertically overlapping points. The
colour scheme is used to highlight different dimensions. The binary heatmap in the
bottom figure shows in green which tests reject the null-hypothesis of uniformity per
dimension with α = 0.01 (no multiple comparison correction applied).

Sample size

To study the impact of the available sample size on the overall performance of different
statistical tests, we can aggregate the number of rejections over all parameterizations
of each scenario. This allows us to show the fraction of cases of a scenario which
are rejected by each test given a certain sample size. Figure 3.17 shows this for the
Shifted Spikes scenario. From this figure, we can see that the effect of sample size is
not the same across all tests. As an example, the AD test has a relatively high number
of rejections at 30 samples, but doesn’t reach the same precision as other tests when
increasing sample size to 600. This indicates that analysis of the performance of the
tests should take the number of available samples into account, as this will influence
which tests are more distinguishing.
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M
or

an

Cr
es

sie
1

1-
sp

ac
in

g

Pa
rd

o

M
or

al
es

Va
sic

ek

Zh
an

g1 RC

Gr
ee

nw
oo

d

Zh
an

g2 tA
D

2-
sp

ac
in

g AD QM

Cr
es

sie
2

Test

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 re
je

ct
io

ns
n_samples

30
50
100
600

Figure 3.17: Fraction of rejections for each test on the Shifted Spikes scenario, with
α = 0.01 and no multiple comparison correction method applied. Data is aggregated
over all parameterizations of the scenario, as described in Table 3.4. This figure shows
15 tests with the most rejections (when aggregated over the different sample sizes).
Note that the negative space over each bar (1− x) is equivalent to the false negative
rate of the test.

From Figure 3.17, we can also see that the Moran test significantly outperforms all
others on this scenario, but even this test does not reject all cases when the sample
size is small. This reinforces the notion that if possible, increasing the sample size
is beneficial to the ability to detect less clear cases of structural bias. However, we
also note that for most scenarios, a sample size of 50 seems to be sufficient to detect
the presence of structural bias. While increasing the sample size would increase the
ability to detect less obvious cases of SB, N = 50 should be able to correctly identify
the most blatant ones.

Overall analysis

With the rejection data, we can investigate the interplay between statistical tests
and the scenarios, in order to find what set of tests is more suitable to each kind of
structural bias. For this analysis, we make use of the concept of Shapley values [215]
to assess the contribution of each test to a portfolio of tests for finding bias in each
type of scenario. In particular, we define the marginal contribution of a test t to a
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Chapter 3. Benchmarking Optimization Algorithms

portfolio of tests T ′ ⊂ T on scenario S as follows:

c(t, T ′, S, n, α) =
∑

s∈S

∑n−1
i=0 maxt′∈(T ′ ⋃{t}) 1t′(si)<α −∑

s∈S

∑n−1
i=0 maxt′∈T ′ 1t′(si)<α (3.2)

where n is the number of realizations si of scenario s. The indicator function 1

corresponds to the test t rejecting the null hypothesis with significance α on the data
from realization si.

Based on this definition of marginal contribution, we can compute approximate
Shapley values by sampling random permutations calculating the marginal contribu-
tion for each test at each position within this permutation [229, 41]. This can be
formulated as follows:

S(t, S, n, α) =
∑
r

m∑
i=0

c(t, T ′, S, n, α) : T ′ ⊂ T, |T ′| = i (3.3)

where r is the number of repetitions used, and m is the maximum size of these per-
mutations, which is introduced to ease with computations and because the impact of
larger permutations on the total sum is relatively minor – in this paper, we set m = 10.

From our experiments, we have found that no single test is clearly preferable over
all others. Moreover, an analysis of the Kendall-Tau [122] correlations between the
rejections of tests across all scenarios shows that very few tests are highly correlated.
Figure 3.18 shows the correlation heatmaps for sample size 600 and α = 0.01. We
can observe relatively higher correlations among some of the tests listed from NS to
Greenwood , and among some of the tests listed from QM to Pardo . However, these
higher correlations involve very few of the tests and the correlations among the other
tests are very low. Therefore, it is likely that different tests are best suited to recognise
different types of deviations from uniformity. For this reason, we include all considered
tests in the BIAS toolbox.

For the per-dimension tests, we should take into account the fact that multiple tests
are being done, and thus the p-values should be changed using a correction procedure.
For this purpose, we use the Benjamini-Yekutieli (BY) [13] correction method, which
we found to obtain the best tradeoff between false positives and false negatives [244].
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Figure 3.18: Cluster plot showing the Kendall-Tau correlations [122] between test
rejections on all scenarios, with sample size 600, α = 0.01.

Estimation of the SB type

Since we use the results of many statistical tests to find bias in artificially generated
samples and different tests may be better at capturing different deviations from uni-
formity, we can use these tests to not only check if structural bias is present, but
also to identify what the most likely form of bias is. This provides an answer to
RQ2. To achieve this, we build a random forest (RF) model, which takes as input
the test-rejections from all per-dimension tests. This is done to allow scaling to arbi-
trary dimensions while having one model for all sample sizes. Specifically, if we use
statistical test values directly, we would need one model per sample size, and a way
to aggregate the resulting predictions. Instead, a RF based on rejections only needs
to deal with the aggregation problem.

The data used to train and evaluate the random forest model consists of the full
set of scenario results (per-dimension version) on all tests, with the output being the
scenario-type it comes from. However, if for a specific sample no test rejects the null-
hypothesis, these samples are discarded, since we have no evidence of structural bias.
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This two-stage approach leaves us with 1 158 000 biased samples, on which we train
the RF model with 100 trees and balanced class weights. A confusion matrix created
from an 80-20 test split is shown in Figure 3.19 (F1-score of 0.56). We see that the
distinction between the Cut Uniform and the other scenarios can be challenging to
accurately detect. However, this doesn’t have to be an issue for practical detection
of SB, since the scenarios misidentified as Cut Uniform might show similar types of
bias, even though their initial creation mechanism is different.

To provide a more practical estimation of SB in our toolbox, we create an additional
model to predict the type of bias, as shown in the final column of Table 3.4. These 5
categories are more distinct from each other, removing overlap between some similar
classes, i.e. between Spikes and Noisy Spikes. Overall, this model gives us an
improved F1-score of 0.79 on a similar 80-20 split.

To use these models in the BIAS toolbox to predict bias of the multi-dimensional
test, we need to perform some aggregation across dimensions to transform it into
a binary vector. We do this by checking the number of false positive tests in 30D
uniform samples. We run 10 000 simulations, where we record the maximum number
of test rejections by each test. This gives us a total of 92 cases where a test gives 2
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(on the right). On both figures, markers identify the used sample size: ⃝, ♢, △ and
□ are 30, 50, 100 and 600, respectively.

rejections, and 2 cases where a test gives 3 rejections. As such, we set the threshold
for the aggregation of multi-dimensional data to 0.1 · d. If no test is rejected in this
aggregation, we consider the samples to be non-biased. This threshold value is then
used to create the binary input vector for the RF model.

To verify that this works for other dimensionalities as well, and to gauge the overall
performance of the toolbox, we simulate the false positive and false negative rates. This
is achieved by sampling (with replacement) from the set of test-statistics on each of
our used scenarios and applying this aggregation rule. For false positives, this is done
1 000 00 times on the (true) uniform data, while for false negatives it is done 10 000

times on every non-uniform scenario. The results, shown in Figure 3.20, indicate that
while the 0.1 · d threshold is rather conservative on higher dimensionalities, the FPR
is well below the selected α = 0.01, while the FNR is not needlessly increased.

Benchmarking SB of real algorithmic data

We use data from a heterogeneous pool of heuristics executed over f0 at dimensionality
d = 30 for a maximum of 10000 · d fitness function calls. In total, we consider 432

optimisation heuristics, which fall into the following categories (all except the latter
use N = 100, while the latter uses N = 50 runs each):

• Variants of Differential Evolution (195 configurations),
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Figure 3.21: Predicted SB class probabilities of the biased GA configurations (left,
sorted alphabetically) and the biased single-solution algorithms (right), using the ran-
dom forest model. Names for the GA are structured as mutation–crossover–selection–
SDIS–population size. For the single-solution algorithms, the character in brackets
refers to the used SDIS.
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• Compact optimisation algorithms (81 configurations),

• Single-solution algorithms (60 configurations),

• Variants of Genetic Algorithms (96 configurations).

For each of the considered algorithm configurations, we collect their final positions
and feed these into the BIAS toolbox. In Figure 3.21 (left side), we show the outcome
from the RF predicting the type of structural bias present in the different GA con-
figurations (only the biased ones are shown). This shows that there are quite some
differences in the detected bias, even within this limited algorithm design space. It is
also interesting to note that the population size seems to have a relatively small im-
pact on the type of predicted bias, which seems to be mostly impacted by the operator
configuration.

For the single-solution algorithms, we see in the right part of Figure 3.21 that the
strategy of dealing with infeasible solutions (SDIS) seems to drastically change the type
of detected bias. For example, the Powell algorithm is classified as ‘discretization’ bias
when using mirror strategy, while the classification changes completely with a COTN
strategy. Such differences can give us useful insight into the effect of these SDIS
methods on the optimisation behaviour of these algorithms.

DEEP BIAS In addition to the statistical approach used in the BIAS toolbox, we
can make use of deep learning techniques to identify deviations from uniformity. To
this end, we extended the BIAS toolbox with DEEP-BIAS: a convolutional neural
network which detects both the presence and type of structural bias. This network
structure is visualized in Figure 3.22.

By not going through the intermediary step of getting test statistics from the per-
dimension test, this setup allows for a better classification of the type of bias detected,
while remaining competitive with the statistical test in terms of bias detection, as is
highlighted in Figure 3.23.
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Figure 3.22: General one-dimensional CNN architecture with optimal hyper-
parameters per sample size. The network takes as input a sorted distribution fixed
sample size. Yellow layers are 1d-CNN layers, red layers are max-pooling layers, green
layer is a dense layer and finally a classification head with SoftMax activation function
resulting in five class probabilities per sample.
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Figure 3.23: Comparison (with α = 0.01) of the original BIAS toolbox (blue) and
the Deep-BIAS (teal) in terms of false positives (left), false negatives (middle) and
F1-score (right). On all figures, markers identify the used sample size: ◦, ♢, △ and □
are 30, 50, 100 and 600, respectively.
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Chapter 4

Algorithm Configuration and
Selection

In the previous chapter, we have seen that benchmarking plays a critical role in the
understanding of optimization algorithms. By observing the performance of an algo-
rithm on a variety of different problems, we can gain insights into its strengths and
weaknesses. Critically, different algorithms naturally take advantage of different kinds
of problem structures. A greedy hill-climbing algorithm for example is very efficient
on a sphere-model, while it would perform poorly on highly multi-modal functions.
Compare this to a purely random search, and it is clear that we want to choose a
different algorithm to solve our sphere problem than our multi-modal example.

It should be noted that the notion of exploiting algorithm complementarity is not
limited to the optimization context [217]. For example, in machine learning, comple-
mentarity between predictors is a large source of improvement, and top-performing
frameworks for automated machine learning rely on the ensembling of complemen-
tary models to achieve state-of-the-art performance [76, 74]. Similarly, SAT-solving
is a context in which the exploitation of algorithm complementarity has led to big
improvements in the state-of-the-art [261, 104].

In general, algorithm selection aims to exploit these kinds of complementary
strengths of algorithms by selecting a different optimization algorithm for each prob-
lem [205]. In the optimization context, algorithm selection attempts to find the best
algorithm A from a portfolio A to solve a specific function f from a set of functions
F . Specifically, this static version of algorithm selection can be defined as follows:
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Definition 4.1 (Static Algorithm Selection). Given an algorithm portfolio A and a
function f ∈ F , we aim to find:

argmin
A∈A

PERF(A, f) ,

where PERF : A × F → R is a performance measure (which assigns lower values to
better-performing algorithms).

One key aspect of algorithm selection in the context of black-box optimization is
the representation of the problem. The black-box nature of the functions implies that
we have very limited information available to base our decisions on. While algorithm
selection approaches based only on the available information (problem dimensionality,
variable types, evaluation budget) are being developed [166], the amount of comple-
mentarity these approaches can exploit is naturally limited. As such, the most common
setup is to spend part of the total evaluation budget to collect samples from the func-
tion and use information from these samples as the problem representation [174]. In
this setup, an algorithm selector is a machine learning model trained on a dataset
containing the performance of each algorithm from A on each function from F , where
the function is characterized by a set of features [124]. These features are usually
extracted via Exploratory Landscape Analysis (ELA, see Section 2.5), which needs
relatively low sample sizes to calculate large sets of problem characteristics [164].

In addition to algorithm selection, we consider the algorithm configuration sce-
nario. In this setup, we have a parameterized algorithm or algorithm family, and we
aim to find the parameter setting which performs best on the selected (set of) prob-
lem(s). Where algorithm selection exploits complementarity between the algorithms
in the portfolio, algorithm configuration benefits from the sensitivity of an algorithm’s
performance to its parameter settings.

Definition 4.2 (Static Algorithm Configuration). Given an algorithm A with param-
eterization ΘA and a function f ∈ F , we aim to find:

argmin
θ∈ΘA

PERF(Aθ, f)

Where many algorithm selection techniques rely on the availability of a complete
enumeration of all algorithms and functions, this is generally not feasible in an algo-
rithm configuration context. Algorithm configuration is thus treated as an optimiza-
tion problem in its own right, where noisy evaluations, mixed-variable and conditional
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search spaces, and expensive evaluations are common. Nevertheless, applying algo-
rithm configuration to optimization heuristics has been very successful, and a wide
variety of specific tools have been developed for this purpose.

In this chapter, we illustrate how we apply modular design principles to create large
parameterized search spaces for both differential evolution and evolution strategies.
We then apply a state-of-the-art algorithm configurator to these spaces and show
what insights we gain into the impact of different algorithmic components on the final
performance in certain landscapes. We end the chapter by illustrating some of the
limitations we still face, with a particular focus on the large variability in performance
of algorithm configuration when applied to the modular CMA-ES.

This chapter is based on the following publications: [51, 240, 247].

4.1 Modular Algorithm Design

Many popular optimization algorithms have been well-studied over the last decades.
This has led to significant improvement and allowed for a great deal of specialization
to different types of problems. While these modifications are all interesting in isola-
tion, the true impact they have on the state-of-the-art is often hard to assess. One
particular reason for this arises from the fact that algorithms can be inherently chal-
lenging to implement. Inconsistencies in the description, ignored edge cases, and even
potential bugs can have a significant impact on the behaviour of an algorithm and the
interpretation of results [26, 16]. Issues such as these have raised questions regard-
ing the reproducibility of research in computer science as a whole, and evolutionary
computation is no exception [151]. Because of this, comparing different variants of
algorithms can be difficult to do fairly. Since researchers often implement the under-
lying algorithm from scratch, to then add their proposed modification (and in most
cases a selected set of other algorithm variants for comparison), clear comparisons are
often hard to find.

In an ideal setting, the community would maintain standardised implementations
of core algorithms and the proposed modifications would be compared against the
same set of state-of-the-art algorithm variants. Unfortunately, this might still be an
impossible goal. However, algorithm modifications can still be fairly compared, as long
as they are implemented in one common framework. This can be achieved through
modular algorithms. From one common core algorithm, the variants are implemented
as modules that can easily be swapped out.

The ideas behind modular algorithms have been around for decades [32, 153, 156],
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but although they have been shown to be extremely useful [65], their adoption in
evolutionary computation has been relatively slow. In recent years, several new mod-
ular implementations of popular algorithms have been released, including the modular
CMA-ES [51, 234] and the Particle Swarm Optimisation framework [34]. These works
highlight the benefits of modular algorithms not only for fair comparisons, but also
hint at the potential to study interactions between modules.

4.1.1 Modular DE

In this section, we propose a first step towards a modular version of Differential Evo-
lution (DE), a heuristic originally introduced in [219] to optimise a single-objective
real-valued fitting problem, and whose design took into consideration elements from
evolutionary algorithms and swarm intelligence optimisation (see [40, 242] for some
insights on these aspects) and a simple core mechanism based on computing difference
vectors through linear combinations of candidate solutions. DE has been around for
almost 30 years and its popularity means that a wide variety of modifications have
been proposed over the years [49]. However, when comparing the benchmark data, the
relative benefits of many of these modifications seem to vary widely. Our objective is
to provide an initial analysis of the performance of a set of 14 independent modules.
This does not cover the full space of DE variants, but nonetheless highlights the po-
tential of modular algorithms to aid in understanding the contributions made by these
algorithmic variations.

Included Modules

Similar to other heuristic optimisers, DE naturally lends itself to a reformulation as
a modular algorithm made up of a number of connected modules/operators where
every independently made choice for a module is fully compatible with all choices
for other modules. In fact, previous work has shown the usefulness of considering
these operators as independent modules, e.g. to rigorously analyse the impact of the
crossover operator [36]. In this section, we use this modularity to create a framework
which we call Modular DE where a full combinatorial range of modules is available for
each algorithm component, see Table 4.1.

Initialisation

To create the initial population, we implemented several sampling strategies (Sampler,
see Table 4.1). The most common is to create a uniform distribution across the
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entire domain. Alternatives are to use other distributions or low-discrepancy sampling
methods. We choose to include the Halton and Sobol sequences to represent low-
discrepancy sampling and a Gaussian distribution (centred around the origin, with
σ = (U − L)/6, where U and L are the upper and lower bounds, respectively) to
represent other kinds of distribution. Furthermore, a previous study has proposed
using an oppositional initialisation strategy [197] (Opposition), where each time we
generate an individual for the initial population, we also generate its mirror image
around the origin.

Mutation

The mutation operator has been the focus of many modifications of DE, see,
e.g. [266, 73, 106, 49, 37]. To capture the most established mutation variations of
the kind x/y (where x is the base vector and y the number of differences), and to give
flexibility in adding new variants, we implement the mutation operator through the
combination of 3 modules. The first two modules, namely Base and Ref, help define
the strategy x. Note that the reference solution Ref can be set to none, while the Base
solution is not optional. In this scenario x = Base. Conversely, when Ref is one of
the admissible reference solutions displayed in Table 4.1, a scaled version of the vector
directed from target to the reference point is generated and added to Base, i.e. Base
+ F(Ref-target). Therefore, when Ref is not none, one obtains any of the classic
strategies of the kind x = target-Refs, plus new ones by varying the base vector.
The third module, namely Diffs, is used to set the number y of difference vectors.

In addition to this restructuring of the definition of the mutation operator, we
implement the option of using WeightedF, which reduces F at the beginning of the
search and then increases it towards the end [25].

One more modification makes use of an archive of external solutions, as done, e.g.,
in [266], where one of the solutions in the archive is chosen to be part of one of the
difference vectors - a scheme that has been shown to lead to improvements in the past
and is activated via the module Archive.
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Chapter 4. Algorithm Configuration and Selection

Crossover

The classical studies in DE generally consider two types of crossover: binomial (z=bin)
and exponential (z=exp) [193], where the names refer to the distributions used for the
probability of exchanging design variables between target and mutant. Both these
types of crossover are included in this work.

Furthermore, we also include the option of performing the procedure from [87],
by activating the eigenvalues transformation module EigenX, which allows using the
bin or the exp operator and still maintaining rotational invariant behaviour. This
is obtained by producing a covariance matrix from the individuals that make up the
current population and diagonalising it with the Jacobi method [54] to calculate the
eigenvalues and eigenvectors. These are real-valued and form an orthogonal basis
(since the covariance matrix is symmetric and surely diagonalisable) and are arranged
in a matrix R used to rotate target and mutant before performing the crossover. Note
that the obtained trial has to be transformed back to the original coordinate system.
This is an easy task, as the conjugate matrix R∗ is equivalent to RT in this scenario.
Therefore, the multiplication between the transposed transformation matrix RT and
the newly generated point returns the desired trial.

Boundary Correction

There exist several mechanisms for boundary correction in the literature that allow
us to deal with infeasible solutions. The most used within the DE community can be
found in [17, 134]. For the proposed modular DE framework, we selected a varied set
of 10 strategies for box-constrained problems.

Parameter Adaptation

Most state-of-the-art DE variants make use of adaptive parameters. So, in the pro-
posed modular framework we implement adaptation methods for the DE core pa-
rameters, namely F , CR, and λ. The simplest is LPSR, which linearly reduces the
population size over time [24]. For F and CR, we implement the adaptation mecha-
nisms of SHADE and jDE [23, 223]. For F , we add an additional mechanism which
uses the mean of the memory, instead of generating a different distribution for each
individual, in the SHADE’s adaptation strategy.

One final option to change the adaptation process is to use JSO [25] caps for F
and CR (Caps), which, once activated, caps the values of these two parameters with
different thresholds depending on conditions on the used computational budget.
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4.1. Modular Algorithm Design

4.1.2 Modular CMA-ES

Similar to the modular Differential Evolution, we also consider a modular variant of
CMA-ES. This framework is in large part a redesign of the Modular Evolutionary
Algorithms (ModEA) framework introduced in [234]. The modifications focus on the
CMA-ES family of algorithms, to such an extent that the design of other evolutionary
algorithms is no longer possible, thus requiring the change of names. The new frame-
work was dubbed the Modular CMA-ES (modCMA) and is available as an open-source
Python package within the IOHprofiler [63] environment.1

To design the Modular CMA-ES, we use the implementation from the popular
CMA-ES tutorial [90] as a starting point. This work provides a detailed description of
the CMA-ES algorithm, including a practical guide to its implementation. From this
basic design, we separate the CMA-ES in a number of functionally related blocks, in
order to allow a customization of a specific part of the algorithm. This allows us to
implement algorithmic variants of the CMA-ES as functional modules. From a user
perspective, any of these modules could then be combined in order create a custom
instantiation of the CMA-ES, by selecting an option for each available module.

In ModEA, eleven of such modules were already implemented. These were all
reimplemented in the Modular CMA-ES, with a few changes to the structure of the
options. Specifically, we removed the Pairwise Selection as a module. Instead, we
incorporated this option in the Mirrored Sampling module as the option Mirrored
Sampling with Pairwise Selection, converting this module from binary to ternary. This
is done because the pairwise selection method is not suited for use without mirrored
sampling [3].

We implemented a new module for performing boundary correction, and added five
alternative options for performing step-size adaptation. These two extensions to the
framework will be the focus of our analysis through out this work. This set of changes
give us the following list of modules for the redesigned Modular CMA-ES:

1. Active Update: Bad candidate solutions are penalized in the covariance matrix
update using negative weights [112]. Note that in [90], this is given as the default
version, here we consider it to be optional.

2. Elitism: (µ+ λ) - selection instead of (µ, λ) - selection.

3. Orthogonal Sampling: All the newly sampled points in the population are
orthonormalized using a Gram-Schmidt procedure [254].

1https://github.com/IOHprofiler/ModularCMAES
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4. Sequential Selection: Candidate solutions are immediately ranked and com-
pared with the current best solution. If an improvement is found, no additional
objective function evaluations are performed [28].

5. Threshold Convergence: A method for balancing exploration with exploita-
tion, scaling the mutation vectors to a required length threshold, which decays
over time [187].

6. Step-Size Adaptation: Supplementary to the default Cumulative Step-size
Adaptation (CSA), Two Point step-size Adaption (TPA) [88] is implemented.
TPA requires two additional objective function evaluations, used for evaluating
both a shorter and a longer version of the population’s center of mass. The
version which shows the higher objective function value determines whether the
step-size should be increased or decreased. Five newly added mechanisms for
performing step-size adaptation are implemented.

7. Mirrored Sampling: For every newly sampled point, its mirror image is added
to the population, by reversing its sign [3]. This can be turned on or off, or as a
third option this module can be set to Mirrored Pairwise Selection, where only
the best point of each mirrored pair is used in recombination.

8. Quasi-Gaussian Sampling: Instead of performing the simple random sam-
pling from the multivariate Gaussian, new solutions can alternatively be drawn
from quasi-random sequences (a.k.a. low-discrepancy sequences) [6]. We imple-
mented two options for this module, the Halton and Sobol sequences.

9. Recombination Weights: Three options are implemented; 1) default weights
(see [90]), 2) equal weights: wi = 1/µ, and 3) wi = 1/2i + 1/(λ2λ) for i =

1, 2, . . . , λ.

10. Restart Strategy: When the optimization process stagnates, the CMA-ES can
be restarted using a restart strategy. Two strategies are implemented in addition
to the default ’off’ setting. IPOP [5] increases the size population after every
restart by a constant factor. BIPOP [155] also changes the size of the population,
but alternates between larger and smaller population sizes.

11. Boundary Correction: If candidate solutions are sampled outside the search
domain, they can be transformed back into the search domain by applying a
boundary correction operation. In Section 4.1.2, we describe six options for
performing boundary correction which have been implemented.
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Table 4.2: The modules available for the Modular CMA-ES. The numeric index for
each module corresponds to the index used in the text of Section 4.1.2. Newly added
modules/options are given in bold.

# 0 (default) 1 2 3 4 5 6

1 off on - - - - -
2 off on - - - - -
3 off on - - - - -
4 off on - - - - -
5 off on - - - - -
6 CSA TPA MSR PSR xNES m-xNES p-xNES
7 off on on w. PS - - - -
8 off Sobol Halton - - - -
9 default 1

λ
1
2i

+ 1
λ2λ

- - - -
10 off IPOP BIPOP - - - -
11 off UR MCS COTN SCS TCS -

In Table 4.2, an overview is given of all currently implemented modules and their
options in the Modular CMA-ES framework.

Boundary Correction

In the original modEA framework [233], a boundary correction function taken
from [141] was implemented, and always applied after each mutation. In some cases,
however, this operator can degrade the performance of the algorithm quite drastically.
We therefore decided to make the boundary correction optional, and to implement it
as a module, for it to only be used when beneficial. A number of different boundary
correction strategies were implemented, taken from [40]:

1. None: No correction is applied to infeasible coordinates of solutions.

2. Uniform Resample (UR): Replaces all infeasible coordinates of a solution
with new coordinates sampled uniformly at random within the search space.

3. Mirror Correction Strategy (MCS): Mirrors all infeasible coordinates of a
solution with respect to its closest boundary.

4. Complete One-tailed Normal Correction Strategy (COTN): All infea-
sible coordinates are replaced with new coordinates inside the search space ac-
cording to a rescaled one-sided normal distribution centered on the boundary.

5. Saturation Correction Strategy (SCS): All infeasible coordinates is set to
the closest corresponding bound.
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6. Toroidal Correction Strategy (TCS): All infeasible coordinates get reflected
off the opposite boundary.

Step-Size Adaptation

We consider a number of alternative step-size adaptation mechanisms for the Modular
CMA-ES. We take inspiration from [137], which provides a qualitative evaluation of
multiple step-size adaptation mechanisms used in ES. In addition to the CSA and TPA
step-size adaptation methods, which were already available, we added the following
procedures:

1. Median success rule (MSR) [72]: The MSR mechanism adapts the step-
size σ as follows: it firstly computes a success rate by checking the number
of current individuals that are better than some user-defined quantile of the
function values in the previous population, then accumulates such success rates
in every iteration, and finally decides to increase the step-size if the cumulated
value is bigger than 1/2 and decrease it otherwise.

2. Population success rule (PSR) [154]: PSR determines the success rate of the
current population using a rank-based approach. It firstly sorts all individuals
in the current and previous population together, then retrieves the set of ranks
of individuals belonging to the current iteration and the one for the previous
iteration, and finally calculates the average rank difference between those two
sets as the population success rate, which controls the step-size updates.

3. xNES step-size adaptation (xNES) [83, 260, 137]: This method calculates
the length of each standardized mutation vector and subtracts from it the ex-
pected length of the standard Gaussian vector. The resulting difference is then
scalarized using the same weights used in the recombination, which is finally fed
into an exponential function to generate a multiplicative coefficient to modify
the step-size.

4. mean-xNES step-size adaptation (m-XNES) [137]: This mechanism func-
tions similarly to xNES, with the exception that it takes the standardized differ-
ential vector between current center of mass and the one in the previous iteration
and compares it to the expected length of the standard Gaussian vector.

5. xNES with log normal prior step-size adaptation (p-xNES) [137]: This
approach resembles the principle of self-adaptation for step-sizes, where λ trial
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Table 4.3: Set of 11 commonly used DE variants and the way they are implemented
in modular DE. Empty cells indicate default values are used.

Name/Author Mutation Settings F CR λ Other Settings

L-SHADE [223] Base : target, Ref : pbest adaptive 18 · d LPSR, Archive, AdaptF_CR : shade
SHADE Base : target, Ref : pbest adaptive 10 · d Archive, AdaptF_CR : shade
DAS1 [48] 0.8 0.9 10 · d
DAS2 Base : target, Ref : best 0.8 0.9 10 · d

Qin1

[195]

0.9 0.9 50
Qin2 0.5 0.3 50
Qin3 Ref : best 0.5 0.3 50
Qin4 Ref : best, Diffs : 2 0.5 0.3 50

Gamperle1 [82] Ref : best, Diffs : 2 0.45 0.4 2 · d
Gamperle2 Ref : best, Diffs : 2 0.6 0.9 2 · d

jDE [23] adaptive 100 AdaptF_CR : jDE

step-sizes are generated from a log-normal distribution which takes the current
step-size as its mean and each trial step-size is used to sample a candidate point.
To determine the new step-size, this method calculates the weighted sum of
the log-transformed trial step-sizes, where those assigned to their corresponding
candidate points in the recombination.

4.2 Algorithm Configuration for Modular Algo-

rithms

4.2.1 Results of Configuring ModDE

Experimental Setup

Experiment 1 In order to analyse the potential of modular implementation of DE,
we recreate a set of 11 known versions of DE within our framework (referred to as
common variants). These algorithms are shown in Table 4.3, where all non-default
parameters are mentioned. In addition to this, we can create a set of 30 single-module
variations: DE versions where all modules are set to their default value, except for
one. As such, each non-default module option is enabled in exactly one single-module
variant. For these single-module variants, we set F = CR = 0.7, and λ = 10 · d, based
on the recommendations of [146].

For each DE variant, we collect performance data on all 24 BBOB problems (Sec-
tion 3.2), using IOHexperimenter [53] for data collection. We perform 50 runs per
function, spread over 10 instances (5 independent runs per instance). We repeat this
for dimensionalities d ∈ {5, 10, 20}, where we give each run a budget of 50 000 function
evaluations.

To evaluate the performance of each algorithm, we opt to use the Empirical Cumu-
lative Distribution Function (ECDF). In particular, we use a normalized Area Over
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the ECDF Curve (AOC) as an anytime performance measure [93] (more details in
Section 2.4).

Experiment 2 For our second set of experiments, we use the algorithm config-
uration tool irace [152] to tune the performance of the modular DE on the same set
of BBOB problems. Each irace run uses a budget of 10 000 evaluations, where each
evaluation corresponds to running a DE variant with the selected parameter setting.
We use irace, with its first-test parameter set to 5, and the remaining parameters kept
at their default values.

We perform 10 independent runs of irace on each function from the BBOB suite,
for dimensionalities d ∈ {5, 10, 20}, where irace has access to the first 5 instances of
the function. We set the targets for ECDF to 81 logarithmically spaced values between
108 and 10−8. We use AOC as the target since it has been shown that the increased
signal it captures relative to measures such as Expected Running Time (ERT) can lead
to overall performance improvements, even when evaluating the result with a different
measure [264].

In addition to these per-function tuning runs, we also perform 10 tuning runs where
we tune for aggregated performance over all the functions by setting the irace instance
set to the 24 BBOB problems.

The resulting elite configurations for the across-function tuning are validated using
the same settings as the DE variants from the first experiment: 5 independent runs on
10 instances of each BBOB problem. For the per-function tuning, we instead perform
5 independent runs on 50 instances of the problem on which the tuning was performed.

Single-Module and Common DE Variants

First, we investigate the single-module DE variants, which can be used to illustrate the
impact of each module in isolation. We achieve this by comparing the performance of
the default DE (all modules at their default value as seen in Table 4.1) to the variant
with the identified best options enabled for each module. The resulting distribution
of improvements is shown in Figure 4.1a.

From Figure 4.1a, we can see that some modules have relatively minor impact
when the optimal option is selected independently from any other modules. This
is the case for e.g. the number of difference components (Diffs) and the use of an
archive population (Archive). In fact, if we instead consider the performance deteri-
oration when making the worst choice for each module, these ones show a significant
change over the default setting, as can be seen in Figure 4.1b. The combination of
these two figures gives an overall importance of each module, in the sense that if only
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Figure 4.1: Impact of selecting the best (a) and worst (b) option for each individual
module, measured as the difference in AOC relative to the default configuration.
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Figure 4.2: Importance of each module to
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sum of absolute values from Figures 4.1a
and 4.1b.
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Figure 4.3: Performance distribution
(AOC) of the 30 single-module DE vari-
ants and the 11 common DE variants
from Table 4.3, for the 10-dimensional
BBOB problems.

one module can be modified, some modules will likely have a much larger impact on
the overall performance of the algorithm than others. The aggregation of maximum
improvements and deteriorations for the selection of different module options is visu-
alized in Figure 4.2. This figure shows the way in which these module importances
are distributed across functions. For some functions, all single-module configurations
perform similarly poorly, e.g. for F24, so no differences are detected. For most others,
differences are present, with a clear impact on the choice of the base vector used for
mutation (Base). In general, the mutation modules have relatively more impact than
most others. Somewhat surprisingly, the impact of the adaptation methods for F , CR
and population size λ is rather small. This might indicate that these settings work
best when combined with other modules or more specific parameter settings. Also
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Figure 4.4: Performance distribution (AOC) of the configurations tuned for an in-
dividual function (specialist) and the configurations tuned for the full BBOB suite
(generalist), for the 10-dimensional BBOB problems. The green line shows the AOC
of the best DE version from the union of single-module DE and common DE variants
from Table 4.3.

worth noting is that boundary correction is usually not impactful, with the exception
of F5 (linear slope). For this function, the optimum lies directly on the boundary, so
the boundary correction will be triggered often when close to the optimum, and thus
have a large impact on the algorithm’s performance [134]. All other BBOB functions
are known not to have optima in the relative vicinity of domain boundaries [150].

To get insight into how hand-crafted DE versions, such as L-SHADE, compare
to the single-module ones, we look at the performance distributions on the 24 BBOB
problems. This is visualised in Figure 4.3. From this figure, we see that there is a fairly
wide distribution of performance in both groups. Overall, the common DE variants
seem to contain better configurations, although the set of configurations is relatively
much smaller.

Performance of Tuned DE

Next, we compare the hand-crafted and single-module DE versions to those resulting
from tuning the modular DE using irace. The resulting performance on the 10D BBOB
problems is visualized in Figure 4.4. From this figure, we can see that generally, both
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Figure 4.5: Relative improvement in AOC value between the best configuration of
each type and the default setting, in 20D.

of the tuned DE settings outperform the hand-crafted ones. As expected, tuning for
a particular function improves the performance on that function rather significantly.

Next, we aim to understand the impact of tuning relative to picking the best
configuration from the set of common variants. To investigate this, we look at the
relative gain in AOC over the default, for each set of configurations (common variants,
single-module variants, specialists and generalists). For each type, we look at the
performance of the best configuration of that type on each function and take the
improvement it makes over the default setting. These improvements, for the 20D
BBOB functions, are visualized in Figure 4.5. From this figure, we can see that the
default setting performs particularly poorly on most of the unimodal problems, as even
the best single-module configuration can outperform it significantly. However, this also
shows the additional benefit which can be gained from tuning, which is particularly
noticeable e.g. F3 and F4. We should also note that the performance gains shown here
are slightly larger than those seen in Figure 4.4, which in turn are slightly larger than
those achieved on the 5D version of these problems.

One more important note from Figure 4.4 is the wide distribution of AOC val-
ues. For the generalist configurations, this is natural, as configurations with different
strengths can achieve similar performance when aggregated over the whole BBOB
suite, resulting in a large per-function variance when grouped together. However, for
the configurations tuned on a single function, the variance on some functions is still
clearly visible. This might be caused by the inherent stochasticity of DE which poten-
tially misleads the algorithm configurator when limited samples are available [247].

This variance might also explain why for F21 one of the hand-crafted DE vari-
ants outperforms almost all configurations which were tuned on that function. When
considering Figure 4.3, we see that the performance might be considered an outlier,
which performs much better than the remaining common variants. This observation
might indicate that using the common DE variants to initialize irace could provide
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some additional benefits over the current random sampling.

Analysis of Elite Configurations

Since multiple repetitions of irace are performed for each problem, we have a set of
between 10 and 50 elite configurations for each setting. By analysing the commonalities
between these elites, we can get an overview of the benefit of different parameter
settings. This can be done on a global level by aggregating the activations of certain
module options across runs and dimensionalities.

To understand which modules are selected often, we consider the module activa-
tions of a single function and visualise them as a parallel coordinate plot. Figure 4.6
shows this for Function 19 in 5D. In this figure, we see that all elite configurations
make use of a Gaussian sampler for initialisation (Sampler). This makes sense when
we consider the properties of F19 in more detail. In particular, we should note that
for this function, the location of the optimum is not uniformly distributed in [−4, 4]D
as for most BBOB problems, but it is instead limited to the shell of the hypersphere
of radius 1, centred at the origin [150]. Because of this, a Gaussian initialisation will
significantly outperform any uniform or low-discrepancy initialisation strategy.

In Figure 4.6 we also observe that all configurations, except one, make use of the
SHADE-based adaptation for F (AdaptF), with ‘target’ based mutation mechanism
(Base). This suggests that, unlike the common belief of adding many components in
the mutation operator to deal with such problems, adaptation systems based on the
history of successful control parameter values are beneficial for multimodal problems
similar to F19, especially when combined with ‘target’-based mutations and Diffs= 1.
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4.2.2 Incremental Assessment of Module Performance: Mod-
CMA

While the expansion of modular algorithms leads to an exponential increase in the
number of possible configurations, we can still use algorithm configuration techniques
to gain insight into the combinations of modules which perform well. When new
modules are added we can retain the performance data from earlier experiments, and
incrementally build upon this. Rather than looking at the new module in isolation, we
use our algorithm configuration setup with the expanded search space and compare
the resulting high-performing configurations to find interactions resulting from the
modules inclusion.

We propose the following roadmap to formalize this procedure, which is designed
to be generic, so that it can function with any modular algorithm, hyperparameter
tuner, and performance metric:

1. Select a modular implementation of the base algorithm to which the new module
has been added, a hyperparameter optimizer and a performance metric.

2. Collect a list of the existing modules and relevant hyperparameters (without the
new module to assess). This will be the search space for the hyperparameter
optimization.

3. Run the selected hyperparameter optimizer on this search space, ideally for a
wide set of relevant benchmark functions. This data will then serve as the
baseline performance.

4. Extend the original search space by including the new module to assess, and run
the hyperparameter optimization on this extended search space (using the exact
same setup as the baseline).

5. Compare the data from the baseline to the experiment with the extended search
space. This should not only be done from a performance perspective, but also
from the resulting configurations themselves. This allows for the analysis of
potential interactions between modules.

Experimental Overview

To illustrate our proposed approach, we make use of the modular CMA-ES framework
introduced in Section 4.1.2. Specifically, we consider the stepsize adaptation and
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boundary correction, which were added on top of the previously implemented modules
as shown in Table 4.1.

For our experiments, we stick with irace as our algorithm configurator. Four runs
of irace are performed for each of the 24 objective functions in the BBOB single
objective noiseless problem suite [96, 95], of which the first 5-dimensional function
instance is used. Each run of irace is given a budget of 1 000 algorithm evaluations,
which themselves have a budget of 10 000 · d function evaluations. We use the AOC
attained by a run of a given configuration as the objective function value. Irace will
designate one or more configurations as elites, which are the best configurations found.
We validate the performance of these elite configurations by performing 25 validation
runs, with the same random seeds for all configurations. We use the results of these
runs to assess the final performance.

Following our roadmap, we define a baseline by tuning the existing modules from
modCMA, which are shown in Table 4.2. In addition, we tune four continuous hy-
perparameters c1, cµ, cc, and cσ, which control the dynamics of the adaption of the
covariance matrix (c1, cµ, and cc) and of the step-size (cσ).

We compare two experiments to our baseline where in addition to the existing
modules, 1) several new step-size adaptation methods (see Section 4.1.2) are included,
and 2) a new boundary correction module (see Section 4.1.2) is added to the tuned
parameters. Both of these experiments use the same experimental setup as the baseline
experiment (excluding the tuned parameters). Note that in the boundary correction
experiment, the new step-size adaptation methods cannot be selected and vice versa.

Single Module Performance

Before considering our proposed method, we run a basic benchmarking experiment on
each of the individual module options (including the new options). This is similar to
the common approach of benchmarking a new module against a set of other algorithm
variants. We show the resulting best single-module configurations (a.k.a. the virtual
best solver, VBS for short) relative to the default CMA-ES in Table 4.4. In this
table, we see that among the new modules, only two have been selected: MSR for F23
and m-XNES for F5. We can further look at the overall contributions of the newly
introduced step-size settings by plotting the ECDF-curves over all functions, as done in
Figure 4.7. In this figure, we can clearly see that most methods are quite competitive,
with the only exception being xNES, which has an overall worse performance than the
others. Overall, the MSR method seems to be quite effective, but there is no strict
domination over the other settings.
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Table 4.4: Table showing the AOC of the best single-module configuration for each
function (VBS), compared to that of the default CMA-ES. The name of the solver
corresponds to the module which is active, e.g. <module_name>_<option_value>.
Note that these values does not include benefits from tuning the continuous hyperpa-
rameters, which are set to the default values for all configurations in this table.

Fid VBS AOC of VBS AOC of Default Improvement

1 elitist_True 247 326 24%
2 active_True 1 272 1 659 23%
3 local_restart_BIPOP 38 374 44 518 14%
4 local_restart_IPOP 41 746 44 613 6%
5 step_size_adaptation_m-xnes 43 63 31%
6 elitist_True 655 904 28%
7 step_size_adaptation_tpa 1 312 39 199 97%
8 base_sampler_halton 1 186 4 544 74%
9 base_sampler_sobol 959 2 470 61%

10 active_True 1 309 1 729 24%
11 active_True 1 162 1 749 34%
12 base_sampler_sobol 2 186 2 980 27%
13 active_True 1 627 2 191 26%
14 active_True 601 831 28%
15 local_restart_BIPOP 30 380 43 313 30%
16 local_restart_BIPOP 8 172 34 132 76%
17 threshold_convergence_True 12 464 26884 54%
18 threshold_convergence_True 15 764 33724 53%
19 mirrored_mirrored 33567 36 688 9%
20 threshold_convergence_True 36 482 40691 10%
21 local_restart_IPOP 38 028 40 371 6%
22 mirrored_mirrored 566 8 632 93%
23 step_size_adaptation_msr 11 060 34 433 68%
24 local_restart_IPOP 42 099 44 351 5%

Analysis and Results

In this section, we present the results of our hyper-parameter tuning experiment. We
consider two paths to analyze the contributions of the newly introduced modules:
the performance-perspective and the perspective of the selected modules. We start by
examining our baseline. This is followed by an analysis of the performance-perspective
and a deeper analysis of the selected modules.

Baseline

As mentioned in Section 4.2.2, we conduct a baseline tuning experiment.
Since we run four runs of irace for each function, this results in 4 sets of elites (each

set has up to five configurations), for which we then perform the verification runs. We
plot the distribution of the AOC for each of these configurations in Figure 4.8, in
addition to this, the AOC of the default CMA-ES and the VBS is shown. From this
figure, it is clear that the tuning of all parameters at once is much better than simply
selecting a single-module variant, as is to be expected. This plot also highlights the
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Figure 4.7: ECDF-curve of all single-module stepsize options. Figure generated using
IOHanalyzer [255].

variance in performance of the final found configurations. There are two main reasons
for this fact: the inherent stochasticity of the CMA-ES itself, and the large impact of
the initially generated configurations of irace. We discuss these challenges in detail in
Section 4.3.

From this baseline data, we can also study the resulting configurations themselves.
This can be done by aggregating the modules which have been selected in the final elite
configurations in the separate irace runs, as is visualized in Figure 4.9. In this figure,
we can see that there is a large variability in the selected module options, which seems
to indicate that they are all usable for at least some functions. One notable exception
is the weights option “equal”, which is chosen in less than 1% of configurations.

Performance analysis

First, we visualize the distributions of the AOC of the single best configuration found
in each run of irace (based on the verification runs) in Figure 4.10. In this plot, we can
see that the effect of introducing the new modules is quite mixed. For some functions,
performance decreases (e.g., on F8) after introducing new modules, while for others
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Figure 4.8: Distribution of the area over the ECDF curve for the final elite configu-
ration of the baseline irace runs. All AOC’s are averages of 25 verification runs. The
VBS single-module configurations can be seen in Table 4.4.
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Figure 4.9: Module counts of all elites found in the baseline-experiment, over all 24
BBOB-functions. The option numbers correspond to those in Table 4.2

we see the desired improvement (e.g. on F23).

In order to better show these differences, we show in Figure 4.12 the AOC of the
single best configurations found in both the SSA and bound-experiments relative to
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Figure 4.10: Distribution of the single best elites from the baseline and the tuning with
the additional modules. AOC values are the result of averaging over 25 verification
runs.
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the best configuration from the baseline. Here we observe a generally negative trend,
with outliers in both directions. This seems to indicate that these new modules are
not always beneficial to the final performance. For example, we can consider F12,
where the configuration found by the baseline has an average AOC of 1 159, while the
best configuration found when including the new SSA-methods in the search space
reaches an average AOC of 1 480. We show the expected running time of these two
configurations in Figure 4.11, where we can clearly observe this difference. However, we
can observe a large variance between runs, which can partly explain poor performance.
Indeed, if we look at the average AOC as found during the irace run (instead of the
later verification runs), the difference between these two configurations is only 7%, even
though the distance between them in the verification runs is much larger. This leads to
an important observation about the assessment of the new algorithmic modules: when
judging results purely from the average performance measures, it is necessary to also
consider the overall variability of the experiment, as well as the inherent stochasticity
of the base algorithm.

We perform the same procedure for the boundary correction methods. The impact
of this module is expected to be smaller, since for most of the “easier” functions, the
boundary condition is rarely violated. For some of the more challenging functions how-
ever, the penalty value given by BBOB function itself might not be sufficient to “guide”
the algorithm back in bounds, but an explicit boundary correction could be benefi-
cial in these cases. We can see that this seems to indeed be the case in Figure 4.12,
where on the more complex functions, e.g., F21, the performance is improved when
the boundary correction module is tuned.

In Figure 4.12, we also see that the inclusion of the new SSA methods manages
to improve the overall performance for some functions. As an example, on F23 we
saw an improvement of 17.1% over the best baseline configuration. If we consider all
four elite configurations and compare the average performance differences, the average
improvement is even higher, at 22.3%. The stability of this improvement is promis-
ing, but in order to fully grasp how the inclusion of the new SSA mechanisms leads
to this improvement, we need to analyze the selected modules across these different
experiments.

Module Analysis

We have seen that the performance of the elite configuration found on F23 improves
when we include the new SSA modules in the search space. In order to identify what
this performance can tell us about the new modules themselves, we should study the
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Figure 4.12: The relative improvements per function of the best configuration found
by irace relative to the baseline experiment’s best configuration.

configurations in more detail. The obvious way to see the difference is by looking at
how often the new module options have been selected in the final elite configurations.
Over 20 elites, the PSR update was selected 14 times, MSR once, and CSA five
times. This shows that these new modules are indeed used in successful configurations.
To see how the inclusion of these module options changes the interactions with the
other modules, we look at the combined module activation plot, which is shown in
Figure 4.13. From this figure, we can see that there are some interesting differences
between the two sets of configurations: the options for the restart and mirrored module
are not as uniform when using the new SSA methods, and the weights option is changed
completely. These observations show that there is a clear interplay between these
modules.

We can extend this module analysis to all functions by aggregating the most im-
portant differences found between the baseline and SSA-experiments. First, we can
plot how often each new module option is selected in the elites for each function, as is
done in Figure 4.14. We can use the same principle to study the interaction with the
other modules. For the binary modules, we can directly capture the module difference
by looking at which modules occur more or less often in the final set of elites, as is
visualized in Figure 4.15. From this figure, it becomes clear that the elites on some
functions are barely affected by the inclusion of the new modules, while others require
completely different module settings to properly exploit the changed search space.
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Figure 4.13: Combined module activation plot for the elites found in the baseline and
SSA experiments, for function 23. The lower the line, the better its performance,
scaled within each band according to the AOC. The option numbers correspond to
those in Table 4.2.
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Figure 4.14: Heatmap showing the fraction of the elite configuration in which each of
the options for either SSA (top) or boundary correction (bottom) are active.

4.3 Selected Challenges in Algorithm Configuration

While Section 4.2 highlights some of the benefits of algorithm configuration in the
context of modular algorithms, our approach still faces some inherent limitations. In
this section, we discuss some selected challenges, and illustrate specifically how the
inherent stochasticity of the iterative optimization heuristics impacts the results of
algorithm configuration.

The cost of tuning The first thing we should note about the incremental tuning
approach is that only considering the final elite configurations does not tell the full
story of a module’s contribution. As noted previously, introducing a new module
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Figure 4.15: Heatmap showing difference in the fraction of the elite configuration in
which each the of the binary modules are active, between the baseline and the SSA
experiment. Positive values indicate a module is turned on more often in the SSA
experiments.

increases the size and complexity of the search space, which has a large impact on
the hyperparameter tuning task. If a module is very dependent on the settings of
other hyperparameters, this can lead to deterioration of the final results, since the
initially sampled configurations are likely to have worse performance than those in
the baseline. This is visualized in Figure 4.16, where this is clearly seen on function
F5. This is a linear slope function, but the BBOB-specification does not include a
sufficient penalty for leaving the search space. As a result, an algorithm which quickly
leaves the search space will reach the required objective value very quickly. Thus,
when adding boundary correction methods, five out of six random configurations are
not able to abuse this loophole, leading to a worse initial performance. While for F5,
the function is simple enough that the good configurations can still be found (and the
inclusion of the default CMA-ES settings in the initial population means that there
is always at least one good configuration present), the same issue exists to a lesser
extent in other functions. Figure 4.16 also shows that the “tunability” of modules on
different functions varies widely. For instance, on functions F16 - F18, the spread of
AOC values is significantly larger than those on functions F19 - F21, suggesting that
it is relatively more difficult to tune the modules in the latter since the tuner will very
likely take a considerably larger budget to identify optimal configurations. Also, while
on some functions it is trivial to get improvement (e.g., F7) over the default CMA-ES,
it is a lot more challenging on others, for example on functions F16 - F18.

Limits of the per-instance analysis: As is commonly done, our performance
assessment is done on a per-instance basis. While this can be preferred over tuning
for large sets of functions/instances [9], it does have some drawbacks. Specifically, if
a module is designed to have a good performance over a wide set of functions, but
other settings exist for each individual function which outperform it, this new module
would not be seen as beneficial. Because of this, we argue that module assessment
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Figure 4.16: Distribution of the relative AOC values found in the initial race of irace
(relative to the default CMA-ES configuration; positive values equate to lower AOC.)

by hyperparameter tuning should not replace the traditional assessments, but rather
complement it for more in-depth, per-instance analysis.

Influence and stochasticity of the hyperparameter tuning: While we
showed that assessing the impact of an algorithmic component by using a hyperpa-
rameter tuning approach provides useful insights, there are several factors which can
complicate this approach. Since hyperparameter tuning is a very challenging problem,
with many different approaches to solving it, the kind of tuner used will have a large
impact on the resulting assessment [221]. In this chapter, we used irace, which tends to
focus on converging to a single configuration, instead of covering a large set of different
solutions. This necessitates running multiple repetitions of the irace procedure itself,
as the initialization might otherwise have too much impact on the final configurations.
This can quickly become computationally expensive.

4.3.1 Noise in Algorithm Configuration

The final, and perhaps most relevant, limitation we discuss is the inherent stochas-
ticity in the algorithm which we are using. The amount of variance of the algorithm
configurations on a certain function has a large impact on the search procedure of
irace. Since we generally end up selecting elites based on average performance, we
are inherently underestimating the AOC of the final configuration. Even though irace
largely mitigates this by using statistical testing in the races to decide when to discard
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Figure 4.17: Distribution of the AOC values of 15 independent runs of algorithms from
the BBOB archive [4] on F21 in 5D.

configurations, there will always be some degree of underestimation of the perfor-
mance (for example, the median performance in the verification runs from our Section
on modCMA is 3.4% worse than predicted from the irace runs).

In this section, we highlight this challenge inherent in comparing the performance
of stochastic optimization algorithms. While our focus is on algorithm configura-
tion methods, we show that, for several cases including standard benchmarking-based
comparisons, the currently recommended values for the number of samples and testing
procedure can lead to mistakes. We show that the distribution of performance values
has a large impact on algorithm configuration methods, indicating that there is not
one method of performance comparison that dominates all others. Importantly, our
results demonstrate that we must identify better ways to handle the stochasticity of
iterative optimization heuristics when applying algorithm configuration methods.

Why 15 runs are not enough

While it is clear that any aggregated performance measure used to compare random-
ized algorithms is an empirical estimation of their true performance, the variance of
this estimation is not necessarily equal for all algorithms on all functions. However,
for a practical benchmarking setup, this nuance is often ignored in favour of simpler
guidelines, such as aggregating a fixed number of samples (i.e., individual performance
values from independent runs) for each algorithm on each function. The usual rec-
ommendation of 15 samples [95] is often enough to make clear decisions on simple

97



4.3. Selected Challenges in Algorithm Configuration

0 5 10 15 20 25 30
Original Means

Resampled Means

Figure 4.18: Changes in ranking of 33 random modCMA configurations based on
calculating the mean over a sample of 15 AOC values (Resampled Means) versus the
200 verification run samples (Original Means), on F21.

uni-modal functions, but the situation is much less clear on more challenging opti-
mization problems.

We illustrate the significant variation in performance between runs by showing in
Figure 4.17 the distribution of 15 independent AOC-values for a wide variety of algo-
rithms from the BBOB-repository (https://numbbo.github.io/data-archive/bbob/) on
F21 in 5D. This figure also shows that the normality assumption, commonly taken for
granted in benchmarking studies, is not well supported by the apparent distribution
of the 15 performance values shown for each algorithm.

For some algorithms, the performance distributions even appear to show signs of
bi-modality. As such, any analyses made based on this set of samples should be treated
with care. While this large amount of variance is very pronounced in F21, it is not
limited to this function, as other functions display similar effects but to a slightly lesser
extent.

The impact of performance variability can potentially be even larger when consid-
ering the task of algorithm configuration. It has previously been observed that the
performance of an algorithm configuration on verification runs can differ significantly
from the runs performed during the configuration task [51].

We illustrate this effect by showing in Figure 4.18 the changes in the ranking of
the 33 high-quality modCMA configurations described in Section 4.1.2 when
calculating mean performance using a small sample size (15) and a larger number of
verification runs (200) on F21.

While this might be considered a rather extreme case, it is by no means the only
scenario in which behaviours like this can occur. Since algorithm configuration often
generates similarly performing configurations near the end of a configuration run (while
exploiting promising regions), making decisions about which configuration to select
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Figure 4.19: Evolution of the cumulative mean over sample sizes of 3 selected high-
quality modCMA configurations on F18. The vertical lines indicate sample sizes
15, 25 and 200 respectively. Means are based on sampling with replacement from the
original 200 samples of each configuration.

might become very noisy when using relatively low sample sizes. This phenomenon is
exemplified in Figure 4.19, where we show the evolution of the mean AOC of 3 selected
high-quality modCMA configurations relative to an incremental number of AOC
values. Each horizontal line of the same color corresponds to the cumulative mean
of a sequence of values sampled with replacement from the same 200 AUC values.
Despite sampling from the same 200 AUC values, the variance of the means of 15
and 25 samples is quite large and those means often poorly estimate the true mean
performance.

In practice, making an incorrect decision between two configurations matters less
when their true performance is very similar. However, when the set of configurations
which are being compared increases in size, the risk of making incorrect decisions be-
tween more distinct configurations could potentially grow as well. In some situations
in algorithm configuration tasks, we have observed significant differences between the
performance of the selected elite configurations, and the best one from all configura-
tions sampled according to the verification runs.

In Figure 4.20, we show the distribution of AOC values for each configuration
sampled during a run of irace on each of the 24 BBOB functions. The performance
of each configuration is based on the mean of 200 verification runs, and the plot
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Figure 4.20: Performance losses between all modCMA configurations explored during
the execution of one irace run on each function, and the best one from this set of
configurations. The final elites of each irace run are marked in larger red triangles.
All data points shown are based on 200 independent samples.

shows the relative performance loss to the best of these means. The (up to five) elite
configurations returned by irace are marked with a red triangle. The lowest of these
elites corresponds to the level of performance loss achieved by irace compared to the
best-performing configuration sampled during the configuration process. From this
figure, it can be seen that for some of the more complex functions, a 10% performance
loss or more can occur, clearly demonstrating that the variability of performance can
severely hinder the outcome of the configuration efforts.

Impact on Benchmarking

To simulate a common algorithm comparison scenario, we make use of the set of 33
high-quality modCMA configurations from Section 4.1.2 and simulate the bench-
marking procedure by randomly re-sampling with replacement AOC values, for sample
sizes 2, 5, 10, 15, 25 and 50 from the set of 200. Then, we select the configuration
with the best mean for each particular sample size as the winner, and compare its true
performance (i.e., over 200 runs) to that of the actual best configuration to get an
estimate for the performance loss. This process is repeated 5000 times for each sample
size and each function, and the resulting performance loss per function is shown in
Figure 4.21. We conclude that using means to determine the best-performing algo-
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Figure 4.21: Performance loss, relative to the configuration with the best mean calcu-
lated over 200 samples, when comparing 33 high-quality modCMA configurations
based on mean calculated from different number of samples. Each bar represents 5000
repetitions of the experiment.
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Figure 4.22: Underestimation when comparing 33 high-quality modCMA config-
urations based on mean calculated from different numbers of samples. Each bar
represents 5000 repetitions of the experiment.
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rithm is not always reliable, and can lead to selecting configurations that are clearly
sub-optimal. Many benchmarking studies use non-parametric statistical tests to assess
significant differences without assuming normality, yet they still rely on the compari-
son of means to rank the algorithms. While we can see that increasing the used sample
size is always beneficial, even using as many as 50 samples can still see performance
losses of 10% and more on some functions.

One possible explanation for these results is that, when we are determining the best
algorithm from a large set of algorithms of wide performance variability, our decision
is prone to underestimate the true mean due to the small sample size, i.e., we might
“luckily” sample many good values for an algorithm with sub-optimal performance.

We quantify this impact by calculating, for each selected configuration and a given
sample size, the underestimation error, that is, the relative error of the mean estimated
from the selected samples relative to its true mean performance (based on the 200
verification runs). Positive values indicate that the sample mean is lower, i.e., better,
than the true mean. We plot in Figure 4.22 the underestimation error for high-quality
modCMA configurations.

We observe large underestimation errors in almost all functions. In some functions,
such as F8, the underestimation error is large even for a sample size of 50. We also
notice that large underestimation errors in Figure 4.22 often coincide with a large
performance loss seen in Figure 4.21. This observation can be explained by looking in
more detail at the performance distribution of the used configurations on a particular
function, as is done in Figure 4.23 for F8.

We see in this figure that all configurations have a fraction of runs where the AOC
value is very large, indicating that these were very poorly performing runs. When
calculating the mean value of a configuration from a limited number of samples, if
none of these poor runs appears in the samples, then the mean of the configuration will
be lower than its true mean, leading to the large underestimation seen in Figure 4.22.

Additionally, since the difference in a configuration’s performance seen during con-
figuration and its true mean is often larger than the difference in the means of config-
urations as estimated from a small number of samples, a relatively poor-performing
configuration can end up being chosen simply because it got ‘lucky’, which can explain
the performance losses we observed previously.

Another common way in which the mean is used in benchmarking is in the basic
pairwise comparison scenario, where two algorithms are directly compared to each
other. To investigate this scenario, we simulate pairwise comparisons based on a lim-
ited sample size, and correlate the decisions made by the pairwise comparison to the
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Figure 4.23: Distribution of AOC values of 200 individual runs of high-quality mod-
CMA configurations on F8. The line indicates the mean AOC value of each con-
figuration, and is the basis for the sorting on the x-axis.

(a) F9 (b) F15 (c) F22

Figure 4.24: Fraction of incorrect decisions when using the sample mean to compare
pairs of modCMA configurations. Each subplot contains 10 000 points. Each point
compares two configurations selected uniformly at random from the available config-
urations. The x-axis indicates the normalized difference between their true means
(based on the 200 AOC values per configuration). The y-axis indicates the fraction of
incorrect decisions based on 500 independent samplings of 15 AUC values for each of
the two selected configurations. Original samples refers to sampling with replacement
from the 200 AOC values available, while Normal distributions refers to sampling val-
ues from a normal distribution with the same mean and standard deviation as the 200
values of the corresponding configuration.
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(a) t-test
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(b) Wilcoxon ranked-sum
test
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(c) Comparison means

Figure 4.25: Correctness of decisions made in pairwise comparisons between modular
CMA-ES configurations on F9, using different procedures. The x-axis shows the rela-
tive difference in true mean between the selected configurations. The y-axis shows the
fraction of comparisons, out of 500 repetitions, that the decision was correct, incor-
rect or inconclusive (nan) when comparing configurations with this difference. Each
repetition samples 15 values out of the 200 available for each configuration compared.

difference in true means between the selected configurations. To achieve this simu-
lation, we use the full set of modCMA configurations generated during an irace run,
which totals over 200 configurations on each function. From this set of configurations,
we take 10 000 pairs, drawn uniformly at random, to perform the pairwise comparison.
Then, for each pair of configurations, we sample a number of AOC values from the
200 values available, calculate the sample means and compare them to decide which
configuration is the best. The comparison is correct if it gives the same conclusion as
comparing the true means. We repeat the sampling and comparison step 500 times
to calculate the fraction of times that the comparison is correct. The results of this
experiment on F9, F15, and F22, with sample size 15, are displayed in Figure 4.24.

We observe in this figure that, as expected, the fraction of incorrect decisions
decreases when the difference in true means increases. However, the decrease is much
faster for F15 than for F9 or F22. There are also notable differences when comparing
the fraction of incorrect decisions generated by sampling with replacement from the
200 AOC values available (Original samples) versus sampling values from the normal
distribution that has the same mean and standard deviation as those 200 values. These
distributions are almost identical for F15 but different for F9 and F22, which suggests
that the fraction of incorrect decisions made by comparing means for F9 and F22 is
impacted by the non-normality of the sample distribution.
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(c) F22

Figure 4.26: Cumulative performance loss of 5 variants of the racing procedure using
FirstTest = 2: t-test, Friedman-test, sampling and selecting based on mean, and
successive halving with reduction factors 2 and 3.

Statistical testing

When considering pairwise comparisons between algorithms, we often use statistical
tests to determine if one algorithm outperforms the other. Two of the most common
tests are the t-test and the non-parametric Wilcoxon rank-sum test.

To more closely analyze these two testing procedures, we re-sample with replace-
ment, for sample size 15, from the set of 200 AOC values of the 33 high-quality
modCMA configurations. Then, we apply a one-sided t-test to the samples of size
15 and measure the fraction of pairs in which the test was “correct”, “incorrect” or
“inconclusive”. We consider here that the test is “incorrect” when, for a pair of algo-
rithms A and B, the null hypothesis that A has a lower mean than B is rejected but
the mean of A is indeed lower than the mean of B based on the 200 values. When
neither of the two one-sided null hypotheses (A has a lower mean than B nor B has a
lower mean than A) are rejected, the test is considered “inconclusive”.

We zoom in on function F9 in Figure 4.25, and look at the difference between
making decisions based on means, t-test and Wilcoxon rank-sum test. We note that
both statistical tests show an error rate that is larger than α for pairs of configurations
with a difference in means up to 60%. We also note that even though the t-test is less
frequently incorrect, it is also more frequently inconclusive compared to the Wilcoxon
rank-sum test, even for configurations whose means differ significantly.

Inconclusiveness is not a factor when comparing based on means, but that comes
with the cost of making more incorrect decisions as well. While the number of incorrect
decisions decreases when adding more samples, the overall observations for the three
comparison procedures remain similar.
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(b) F15
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(c) F22

Figure 4.27: Comparison of AUC value of Cumulated performance loss (Figure 4.26),
relative to the average amount of samples used by each process.

Racing

To investigate the impact of performance variability on algorithm configuration, we fo-
cus on the racing procedures used by irace, which we simulate using the high-quality
modCMA configurations from Section 4.1.2. In particular, we consider two vari-
ants of the racing procedure [160] using either the t-test or the Friedman-test. In
addition to these racing variants, we also consider two variants of Successive HAlving
(SHA) [120] with reduction factors 2 and 3, respectively. For the races using statis-
tical tests, we loosen the total budget restriction, which is usually used as stopping
criteria [152], (e.g., in irace) to 10 000 total samples, which means we continue the race
until 5 or fewer configurations remain, or until we exceed 10 000 sampled runs (‘target
runs’ in irace terminology). We simulate this race 1000 times for each function and
several values of FirstTest, and show the resulting performance loss for F9, F15, and
F22 in Figure 4.26. In this figure, the performance loss is defined as the difference in
the true mean of the best elite (configuration with the best sampled mean during the
race) against the best configuration which was present in the race.

The cumulative performance loss is compared for both the Friedman-test and t-test
variants of the racing procedure, as well as a naive sampling-only approach that selects
based on means after FirstTest samples have been collected for each configuration.

When comparing the different approaches, we note that there is not a clear winner
across all functions and values of FirstTest. Interestingly, for some of the functions
where Figure 4.20 shows the largest performance losses of irace elites, the races using
the Friedman test seem to perform relatively poorly. This might indicate that for these
functions, we could regain some of the lost performance, if it can be detected during
the algorithm configuration that a different testing strategy would be required.

From Figure 4.26, we can clearly see that any variant of racing or SHA is much more
reliable than the sampling-only approach. However, racing uses more total samples,
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since it adds runs when needed, while the sampling-only approach uses a fixed number
of samples. The SHA method uses a fixed number of samples as well, but this number
is significantly larger than the sampling-only approach and depends on the reduction
factor used.

In order to account for the differences in total budget, we summarize cumulative
performance loss curves, such as those in Figure 4.26, using their corresponding AUC
values, and plot these AUC values against the total samples used in Figure 4.27.

Here, we see an explanation for the great performance of the t-test: it uses sig-
nificantly more samples for the same FirsTest value than any of the other methods.
This can happen when the test can not make any conclusive decision between the con-
figurations and thus fails to reject enough configurations to reach the 5 elites, using
up the full budget of 10 000 evaluations in the process. This matches our findings
from Figure 4.25a, where we could see that the pairwise t-test often does not give any
decision, even when the difference in true means between configurations is relatively
large.
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Chapter 5

Dynamic Algorithm
Configuration and Selection

Exploiting complementarity between algorithms or configurations of algorithms can
lead to significant gains in performance, as illustrated in the previous chapter. It is
also known that, when solving an optimization problem, different stages of the pro-
cess require different search behavior. For example, while exploration is needed in the
initial phases, the algorithm needs to eventually converge to a solution (exploitation).
State-of-the-art optimization algorithms therefore often incorporate mechanisms to
adjust their search behavior while optimizing, by taking into account the information
obtained during the run. These techniques are studied under many different umbrellas,
such as parameter control [70], meta-heuristics [22], adaptive operator selection [162],
or hyper-heuristics [31]. The probably best-known and most widely used techniques
for achieving a dynamic search behavior are the one-fifth success rule [201, 56, 211] and
the covariance adaptation technique that the family of CMA-ES algorithms [97, 98] is
built upon. While each of these control mechanisms tackles the problem of balancing
performance in different phases of the search in its own way, they are mostly working
with a specific algorithm, aiming to tune its performance by changing internal parame-
ters or algorithm modules. This inherently limits the potential of these methods, since
different algorithms can have widely varying performances during different phases of
the optimization process. By switching between these algorithms during the search,
these differences could potentially be exploited to get even better performance. We
refer to the problem of choosing which algorithms to switch between, and under which

109



5.1. Complementarity in Anytime Performance

circumstances, as the Dynamic Algorithm Selection (dynAS) problem.
Solving the dynAS problem would be an important milestone towards tackling

the more general dynamic Algorithm Configuration (dynAC) problem, which also ad-
dresses the problem of selecting (and possibly adjusting) suitable algorithm configura-
tions. Specifically, dynAS is limited to switching between algorithms from a discrete
portfolio of pre-configured heuristics, whereas for dynAC, the algorithms come with
(possibly several) parameters whose settings can have a significant influence on the
performance.

While dynamically changing between algorithms or algorithm configurations can be
tackled in a variety of ways. For example, in the context of machine learning, there are
a variety of works which utilize principles from meta-learning to allow their algorithms
to handle data streams which change over time [206] or where choices have to be made
at multiple time points [231]. These problems can similarly be tackled using portfolios
of algorithms, with bandit algorithms running during the optimization determining
how to allocate resources between them [81].

In our work, we focus on a reinforcement-learning-based formulation of the Dy-
nAS problem [2]. In particular, we follow the principles outlined in [15] to represent
the switching between algorithms as a policy function. This results in the following
problem definition:

Definition 5.1 (Dynamic Algorithm Selection (dynAS)). Given an algorithm port-
folio A, a function f ∈ F and a state description st ∈ S at time step t of an algorithm
run. We want to find a policy π : S −→ A which minimizes a performance measure
PERF(Aπ, f).

Note that this definition can be extended to dynamic algorithm configuration by
changing the policy to be π : S −→ (A × ΘA), where ΘA is the configuration space of
algorithm A.

This chapter is based on the following publications: [245, 243, 110, 135, 248]

5.1 Complementarity in Anytime Performance

Before tackling the dynAS problem, we first aim to show the potential of this approach
for numerical optimization. We do this by taking a data-driven approach, where we
identify the complementarity between algorithms from a large portfolio purely based
on their performance profiles, for a simplified version of dynAS where we can switch
between algorithms only once during the optimization run. As in previous chapters,
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we stick to the BBOB suite from the COCO environment [95], and in particular we
make use of its rich collection of algorithm performance data [4].

Our considerations are purely based on a theoretical investigation of the potential,
which might be too optimistic for the single-switch dynAS case – most importantly,
because of the problem of warm-starting the algorithms: since the heuristics are adap-
tive themselves, their states need to be initialized appropriately at the switch. This
may be a difficult problem when changing between algorithms of very different struc-
ture. We do not consider, on the other hand, the possibility to switch more than once,
so that our bounds may be too pessimistic for the full dynAS setting, in which an
arbitrary number of switches is allowed.

Given the above limitations, we therefore also provide a critical assessment of our
approach, and highlight ideas for addressing the main challenges in dynAS.

5.1.1 Analysis of Available data

Since the set of available algorithms from the BBOB competitions is quite large, several
issues in terms of data consistency arise. When processing the algorithms, we found
that a small subset has issues such as incomplete files or missing data. We decided
to ignore these algorithms and work only with the ones which were made available
within the IOHanalyzer tool [62]. This leaves us with a set of 182 out of 226 possible
algorithms to do our analysis.

There are some caveats to this data, mostly related to the lack of a consistent
policy for submission to the competitions over the years. For example, the 2009
competition required the submission of 3 runs on 5 instances each, while the 2010
version changed this to 1 run on 15 instances. In theory, the instances should have
very little impact on the performance of the algorithms, as they are selected in such a
way as to preserve the characteristics of the functions. However, in practice there has
been some debate about the impact of instances on algorithm performance, claiming
that the landscapes of different instances of the same function can look significantly
different to an algorithm [173, 170, 127] (see Chapter 3.2 for more discussion on this
topic). In the following, we ignore this discussion and assume that performance is not
significantly impacted by the instances.

Another issue with the dataset is the usage of widely inconsistent budgets for the
different algorithms. These can be as low as 50D and as large as 107D. However, since
we use a fixed-target perspective to study the performance of the algorithms, these
differences are not very impactful.
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Figure 5.1: Number of algorithms with at least 15 independent runs and at least one
of them reaching the target ϕ = 10−8.

Since the BBOB competitions see an optimizer as having ‘solved’ an optimization
problem when reaching a target precision of 10−8, many of the algorithms will stop
their runs after reaching this point to avoid unnecessary computation. Because of
this, we will use the same target value in our computations. However, for some of the
more difficult functions, this target can be challenging to reach within their budget.
To avoid the problem of dealing with algorithms without any finished runs, we only
consider an algorithm in our analysis when it has at least 15 runs on the function, of
which at least one managed to reach the target 10−8. Figure 5.1 plots the number
of algorithms per each function/dimensionality pair that satisfy all the requirements
mentioned above. We observe large discrepancies between functions and dimensional-
ities, with the number of admissible algorithms ranging from 4 to 155, and note that
there are no algorithms which are admissible on all functions in all dimensionalities.

5.1.2 DynAS for BBOB-Functions

In this section, we will restrict the dynAS problem on BBOB-functions to using policies
which switch algorithms based on the target precisions hit. To get an indication for
the amount of improvement which can be gained by dynAC over static algorithm
configuration, we use the BBOB-data to theoretically simulate a simple policy which
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only implements a single switch of algorithm. We can define this as follows:

Definition 5.2 (Single-Switch dynAS). Let f (d) be a d-dimensional BBOB-function
and A the corresponding portfolio of admissible algorithms. A single-switch policy is
defined as the triple (A1, A2, τ) ∈ A × A × Φ, where Φ =

{
102−0.2i)|i ∈ {0, . . . , 50}

}
is the set of admissible switchpoints. This corresponds to the policy which starts the
optimization procedure with algorithm A1, and run this until target τ is reached, after
which the algorithm is changed to A2.

The performance of this single switch method can then be calculated as follows:

T (f (d), A1, A2, τ, ϕ) = ERT(A1, f
(d), τ)

+ ERT(A2, f
(d), ϕ)− ERT(A2, f

(d), τ)

Here, ϕ is the final target precision we want to reach. For the BBOB-functions, we set
ϕ = 10−8, as noted in Section 5.1.1.

Generally, to assess the performance of an algorithm selection method, its perfor-
mance can be compared to the Single Best Solver (SBS), which can be defined as
follows:

Definition 5.3 (Single Best Solver). For each dimensionality d ∈ D, we have:

SBSstatic(F (d)) = arg min
A∈A

∑
f∈F

PERF(A, f (d), ϕ)

Often, ERT is used as the performance function, but this value can differ widely
between functions, leading to a biased weighting. To avoid this, we can instead use
the ranking of ERT per function, to give equal importance to every function. Note
that we have final target precision ϕ = 10−8.

While this SBS has a good average performance, it can easily be beaten by a decent
algorithm selection technique. As such, a better baseline for performance is needed.
This is the theoretically best algorithm selection method, which is called the Virtual
Best Solver. This can defined as follows:

Definition 5.4 (Static Virtual Best Solver (VBSstatic)). For each function f ∈ F and
dimensionality d ∈ D, we have:

VBSstatic(f
(d)) = arg min

A∈A
PERF(A, f (d))

For the BBOB functions, we use PERF(A, f (d)) = ERT(A, f (d), ϕ) with ϕ = 10−8.
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Figure 5.2: Relative ERT of the SBS over the VBSstatic. The selected SBS are: Nelder-
Doerr (2D), HCMA(3, 10 and 20D) and BIPOP-aCMA-STEP (5D). dimensionality
40 was removed because no algorithm hit the final target on all functions in this
dimensionality.

Note that the VBSstatic will always perform at least as good as the SBS, and
theoretically gives an upper bound for the performance of any real implementation
of algorithm selection techniques. Thus, the difference between SBS and VBSstatic

gives an indication of the maximal possible performance gained by algorithm selection.
For the BBOB-data, the relative ERT between these two methods is visualized in
Figure 5.2. From this, we see that the differences can be extremely large, highlighting
the importance of algorithm selection.

Similar to the way we defined VBSstatic, we can define a Dynamic Virtual Best
Solver, VBSdyn, as follows:

Definition 5.5 (Dynamic Virtual Best Solver). For each BBOB-function f ∈ F and
dimensionality d ∈ D, we have:

VBSdyn(f
(d)) = argmin

(A1,A2,τ)∈(A×A×Φ)

T (f (d), A1, A2, τ, ϕ)

5.1.3 Results

Since the number of algorithms considered in this paper is relatively large, many of
the results are only shown for a subset of functions, dimensionalities or algorithms.
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Figure 5.3: Distribution of ERTs among all algorithms for all 24 BBOB-functions in
dimensionality 5. Please recall from Figure 5.1 that the number of data points varies
between functions. Also shown are the ERTs of the VBSstatic and VBSdyn.

Overall Gain of Single-Switch DynAS

Before investigating the possible improvements to be gained by dynamic algorithm
selection, we investigate the performance of the static algorithms from the BBOB-
dataset. To achieve this, we look at the distribution of ERTs among the BBOB-
functions. For dimensionality 5, this is visualized in Figure 5.3.1 This figure shows
the large differences in performance, both between the algorithms as well as between
the different functions. We marked the performance of the VBSstatic and VBSdyn, and
see that their differences also vary largely between functions.

To zoom in on the differences between the VBSstatic and VBSdyn we see in Fig-
ure 5.3, we can compute for each function, dimensionality and corresponding algorithm
portfolio the relative ERT of a the Single-Switch VBSdyn over VBSstatic. Specifically,
this is calculated as ERT(VBSdynamic(f

(d)))

ERT(VBSstatic(f(d)))
. This value is shown for each (function,

dimensionality)-pair in Figure 5.4. From this figure, we can see that for most func-

1Note that for function F05, the linear slope, most algorithms simply move outside the search-space
to find an optimal solution, which is accepted by the BBOB-competitions, but leads to a disadvantage
to those algorithms which respect the bounds.
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Figure 5.4: Heatmap of the ratio
of ERTs between the Virtual Best
Static Solver and the Virtual Best
Dynamic Solver, for each (function,
dimensionality)-pair.
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Figure 5.5: Relative ERT of configu-
ration switches relative to VBSstatic,
for 10-dimensional function 21. The
X- and Y-axes indicate algorithms
selected as A2 and A1 respectively.
Larger values (red) indicate better al-
gorithm combinations.

tions, the improvements when using a single configuration change are quite large.
Especially for the functions which are traditionally considered more difficult for a
black-box optimization algorithm to solve, the possible improvement is massive. In
terms of the median over all (function, dimensionality)-pairs, the VBSdyn is 1.49 faster
than the VBSstatic.

Selected Algorithm Combinations

Since the VBSdyn shows a lot of potential improvement over the classical VBSstatic,
it makes sense to study its behaviour in more detail. To achieve this, we can zoom
in on a single (function, dimensionality)-pair and study the behaviour of the VBSdyn

and switching algorithm configurations in general. In Figure 5.5, we show the ERT of
the best possible switch between any combination of algorithms in our portfolio A, on
function 21 in dimensionality 10. This figure shows some clear patterns in the horizon-
tal and vertical lines. A horizontal line, such as the one for the MLSL-algorithm [147],
indicates that an algorithm adds to the performance of most algorithms by being the
A1-algorithm.

This can be interpreted as having a good exploratory search behaviour, but poor
exploitation. There are also vertical lines present, which indicate the algorithms which
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perform well as A2-algorithms. These are less pronounced than the horizontal lines,
which might indicate that the choice of A2 algorithms has less impact on the perfor-
mance than the choice of A1.

Small Portfolio: Case Study

Since the algorithm space we consider is quite large, it can be challenging to gain
insights into the individual algorithms. To show that dynamic algorithm selection is
also applicable to smaller portfolio’s, we limit ourselves to 5 algorithms. These are rep-
resentative of some widely used algorithm families: Nelder-Doerr [61], DE-Auto [252],
Bipop-aCMA-Step [155], HMLSL [183], and PSO-BFGS [142]. With this reduced al-
gorithm portfolio, we can study the improvements over their respective VBSstatic in
more detail, and find interesting algorithms combinations to explore further.

To illustrate the configuration switches which can be considered in this algorithm
portfolio, we can zoom in on function 12 in dimensionality 3 and look at the fixed-
target curve showing ERT. This is done in Figure 5.6, where we also indicate the best
switching points between algorithms. This figure highlights the different behaviors of
the algorithms in the portfolio, and thus indicates where switching algorithms would
be beneficial. The best possible switch in this function would occur from PSO-BFGS
to Nelder-Doerr, at target 10−6.4, leading to a relative speedup of 1.76 over VBSstatic.

To decide which algorithms to use in an algorithm portfolio such as the one used
here, two main ways of selecting the algorithms are possible. The first is to use some
knowledge about the algorithms to determine which are important. This is useful for
initial exploration, but might lead to useful algorithms being ignored. Instead, one
can use performance information, such as the I1 and I2-values, to provide some initial
representation of the usefulness of algorithms to the portfolio. This approach is much
more generic, however the choice of measures can be challenging. For example, the I1
and I2 measures are hard to extend to more general k-switch dynAS methods. Instead,
an extension of marginal contributions [262] and related concepts such as measures
building on Shapley values (like those suggested in [79]) would capture algorithm
contribution to a portfolio in a much more robust sense, and thus be useful additions
to the dynAS setting.
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Figure 5.6: ERT-curves for a selected algorithm portfolio of size 5 on F12 in 3D.
Markers indicate optimal switch points between algorithms. Their color and symbol
indicate the starting and finishing algorithms respectively. (star = Nelder-Doerr, tri-
angle = DE-AUTO, cross = BIPOP-aCMA-STEP, square = HMLSL and pentagon =
PSO-BFGS).

5.2 Switching Between Algorithm Variants

To achieve dynAS, we need to tackle the problem of warmstarting : initializing the
internal state of the secondary algorithm after the first has been terminated. Depend-
ing on the used algorithms, this can be an extremely challenging task. To limit the
effort needed to warmstart an algorithm, we can ensure all algorithms share the same
internal state, as is the case when we limit ourselves to a single modular algorithm
framework. In this section, we work within the modCMA framework to implement
the single-switch version of dynAS, where we exploit the complementarity between
the many module combinations, as was illustrated in Chapter 4. In particular, we
aim to switch between different configurations of modCMA (without the local restart
module).
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5.2.1 Selecting Adaptive Configurations

To determine which switches we should make, we start by gathering benchmark data
from all 24 BBOB functions (5-dimensional versions only). We then gather the AHTs
for targets Φ = {102−(0.2·i) | i ∈ {0 . . . 50}}. Based on these AHT values, the adaptive
configurations suggested in [232] are chosen as follows:

• For each configuration c, each of the 24 BBOB functions f , and each of the 51
target values ϕ, we calculate the AHT over all 25 runs (5 runs for each of the
first five instances).

• From this data, we determine the best target value ϕmin for which there exists
at least one configuration whose 25 runs all reached this target.

• For every target value ϕ ∈ Φ satisfying ϕ > ϕmin we calculate the best configu-
ration before this target, i.e., we select the configuration c for which AHT (c, ϕ)
is minimized. We denote this configuration C1. We then compute the best con-
figuration c from this target until ϕmin, which we denote as C2, i.e., C2 is the
configuration for which AHT (f, c, ϕmin)−AHT (f, c, ϕmin) is minimized. In [232],
the theoretical performance (TH for ’theoretical hitting time’) is then calculated
as TH(f, C1, C2, ϕ) = AHT (f, C1, ϕ)−AHT (f, C2, ϕ) +AHT (f, C2, ϕmin).

• From this data we compute the target value τ for which the overall perfor-
mance TH(f, C1, C2, ϕ) is minimized. This gives us the adaptive configuration
(C1, C2, τ). We refer to τ as the ‘switchpoint’ of the adaptive configuration.

5.2.2 Two-Stage Configuration Selection

We introduce a procedure to make the selection process more robust to noise in the
performance data. This is based on the finding that the static configurations are not
quite stable enough to be used as a baseline. The first step in this process consists
of selecting some static configurations for which we should gather more data. The
configurations we will consider are made up of two parts. The first part consists of
the 50 best-performing static configurations.2 We then extend this set by looking at
the configurations which have been selected to be a part of the 50 theoretically best
adaptive configurations. Since this might not be a diverse set of configurations, as one

2The best static configurations are determined by their AHT at the final reached target. If fewer
than 50 configurations reach this target for a function, we extend these configurations by the ones
that have the lowest AHT for the previous target. We repeat this process until we have selected 50
configurations.
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Figure 5.7: F10: ERT of adaptive configurations compared to the best static and
“common” static configurations.

configuration might be chosen as C1 50 times, we decide to limit the number of times
a certain configuration can be selected as C1 and as C2 to three times each (’limited
selection method’). This should give us a more diverse set of configurations which
might contribute to good adaptive configurations. We then rerun these configurations
using 50 runs on each of the 5 instances, for a total of 250 runs each.

5.2.3 Performance Comparison

The results of the two-stage method are shown in more detail in Figure 5.7 for F10.
From this figure, we can see that the fit between theory and practice is quite good,
and many of the adaptive configurations manage to outperform the best static config-
uration by around 10%. Some outliers are present, but the general trend is positive.
In this figure, we also note the ERT of the best “common” CMA-ES variant as defined
in [234].

An overview of the performance comparison between these groups of configurations
can be seen in Figure 5.8. One important point to note is the fact that the best
“common” static configuration can outperform the general best static. This is caused
by the fact that these common configurations can have (B)IPOP enabled, which is not
the case for the best static. In these cases, we assume that this (B)IPOP module is
important to finding the optimum, and an adaptive configuration without this module
will not be able to perform very well.

Next, we consider the functions for which the best static ERT is lower than that
of the common variants. For these functions, we manage to improve upon this best
static configuration when using an adaptive configuration. More specifically, we can
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see that when the best static configuration from the entire configuration space does not
have (B)IPOP enabled, we can reliably achieve an improvement when using adaptive
configurations.

We also note that when the best static configuration with (B)IPOP significantly
outperforms the best rerun configuration, we do not manage to get the same improve-
ments. If we consider the best static configurations to include those with (B)IPOP
and compare the performance of the adaptive configurations to those, no improvement
is made at all.

In total, we find performance gains on 18 out of 24 functions of the BBOB bench-
mark, with stable advantages of up to 23%.

5.2.4 Module Activation Plots

We will now study two functions in more detail. The functions we will analyze are
F10, for which we see a decent improvement for most adaptive configurations, and
F24, for which we see very negative results.

First, we look at which static configurations have been selected, and how they
are used within the adaptive configurations. To do this, we introduce what we call
combined module activation plots. These plots consist of two parts, corresponding to C1

and C2 respectively. In each of these subplots, every line indicates a configuration. The
lowest line corresponds with the theoretically best adaptive configuration, increasing
from there.

In Figure 5.9a and 5.9b we see these combined module activation plots for the
selected adaptive configurations for F10 and F24 respectively. These figures clearly
show that for F10 there is a pattern present among the adaptive configurations: the
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Figure 5.9: Combined module activation plots for the 50 best adaptive configurations
for F10 and F24.

modules TPA and threshold start activated and in almost all cases get turned off after
the switchpoint. Such patterns are not present in the adaptive configurations for F24.
This seems to indicate that for F24 the switches are mostly chosen because of small
variances between the different configurations, instead of actual inherent properties of
the configurations to perform well at certain points of the search.

5.2.5 Summary of Results

From our experiments, we found large differences in the potential of our approach
between functions. For some functions, such as F10, our approach seems quite stable,
resulting in improvements of over 10% for several adaptive configurations, as can
be seen in Figure 5.7. However, this is not representative of all functions, as for
several functions few (or any) adaptive configurations manage to outperform the static
configurations.

5.3 Per-run Dynamic Algorithm Selection

Since we have now verified that switching between configurations of a single algorithm
can achieve performance gains on some benchmark functions, we now place our focus
on the problem of switching between different algorithm families. Our goal here is
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to create a switching procedure where the algorithm to switch to is based on infor-
mation collected during the optimization process, rather than a fixed, predetermined
algorithm. We coin this per-run algorithm selection to refer to the fact that we
make use of information gained by running an initial optimization algorithm (A1 )
during a single run to determine which algorithm should be selected for the remainder
of the search. This second algorithm (A2 ) can then be warm-started, i.e., initialized
appropriately using the knowledge of the first one. The pipeline of the approach is
shown in Figure 5.10.

To extract relevant information about the problem instances, we rely on ELA
features computed using samples and evaluations observed by the initial algorithm’s
search trajectory, i.e., local landscape features. Intuitively, we consider the problem
instance as perceived from the algorithm’s viewpoint. In addition, we make use of
an alternative aspect that seems to capture critical information during the search
procedure – the algorithm’s internal state, quantified through a set of state variables
at every iteration of the initial algorithm. To this end, we choose to track their
evolution during the search by computing their corresponding time-series features.

Using the aforementioned values to characterize problem instances, we build al-
gorithm selection models based on the prediction of the fixed-budget performance of
the second solver on those instances, for different budgets of function evaluations. We
train and test our algorithm selectors on the BBOB problems, and extend the testing
on the YABBOB collection of the Nevergrad platform [200]. We show that our ap-
proach leads to promising results with respect to the selection accuracy and we also
point out interesting observations about the particularities of the approach.

5.3.1 Data Collection

Problem Instance Portfolio. To implement and verify our proposed approach, we
make use of a set of black-box, single-objective, noiseless problems. The data set is the
BBOB suite from the COCO platform [95], which is a very common benchmark set
within numerical optimization community. This suite consists of a total of 24 functions,
and each of these functions can be changed by applying pre-defined transformations
to both its domain and objective space, resulting in a set of different instances of each
of these problems that share the same global characteristics [96].
Another considered benchmark set is the YABBOB suite from the Nevergrad plat-
form [200], that contains 21 black-box functions, out of which we keep 17. By defini-
tion, YABBOB problems do not allow for generating different instances.
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Figure 5.10: Per-run algorithm selection pipeline. The overhead cost of computing
ELA features per problem instance is circumvented via collecting information about
the instance during the default optimization algorithm run.

Algorithm Portfolio. As our algorithm portfolio, we consider the one used in [110,
210]. This gives us a set of 5 black-box optimization algorithms: MLSL [115, 116],
BFGS [29, 77, 85, 212], PSO [123], DE [219] and CMA-ES [88]. Since for the CMA-
ES we consider two versions from the modular CMA-ES framework [51] (elitist and
non-elitist), this gives us a total portfolio of 6 algorithm variants.

Warm-starting. To ensure we can switch from our initial algorithm (A1) to any
of the others (A2), we make use of a basic warm-starting approach specific to each
algorithm. For the two versions of modular CMA-ES, we do not need to explicitly
warm-start, since we can just continue the run with the same internal parameters
and turn on elitist selection if required. The detailed warm-start mechanisms are
discussed in [110].Performance Data. For our experiments, we consider a number
of data collection settings, based on the combinations of dimensionality of the problem,
where we use both 5- and 10-dimensional versions of the benchmark functions, and
budget for A1, where we use 30 · d budget for the initial algorithm. This is then
repeated for all functions of both the BBOB and the YABBOB suite. For BBOB, we
collect 100 runs on each of the first 10 instances, resulting in 1 000 runs per function.
For YABBOB (only used for testing), we collect 50 runs on each function (due to no
instances in Nevergrad).
In Figure 5.11, we show the performance of the six algorithms in our portfolio in the
5-dimensional case. Since the A1 budget is 30 ·d = 150, the initial part of the search is
the same for all switching algorithms until this point. In the figure, we can see that, for
some functions, clear differences in performance between the algorithms appear very
quickly, while for other functions the difference only becomes apparent after some more
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evaluations are used. This difference leads us to perform our experiments with three
budgets for the A2 algorithm, namely 20 · d, 70 · d, and 170 · d.
To highlight the differences between the algorithms for each of these scenarios, we
can show in what fraction of runs each algorithm performs best. This is visualized in
Figure 5.12. Here we can see that while some algorithms are clearly more impactful
than others, the differences between them are still significant. This indicates that
there would be a significant difference between a virtual best solver which selects the
best algorithm for each run and a single best solver which uses only one algorithm for
every run.

5.3.2 Experimental Setup

Adaptive Exploratory Landscape Analysis. As previously discussed, the per-run
trajectory-based algorithm selection method consists of extracting ELA features from
the search trajectory samples during a single run of the initial solver. A vector of
numerical ELA feature values is assigned to each run on the problem instance, and
can be then used to train a predictive model that maps it to different algorithms’ per-
formances on the said run. To this end, we use the ELA computation library named
flacco [127].
Among over 300 different features (grouped in feature sets) available in flacco, we
only consider features that do not require additional function evaluations for their com-
putation, also referred to as cheap features [10]. They are computed using the fixed
initial sample, while expensive features, in contrast, need additional sampling during
the run, an overhead that makes them more inaccessible for practical use. For the
purpose of this work, as suggested in preliminary studies [109, 110], we use 38 cheap
features most commonly used in the literature, namely those from y-Distribution,
Levelset, Meta-Model, Dispersion, Information Content and Nearest-Better Clustering
feature sets.
We perform this per-run feature extraction using the initial A1 = 30 · d budget of
samples and their evaluations per each run of each of the first 10 instances of each of
the 24 BBOB problems, as well as 17 YABBOB problems (that have no instances) in
dimensionalities 5 and 10.
Time-Series Features. In addition to ELA features computed during the optimiza-
tion process, we consider an alternative – time-series features of the internal states
of the CMA-ES algorithm. Since the internal variables of an algorithm are adapted
during the optimization, they could potentially contain useful information about the
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Figure 5.11: Mean best-so-far function value (precision to global optimum) for each of
the six algorithms in the portfolio. For computational reasons, each line is calculated
based on a subset of 10 runs on each of the 10 instances used, for a total of 100 runs.
Note that the first 150 evaluations for each algorithm are identical, since this is the
budget used for A1. Figure generated using IOHanalyzer [255].

current state of the optimization. Specifically, we consider the following internal vari-
ables: the step-size σ, the eigenvalues of covariance matrix v⃗, the evolution path p⃗c and
its conjugate p⃗σ, the Mahalanobis distances from each search point to the center of the
sampling distribution γ⃗, and the log-likelihood of the sampling model L

(
m⃗, σ2,C

)
.

We consider these dynamic strategy parameters of the CMA-ES as a multivariate real-
valued time series, for which at every iteration of the algorithm, we compute one data
point of the time series as follows: ∀t ∈ [L]:
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Figure 5.12: Heatmap showing for each scenario (with respect to the dimensionality
and A2 budget, encoded in that order in the x-axis labels) in what proportion of runs
each algorithm reaches the best function value. Note that these value per scenario can
add to more than 1 because of ties.

ψ⃗t :=
(
σ,L(m⃗, σ2,C), ||v⃗||, ||p⃗σ||, ||p⃗c||, ||γ⃗||,mean v⃗,mean p⃗σ,mean p⃗c,mean γ⃗

)⊤
,

where L represents the number of iterations these data points were sampled, which
equals the A1 budget divided by the population size of the CMA-ES. In order to store
information invariant to the problem dimensionality, we compute the component-wise
average mean x⃗ and norm ||x⃗|| =

√
x⃗⊤v⃗ of each vector variable.

Given a set of m feature functions {ϕi}mi=1 from tsfresh [42] (where ϕi : RL → R), we
apply each feature function over each variable in the collected time series. Examples
of such feature functions are autocorrelation, energy and continuous wavelet transform
coefficients. In this paper, we take this entire time series (of length L) as the feature
window. We employ all 74 feature functions from the tsfresh library, to compute a
total of 9 444 time-series features per run. After the feature generation, we perform
a feature selection method using a Random Forests classifier trained to predict the
function ID, for computing the feature importance. We then select only the features
whose importance is larger than 2×10−3. This selection procedure yields 129 features,
among which features computed on the Mahalanobis distance and the step-size σ are
dominant. More details on this approach can be found in [52].
Regression Models. To predict the algorithm performance after the A2 budget, we
use as performance metric the target precision reached by the algorithm in the fixed-
budget context (i.e., after some fixed number of function evaluations). We create a
mapping between the input feature data, which can be one of the following: (1) the
trajectory-based representation with 38 ELA features per run (ELA-based AS), (2) the
trajectory-based representation with 129 time-series (TS) features per run (TS-based
AS), or (3) a combination of both (ELA+TS-based AS), and the target precision of
different algorithm runs. We then train supervised machine learning (ML) regression
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models that are able to predict target precision for different algorithms on each of the
trajectories involved in the training data. Following some strong insights from [107]
and subsequent studies, we aim at predicting the logarithm (log10) of the target preci-
sion, in order to capture the order of magnitude of the distance from the optimum. In
our case, since we are dealing with an algorithm portfolio, we have trained a separate
single target regression (STR) model for each algorithm involved in our portfolio. We
opt for using a random forest (RF) regression, as previous studies have shown that it
provides promising results for automated algorithm performance prediction [108]. To
this end, we use the RF implementation from the Python package scikit-learn [186].
Evaluation Scenarios. To find the best RF hyperparameters and to evaluate the
performance of the algorithm selectors, we have investigated two evaluation scenarios:
(1) Leave-instance out validation: in this scenario, 70% of the instances from each
of the 24 BBOB problems are randomly selected for training and 30% are selected for
testing. Put differently, all 100 runs for the selected instance will either appear in the
training or the test set. We thus end up with 16 800 trajectories used for training and
7 200 trajectories for testing.
(2) Leave-run out validation: in this scenario, 70% of the runs from each BBOB
problem instance are randomly selected for training and 30% are selected for testing.
Again, we end up with 16 800 trajectories used for training and 7 200 trajectories for
testing.
We repeat each evaluation scenario five independent times, in order to analyze the
robustness of the results. Each time, the training data set was used to find the best
RF hyperparameters, while the test set was used only for evaluation of the algorithm
selector.
Hyperparameter Tuning for the Regression Models. The best hyperparame-
ters are selected for each RF model via grid search for a combination of an algorithm
and a fixed A2 budget. The training set for finding the best RF hyperparameters for
each combination of algorithm and budget is the same. Four different RF hyperpa-
rameters are selected for tuning: (1) n_estimators: the number of trees in the random
forest; (2) max_features: the number of features used for making the best split; (3)
max_depth: the maximum depth of the trees, and (4) min_samples_split : the mini-
mum number of samples required for splitting an internal node in the tree. The search
spaces of the hyperparameters for each RF model utilized in our study are presented
in Table 5.1.
Per-run Algorithm Selection. In real-world dynamic AS applications, we rely on
the information obtained within the current run of the initial solver on a particular
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Table 5.1: RF hyperparameter names and their corresponding values considered in
the grid search.

Hyperparameter Search space
n_estimators [100, 300]
max_features [auto, sqrt, log2]
max_depth [3, 5, 15,None]

min_samples_split [2, 5, 10]

problem instance to make our decision to switch to a better suited algorithm. A ran-
domized component of black-box algorithms comes into play here, as one algorithm’s
performance can vastly differ from one run to another on the very same problem in-
stance.
We estimate the quality of our algorithm selectors by comparing them to standard
baselines, the virtual best solver (VBS) and the single best solver (SBS). As we make
a clear distinction between per-run and per-instance perspective, in order to compare
we need to suitably aggregate the results. Our baseline is the per-run VBS, which is
the selector that always chooses the real best algorithm for a particular run on a cer-
tain problem (i.e., function) instance. We then define V BSiid and V BSfid as virtual
best solvers on instance and problem levels, i.e., selectors that always pick the real
best algorithm for a certain instance (across all runs) or a certain problem (across all
instances). Last, we define the SBS as the algorithm that is most often the best one
across all runs.
For each of these methods, we can define their performance relative to the per-run
VBS by considering their performance ratio, which is defined on each run as taking
the function value achieved by the VBS and dividing it by the value reach by the con-
sidered selector. As such, the performance ratio for the per-run VBS is 1 by definition,
and in [0, 1] for each other algorithm selector.
To measure the performance ratio for the algorithm selectors themselves, we calculate
this performance ratio on every run in the test-set of each of the 5 folds, and average
these values. We point out here that the performance of different AS models are not
statistically compared, since the obtained performance values from the folds are not
independent [55].
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Figure 5.13: Heatmap showing for each scenario the average performance ratio rela-
tive to the per-run virtual best solver of different versions of VBS, SBS, and algorithm
selectors (based on the per-instance folds). Scenario names show the problem dimen-
sionality and the total used budget.

5.3.3 Evaluation Results: BBOB

For our first set of experiments, we train our algorithm selectors on BBOB functions
using the evaluation method described in Section 5.3.2. Since we consider 2 dimen-
sionalities of problems and 3 different A2 budgets, we have a total of 6 scenarios for
each of the 3 algorithm selectors (ELA-, TS-, and ELA+TS-based). In Figure 5.13,
we show the performance ratios of these selectors, as well as the performance ratios of
the previously described VBS and SBS baselines. Note that for this figure, we make
use of the per-instance folds, but results are almost identical for the per-run case.
Based on Figure 5.13, we can see that the ELA-based algorithm selector performs
almost as well as the per-function VBS, which itself shows only minor performance
differences to the per-instance VBS. We also notice that as the total evaluation bud-
get increases, the performance of every selector deteriorates. This seems to indicate
that as the total budget becomes larger, there are more cases where runs on the same
instance have different optimal switches.
To study the performance of the algorithm selectors in more detail, we can consider
the performance ratios for each function separately, as is visualized in Figure 5.14.
From this figure, we can see that for the functions where there is a clearly optimal A2,
all algorithm selectors are able to achieve near-optimal performance. However, for the
cases where the optimal A2 is more variable, the discrepancy between the ELA and
TS-based algorithm selectors increases.
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Figure 5.14: Heatmap showing for each 5-dimensional BBOB function the mean per-
formance ratio at 500 total evaluations relative to the per-run virtual best solver, as
well as the average performance ratio of each of the 3 algorithm selectors.

5.3.4 Evaluation Results: YABBOB

We now study how a model trained on BBOB problem trajectories can be used to
predict the performances on trajectories not included in the training. We do so by
considering the YABBOB suite from the Nevergrad platform. While there is some
overlap between these two problem collections, introducing another sufficiently dif-
ferent validation/test suite allows us to verify the stability of our algorithm selection
models. We recall that for the performance data of the same algorithm portfolio on
YABBOB functions, we have target precisions for 850 runs, 50 runs per 17 problems,
in all considered A2 budgets.
Training on COCO, testing on Nevergrad. This experiment has resulted
in somewhat poorer performance of the algorithm selection models on an inherently
different batch of problems. The comparison of the similarity between BBOB and
YABBOB problems presented below nicely shows how the YABBOB problems are
structurally more similar to one another than to the BBOB ones. To investigate per-
formance flaws of our approach when testing on Nevergrad, we compare, for each
YABBOB problem, how often a particular algorithm is selected by the algorithm se-
lection model trained on the BBOB data with how often that algorithm was actually
the best one. This comparison is exhibited in Figure 5.15. We observe that MLSL
in particular is not selected often enough in the case of a large A2 budget, as well
as a somewhat strong preference of the selector towards BFGS. An explanation for
these results may be the (dis)similarities between the benchmarks. An analysis of
the Pearson correlation between the trajectories on the BBOB and YABBOB suites
showed limited correlation between these two suites, which might explain the poor
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Figure 5.15: Heatmap showing for each 5-dimensional YABBOB/Nevergrad function
the fraction of times each algorithm was optimal to switch to when considering a total
budget of 500 evaluations (bottom) and how often each of these algorithm was selected
by the algorithm selector trained on BBOB/COCO (top). Note that the columns of
the bottom part can sum to more than 1 in case of ties.

generalization results [135].

5.4 When to Switch?

In the previous section, we have illustrated a way in which we can perform a sin-
gle switch between optimization algorithm by using information collected during the
search. While this information was only used to determine which algorithm should
be switched to, we can extend this usage by not just deciding what to switch to, but
whether to switch at all. In this final section of the DynAS chapter, we look at whether
the search trajectories contain sufficient information to predict how beneficial a switch
would be in the near future. Such a predictive model would be a first step towards a
truly dynamic switching algorithm, as the model can be applied consistently during
the search to detect whether switching is useful, without being restricted to a single
pre-determined switching point.

5.4.1 Algorithm Portfolio

Since the potential of switching between algorithms seems to be highly dependent on
the set of algorithms considered in the used portfolio [245], we consider a set of 5
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algorithms:

• Covariance Matrix Adaptation Evolution Strategy CMA-ES [97] (implementa-
tion from the modCMA package [51])

• Differential Evolution DE [219] (implementation from nevergrad [200])

• Particle Swarm Optimization PSO [123] (implementation from nevergrad)

• Success-History based Adaptive Differential Evolution SHADE [223] (implemen-
tation from pyade [198])

• Constrained Optimization By Linear Approximation Rcobyla [190] (implemen-
tation from nevergrad)

We show the performance of these 5 algorithms on the 10-dimensional BBOB prob-
lems from the fixed-budget perspective in Figure 5.16. We see that there are significant
differences in the performances of these algorithms, with no algorithm consistently
dominating all others.

In addition to the algorithms, we implement warm-starting mechanisms to be able
to switch between them. For the Nevergrad-based algorithms, we make use of the
built-in ask-not-told functionality, which adapts the state of the algorithm based on
a set of observations ({x, f(x)}). For starting the CMA-ES we use the warmstarting
mechanism proposed in [210], which sets the center of mass and stepsize based on the
3 best solutions found so far. For switching to SHADE, we initialize the population
as the last N points seen by the previous algorithm, where N is the population size.

To illustrate the usability of these warmstarting mechanisms, we investigate the
performance achieved by switching from each algorithm to itself, using the described
warm-starting mechanism. Since each of these warmstarting mechanisms inherently
loses some information about the search process, we assume the warm-started versions
will have slightly worse performance than their equivalent non-warmstarted runs. The
results of running each of the 5 algorithms with 5 different points at which they
are warm-started, are visualized in Figure 5.17. From this figure, we see that the
performance loss from warm-starting is relatively minor, indicating that most of the
relevant information is passed to the second part of the search.

5.4.2 Finding use cases using irace

To identify whether the selected portfolio can benefit from dynamically switching
between algorithms, we view the problem of dynamic algorithm selection from the

133



5.4. When to Switch?

1e−12

1e−8

1e−4

1

1e−12

1e−8

1e−4

1

1

100

1e+4

1

100

0.01

0.1

1

10

100

0 0.5e+4 1e+4 1.5e+4 2e+4

5

1
2

5

10
2

5

100

1e−10

1e−5

1

1e+5

1e−10

1e−5

1

1e+5

1e−10

1e−5

1

1e+5

1e−12

1e−8

1e−4

1

0.1

1

10

100

0 0.5e+4 1e+4 1.5e+4 2e+4

1
2

5

10
2

5

100

10
2

5
100

2

5
1e+3

2

0.01

1

100

1e−10

1e−5

1

1e+5

2

5

100
2

5

1e+3

1
2

5

10
2

5

0 0.5e+4 1e+4 1.5e+4 2e+4

1

2

5

10

2

10
2

5
100

2

5
1e+3

2

5

1

100

1e+4

1e+6

1e−10

1e−5

1

1e+5

1e+10

2

5

10

2

5

100

1

100

1e+4

0 0.5e+4 1e+4 1.5e+4 2e+4
2

3
4
5
6
78
9100

2

3
4

ConfiguredPSO_S0 DifferentialEvolution_S0 modcma_S0 RCobyla_S0 SHADE_S0

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

Figure 5.16: Mean function value reached, relative to the used budget, for 24 BBOB
functions. Figure generated using IOHanalyzer [255]. Data available for interactive vi-
sualization at iohanalyzer.liacs.nl (IOHanalyzer dataset source ‘DynAS_EvoStar23’).
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Figure 5.17: The log-distance between geometric mean of function value reached after
10 000 evaluations (limited to 10−8). Differences are computed as mean with restart
minus mean without restart, so negative values indicate restarts improve performance.
Each box represents 24 10-dimensional BBOB problems, for each of the 5 algorithms
in the portfolio for the set of 5 tested switching points.

perspective of hyperparameter tuning. We consider the dynamic algorithm to consist
of three distinct parts: the first algorithm, the point at which to switch, and the second
algorithm. We use irace [152] to find the configurations which reach the best function
value after 5 000 function evaluations. Since irace is inherently stochastic, we perform
5 independent runs, and for each of the sets of elite configurations we perform 250

verification runs (50 runs on 5 instances). The performance of these configurations is
then compared to the best static algorithm in the portfolio for each function (virtual
best solver). This relative measure is visualized in Figure 5.18.

From this figure, we can see that on most problems, there are sets of configurations
which seem to outperform the static algorithms. However, for some cases we see dete-
rioration in performance compared to the VBS, indicated by negative values. This can
be explained partly by the stochasticity of the algorithms: the performance observed
by irace is based on a limited number of runs, and by selecting based on these limited
samples can be sub-optimal when looking at the true performance distribution [247].
Additionally, there might be some cost associated with the warmstarting when the
samples are collected from an initial algorithm which is not the same as the algorithm
being switched to.

Since we see that there are some cases where a switch between algorithms appears
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Figure 5.20: Fraction of cases in which a switch from algorithm 1 (y-axis) to algorithm
2 (x-axis) is beneficial.

beneficial, we can delve deeper into the configurations which show these benefits. In
particular, we can look at the distribution of the used switch point and its correlation
to the relative performance improvement, as is shown in Figure 5.19. Here, we ob-
serve that the switch points are fairly widely distributed, and that multiple different
switching points can lead to similar improvements in performance.

5.4.3 Predicting Benefits of Switching

While the setup as described in Section 5.4.1 allows us to investigate the dependence of
performance of a dynamic algorithm selection on the time at which the switch occurs,
it does not provide directly usable insights into how this switch might be detected
during the search. In order to investigate this online detection, we require a set of
data where multiple switching points are attempted, such that we are able to identify
on a per-run basis how beneficial each decision is. In addition, we collect features at
each decision point, which can then be used to create a model to predict the observed
benefits.

5.4.4 Setup

To achieve these insights into the impact of the switching point, we set up a large-
scale experiment collecting the performance data for a reduced portfolio of 3 algorithms
(CMA-ES, PSO and DE) on all 24 10-dimensional BBOB problems. This reduction is
done to reduce computation costs. We collect 5 runs on each of the first 5 instances, and
collect the full trajectory of the static algorithm up to 10000 evaluations. Then, for all
switch points linearly spaced from 50 to 9500, we collect the performance data achieved
when switching to each of the 3 algorithms (so we include a switch to the selected
algorithm to itself) in the portfolio after another 500 evaluations.We then consider the
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best fitness value reached in these 500 evaluations as the achieved performance of the
dynamic algorithm. This short time-window is used to allow for the eventual creation
of a dynamic switching regime which can perform more than one change during the
optimization process.

In Figure 5.20 we show the fraction of cases in which a switch provides benefit
over continuing the first algorithm in these 500 evaluations. From this, we see that
switching is often beneficial, particularly in the case of switching to CMA. This matches
our observations from Section 5.4.1, where we saw that our chosen version of DE often
benefits from restarts, while the CMA-ES is the best preforming algorithm overall.

To enable an easier comparison between the algorithms, we define the target value
for our model to be the relative benefit of switching after 500 evaluations, which is
defined as follows:

r(as, ar) =

(
1− min(as, ar)

max(as, ar)

)
(2 · 1as<ar

− 1) (5.1)

where as is the performance when a switch is performed, and ar is the performance
when no switch occurs. This measure takes values in [−1, 1], where positive values
correspond to situations where switching is beneficial, while a negative value indicates
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detrimental effect of the switch.

To highlight the overall importance of the switching point, we can visualize the
mean relative benefit of switching at each point in a heatmap, as is done in Fig-
ure 5.21 for the case of switching from CMA-ES to DE. Here, we see that even though
the individual algorithm performance from Figure 5.16 showed that CMA-ES dom-
inates DE in most problems, and Figure 5.20 showed that this combination is not
the most promising overall, there are still many cases where a switch would still be
beneficial for the performance in the next 500 evaluations. In particular, we see some
clear distinctions between functions where switching is detrimental and some functions
where benefits are observed, although not for all possible switching points.

In order to predict the benefit of switching at each decision point, we train a
random forest model for each switch combination which outputs the relative benefit of
performing the switch. The input for this model consists of the ELA features calculated
on the trajectory of the first algorithm during the last {50, 150, 250} evaluations before
the switching point. We exclude the ELA features that require addition sample points,
e.g., the so-called cell mapping features, resulting in 68 features in total.

This set is extended by including the diversity in the samples, both the mean
component-wise standard deviation of the full set of samples (pop_div) and the stan-
dard deviation from their corresponding fitness values (fit_div).

Features which are constant for all samples or give NaN values for more than 90%

of samples are removed from consideration. Features are then normalized (to zero
mean and unit variance).

The random forest models use the default hyperparameters from sklearn [186].
Their performance is evaluated using the leave-one-function out strategy, where we
train on the data from 23 BBOB functions and use the remaining one for testing.
This is repeated for each function, and the results shown in this section are always
on this unseen function. For our accuracy measure, we make use of the mean square
error.

5.4.5 Results

In Figure 5.22, we show the overall model quality per decision point, aggregated over
the algorithm which is being switched to. This aggregation allows us to gain an
overview of the potential to learn the relative benefit of switching from data, which
illustrates significant differences among test functions and the choice of the first algo-
rithm. From this figure, we can see that some settings lead to very poor MSE values.
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Figure 5.22: Distribution of model quality (Mean Square Error) for each function,
colored according to the algorithm from which the switch occurs. Aggregated across
the secondary algorithms and switch points.

This can either indicate that the model is not able to extract the needed information
from the training features, or that the set of features seen on the validation-function is
not consistent with the ones in the training set. For the former, it could be attributed
by highly noisy feature values coming from the randomness of the first algorithm;
For the latter, it is very likely that the landscape (hence the ELA features) of the
test function is dissimilar to the ones in the training set. Further analyses per func-
tion/algorithm pair (Figure 5.23) aims to investigate these two possible factors. This
could in part be an artifact of the leave-one-function-out validation, since the BBOB
function have been originally created such that each function has distinct high-level
properties [96]. However, we should note that the features we consider are trajectory-
based, and are thus not necessarily as different between functions as the global version
of the same features would be.

Figure 5.23 show this dependence on F7 and F15. In the top subfigure (DE to
PSO on F7) we see that the actual switch (blue dots) is mostly detrimental, while the
predicted value is somewhat positive, which is also reflected by quite high MSE scores
of the model. Note that, the relative benefit values are not considerably noisy from
the chart as the majority the sample concentrates at the very bottom, which should
be learnable if the RF model were trained on this function. Hence, in this case, we
conclude that, in our leave-one-function-out procedure, the model fails to generalize
to function F7.

In contrast, in the bottom part of Figure 5.23 (PSO to CMA on F15), we see that
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Figure 5.23: Relation between improvement and point at which the switch occurs in,
for both the real improvement and the improvement predicted by the RF model. Top:
switching from DE to PSO on F7. Bottom: switching from PSO to CMA on F15. The
thick black line shows the MSE of the model evaluated on the selected switch point
only. X-axis is shared between the two subfigures.

the overall behavior of benefit decreasing as the search continues is quite well captured
by the predictions. There are two interesting aspects of the results: (1) the model
seems to yield unbiased predictions of the relative benefit, which is strong support that
the model generalizes well to F15; (2) The variance of the predictions are much smaller
than that of the actual values, implying the possibility of a substantially large random
noise when measuring the relative benefits (this observation matches with previous
studies on the intrinsic large stochasticity of iterative optimization heuristics [247]).
The impact of this noise might be reduced in future by performing the switch multiple
times from the same switching point, leading to more stable training data.

5.4.6 Impact of Features

In addition to considering the accuracy of the trained models, we can also use the
models themselves to get insights into the underlying structure of the local landscapes
as seen by the algorithms. In particular, we make use of Shapley additive explanations
(SHAP [157]) to gain insight into the contribution of the ELA features to the final
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Figure 5.24: Shapley values of the features in each of the models which predict the
real-valued improvement of the switch. Each dot corresponds to one model, trained
on 23 functions, where the SHAP-values are calculated on the function which has been
left out. Since we have 3 A1 algorithms, this leads to a total of 72 data points per
feature.

predictions. Since we consider a multitude of models, we consider the distributions of
Shapley values of each feature, aggregated across functions and algorithms. This is
visualized in Figure 5.24.

Since Figure 5.24 is colored according to the algorithm being switched to, we can
observe some interesting differences. Specifically, we see that the largest Shapley values
are clearly present for different features depending on the A2 algorithm considered.
This seems to indicate that the state of the local landscape has a different effect on each
algorithm. Thus, the models are indeed taking into account some specific information
about the potential performance of the specific algorithm combination on which it is
trained, rather than only identifying whether continuing with the current algorithm is
useful in general.

By considering the local landscape features themselves without taking the models
into account, we can perform dimensionality reduction to judge whether there are
any patterns present in the landscape which could potentially be exploited. We make
use of UMAP [163], and visualize the features obtained during the runs of CMA-ES
in Figure 5.25. While this figure shows some clear clusters of similar values of the
relative benefit of switching, there exist some regions where this distinction is not as
clear. Based on this observation, it seems likely that the model quality can be further
improved, although it is still limited by the inherent stochasticity in the dynamic
algorithm selection task.
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Figure 5.25: UMAP embedding of all datapoints from the CMA to DE model, where
the color corresponds to the relative benefit of performing the switch.
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Chapter 6

Testing Generalizability:
MA-BBOB

Algorithm complementarity can be exploited in various ways, as illustrated in previous
chapters. In this thesis, most of our experimentation has been using ELA features to
represent the problem landscape and use this information to choose the most promis-
ing algorithm (combination) to run. The ability of ELA to differentiate between
BBOB functions indeed suggests that these features are a useful representation for
the algorithm selection problem which is confirmed by several studies on algorithm
selection for continuous optimization heuristics which use BBOB as their benchmark
suite [126, 124, 135, 18, 138, 174]. However, a key challenge with using BBOB for
this type of algorithm selection lies in the evaluation of the results. One method is
a leave-one-function-out technique [180], which uses 23 functions for training and the
remaining one for testing. This approach tends to show poor performance since each
problem has been designed to represent different high-level challenges for the optimiza-
tion algorithm. As such, another technique of cross-validation by splitting function
instances is commonly used [126]. However, this is likely to overfit and overestimate
the performance of the selector, since the instances of different problems are inherently
very similar. Thus, overfitting to biases of the instance design is an often overlooked
risk [135].

One potential way in which this bias can be reduced is by creating new, larger sets of
benchmark problems (e.g. using genetic programming to fill the instance space [172,
149]), or by creating a problem generator (e.g., the GNBG generator [263] or the
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W-model in pseudo-Boolean optimization [257]). Such problem generators can then
create arbitrarily many benchmark functions, to be used in the common train/test or
cross-validation mechanisms from the machine learning community [188].

This chapter is a shortened version of the journal paper [249], which accumulates
and extends work presented at the GECCO [251] and the AutoML [250] conferences.
Our focus is on describing the Many-Affine BBOB function generator (MA-BBOB).
To construct new functions, we create affine combinations between existing BBOB
functions, building on the work of Dietrich and Mersmann [58]. Our generator is a
generalization of their approach, designed to create unbiased combinations of problems
where the contribution of the components can be smoothly varied. We highlight the
core design choices made in the construction of MA-BBOB in Section 6.1 and illustrate
their impact on the types of problems which can be created.

The parameterization of the MA-BBOB generator allows us to investigate con-
trolled, potentially small differences in functions from both the ELA and algorithm
performance perspectives. This is illustrated in Section 6.2 by investigating the ad-
dition of global structure (sphere function) to all other BBOB problems, as well as
transitioning between pairs of BBOB problems.

Finally, in Section 6.3 we make use of a set of 1 000 functions generated with MA-
BBOB to illustrate an algorithm selection scenario, and show that the generalization
from BBOB to MA-BBOB fails to meet expectations. A comparison of the ELA-based
algorithm selection approach with an artificial baseline using the weights of the affine
combinations indicates that there is room to improve on the current ELA-based setup,
especially when trying to generalize from BBOB to MA-BBOB.

6.1 Many-Affine BBOB

6.1.1 Pairwise Affine Combinations

To create affine combinations between two BBOB functions, we use a slightly modified
version of the procedure proposed in [58]. Specifically, we define the combination C

as follows:

C(F1,I1 , F2,I2 , α)(x) = 10X , with

X =
(
α log10

(
F1,I1(x)− F1,I1(O1,I1)

)
+

(1− α) log10
(
F2,I2(x−O1,I1 +O2,I2)− F2,I2(O2,I2)

))
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Here, F1, I1, F2, and I2 are the two base functions and their instance numbers,
as defined in BBOB [96]. O1,I1 and O2,I2 represent the location of the optimum of
functions F1,I1 and F2,I2 respectively. The transformation to x when evaluating F2,I2

is performed to make sure the location of the optimum is at O1,I1 . As opposed to
the original definition, we subtract the optimal values before aggregating and take a
logarithmic mean between the problems. This way, we can use consistent values for
α across problems, without having to perform the entropy-based selection performed
in [58]. It has the additional benefit of ensuring the objective value of the optimal
solution is always 0, so the comparison of performance across instances and problems is
simplified. In Figure 6.1, we illustrate the change in the landscape for the combination
of F21 and F1, for different values of α.
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Figure 6.1: Evolution of the landscape (log-scaled function-values) of the affine combi-
nation between F21 (α = 1) and F1 (α = 0), instance 1 for both functions, for varying
α in 0.25 increments. The red circle highlights the location of the global optimum.

6.1.2 Combining Multiple BBOB Functions

We extend the pairwise affine combinations from Section 6.1.1 to create a function
generator which uses affine combinations of multiple BBOB functions. In particular,
our generator is defined as follows:

MA-BBOB(W⃗ , I⃗, X⃗opt)(x) = R−1
( 24∑
i=1

Wi ·Ri

(
Fi,Ii(x− X⃗opt +Oi,Ii)− Fi,Ii(Oi,Ii)

))
Here, W⃗ and I⃗ are 24-dimensional vectors containing the weight and instance

identifiers respectively, and X⃗opt is the location of the optimum, which we generate
uniformly at random in the domain [−5, 5]d. Finally, Ri and R−1 are rescaling func-
tions, defined in Section 6.1.2. We highlight the motivation behind each of these design
choices in the following subsections.
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Figure 6.2: Log-scaled fitness values of an example of a single many-affine function
with 5 different ways of scaling. The first 4 are taking the mean, max, (max+min)/2
and min of 50 000 random samples to create the scale factor, while the fifth (‘equal’)
option does not make use of this scaling.

Scaling of Function Values

While the geometric weighted average used in Section 6.1.1 between component func-
tions reduces the impact of small differences in scale, some BBOB problems vary by
orders of magnitude, which can still cause one function to dominate the combined
landscape. To address this, we add a rescaling function to the MA-BBOB definition,
which transforms the log-precision on each component function into approximately
[0, 1] before the transformation. This is done by capping the log-precision at −8,
adding 8 so the minimum is at 0 and dividing by a scale factor Si. This procedure
aims to make the target precision of 102 similarly easy to achieve on all component
problems. We thus get the following scaling functions:

Ri(x) =
max(log10(x),−8) + 8

Si

R−1(x) = 10(10·x)−8

To determine practical scale factors, we collect a set of 50 000 random samples
and evaluate them. We then aggregate the resulting function values (transformed to
log-precision) in several ways: min, mean, max, (max+min)/2. In Figure 6.2, we
show the differences between these methods for a selected problem in 2d. Somewhat
subjectively, we select the (max+min)/2 scaling as the technique to use for the MA-
BBOB generator. To ensure we don’t have to repeat this sampling procedure each
time we instantiate the problem in a new dimensionality, we investigate the relation
between dimensionality and the chosen scale factor calculation. This is visualized in
Figure 6.3, where we see that, with an exception for the smallest dimensionalities, the
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Figure 6.3: Evolution of the log-scaled (max+min)/2 scaling factor, relative to the
problem dimensionality. The values are based on 50 000 samples. Each line corre-
sponds to one of the 24 BBOB functions.

Function ID 1 2 3 4 5 6 7 8 9 10 11 12
Scale Factor 11.0 17.5 12.3 12.6 11.5 15.3 12.1 15.3 15.2 17.4 13.4 20.4
Function ID 13 14 15 16 17 18 19 20 21 22 23 24
Scale Factor 12.9 10.4 12.3 10.3 9.8 10.6 10.0 14.7 10.7 10.8 9.0 12.1

Table 6.1: Final scale factors used to generate MA-BBOB problems.

values remain quite stable. Because of this, we make use of a static scale factor rather
than defining one for each dimensionality individually. The final factors used are
calculated as a rounded median of the values from Figure 6.3, and shown in Table 6.1.

Instance Creation

Another design choice we made was to place the optimum of the combined function
uniformly in the domain ( [−5, 5]d). This differs from the earlier versions used for
pairwise combinations of BBOB functions [58, 251], where the optimum of one of the
component functions was re-used. However, the biases in the original BBOB instance
generation procedure would then be transferred into the combinations as well [150].
Since our function generator does not have to guarantee the preservation of global
function properties, we take the risk of moving parts of the regions of interest outside
the domain to have a less biased location of the global optimum. Figure 6.4 shows
how a 2d-function changes when moving the optimum location.

Sampling Random Functions

To allow for the usage of MA-BBOB as a function generator, we need to create a default
setting to generate useful weight-vectors. This could be done uniformly at random
(given a normalization step). However, in this way, the weight for every component
is likely to be non-zero, so most functions contribute to the final combination, erasing
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Figure 6.4: Log-scaled fitness values of an example of a single many-affine function
with changed location of optimum.

the possibility of generating unimodal problems since some multimodality will always
be included from some of the multimodal component functions.

To address this issue, we adapt the sampling technique to combine fewer component
functions on average. Our approach is based on a threshold value to determine which
functions contribute to the problem. The procedure for generating weights is thus as
follows: (1) Generate initial weights uniformly at random, (2) adapt the threshold to
be the minimum of the user-specified threshold and the third-highest weight, (3) this
threshold is subtracted from the weights, all negative values are set to 0. The second
step is to ensure that at least two problems always contribute to the new problem.
We decide to set the default value at T = 0.85, such that on average 3.6 (i.e., 15% of
24) problems will have a non-zero weight.

6.2 Pairwise Affine Combinations

For the first analysis of the MA-BBOB functions, we limit ourselves to the combination
of pairs of functions. This allows a more low-level investigation into the transition of
both landscape features and algorithm performance.

6.2.1 Setup

For the algorithm performance-based analysis, we make use of a portfolio of five algo-
rithms. Of these, three are accessed through the Nevergrad framework [200]:

• Differential Evolution (DE) [219]

• Constrained Optimization By Linear Approximation (Cobyla) [191]
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• Diagonal Covariance Matrix Adaptation Evolution Strategy (dCMA-ES) [98]

The remaining algorithms are two modular algorithm families: modular Differential
Evolution [240] (modDE) and modular CMA-ES [51] (modCMA). All algorithms, in-
cluding the modular ones, use default parameter settings. Each run we perform has
a budget of 2 000d, where d is the dimensionality of the problem. We perform 50

independent runs per function. For the pairwise function combinations, we stick to
the terminology introduced in Section 6.1.1 for easier comparison with the previous
results in [251].

In the remainder of this section, we set I2 = 1. As such, when discussing the
instance of a pairwise affine combination C(F1, I1, F2, I2, α), we are referring to I1.
Note that we also introduce the uniform sampling of the optima for these experiments,
following the description in Section 6.1.2. For our performance measure, we make use
of the normalized area over the convergence curve (AOCC), to be maximized. The
AOCC is an anytime performance measure, which is equivalent to the area under the
cumulative distribution curve (AUC) given infinite targets for the construction of the
ECDF. This measure is thus slightly more precise than the AUC, and can easily be
computed online. To remain consistent with the performance measures used in our
previous work, and analysis of results on BBOB in general, we use 102 and 10−8 as
the bounds for our function values, and perform a log-scaling before calculating the
AOCC. We thus calculate the normalized AOCC of a single run as follows:

AOCC(y⃗) =
1

B

B∑
i=1

1− min(max((log10(yi),−8), 2) + 8

10

where y⃗ is the sequence of best-so-far function values reached, B is the budget of the
run. To obtain the AOCC over multiple runs, we simply take the average.

For the landscape analysis, we make use of the pFlacco [192] package to calculate
the ELA features. We use a sample size of 1 000d points, sampled using a Sobol’
sequence. We note this large sample size is used to remove some of the inherent
variability in the ELA features, even though practical applications usually rely on
much smaller budgets. To be consistent with our previous work [250], we don’t include
features which require additional samples and remove all features which lead to NaN-
values or remain static for all functions, resulting in a set of 44 features.
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(a) AOCC values for Diagonal CMA-ES.
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(b) AOCC values for Differential Evolution.
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(c) AOCC values for Cobyla.
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Figure 6.5: Normalized area under the ECDF curve of three selected algorithms (a-c)
and best-ranking algorithm from the full portfolio (d) for each combination of the
BBOB-function (x-axis) with a sphere model, for given values of α (y-axis) AOCC is
calculated after 10 000 function evaluations, based on 50 runs on 50 instances (and
location of optimum). Note that α = 0 corresponds to the sphere function.

6.2.2 Adding Global Structure

For the first set of experiments, we make use of affine combinations where we combine
each function with F1: the sphere model (as the F2 function in the combination).
As can be seen in Figure 6.1, adding a sphere model to another function creates an
additional global structure that can guide the optimization toward the global optimum.
As such, these kinds of combinations might allow us to investigate the influence of
an added global structure on the performance of optimization algorithms. While
to some extent this can already be investigated by comparing results on the function
groups of the original BBOB with different levels of global structure, the affine function
combinations allow for a much more fine-grained investigation.

In Figure 6.5a, we can see that the performance of CMA-ES does indeed seem to
move smoothly between the sphere and the function with which it is combined. It is
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however interesting to note the differences in speed at which this transition occurs. For
example, while the final performance on functions 3 and 10 seems similar, the transition
speed differs significantly. This seems to indicate that for F10, the addition of some
global structure has a relatively weak influence on the challenges of this landscape
from the perspective of the CMA-ES, while even small amounts of global structure
significantly simplify the landscape of F3.

We can perform a similar analysis on other optimization algorithms. In Figures 6.5b
and 6.5c, we show the same heatmap as Figure 6.5a, but for Differential Evolution
and Cobyla, respectively. It is clear from these heatmaps that the performance of DE
is more variable than that of CMA-ES, while Cobyla’s performance drops off much
more quickly. The overall trendlines for DE do seem to be somewhat similar to those
seen for diagonal CMA-ES: the transition points between high and low AOCC in
Figure 6.5b are comparable to those seen in Figure 6.5a. There are however still some
differences in behavior, especially relative to Cobyla. These differences then lead to
the question of whether there exist transition points in ranking between algorithms
as well. Specifically, if one algorithm performs well for α = 0 but gets overtaken as
α → 1, exploring this change in ranking would give further insight into the relative
strengths and weaknesses of the considered algorithms.

To study the impact on the relative ranking of algorithms, we make use of the full
portfolio of 5 algorithms and rank them based on AOCC on each affine function com-
bination. We then visualize the top ranking algorithm on each setting in Figure 6.5d.
From this figure, we can see that Cobyla deals well with the sphere model, managing
to outperform the other algorithms when the weighting of the sphere is relatively high.
Then, after a certain threshold, the CMA-ES variants consistently outperform the rest
of the portfolio, with dCMA taking over when Cobyla is no longer preferred. However,
as α increases further, and the influence of the sphere model diminishes, an interesting
pattern seems to occur. For several problems, there is a second transition point to
modCMA, indicating that the differences in default parameterizations between the
used libraries have a large impact on the algorithms’ behavior. One significant factor
is related to the initial stepsize, which is smaller for dCMA, and thus might lead to it
becoming more easily stuck in local optima when the global structure is not as strong.

In order to better understand what the transitions in algorithm ranking look like,
we can zoom in on one of the functions and plot the distribution of AOCC for all
values of α. This is done in Figure 6.6, where we look at the combination between
F10 and the sphere model. In this figure, we observe that Cobyla is very effective at
optimizing the sphere and the combinations with low α. However, when α increases,
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Figure 6.6: Distribution of AOCC values for 5 algorithms on the affine combinations
between F10 (α = 1) and F1 (α = 0), for selected values of α.

Cobyla quickly starts to fail, while, for example, DiagonalCMA still manages to solve
most instances at α = 0.25 with similar AOCC. As α increases further, the modCMA’s
performance remains stable, showing only a minor drop in performance relative to the
one seen in dCMA.

6.2.3 Impact on ELA Features

In addition to the performance perspective, we can also look at what happens to the
landscape feature of the BBOB functions as we add increasingly more influence from
the sphere function. Since we measure 44 different ELA features, our analysis of the
impact is rather more high-level than the algorithm performance viewpoint, as we
first aim to capture the overall stability of the features for increasing α values. This
is measured as the sum of absolute differences in feature mean for consecutive α’s,
which is plotted in Figure 6.7. From this figure, we can see that the mean of most
features remains quite stable, with a few notable exceptions. In particular, functions
16 and 23 show many feature changes from the sphere, which matches observations
from e.g. [203, 216].

In addition to the differences between functions, it is also clear to see that features
don’t all behave in the same way. Since Figure 6.7 only shows absolute changes in
mean, the deviation between instances might also play a role. To analyze this in
some more detail, we select a single function (F10) and look at the evolution of both
the feature mean and its standard deviation in Figure 6.8. From this figure, we can
see that the mean of each feature seems to transition rather smoothly between the
two component functions, in a similar way to the performance plots in Section 6.2.2.
However, we should note that the standard deviation of many features is relatively
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Figure 6.7: Total changes in each ELA feature when transitioning from the sphere
to the function indicated in the row. Each cell represents the sum of differences in
mean between pairs of consecutive values of α, so high values indicate a large total
change in mean, while low values indicate features which remain stable throughout
the transition.
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Figure 6.8: Evolution of ELA features with changing between Sphere (α = 0) and F10
(α = 1). The color indicates the mean of the feature over the 50 instances (lighter =
larger), while the size indicates the variance (larger = higher variance).

large for each α value.

6.2.4 Impact of Optimum Location and the Instance

As can be seen from the relatively large variance in both ELA features and algorithm
performance, the instance and location of the optimum can have a major impact on
both the landscape and the corresponding algorithm behaviour. In particular, the
way in which we defined an instance in our setup is not necessarily equivalent to the
common interpretation, e.g., from BBOB. Since we allow the optimum of a component
function to be moved anywhere in the domain, this can lead to large parts of the
original function no longer being reachable. This is the main reason why some BBOB
functions have very restricted distributions for their optima, which can be seen by
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Figure 6.9: Location of optima of the 24 2d BBOB functions (1000 random instances).
The red lines mark the commonly used box-constraints of [−5, 5]d.

analyzing the overall distribution of optima across all BBOB functions, visualized in
Figure 6.9 and previously observed in e.g.[150].

To analyse how much the algorithms in our portfolio are influenced by the choice
of instance and location of optimum, we determine the relative impact of different
instances for each function (F1 and α value). This is done by first averaging the
performance across all 50 runs on each instance. By dividing this by the total variance
present across all runs on all instances of that function, we obtain a relative measure of
‘stability’ across instances, which is visualized in Figure 6.10. This figure shows that
some algorithms are inherently more impacted by the instance/location of the optimum
(modDE), while, for example, for Cobyla, the variance increases with increasing α,
which suggests that it is very stable on the sphere problem, but becomes much more
impacted by variations in the landscape when more non-sphere influence is added.

To further analyse the impact of this increased flexibility in terms of function
generation, we perform an experiment involving two versions of the original BBOB
functions. The first is the data from Section 6.2.2 where α ∈ {0, 1}, which corresponds
to data for 50 instances of each function, with each of them having its optimum moved
to a random point in the domain. The second set of instances are created by taking the
same instances of the BBOB functions, but not shifting their optimum (the rescaling
from Section 6.1.2 is still applied). This allows us to compare the influence of moving
the optimum on the landscape of the resulting problem. In Figure 6.11, we compare
the distribution of all features on these two versions of BBOB function 23.

Finally, we can take an aggregated view of the features, and project the 44 dimen-
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Figure 6.10: Relative deviation in AOCC caused by the change of the global optimum
for all combinations of BBOB functions with the sphere model (calculated as deviation
per instance divided by deviation across all instances). The x-axis indicates changing
function ID, and within each function ID the transition goes from α = 0 to α = 1 (left
to right).
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Figure 6.11: Distribution of normalized ELA features for the BBOB instance creation
procedure and the same instance moved to have an optimum location uniformly in the
domain, for F23.
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Figure 6.12: UMAP projection trained on original BBOB, then used to plot both the
moved and original functions in 2D.

sional space into two dimensions using PCA on the original BBOB versions. Then, we
can plot the moved versions of the function into the same space, and observe the dif-
ferences. The result of this projection is shown in Figure 6.12, where we see that many
functions are moved much closer to the center of the projected space. This suggests
that some of the ‘unique’ feature combinations present in the original BBOB functions
are being lost when moving their optimum. This happens because large parts of the
function are moved outside of the domain, and replaced by parts which were originally
located outside the bounds. For some functions, these components are exponentially
increasing, leading to a large part of the space which is dominated by these artifacts,
which is represented in the ELA-features.

6.2.5 Pairwise Combinations

While combining functions with a sphere model can be viewed as adding global struc-
ture to a problem, combinations between other functions can provide interesting in-
sights into the transition points between different types of problems. To illustrate the
kinds of insights that can be gained from these combinations, we select a subset of
5 functions and collect performance data on each combination with the same 21 α

values (with both orderings of the function). We show the performance in terms of
normalized AOCC of diagonal CMA-ES on these function combinations in Figure 6.13.
Note that for α = 1, we are using the function specified in the column label, while for
α = 0 we have the function specified in the row label.

When comparing this figure to its equivalent from the GECCO paper [251], it is
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Figure 6.13: Normalized area over the convergence curve for Diagonal CMA-ES on
each of the affine combinations between the selected BBOB problems. Each facet
corresponds to the combination of the row and column function, with the x-axis in-
dicating the used α. AOCC values are calculated based on 50 runs on 25 instances,
with a budget of 10 000 function evaluations.
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important to note the fact that Figure 6.13 is almost fully symmetric around the di-
agonal, which was not the case in the GECCO paper. Even though we might expect
(F1, F2, α) to be similar to (F2, F1, 1− α), this was not the case when the location of
the global optimum was selected as the optimum of one of the component functions,
as different BBOB functions can have significantly different distributions of potential
global optima [150]. This is in large part the reason why we enabled the MA-BBOB
generator to sample the optimum uniformly at random in the domain. While Sec-
tion 6.2.4 showed that this can potentially move interesting parts of some component
functions outside the domain, we view this as a worthwhile tradeoff to achieve fully
unbiased global optima.

From Figure 6.13, we can also see that the transition of performance between the
two extreme α values is mostly smooth. While there are some rather quick changes,
e.g., for the transition between F2 and F11, these seem to be the exception rather
than the rule. Particularly interesting are the settings where the performance of affine
combinations between two functions proves to be much easier or harder than the
functions which are being combined. For example, this is the case for the combinations
of F21 and F9.

6.3 Combining Multiple Functions: Testing General-

izability

For our final set of experiments, we make use of a set of 1000 functions generated
using the setup described in Section 6.1.2. This data is taken directly from [250], and
contains both ELA and performance data (for the same set of algorithms described in
Section 6.2.1, but using the original AUC measure instead of the AOCC). In [250] we
analyzed this data to understand the MA-BBOB instance generation procedure, with
the goal of generating a wide set of benchmark problems on which algorithm selection
and other automated machine learning techniques can be tested.

In this experiment, we take the perspective of algorithm selection and train a
random forest model to predict the best algorithm to use for each function, based
either on the ELA features of the problem or the weights of the component functions.
We can then compare the loss in terms of AUC relative to the virtual best solver
(VBS) for both of these models, in different training contexts. We can either use
the common cross-validation setup, or attempt to test for generalization ability based
only on the original BBOB functions. In Figure 6.14a we show the cumulative loss
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(a) AUC loss for 5 dimensional functions.
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(b) AUC loss for 2 dimensional functions.

Figure 6.14: Cumulative loss (AUC) for different models: cross-validation (mixture of
BBOB + MA-BBOB generated combinations) based on weights and ELA, and each
of the single-algorithm models.

for the cross-validation setup on the 5-dimensional functions. From this, we can see
that the ELA-based selector performs worse than the one based on the weights. This
confirms the previous observation that the ELA features might not be sufficiently
representative to accurately represent the problems in a way which is relevant for
ranking optimization algorithms.

In order to better estimate how much the structure of the ELA features helps the
prediction, we can add in a naive baseline. This is created by shuffling the labels (best
ranked algorithm) of all samples before training. This shuffled model is in essence
just a selector based on the frequency of labels in the training data, and the difference
between this version and the original ELA-based selector shows how much the structure
of the ELA-features helps improve the predictions. The results for the cross-validation
setup in 2D are shown in Figure 6.14b, where we see that the benefit over most
of the individual algorithms is inherent to the selected portfolio, since the shuffled
model outperforms all algorithms except modCMA. This suggests that our algorithm
portfolio is severely unbalanced.

When looking at the generalization task, this imbalance is exacerbated further,
since for MA-BBOB the modCMA is ranked first on an even larger fraction of functions
than on BBOB, as shown in Figure 6.15. In combination with the added challenge
of transferring to a new suite, this leads to our algorithm selection models being
outperformed by the modCMA, which is the Single Best Solver (SBS) in this case, as
illustrated in Figure 6.16. While the algorithm portfolio is partly responsible for this
shortcoming, the generalization ability does not significantly improve when removing
the modCMA from our portfolio. This suggests that training on the original BBOB
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Figure 6.15: Distribution of ranks
based on per-function AUC after
10 000 evaluations.
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Figure 6.16: Cumulative loss (AUC)
on the 5 dimensional MA-BBOB prob-
lems for models trained on the BBOB
functions, and each of the single-
algorithm models.

instances does not sufficiently represent the challenges faced in the MA-BBOB suite.
An important aspect of the challenge of this transfer is the location of the optima, as
discussed in Section 6.2.4.
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Chapter 7

Conclusions

Throughout this thesis, we have explored iterative optimization heuristics for continu-
ous optimization. We have shown that rigorous benchmarking does not only improve
our understanding of the algorithm but also highlights avenues for further exploration.
Through the use of modular design spaces for algorithms, we can fine-tune our op-
timizers to specific landscape properties, or create high-level selectors which exploit
complementarity between the available solvers. In fact, observing the anytime perfor-
mance of large algorithm portfolios shows that a dynamic approach to the algorithm
selection problem has the potential to lead to even larger performance gains.

In Chapter 3, we addressed our first research question: How can robust bench-
marking pipelines be made accessible and resulting data be made usable by the wider
community? We introduced IOHprofiler as a modular environment for benchmarking
iterative optimization heuristics, which provides both a way for setting up benchmark-
ing studies via IOHexperimenter as well as an accessible interface for the analysis of
the resulting benchmark data in IOHanalyzer. Using this framework, we showed how a
robust benchmarking pipeline can be used in combination with a wide variety of prob-
lems. By focusing on the BBOB suite, we investigated some commonly overlooked
aspects of the instance generation procedure and how this interacts with commonly
used landscape analysis methods. This highlights the relation between the setup of a
benchmark study and the ways in which we draw conclusions from the resulting data.

To close out Chapter 3, we note that benchmarking is more than just performance-
oriented comparisons between algorithms. By looking at the concept of structural bias,
we illustrate how behavior-based benchmarking can be used to gain insights into the
inner workings of an algorithm, and the potential biases therein.
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In Chapter 4, we explored our second research question: How can a modular design
aid in the exploration of interactions between different algorithmic ideas? We discussed
two modular algorithms: modCMA and modDE, each of which encompasses a design
space with thousands of potential configurations. By making use of algorithm config-
uration techniques, we illustrated the complementarity which exists between different
modules, since the best-performing configuration differs significantly per benchmark
function. We also highlight that tuned configurations of these modular algorithms can
clearly outperform existing versions of the respective algorithms. Additionally, the
tuning procedure can be used as a way of incrementally assessing a new modules con-
tribution to the existing design space. While these results show a promising direction
for future assessment of algorithmic ideas, there are several challenges inherent to our
proposed approach. Most critically, we showed that the inherent stochasticity of the
considered algorithms has a drastic impact on the stability of the results obtained by
algorithm configuration methods, suggesting a need for better noise-hanling methods.

The research question discussed in Chapter 5 was: To what extent can we exploit
performance complementary between different algorithms by switching between them?
Starting from a large set of benchmarking data, we showed that different algorithms
perform well during different parts of the optimization process. By assuming we can
freely switch between them, we observed significant potential performance gains from
dynamic algorithm selection. By first focussing on switching between configurations
of a modular algorithm, we sidestepped the question of warmstarting to show that
performance can indeed improve by changing the configuration during the search. We
then investigated per-run dynamic algorithm selection, where we utilize information
from the first algorithm to determine which algorithm to switch to, where the switch
incorporates a warmstart of the state of the secondary algorithm. Finally, we tackled
the question of when the switch should occur, by transitioning to a sliding-window
approach where we predict the relative benefit of performing a switch versus sticking
with the original algorithm. Such a model could in future be used to create fully
dynamic algorithm selectors which can switch multiple times throughout the search.

The final research question, discussed in Chapter 6, was: How can we fairly judge
the performance of meta-learning methods in the context of black-box optimization?
This question was inspired by observations from the previous chapter, where different
algorithm selection techniques showed promising performance on the BBOB suite, but
failed to generalize to a similar suite from a different platform. To better understand
this seeming lack of generalizability, we introduced MA-BBOB, a problem generator
based on the BBOB suite which uses affine recombination to create new benchmark
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problems with known global optima. This generator was subsequently used to inves-
tigate the link between function landscapes and algorithm performance, resulting in
an experiment which shows that generalizability of algorithm selection results is still
lacking.

7.1 Key Findings

7.1.1 Chapter 3

• Benchmarking can be made accessible, and by doing so we can gain new in-
sights into both algorithms and problems. Specifically, IOHprofiler allows us to
investigate problems from new domains, such as star-discrepancy computation,
and tackle them using state-of-the-art solvers. This highlights where further
algorithm development is required, since the used algorithm portfolio failed to
convincingly outperform a random search baseline.

• Benchmarking environments can not only function to interface problems with
algorithms, with data annotation and sharing options such as ontologies, which
allow for a wide variety of ways in which to combine data from separate sources
and gain new insights.

• Instance generation mechanisms such as the one used in the BBOB suite can be
very useful to test algorithm invariances, but care should be taken when using
them in a box-constrained setting, since the used transformations necessarily
change the part of the landscape the algorithm interacts with. This can be seen
when looking at the ELA features of different BBOB instances, many of which
are different in a statistically significant way. Looking at the instance generation
procedure also highlights potential biases in the BBOB suite, e.g. with regard to
the possible locations of the global optima, which should be kept in mind when
using them in future benchmarking studies.

• Benchmarking is not limited to only looking at the performance of an algorithm.
We can design more behavior-oriented benchmarks to gain an understanding of
different algorithmic aspects, for example, its structural bias to certain regions
of its domain. Knowing whether an algorithm is biased towards e.g. the center
of the domain can be combined with knowledge about the biases of different
benchmark suites to identify potentially misleading comparisons.
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7.1.2 Chapter 4

• In addition to enabling a fair comparison of different algorithmic ideas within the
same overarching framework, modular algorithm design also creates opportuni-
ties to explore interactions between many algorithm modifications which have
been proposed in isolation. By combining this design principle with algorithm
configuration tools, we find that well-configured module settings can lead to
significant improvement over common variants of the same base algorithm.

• While algorithms can be configured to perform well over a large set of benchmark
problems, configuring for performance on individual functions leads to additional
improvements, highlighting the inherent complementarity present in these large
configuration spaces.

• Algorithm configuration is an inherently noisy problem, and while most algo-
rithm configurations incorporate various strategies to overcome this noise, the
relation between the level of variance and the best noisy selection technique is
not yet clear, which can lead to ‘lucky’ configurations being selected over those
with actual better performance.

7.1.3 Chapter 5

• Just as algorithm selection can take advantage of complementarity between
solvers on different types of problems, dynamic algorithm selection can take
advantage of complementarity on different parts of the search. While some of
these advantages remain theoretical, we can obtain improvements in performance
on several functions by switching between algorithms at certain stages.

• Switching between algorithm variants can be simplified by working with modu-
lar algorithms, where the question of warm-starting the second algorithm can be
addressed by preserving the internal state of the algorithm. While finding opti-
mal dynamic combinations of parameter settings becomes challenging because of
the increased noise, we have shown that dynamic combinations can outperform
their static counterparts on the majority of used benchmark problems.

• A dynamic algorithm combination does not always have to be determined before
running the algorithm. By utilizing information collected from the trajectory
of an initial algorithm, the most promising secondary algorithm can be selected
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from a larger portfolio. This could allow us to take advantage of the per-run
stochasticity of our algorithms, leading to a per-run algorithm selection scenario.

• If we can accurately predict an algorithm’s performance from a small initial
trajectory, we can use these models to identify whether a switch at any given
point in the search would be worthwhile, which could form the basis for a truly
online dynamic algorithm selector. Unfortunately, this adds another level of
complexity to the meta-learning task and our current models are not robust
enough for this purpose.

7.1.4 Chapter 6

• The Many-Affine BBOB generator provides a new set of problems to validate
current results on the generalizability of algorithm selection methods trained on
BBOB. By showcasing that this generalizability is severely lacking for simple
ELA-based models, we highlight the importance of further research into both
the features we use to represent problems based on limited samplings, and the
potential over-reliance on the same set of problems to guide algorithmic devel-
opments.

7.2 Future Work

As this thesis takes a wide view on benchmarking and its implications for various
meta-learning scenarios, many open questions and areas for further research remain.
Here, we highlight a few of the most relevant ones:

• Data Accessibility. As this thesis illustrates, there are many potential uses
of benchmark data beyond the comparison of algorithm performance. As such,
data which is collected for one study can, and often should, be re-used in other
areas. Benchmarking tools play a critical role in facilitating this aspect, and while
tools such as OpenML [237] have been widely adopted in the machine learning
community, examples of data repositories in the optimization domain are less
common. Repositories such as COCO’s data archive [4], while valuable sources
of performance data, are still somewhat limited in their usability because of a lack
of meta-data, specifically information about the used algorithm implementation,
and available code. From the metadata perspective, data ontologies such as
OPTION [136] could provide a way to link different repositories together, while
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efforts to increase reproducibility [151] within the wider community might make
sharing code and data the norm rather than an exception.

• Judging New Algorithms. As the field of iterative optimization heuristics
continues to grow, an ever-increasing number of algorithms will be proposed.
While many of these might contain interesting algorithmic novelties, the way in
which these contributions are judged has to adapt to keep up with the increases
in scale. Current papers too often rely on comparison to a very limited set of
baselines, where only average performance over a large set of functions is con-
sidered. This comparison should be extended to include established algorithms
and be judged not on aggregate performance, but for example on contribution to
this overall portfolio of established algorithms. In addition to this, a larger focus
should be placed on unambiguous descriptions of the algorithmic components,
rather than metaphors used to motivate their novelty.

• Achieving DynAS. In Chapter 5, we showed the potential performance to be
gained from different versions of dynamic algorithm selection. However, through-
out the experiments described in that chapter, we notice that the resulting per-
formance is not yet stable, sometimes failing to beat even the static algorithms.
Since DynAS consists of several interacting components, improvements in each of
these aspects are needed in order to achieve usable dynamic switching behavior,
with the two core components being:

– Warmstarting: when performing a switch, we need to be careful not to lose
information obtained at the beginning of the search. Depending on the
algorithms used, we might need to initialize a population, stepsizes, covari-
ance information. . . The way in which this information transfer is performed
has a significant impact on the final performance, and as such should be
carefully designed.

– Deciding when to switch: in order to achieve optimal performance, a switch
between algorithms might need to occur at different points in the search for
different runs. As such, the current algorithm needs to identify the point
at which it is most promising to transition to a new algorithm, based only
on the information it has obtained so far. While trajectory-based ELA
features seem to be somewhat promising, their variance poses a significant
challenge, and other techniques might need to be considered as well.

• Understanding Generalizability. With the growing popularity of methods
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such as algorithm selection or even dynamic switching, the question of how to
fairly judge these meta-algorithms becomes more prominent. We have seen that
classical methods such as leave-one-problem-out don’t fit well with the available
benchmark sets, and performance on one suite does not necessarily translate to
others. In order to create a larger testbed, more attention has to be placed on
the analysis of different benchmark suites and their complementarity, resulting
in larger sets of training and testing functions. While problem generators like
MA-BBOB might be a useful component in this process, further analysis into
the wide variety of benchmarks is required to make more informed decisions.
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Samenvatting

In de context van optimalisatie kan benchmarking worden gezien als een verbinding
tussen het theoretisch analyseren van algoritmes en de praktijk. De empirische aard
van benchmarking zorgt ervoor dat experimenten op grote schaal kunnen worden uit-
gevoerd om vragen te beantwoorden die te complex zijn voor de huidige theoretische
methoden. Tegelijkertijd hoeft benchmarking niet in een specifiek praktisch gebied
te passen, maar kan het een breder scala aan fundamentele vragen bestuderen. Deze
combinatie zorgt dat benchmark-studies een grote variëteit aan nieuwe inzichten over
de relatieve sterktes en zwaktes van optimisatie algoritmes kunnen opleveren.

Gezien de potentiële voordelen van robuuste benchmarking-opstellingen is het be-
langrijk dat er laagdrempelige tools beschikbaar worden gemaakt. Deze opstellingen
moeten flexibel genoeg zijn om tegemoet te komen aan de grote verscheidenheid aan
vragen die worden gesteld, terwijl ze tegelijkertijd rigoureuze kaders bieden voor de
rest van de benchmarking-pijplijn. In deze thesis focussen we op IOHprofiler, een
benchmarking pakket ontwikkeld als hulpmiddel voor de bredere onderzoeksgemeen-
schap. Met behulp van een modulaire structuur kan IOHprofiler worden geïntegreerd
met veel bestaande tools die op grote schaal worden gebruikt. Deze integraties vor-
men de ruggengraat voor de experimenten die in deze thesis worden gebruikt, omdat
de bijbehorende data, zowel over de prestatie van de algoritmes als over hun gedrag,
eenvoudig kan worden hergebruikt. Op deze manier kunnen we verder gaan dan de
gebruikelijke ‘competitieve’ instelling, waarbij alleen gelet word op het algoritme met
de beste gemiddelde prestaties, en in plaats daarvan inzicht krijgen in de complemen-
tariteit tussen verschillende algoritmes.

Een van de belangrijkste manieren waarop complementariteit tussen algoritmes
nuttig kan zijn, is in de context van algoritmeselectie en -configuratie. In plaats van
te vertrouwen op één enkel algoritme voor een breed scala aan problemen, gebruiken
we een reeks test-functies om te bepalen welk algoritme of welke algoritmeconfiguratie
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we moeten gebruiken op nieuwe problemen. Deze meta-leertaak profiteert van de
variatie tussen algoritmen, die kan worden verkregen door naar verschillende soorten
algoritmen te kijken, maar ook binnen een algoritmefamilie door rekening te houden
met een grote hoeveelheid modificaties die de afgelopen decennia zijn voorgesteld.
We laten zien hoe twee modularisaties van populaire evolutionaire algoritmen kunnen
leiden tot nieuwe inzichten over combinaties van algoritmische ideeën, resulterend in
verbeterde prestaties ten opzichte van eerdere, met de hand ontworpen versies van
dezelfde algoritmen.

Hoewel er op probleemniveau al sprake is van complementariteit van algoritmen,
blijkt uit de benchmarkgegevens van verschillende bronnen ook dat er ook sprake is
van complementariteit in de prestaties binnen individuele functies. Hoewel sommige
algoritmen uitstekend zijn in het vinden van veelbelovende regio’s, blinken andere
uit in snelle convergentie zodra deze regio is gevonden. Als zodanig wordt het be-
grip dynamische algoritmeselectie, waarbij we tijdens de optimalisatieprocedure tussen
verschillende algoritmen kunnen wissellen, in detail bestudeerd. We benadrukken het
inherente potentieel van deze aanpak, terwijl we tegelijkertijd de aspecten van deze wis-
seling benadrukken die verder ontwikkeld moeten worden om betrouwbare dynamische
algoritme-combinaties te creëren.

Dynamische algoritmeselectie is een veelbelovend onderzoeksgebied binnen op-
timalisatie, maar studies naar de prestaties ervan zijn nog enigszins beperkt.
Dit is grotendeels een gevolg van de moeilijkheid om betrouwbare benchmarking-
opstellingen voor dit scenario te creëren. Hoewel verschillende suites voor
benchmarking-optimalisatie-algoritmen beschikbaar zijn, zijn deze niet bijzonder
geschikt voor meta-leerscenario’s, omdat er geen echt eerlijke manier is om het al-
gemeen vereiste onderscheid tussen train- en testproblemen te creëren dat wordt
gebruikt door de vereiste machine learning-technieken. Om deze reden stellen
we een benchmark-probleemgenerator voor, gebaseerd op veelgebruikte black-box-
optimalisatieproblemen, die kan worden gebruikt om willekeurige hoeveelheden train-
en testproblemen te genereren om deze meta-leermechanismen te benchmarken.
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Within the context of optimization, benchmarking is sometimes viewed as a bridge
between theory and practice. Its empirical nature allows for the creation of large-
scale experiments to investigate a wide variety of questions, which can be intractable
using theoretical approaches. At the same time, benchmarking does not have to fit
neatly into a specific application domain but can cover a broader range of fundamental
questions. This combination allows benchmarking studies to provide a range of new
insights into the strengths and weaknesses of different optimization heuristics.

Given the potential benefits of robust benchmarking setups, it is critical that tools
are created which lower the barrier to entry for its use. These setups should be
flexible enough to fit the wide variety of questions being asked while providing rigorous
frameworks for the rest of the benchmarking pipeline. In this thesis, we focused
on the IOHprofiler framework, which aims to be such a tool for the wider research
community. Using a modular design structure, IOHprofiler can be integrated with
many commonly used tools for black-box optimization and benchmarking. These
integrations form the backbone for the experiments used throughout this thesis, as the
corresponding performance and algorithm behavior data can be easily reused. This
way, we can go beyond the common ‘competitive’ benchmarking practice, where we
only care about the algorithm with the best average performance, to gaining insights
about the complementarity between different algorithms.

One of the key ways in which algorithm complementarity can be beneficial is in
the context of algorithm selection and configuration. Instead of relying on a single
algorithm for a wide set of problems, we use a set of features to determine which
algorithm or algorithm configuration to use. This meta-learning task benefits from
variety between algorithms, which can be achieved by looking at different types of
algorithms, but also within an algorithm family by considering a wide range of modifi-
cations proposed over the last decades. We show how two modularizations of popular
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evolutionary algorithms, CMA-ES and Differential Evolution, can lead to new insights
about combinations of algorithmic ideas, resulting in improved performance over pre-
vious hand-designed versions of these same algorithms.

While algorithm complementarity exists on the problem-level, looking at bench-
mark data from a variety of sources also reveals a complementarity in performance
within individual functions. While some algorithms are great at finding promising re-
gions, others excel at fast convergence once this region is found. As such, the notion of
dynamic algorithm selection, where we can switch between different algorithms during
the optimization procedure, is studied in detail. We highlight the inherent poten-
tial in this approach, while simultaneously highlighting the aspects of this switching
approach which need to be further developed to create reliably dynamic algorithm
combinations.

Dynamic algorithm selection is a promising field of research within optimization,
but current studies into its performance are still somewhat limited. This is largely a
result of the difficulty of creating reliable benchmarking setups for this scenario. While
collections of problems for benchmarking optimization algorithms are widely available,
they are not particularly suited for meta-learning scenarios, as there is no truly fair way
to create the commonly required train-test set distinction used by the required machine
learning techniques. For this reason, we propose a benchmark problem generator based
on commonly used black-box optimization problems, which can be used to generate
arbitrary amounts of training and testing problems to benchmark these meta-learning
mechanisms.
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