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Highlights
Crop diversification offers numerous syn-
ergistic advantages over intensivemono-
cultures via belowground interspecific
interactions.

The plant–soil–microbiome interactions
that trigger cascading effects underpin
the benefits of crop diversification.

Unlocking the potential of cascading ef-
fects in diversified cropping systems
can alleviate common obstacles in inten-
sive monoculture farming.
Crop diversification practices offer numerous synergistic benefits. So far, re-
search has traditionally been confined to exploring isolated, unidirectional
single-process interactions among plants, soil, and microorganisms. Here, we
present a novel and systematic perspective, unveiling the intricate web of
plant–soil–microbiome interactions that trigger cascading effects. Applying the
principles of cascading interactions can be an alternative way to overcome soil
obstacles such as soil compaction and soil pathogen pressure. Finally, we intro-
duce a research framework comprising the design of diversified cropping sys-
tems by including commercial varieties and crops with resource-efficient traits,
the exploration of cascading effects, and the innovation of field management.
We propose that this provides theoretical and methodological insights that can
reveal new mechanisms by which crop diversity increases productivity.
Strategically selecting species and varie-
ties that complement and facilitate one
another can enhance agricultural pro-
ductivity with fewer agrochemical inputs.
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The benefits of diversified cropping systems
Meeting the food security needs of a growing global population presents amajor challenge for ag-
riculture [1,2]. However, the widespread use of conventional farming with often simplified
cropping systems has led to detrimental effects on multiple ecosystem services. This includes is-
sues such as nutrient imbalances, degraded soil structure, proliferation of soil pests, loss of wild-
life species diversity, and long-term declines in crop yield stability [3–5]. These problems often
result from the excessive use of chemical inputs, while overlooking the inherent advantages of
harnessing biological processes within crops to efficiently utilize surrounding resources.

Previous studies on natural ecosystems and agroecosystems have shown that increasing plant
diversity can enhance productivity and other ecosystem services [6,7]. In agroecosystems, crop
diversification (see Glossary) strategies, including intercropping, crop rotations, cover
crops, and cultivarmixtures, implemented at various spatial and temporal scales offer numerous
advantages over intensivemonoculture farming. For example, crop diversification increases the uti-
lization of available light, and soil water, nitrogen (N), and phosphorus (P). It also helps to suppress
pests, diseases, and weeds, enhances soil fertility, improves crop yield and quality, and stabilizes
overall agricultural productivity [8–12].

Intercropping and crop rotations are among the most commonly employed diversified cropping
systems. The key benefit lies in the maximization of root and rhizosphere processes through spe-
cies interactions. These interactions mobilize, acquire, and utilize resources more efficiently, mak-
ing agricultural production less reliant on chemical fertilizers and pesticides. To date, most research
on diversified cropping systems has focused on aboveground light utilization and belowground fa-
cilitation via root exudates [7,13], which are unidirectional and involve single-process interactions.
Belowground facilitation in nutrient acquisition – for example, root-exudation patterns that enhance
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Glossary
Cascading effect: a sequence of
events in which each event produces
circumstances necessary for the
initiation of the next.
Cover crop: a crop grown between
periods of regular production of the main
crop for the purposes of protecting the
soil from erosion and improving soil
quality [69].
Crop diversification: a strategy that
enhances the diversity of simplified
cropping systems in either time or space
by introducing additional crops [70].
Crop rotation: the sequential planting
of different crops over time [71].
Cultivar mixtures: combinations of
cultivars from the same crop species
[71].
Hyphosphere: the narrow region of soil
around hyphae where the physical,
chemical and biochemical conditions
differ from those of the bulk soil due to
the influence of hyphal exudates [72,73].
Intercropping: the mixed cultivation of
two (or more) crop species on the same
field at approximately the same time [74].
Legacy effects: factors transmitted
from the past that can significantly
impact the current and future
performance of plants [75].
Plant–soil feedback: interactions
between plants and soil, both biotic and
abiotic, that result in subsequent effects
on plant growth and fitness. These
interactions can be negative, neutral, or
positive [76].
Rhizobiont: root growth, root
exudation, and microbial symbioses are
supported by aboveground C fixation.
The exchange of C and nutrients
between the crop shoot, roots,
rhizosphere, and microbiome forms a
systematic core of rhizosphere
interactions, collectively termed a
rhizobiont [18].
N fixation in legumes via signaling molecules from intercroppedmaize (Zea mays L.) – contribute to
overyielding in intercropping systems [14]. In the case of crop rotations, by growing different crops
sequentially, a positive legacy effect can be created, with better soil conditions for subsequent
crops. Deep-rooted crops make biopores (root channels) in the subsoil, facilitating deeper root de-
velopment in subsequent crops [15]. In addition, legumes cultivated during the first season can en-
hance the nutrition of subsequent cereals [16]. Cover crops play a role inmodifying the composition
of root-associated microbiomes that offer protection to the seedlings of subsequent cash crops
against pathogens [17].

So far, studies have predominantly focused on isolated, single-process interactions, limiting our
ability to fully comprehend the intricate interactions occurring within the complex above- and be-
lowground systems present when cropping is diversified. We contend that there is an urgent
need for a systematic approach that comprehensively explores how multiple interspecific interac-
tions operate and how these trigger cascading effects both above- and belowground in diversi-
fied cropping systems. Our research group has recently developed a systematic perspective and
approach aimed at fully harnessing the biological potential of plant–soil–microbiome interactions.
This approach entails multi-interface interactions encompassing plant–plant, plant–microbe, and
microbe–microbe interactions, which can be strategically leveraged to enhance nutrient-use effi-
ciency and boost crop productivity [13,18]. We further develop this systematic perspective via in-
troducing the cascading effects to examine how interspecific interactions influence overyielding,
nutrient uptake, and biomass accumulation in more complex diversified cropping systems. Thus,
we propose that plant–soil–microbiome interactions serve as the catalyst for above- and below-
ground cascading effects that underlie the benefits of crop diversification.

In this Opinion, we begin by defining cascading effects and provide examples of their occurrence
in the realms of ecology and microbiology. We then discuss the principles governing the cascad-
ing effects associated with crop diversification and provide a case study featuring a maize/faba
bean intercrop (representing spatial diversification) and amaize–soybean (Glycinemax L.) rotation
(representing temporal diversification). We then explore the applications of the principles of these
cascading effects in mitigating soil biotic and abiotic stresses. This is achieved by harnessing the
biological potential of crops through the judicious selection and combination of crop species
within diversified cropping systems. Finally, we outline a framework for the application of the prin-
ciples of cascading effects to achieve sustainable cropping systems, which aim to allow a high
yield, high food quality, and high economic benefits but decreased environmental impacts. This
systematic approach sheds light on the intricate interactions between plants, soil, and microor-
ganisms in terrestrial systems, making valuable contributions to the management of species
and varieties in the pursuit of sustainable agriculture and nature conservation.

Unlocking the potential of cascading plant–soil–microbiome interactions in
diversified cropping systems
A cascading effect, in the realm of ecological science, is akin to a domino effect, whereby an initial
perturbation sets off a sequence of events within a system. Ecologically, this term has been ap-
plied to depict the ripple effects of a primary extinction event, where the loss of a keystone species
leads to secondary extinctions [19] or the loss of ecosystem services through a series of trophic
changes initiated by an invader [20]. Additionally it is relevant in microbiology, where the presence
of sucrose initiates a signaling cascade, triggering solid surface motility and facilitating Bacillus
subtilis colonization in the rhizosphere [21]. In the context of diversified cropping systems, we
posit that their myriad benefits stem from intricate inter- and intraspecific interactions, incorporat-
ing feedback loops and cascades, thus highlighting the role of crop diversification in these eco-
logical dynamics (Figure 1, Key figure).
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Key figure

Principles of cascading plant–soil–microbiome interactions in crop diversification

C
Nutrients

1

2

3

Root

Hyphosphere

C C CNutrients
Nutrients Nutrients

Spatial 

Temporal 

Crop residues

Intercropped 
legume

Biopores promote 
root growth

Root 
interaction

Root✕rhizosphere 
interaction

Root✕rhizosphere 
✕microbiome interaction

Root proliferation

Rhizosphere

1

Enhanced root exudates

✕1 2

Mobilizing 
nutrients

Microbial enrichment

✕✕1 2 3Nutrients

Microbiome

(A) (B)

TrendsTrends inin PlantPlant ScienceScience

Figure 1. In (A), monoculture maize invests carbon (C) into➊ the root interface: physical scavenging at the macro- and microscale;➋ the rhizosphere interface: chemical
mining or biological enhancement via exudates; and ➌ the hyphosphere interface: hyphosphere microorganisms mobilize nutrients. In (B), for spatial diversification, the
intercropped legume mobilizes nutrients, and subsequently the focal maize roots increase root proliferation in response to the mobilized nutrients and then maize invests
more C into root exudates that mobilize nutrients, and the enhanced root exudation leads to microbial enrichment. For temporal diversification, crop residues of preceding
crops create biopores and promote root growth, triggering the subsequent cascading effects. Figure created with BioRender.com.
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The intricate web of interactions involves root growth, root exudation, and microbial symbioses,
all underpinned by aboveground carbon (C) fixation. A flow of C from aboveground sources and
nutrients moving upward connects the crop shoot, roots, rhizosphere, and microbiome, forming
a cohesive system known as the rhizobiont. Remarkably, even a small change in root and rhizo-
sphere processes can exert profound effects on the entire system. Within diversified cropping
systems, multi-interface interactions abound, including root interactions, root–rhizosphere inter-
actions, root–rhizosphere–microbiome interactions, and above- and belowground interactions.
These interactions collectively trigger cascading effects, which ultimately bolster crop productivity
during the growing season and in subsequent crops. This knowledge is informative for how to de-
sign an effective diverse cropping system.

Here, we synthesize recent advances in the systematic examination of both above- and below-
ground interactions between different crop species. We emphasize that, in contrast to a mono-
culture, the proximity of neighboring plants or the preceding crop can induce a cascading
effect on the focal plant. This effect sets in motion a series of interspecific interactions, such as
Trends in Plant Science, November 2024, Vol. 29, No. 11 1193
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enhanced root proliferation, enhancement of rhizosphere processes, and enrichment of microbial
communities, all geared towards increasing nutrient acquisition by the focal plant (Figure 1). This
heightened nutrient acquisition allows increased aboveground C fixation, which in turn stimulates
belowground interspecific interactions. It reinforces root–root interactions related to root morpho-
logical traits, rhizosphere processes via root exudates, signaling molecules, and the augmenta-
tion of root–rhizosphere–microbiome interactions.

In scenarios of crop diversification, neighboring legume plants can create nutrient patches by ex-
uding P-mobilizing carboxylates and phosphatases that trigger maize to proliferate roots and thus
acquire more nutrients. Consequently, more C resources are allocated belowground to synthe-
size more root exudates, which in turn may mobilize greater quantities of nutrients (Figure 1B).
Notably, root-exuded compounds like carboxylates, phytosiderophores, and phosphatases
play pivotal roles in nutrient mobilization, enabling access to sparingly soluble nutrients [7].
These root exudates are of paramount importance to various microorganisms and are instrumen-
tal in shaping the plant microbiome [22]. Greater root exudation fosters microbial enrichment
(Figure 1B), increasing the diversity of beneficial microbes and further enhancing nutrient uptake.
For instance, root exudates promote nitrogen-fixing bacteria and can trigger the reassembly of
rhizosphere microbial networks, facilitating nutrient uptake in intercropping systems [23,24].

Enhanced nutrient uptake arising from a belowground cascading effect can further trigger above-
and belowground interactions. In maize/soybean intercropping, increased light interception dur-
ing the post-silking stage results in enhanced root growth and P uptake in maize. This is facilitated
by the translocation of sucrose to the roots, which stimulates intercroppedmaize root growth and
enhances arbuscular mycorrhizal associations, and this can then bolster P uptake. These exam-
ples underscore the pivotal role of both above- and belowground interactions in regulating
nutrient-use efficiency in intercropping systems [25].

Examples of cascading effects in diversified cropping systems
We highlight two cases that illustrate the principles of cascading effects: a maize/faba bean inter-
crop and a maize–soybean rotation (Figure 2). The two crop diversification practices are com-
monly in agroecological regions and have been extensively investigated for their beneficial
impacts on nutrient acquisition and yield. In northwest China, maize/faba bean intercropping is
a prevalent practice [26]. Likewise, the maize–soybean rotation is adopted in many parts of the
world [11], and both systems have garnered substantial research attention due to their pro-
nounced benefits in terms of nutrient acquisition and yield enhancement.

Faba bean significantly augments the P acquisition of intercropped maize, both in the field and
under greenhouse conditions. A 4-year field study revealed a 46% increase in overyielding for
intercropped maize and a 26% increase for intercropped faba bean, with both crops exhibiting
enhanced P acquisition in the presence of each other [26]. The cascade of effects contributing
to enhanced P acquisition in maize/faba bean intercropping stems from the P mobilization by
the root exudates released by faba bean, which is better at mining sorbed P than maize is [7]
(Figure 2A, Steps 1 and 2).

Maize displays greater root plasticity than faba bean [27], and in response to the patches rich in P that
is mobilized by faba bean exudates such as carboxylates and phosphatases, maize roots proliferate
vigorously. This increased root growth enables maize to take up the P mobilized by faba bean and
subsequently to allocate C resources belowground (Figure 2A, Step 3). This belowground investment
supports the production of root exudates, which serve to support P-solubilizing bacteria [28]
(Figure 2A, Steps 4 and 5). For instance, in compacted soil conditions, the levels of rhizosphere
1194 Trends in Plant Science, November 2024, Vol. 29, No. 11
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Figure 2. Typical examples of cascading effects on phosphorus (P) acquisition inmaize/faba bean intercropping (A) and amaize–soybean rotation (B). Theblue
unbroken lines represent how monoculture maize takes up soil P through its roots, with the involvement of root exudates and microbes. The red lines represent how intercropped
and rotated maize takes up soil P through plant–soil–microbiome interactions in the presence of neighboring faba bean or preceding soybean. In (A),➊ the intercropped faba bean
releases root exudates that➋mobilize sorbed P such as sparingly soluble calcium P, P bound to metal(hydr)oxides, and organic P to available P.➌ The neighboring maize plants
increase root proliferation because of their high plasticity and thus take up the Pmade available and➍ import more carbon (C) that enhances the release of root exudates, which➎
feeds phosphate-solubilizing bacteria that further mobilize sorbed P and ➏ supports mycorrhizal colonization and hyphal exudates that further support phosphate-mobilizing
bacteria that access organic P. In (B), ➊ soybean, after harvest, leaves biopores in the soil, which increase the rooting depth of maize in the next season; ➋ more C supports
maize to mobilize organic P via the release of phosphatases or ➌,➍ supports P-releasing bacteria. The root litter/detritus from the soybean season is mineralized to release
organic P, which increases the organic P pool and can be used by maize in the next season. Figure created with BioRender.com.
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carboxylates inmaize increases by 17%and several genera of actinobacteria were enriched in the rhi-
zosphere. The abundance of these actinobacteria is positively correlated with carboxylate concentra-
tions, suggesting the selection of P-solubilizing microorganisms in the maize rhizosphere that
enhance P uptake [29]. Alternatively, the invested C resources boost mycorrhizal colonization, with
hyphal exudates further supporting P-solubilizing bacteria [30].

Legume-based rotations are highly effective, boosting the yield of the main crop by 20% com-
pared with non-legume cropping systems [11]. The cascading effects that are responsible for P
acquisition in maize–soybean rotations originate during the soybean season. Here, soybean mo-
bilizes fixed mineral P and leaves behind root pores in the soil (Figure 2B). After soybean harvest,
the crop residues, including dead roots, undergo transformation, transitioning into organic P. This
organic P reservoir can be accessed by the subsequent maize crop, facilitated by phosphatases
or P-releasing bacteria [31]. The soil structure is enhanced by the presence of these root pores,
which favor deep root development in the succeeding maize crop (Figure 2B, Steps 1 and 2).
Consequently, increased root exudation by maize serves to mobilize organic P, expanding the
available P pool (Figure 2B, Step 3). This surge in root exudates attract P-solubilizing bacteria
(Figure 2B, Step 4), further enhancing the mobilization of organic P into plant-available forms
(Figure 2B, Step 5). Collectively, these interfaces systematically increase the overall P uptake
within the rotation system (Figure 2B, Step 6).

Application principles of cascading effect to mitigate soil limitations
We propose that the application of cascading effects in diversified cropping systems is a potent
strategy to address soil nutrient deficiencies, alleviate root growth constraints imposed by
compacted soil, and overcome microbial barriers in agroecosystems (Figure 3). To achieve
Trends in Plant Science, November 2024, Vol. 29, No. 11 1195
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Figure 3. Applying the principles of cascading effects of diversified cropping systems to alleviate soil obstacle factors in agroecosystems. Figure created
with BioRender.com.
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these objectives, a deeper understanding of how soil biotic and abiotic stresses impact key inter-
faces, how interspecific interactions influence cascading effects, and how such interactions can
lead to improved nutrient acquisition and defense of the crop is paramount. This knowledge can
significantly advance root and rhizosphere management strategies aimed at mitigating impacts of
soil-related challenges.

Addressing soil nutrient deficiency
Soil nutrient deficiencies often restrict plant growth, with the root interface being the primary concern.
Following the principles of cascading effects in spatial diversification, selecting species with strong
P-mobilizing traits for intercropping alongside species displaying efficient P-acquisition character-
istics (e.g., high specific root length and root morphological plasticity) can substantially enhance
P acquisition in intercropping systems.When facilitated neighbors possess root traits that are com-
patible with species that effectively mobilize sparingly soluble P throughmechanisms such as acid-
ification, carboxylate exudation, or phosphatase release, the facilitation of P uptake in intercrops is
further enhanced [32]. For instance, the interaction between Carex korshinskyi (a P-mobilizing
sedge) and Stipa grandis (a perennial bunchgrass with high root plasticity) illustrates the potential
for enhanced P acquisition. When S. grandis is grown with C. korshinskyi, it exhibits greater root
elongation than other species grown with C. korshinskyi, demonstrating complementarity [33].

In the context of root traits and P acquisition, root morphological traits play a substantial role in the
apparent recovery efficiency of applied P in intercropping systems. Specifically, root morpholog-
ical traits contribute significantly more to the increased P uptake (64%) than root physiological
traits (27%) or microbiome associations (9%) [34]. This underscores the importance of root trait
plasticity in facilitated species for the promotion of P uptake in intercropping systems. Moreover,
genotypic variation within crop species, such as differences in carboxylate exudation, root mass
fraction, specific root length, and colonization by arbuscular mycorrhizal fungi (AMFs), results in
1196 Trends in Plant Science, November 2024, Vol. 29, No. 11
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varying P-acquisition efficiencies [35]. Thus, the choice of plant cultivar in intercropping can sig-
nificantly impact its effectiveness.

An effective approach is to intercrop or rotate crop genotypes known for their strong P-mining ca-
pabilities, including rapid carboxylate and phosphatase exudation or a strong association with
AMFs. This strategy enhances P-acquisition efficiency in diversified cropping systems. Comple-
mentary P uptake can also be achieved by intercropping genotypeswith contrasting root functional
traits associated with P acquisition, such as pairing a genotype with a high root-exudation capacity
with one that exhibits robust rootmorphological responses to P deficiency [36]. However, there are
barriers to the adoption of mixing varieties because of a lack of knowledge of farmers and highly
variable overyielding patterns for different variety mixtures. Revealing the drivers of productivity
and stability of variety mixtures needs further research [37].

Intercropping with legumes is an effective strategy to increase N acquisition in low-N soils. For ex-
ample, root exudates from maize, such as flavonoids, serve as signaling compounds that pro-
mote rhizobial symbiosis with faba bean, increasing nodulation, nodule activity and N2 fixation
[14]. Recent studies have also highlighted the role of rhizosphere bacteria, dependent on maize
root exudates, in driving root–root facilitation of N2 fixation in faba bean [23]. Enhanced N2 fixation
by faba bean increases soil N available to intercroppedmaize and the resulting acidification of the
rhizosphere makes more P available to maize in alkaline soils. The incorporation of legumes into
crop rotations can reduce the need for N fertilizers. This is due to the combined effects of legume
N2 fixation and the return and mineralization of N-rich legume residues, which provide additional
soil N to subsequent crops [16]. For instance, residues from winter cover crops are incorporated
into the soil, enhancing the N-use efficiency and crop yield of subsequent main crops and reduc-
ing the environmental degradation caused by overuse of fertilizers. Cover crop residues with low
lignin content decompose rapidly, stimulating the turnover of residues through interactions with
soil microbial communities [38].

Reducing soil compaction
Soil compaction poses amajor challenge to sustainable agriculture, by limiting root extension and
impeding roots from penetrating hardened soil and reducing water infiltration. This often leads to
an accumulation of ethylene in roots, which acts as a signal, further constraining root growth in
crops such as rice [39]. In the context of cascading effects, the root interface is of paramount im-
portance. Improvement of soil physical properties is crucial, as it allows roots to penetrate soil
pores and enhances their interactions with microorganisms. Cultivation of crops with robust
root-penetrating capabilities can create biopores when their roots decompose, providing a
more favorable environment for subsequent crop root growth. Roots tend to grow in these
biopores, exploiting the path of least resistance [40].

Crops like chicory (Cichorium intybus L.), lucerne (Medicago sativa L.), and sunflower (Helianthus
annuus L.) have thick and deep roots with rapid root growth rates. These crops are used as ef-
fective biotillage cover crops [15]. For instance, cultivating deep-rooting chicory and lucerne
can leave behind soil pores after harvest, subsequently enhancing soil organic carbon levels.
This improvement in soil physical properties benefits the root development and yields of subse-
quent crops such as wheat and soybean [41]. Radish (Raphanus sativus L.), when used in
cover crop mixtures, can increase soil organic carbon stocks and promote root growth of neigh-
boring crops, offering a practical solution to mitigate soil compaction [42].

Intercropping also holds the potential to increase rooting depth for efficient exploration of deep
soil layers and provide yield advantages compared with sole cropping. In scenarios such as
Trends in Plant Science, November 2024, Vol. 29, No. 11 1197
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intercropping of sugar beet and chicory, both of which possess robust and extensive tap root
systems, the deep roots of sugar beet promote early season nutrient uptake while chicory’s
deep roots contribute to later season nutrient uptake [43]. Growing an intercrop between the
wide-spaced rows of cotton is effective to improve the soil environment; soil porosity is increased
when cotton is intercropped with sorghum (Sorghum bicolor), sunn hemp (Crotolaria juncea), or
sesame (Sesamum indicum) (53–58%) [44].

Overcoming microbial obstacles
Continuous monoculture practices often result in the accumulation of pathogens, negatively
impacting the growth and health of subsequent crops. In this context, interactions at the rhizo-
sphere and microbiome interfaces play crucial roles. To address these soil microbial obstacles,
we propose to select species with diverse root exudates that can be intercropped or rotated
with species that are compatible with beneficial microbes. Specific crop species or cultivars mod-
ulate distinct rhizosphere microorganisms through root exudates, influencing soil microbiome
composition and function [45,46]. Crop rotations via the specific effects of different crops growing
in the soil successively can suppress diseases through dilution effects or antagonistic interactions
between beneficial and pathogenic microbiomes [47–49]. For example, cover crops can alter the
composition of root-associated microbiomes, providing protection to subsequent cash-crop
seedlings against pathogens [17]. In a 2-year maize–soybean rotation, fungal communities neg-
atively impact maize yield, while bacterial communities contribute to maize recovery in a 4-year
crop rotation due to changes in plant pathogen communities [50]. Crops from the Brassicaceae
family, such as mustards, release glucosinolates that can suppress soil pathogens. These crops
can be strategically selected for crop rotation or cover cropping to reduce pathogen pressure
[51]. Some cover crops such as forage oats [Avena sativa (L.) Hausskn.] may increase mycorrhi-
zal colonization [52]. Mycorrhizal legacy effects can be harnessed to enhance the functioning of
beneficial microbiomes. Plants from preceding crops can influence the assembly of AMF commu-
nities in subsequent crops through these legacy effects [53].

Intercropping is also an effective strategy to defend against pathogens by planting crop species
known for their defense metabolites [54]. Root exudates of one crop may directly mitigate soil-
borne diseases in another. For instance, root exudates of faba bean can alleviate the impact of
soil-borne diseases in intercropping. In maize/faba bean intercropping, the relative abundance
of rhizobium is increased, while the relative abundance of putative pathogens of intercropped
faba bean is reduced compared with that in soils of faba bean monocultures [55]. Additionally,
intercropping can trigger allelochemical responses in crops, indirectly reducing diseases in the
companion crop. For instance, intercropping of potato onion (Allium cepa L. var. aggregatum)
with tomato (Solanum lycopersicum L.) stimulates the root exudation of taxifolin, a flavonoid
that recruits specific Bacillus sp., inhibiting the growth of the pathogenic fungus Verticillium
dahliae and inducing systemic resistance in tomato plants [56].

Leveraging cascading effects for sustainable agriculture
We propose a systematic procedural framework to apply the principles of cascading effects to
improve sustainable cropping systems, via enhancing crop potential while reducing the need
for excessive agricultural inputs (Figure 4). This approach not only enhances the biological capac-
ity of crops but also promotes ecofriendly agricultural practices. To achieve this, we suggest a
structured approach comprising three key components.

(i) Diversification with targeted traits of crops through trait-based phenotyping and plant–soil
feedback. High-throughput phenotyping of crop shoots and roots, such as RhizoTubes
[57], facilitates the selection of species combinations based on various traits of crops or
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genotypes thereof. These traits encompass root architectural traits (shallow or deep rooted),
morphological traits (thin or thick roots), physiological traits (root exudation), and symbiotic traits
(association with mycorrhizal fungi and beneficial bacteria). Further, we propose to leverage the
concept of plant–soil feedback to design rotation systems [16]. Crop identity, sequence, and
management practices, such as tillage intensity and synthetic input application, can be manip-
ulated to create positive plant–soil feedbacks in diversified cropping systems [58–60]. Building
a comprehensive database on species- or genotype-specific plant–soil feedbacks in soils con-
ditioned by the same or different species (note that this differs from the classical home/away ap-
proach in plant–soil feedback) through experiments and sequencing tools will enable
assessment of how crop identity, sequence, and management affect plant–soil feedback
[61]. For instance, soil microbial communities are compositionally more similar between closely
related plant species, allowing predictions based on species identity and relatedness [62]. This
database will contribute to improved crop rotations and enhanced yield and soil health. How-
ever, soil microbial effects are spatially and temporally variable, which complicates predictions
for the selection of crop species. It is also important to choose market-oriented crop species
for diversified cropping systems and to choose commercial varieties widely used in specific re-
gions to screen for resource-efficient varieties for diversified cropping systems. That will help
farmers get ready access to the newly designed cropping systems.

(ii) Determining limiting soil factors, such as nutrient deficiency, soil compaction, and microbial
obstacles, and quantifying the key interfaces such as root, rhizosphere, and microbiome
through stable isotope labeling, such as [13C]DNA stable-isotope probing (SIP) [63]. This
technique provides insight into crucial interfaces by highlighting interactions between root sys-
tems, the surrounding rhizosphere, and microorganisms. We further need to explore the
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Outstanding questions
What are the signaling molecules
or keystone microbes triggering
the complex plant–soil–microbiome
interactions?

Which species combinations with
positive plant–soil–microbe interactions
with tailored management (temporal and
spatial arrangement, nutrient input) can
moderate soil obstacles?

What are the critical root morphological
and physiological traits of crop species
to target to maximize cascading effects
in diversified cropping systems?

Howcan belowgroundbiotic interactions
at the individual plant level be scaled up
to the population/field level?

What are the barriers to farmers’
adoption of crop diversification?
mechanisms driving plant–soil–microbial cascading effects in crop diversification by identify-
ing keystone microbial species and rhizosphere metabolites using metabolomics and
metagenomics. Advanced molecular microbiology methods enable precise characterization
of soil microbial communities responsible for cascading effects in crop diversification. Tech-
niques like amplicon sequencing and metagenomics sequencing can help to identify key
taxa and metabolites that drive nutrient cycling, disease suppression [50,56], and signaling
molecules that stimulate beneficial bacteria [24,64].

(iii) On the basis of newly designed diversified cropping systems, customized field management
practices can reinforce the key interface of cascading effects in crop diversification. For in-
stance, the introduction of partial co-growth periods between intercropped species allows
temporal complementarity in resource use, reducing competition for nutrients during the
same growth period [65]. Within-field strip rotations enhance rhizosphere interactions at the
root interface [66]. Tailored field-management practices such as localized fertilization and mi-
crobial inoculation in diversified cropping systems are essential for cascading effects to oper-
ate effectively. The tailored field management and selected cropping systems that are efficient
under specific climate conditions and soil types and with highmarket value will help to achieve
objectives such as reduction of agrochemical inputs and enhanced resource-use efficiency,
thereby promoting environmental sustainability while ensuring high-quality food production.

Worldwide adoption of crop diversification remains a huge challenge. For instance, barriers to a
transition to intercropping in Europe are related to many factors including the specific crops,
cropping methods, and geographical regions, and exist at multiple points along the supply chain
[67]. Furthermore, socioeconomic and behavioral drivers impact the adoption of intercropping by
farmers [68]. Realizing the sustainable development of intercropping systems requires cooperation
between researchers, farmers, extension workers, and industry to produce effective intercropping
solutions for practice in various settings.

Concluding remarks and future perspectives
The intricate multi-interface interactions encompassing root–root, root–rhizosphere, rhizosphere–
microbiome, and above- and belowground interfaces drive cascading effects, contributing to in-
creased productivity in diversified agroecosystems. Understanding the mechanisms related to the
signalingmolecules or keystonemicrobes triggering the complex plant–soil–microbiome interactions
would be helpful in further exploring the contributions of plant diversity to plant productivity in
agroecosystems. We suggest that implementing principles of cascading effects in agricultural diver-
sification involves the selection of species combinations for intercropping and crop rotations based
on specific traits of crops or genotypes thereof to systematically manipulate key interfaces. More-
over, the selection of species combinations and tailored management warrants further studies to al-
leviate the soil obstacles. By affecting plant–soil–microbiome interactions such as root growth, these
cascading effects can be harnessed to enhance crop nutrient acquisition, health, and yield. Breeding
genotypes with desirable traits for species combinations that impact the cascading effects in diver-
sified cropping systems needs further research. The systematic approach not only boosts nutrient-
use efficiency and crop yield but also reduces inputs and minimizes nutrient loss. However, how to
up-scale belowground biotic interactions at the individual plant level to the population/field level
where there is inherently greater variation remains a major challenge. Moreover, we suggest that fu-
ture research is focused on better understanding the barriers and uncertainties for farmers and find-
ing ways to encourage them to adopt crop diversification practices (see Outstanding questions).
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