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Concerns surrounding privacy and data protection are a primary contribu-
tor to the hesitation of institutions to adopt new educational technologies.
Addressing these concerns could open the door to accelerated impact, but
current state-of-the-art approaches centred around machine learning are heav-
ily dependent on (personal) data. Privacy-preserving machine learning, in
the form of federated learning, could offer a solution. However, federated
learning has not been investigated in-depth within the context of educational
analytics, and it is therefore unclear what its impact on model performance
is. In this chapter, we compare performance across three different machine
learning architectures (local learning, federated learning, and central learning)
for three distinct prediction use cases (learning outcome, question correctness,
and dropout). We find that federated learning consistently achieves compa-
rable performance to central learning, but also that local learning remains
competitive up to 20 local clients. We introduce FLAME, a novel metric that
assists policymakers in their assessment of the privacy-performance trade-off,
and conclude by discussing preliminary findings from a series of interviews
with stakeholders we are conducting to unearth their views on federated
learning for education.



172 federated learning for educational analytics

9.1 introduction

Driven by the promise of analytics to enable learning environment optimi-
sation, education is now more datafied than ever (Williamson et al., 2020).
The large-scale collection of learner data raises concerns regarding ethics,
privacy, fairness, and trustworthiness (Gardner et al., 2023; van Haastrecht, M.
Brinkhuis, Peichl, et al., 2023). Research tends to focus on the data protection
measures educational institutions should implement to convince learners
that they can be trusted as data fiduciaries (Jones et al., 2020). Examples
of suggested measures concerning data that has already been collected are
limiting the boundaries of access to student data, pseudonymisation and
anonymisation of learner records, and using automated bias mitigation. How-
ever, approaches that assume that personal data has already been collected
fail to address a fundamental question: Did we have to collect the data in the
first place?

It is not trivial to motivate which, if any, educational optimisations would
warrant an intrusion of student privacy. Institutes that hold student privacy
in high regard may be of the opinion that collecting personal learning data is
never warranted (Rubel and Jones, 2016). This puts educational analytics re-
search in an uncomfortable position, as methods and applications commonly
rely heavily on personal data. Machine learning models such as deep neural
networks predicting learning outcomes (Waheed et al., 2020) and transformers
facilitating student knowledge tracing (D. Shin et al., 2021) are deeply depen-
dent on the availability of large amounts of data. On the surface, it seems as
though these data-hungry machine learning models are incompatible with
a policy of preserving student privacy. However, in recent years we have
seen the development of machine learning architectures that promise the
performance of machine learning without the threats to privacy posed by
institute access to personal data.

Privacy-preserving machine learning architectures such as federated learn-
ing (McMahan et al., 2017), where only model parameters are shared with a
centrally coordinating party, offer a promising future direction for educational
analytics. Along with local learning, where nothing is shared, and central
learning, where everything is shared, federated learning is among the major
machine learning architectures to consider from a privacy perspective. We
have recently seen the first studies investigating the promise of federated
learning for educational analytics (Fachola et al., 2023; Guo and Zeng, 2020).
However, to our knowledge, no study has systematically compared local
learning, federated learning, and central learning across different datasets
and use cases. This is a significant gap in the literature when we consider
that privacy-preserving techniques could be the key to giving control back to
students (Ekuban and Domingue, 2023).

In this chapter, we hope to take a first step in systematically investigating the
promise of federated learning for learning analytics, which we term ‘federated
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learning analytics’. We compare the performance of local learning, federated
learning, and central learning across three distinct use cases: learning outcome
prediction, question correctness prediction, and dropout prediction. Our
methodology is geared at answering our main research question:

• RQ: How does the privacy-performance trade-off for machine learning
algorithms manifest itself in different educational analytics use cases?

9.2 background

Preserving the privacy of learners while actively collecting their data has
long been recognised as a major challenge. It is evident that students should
never be considered simply as sources of data, but rather as collaborators
whose learning and development we are trying to serve (Slade and Prinsloo,
2013). However, although the importance of formulating and employing
ethical and privacy principles was recognised early on, privacy concerns
regularly played second fiddle due to the “enthusiasm for the possibilities
offered by learning analytics” (Prinsloo and Slade, 2015). New legislation
surrounding data protection introduced new perspectives. Besides ethical and
privacy concerns, legal concerns began to drive decisions made at educational
institutions. In the educational privacy framework DELICATE (Drachsler
and Greller, 2016), the section on legitimacy contains the question: “Which
data sources do you have already, and are they not enough?” Questions like
these represented a major change of mindset. Researchers and practitioners
recognised that collecting particular types of data is never warranted, and that
“learning analytics is justifiable just to the extent that it does indeed promote
autonomy” (Rubel and Jones, 2016).

Basic organisational and technical controls can help to preserve student
privacy, but it is questionable whether this is sufficient to gain students’ trust.
Prinsloo and Slade (2015) convincingly argue that “the power to harvest,
analyse and exploit data lies completely with the provider,” rather than
the student. The authors outline the importance of transparency towards
students and of giving students the possibility to access and update their own
information. However, the issue with these measures is that they still require
the student to entrust multiple stakeholders with their personal data, keeping
alive the privacy power imbalance between the student and the data fiduciary.

Levelling out the power balance is exactly what decentralised approaches
have attempted to do in recent years, by enabling the sharing of student data in
a way that can enhance both privacy and security within educational systems.
Students thus regain some ownership over their data, helping to restore the
power balance. Yet, using a decentralised architecture also introduces new
challenges. The most prominent of these is how to maintain performant
algorithms when not all data is available in one central data store. A study
of several anonymisation and differential privacy techniques found that in
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a GPA prediction task accuracy could drop from 76% to anywhere between
45-63% (Gursoy et al., 2017). Novel methods such as deep learning and
transformers are notorious for requiring immense datasets to tune their
parameters. How can we continue using these successful machine learning
architectures when we do not have the data they so desperately need in one
central location?

McMahan et al. (2017) introduced the concept of federated learning, where
learning occurs over a federation of users referred to as clients. Rather than
having to share data and parameters, clients train their model on local data
and only share the parameter values of their model with the coordinating
server. By averaging the parameters of all local clients, the resulting global
model obtains better performance than if all local clients operated indepen-
dently. Figure 9.1 visualises the scenarios of local learning, federated learning,
and central learning. A fourth scenario was recently proposed where data
is kept locally and parameters are not shared with a centrally coordinating
server, but rather with other trusted parties via blockchain (Warnat-Herresthal
et al., 2021). This architecture, termed swarm learning, is worth considering
for educational institutions. However, we will not investigate it in detail within
this chapter.
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Figure 9.1: Visualisation of various machine learning architectures (based on (Warnat-
Herresthal et al., 2021)). In the local learning scenario both data and param-
eters remain at the client. Federated learning only shares model parameters,
whereas swarm learning removes the need for a centrally coordinating
server and shares model parameters over blockchain while keeping data
at client nodes. For central learning, both data and parameters are shared
with a centrally coordinating server.

Decentralised machine learning could be the key towards privacy-preserving,
trustworthy educational analytics (Ekuban and Domingue, 2023). Yet, only a
couple of studies have investigated this promising area. Guo and Zeng (2020)
use federated learning in the context of educational data analysis. They con-
sider the task of dropout prediction in the KDD Cup 2015 dataset, achieving
accuracy within a couple of percentage points of the central learning scenario.
However, the authors do not make their code available and do not report
performance metrics other than a single figure showing accuracy progression
over epochs. This concern about their work was voiced by a more recent fed-
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erated learning paper using the KDD Cup 2015 dataset. Fachola et al. (2023)
achieve an accuracy of 81.7% in the case of central learning and show that
using federated learning an accuracy of around 80% can be achieved, even
when data is spread over more than 50 clients. A downside is that the reported
accuracy of 81.7% is only two percentage points higher than the proportion of
dropouts in the dataset of 79.3%. Accuracy is not the right choice of metric for
this dataset. If we want to draw meaningful conclusions about the potential
of federated learning analytics, we need to consider multiple datasets and
performance metrics.

9.3 methodology

This section describes the metrics we used to compare the performance of
different models, the three datasets (OULAD, EdNet, and KDD Cup 2015)
employed in our experiments, and the details of our federated learning
algorithm.

9.3.1 Metrics

Two commonly used metrics to evaluate model performance are accuracy and
F1 score. Accuracy represents the fraction of correctly predicted records. The
F1 score is the harmonic mean of precision p (true positives divided by all
predicted positives) and recall r (true positives divided by all actual positives).
Both metrics should be used with caution when dealing with imbalanced
datasets, as they are influenced heavily by whether the majority class is
appointed as the positive or negative class.

A metric that is less explicitly sensitive to class imbalance is the Area Under
the ROC Curve (AUC). The curve in question is a plot of the true positive rate
(equal to recall) on the y-axis and the false positive rate (false positives divided
by all actual negatives) on the x-axis. The curve is drawn by determining
the true positive rate and the false positive rate at different classification
thresholds, meaning AUC requires the probability estimates of a model for its
calculation. Because AUC is based on probability outputs, rather than the 0-1
classification output, it can provide more fine-grained insight into whether
a model is truly learning to separate positive from negative instances. AUC
does suffer from its own issues, such as that it can be biased towards certain
classifiers.

9.3.2 Datasets

The Open University Learning Analytics Dataset (OULAD) (Kuzilek et al.,
2017), contains demographic data on students and logs of student activity
within a virtual learning environment. The outcome variable of interest is
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Table 9.1: Descriptive statistics of the three datasets we investigate in this chapter:
OULAD, EdNet, and KDD Cup 2015. We additionally indicate state-of-the-
art (SOTA) results for each, where the OULAD metrics are divided into
PF (pass-fail), PW (pass-withdrawn), FD (fail-distinction), and PD (pass-
distinction).

oulad ednet kdd cup 2015

(Waheed et al., 2020) (D. Shin et al., 2021) (W. Feng et al., 2019)

Use case learning outcome question correctness dropout

# Students 32,593 784,309 200,902

# Records 10,655,280 95,293,926 13,545,124

% Pos. class

PF: 31% fail 66% correct 79% dropout

PW: 40% withdrawn

FD: 30% distinction

PD: 20% distinction

SOTA

PF: Acc.=0.845 F1=0.719 Acc.=0.725 F1=0.929

PW: Acc.=0.947 F1=0.943 AUC=0.791 AUC=0.909

FD: Acc.=0.864 F1=0.770

PD: Acc.=0.805 F1=0.749

the result a student achieved for a course, which can be pass, distinction,
fail, or withdrawal. OULAD forms the basis for studies varying from the
creation of predictive models identifying at-risk students (Hlosta et al., 2017)
to the investigation of the role of demographics in virtual learning environ-
ments (Rizvi et al., 2019). We use the work of Waheed et al. (Waheed et al.,
2020) as our baseline for comparison, as the authors provide a detailed de-
scription of the features they use, allowing us to conduct a replication that
closely matches their process. They turn the original classification problem
with four potential outcomes into four separate binary classification tasks
(pass=0 & fail=1, pass=0 & withdrawn=1, fail=0 & distinction=1, pass=0 &
distinction=1). Table 9.1 reports the accuracy and F1 score achieved for each
of these tasks.

EdNet is a knowledge tracing dataset containing data from users of a self-
study platform (Choi, Y. Lee, D. Shin, et al., 2020). Rather than having a single
outcome variable per user, EdNet involves predicting for each completed
multiple-choice question whether a user answered it correctly. The prediction
task of EdNet is temporal in nature, explaining why papers tackling this
dataset tend to employ time-series machine learning models such as trans-
formers (Choi, Y. Lee, J. Cho, et al., 2020). We use the SAINT+ transformer
model (D. Shin et al., 2021) as our baseline for comparison, as this is the
model with the current state-of-the-art performance. The authors use a ver-
sion of EdNet with newer user data that is not publicly available. Yet, since
the prediction task and features are identical, their results can still serve as a
useful benchmark.



9.3 methodology 177

The final dataset we consider was used for the KDD Cup 2015 challenge.
This dataset contains information on student interactions within a Massive
Open Online Course (MOOC) environment. The goal is to predict student
dropout, with a distinguishing characteristic being that 79% of the enrolled
students dropped out. The dataset is thus highly imbalanced, explaining why
KDD Cup 2015 papers tend to focus on reporting AUC and F1 scores, rather
than accuracy (W. Feng et al., 2019; W. Li et al., 2016).

9.3.3 Federated learning

Federated learning was proposed as a communication-efficient way to use
all available data on individual devices to train a global model, without
users having to share their personal data (McMahan et al., 2017). The use
case considered when introducing swarm learning was that of a group of
hospitals working together to create better predictive models for the detection
of illnesses (Warnat-Herresthal et al., 2021) . The sensitivity of health data,
along with the extensive legislation limiting data sharing in medical settings,
provides a clear motivation for the need for a parameter-sharing infrastructure
without a centrally coordinating party. A recent study in the educational field
investigated a transfer learning approach and voiced concerns regarding the
relevance of decentralised approaches for education (Gardner et al., 2023).
Hence, we should ask to what extent decentralised machine learning contexts
appear in educational environments.

Guo and Zeng (2020) and Fachola et al. (2023) envision a network of schools
that are part of a federation sharing model parameters. These schools are part
of the same governing body, but have separate physical locations, possibly
even in different countries. From a legal and privacy perspective, it can then
be worthwhile to employ federated learning to obtain optimal insight into
student behaviour without needing to share student data across schools. The
use case considered in both papers is dropout prediction using the KDD Cup
2015 dataset, meaning each student has a single outcome variable per course.
Federated learning on the level of the classroom or the individual is likely
not realistic here, since the majority of students have fewer than five course
outcomes to train on. For the KDD Cup 2015 dataset we will therefore investi-
gate federated learning performance up to a maximum of 100 local clients,
corresponding to roughly 2,000 students per client. OULAD is comparable to
the KDD Cup 2015 dataset, with the exception that it additionally contains
demographic information. For OULAD we similarly analyse up to 100 local
clients, corresponding to roughly 300 students per client.

For the EdNet setting, where a single student can answer thousands of ques-
tions in their self-study process, federated learning with individual students
as local clients is more realistic. Nevertheless, since single users potentially
have only one answered question within EdNet, it is not algorithmically
practical to have local clients comprising one user. In our experiments, we
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Table 9.2: Comparison of our central learning results to the results of Table 9.1, where
the value between brackets represents the performance difference with
earlier work.

OULAD EdNet KDD Cup 2015

acc . f1 acc . auc f1 auc

PF 0.862 (+0.017) 0.751 (+0.032) 0.720 (-0.005) 0.757 (-0.035) 0.925 (-0.003) 0.881 (-0.028)

PW 0.933 (-0.014) 0.914 (-0.011)

FD 0.893 (+0.029) 0.820 (+0.050)

PD 0.810 (+0.005) 0.199 (-0.551)

will investigate the performance of local and federated learning up to a maxi-
mum of 100 local clients, corresponding to around 100 users per client when
working with a randomly selected subset of 10,000 students.

9.4 results

The Python code used to produce the outcomes of this section and detailed
results per dataset are available on GitHub1. Our federated learning code
adheres to the FedAvg algorithm of McMahan et al. (2017). Central learning
experiments were conducted using the machine learning library scikit-learn
and the gradient boosting libraries XGBoost and CatBoost. We used Pytorch as
the deep learning library for our federated learning algorithm and exclusively
used XGBoost with default settings as our local learning classifier.

9.4.1 Central learning

Table 9.2 presents our central learning results using 10-fold cross-validation
with an 80-20 train-test split. Our best results were achieved using CatBoost
(OULAD and KDD Cup 2015) and XGBoost (EdNet). Table 9.2 shows that we
managed to achieve comparable performance to the current state-of-the-art.

Since Waheed et al. (2020) extensively describe the features they engineered,
we were able to reproduce these features and use them as input for OULAD
classification. For the EdNet prediction task, we created lag features for
previous user question correctness to turn the time series prediction task into
a classification task. This enabled us to utilise the regular machine learning
and gradient boosting libraries we used for OULAD and KDD Cup 2015. For
the KDD Cup 2015 dataset, we designed student activity features similar to
those of OULAD.

1 https://github.com/MaxvanHaastrecht/Federated-Learning-Analytics

https://github.com/MaxvanHaastrecht/Federated-Learning-Analytics
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9.4.2 Local learning and federated learning

For our local and federated learning scenarios, we divided students randomly
over clients. For OULAD federated learning, we used a neural network with
two hidden layers of sizes 30 and 10, a learning rate η of 0.02, a cross-entropy
loss function with the Adam optimiser, the number of communication rounds
R set to 50, the number of local epochs per round E = 2, and a batch size of
64. Figure 9.2 shows that both federated learning and local learning perform
worse than the central learning scenario. However, whereas local learning
accuracy drops significantly as we progress from 10 to 100 local clients,
federated learning accuracy remains roughly constant.
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Figure 9.2: Plot of the bootstrapped mean accuracy for varying numbers of local clients,
showing comparisons of our local learning, federated learning, and central
learning results.

Figure 9.3 summarises the results from our EdNet and KDD Cup 2015

experiments. For KDD Cup 2015, we used the exact same federated learning
settings as with OULAD. For EdNet, we changed the batch size to 128, as
is used in earlier work (Choi, Y. Lee, J. Cho, et al., 2020), and lowered the
number of communication rounds R from 50 to 20. We additionally used
hidden layer sizes of 16 and 8, rather than 30 and 10, since EdNet feature
engineering resulted in fewer input features for the network. Since the EdNet
dataset is comparatively large, it is common practice to work with a random
subset of the dataset in experimental settings such as our federated learning
context (Long et al., 2022; Y. Yang et al., 2021). We work with a random subset
of 10,000 students and indicate the AUC of our best central learning model in
Figure 9.3.
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Figure 9.3: Plot of the bootstrapped mean AUC for varying numbers of local clients,
showing comparisons of our central learning EdNet and KDD Cup 2015

AUC results to local learning and federated learning.

9.4.3 Federated learning analytics metric (FLAME)

Our numerical results provide an indication of the performance of federated
learning compared to local learning and central learning. However, our results
are not directly usable by policymakers in education deciding whether to
opt for a federated learning architecture. Questions remain regarding the
optimal number of local clients in each scenario and how much performance
we are willing to trade off for an improved preservation of privacy. To ease
the decision-making process, we propose the federated learning analytics
metric (FLAME). The idea behind FLAME is to capture the trade-off between
privacy and performance in a single metric, such that comparisons across
scenarios, datasets, and numbers of local clients become more tenable. We
define FLAME as:

FLAME =
1 − 1

K
1 + (pc − p f )

=
privacy gain

1 + performance loss
,

where K is the number of local clients, pc is the central learning performance,
and p f is the federated learning performance. For institutions considering to
move from a central learning architecture to federated learning, pc will be a
known quantity. For institutions that do not have a centralised architecture,
pc can be estimated based on the literature or through simulations. FLAME
is suited to be used for performance metrics ranging between [0,1], such as
accuracy, F1, and AUC. The numerator captures the gain in privacy achieved
by employing an architecture with local clients. The denominator captures
the loss in performance.

Figure 9.4 shows the FLAME values for EdNet and KDD Cup 2015, where
AUC is the relevant performance metric. FLAME values for the local learning
scenario are also shown, which can be calculated by replacing the federated
learning performance in the FLAME formula with local learning performance.
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Taking EdNet as an example, we observe that for federated learning FLAME
peaks at 50 clients, whereas for local learning FLAME peaks at 20 clients.
By more explicitly incorporating the privacy-performance trade-off, FLAME
therefore clarifies differences between algorithms in a way the pure AUC
scores of Figure 9.3 cannot.
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Figure 9.4: FLAME values for EdNet and KDD Cup 2015, where AUC is the perfor-
mance metric. In the case of 50 local clients, AUC loss must be less than
0.0315 to achieve a FLAME higher than 0.95.

9.5 discussion

Our results demonstrate the potential of federated learning to preserve privacy
and performance in educational contexts. For OULAD, we observed that our
federated learning algorithm achieved comparable accuracy to earlier results
for three out of four scenarios considered, even when the number of local
clients was set to 100. For the KDD Cup 2015 dataset, federated learning
matched our best results, again up to 100 local clients. Federated learning
also significantly outperformed local learning for all three datasets. When
dividing data over 100 local clients, the average accuracy gain for OULAD
was 4.32% and the average AUC gains for EdNet and KDD Cup 2015 were
0.1017 and 0.0518, respectively.

Our FLAME values in Figure 9.4 demonstrated that local learning and fed-
erated learning warrant serious consideration in settings where dividing data
over 20 or more clients is realistic. However, the answer to student privacy
concerns can never be purely technological. Federated learning is promising,
but it carries with it additional security risks and questions whether student’s
perceptions of these technologies are as positive as their theoretical benefits.
Yet, given the increasing tensions between the datafication of education and
the privacy concerns of students, privacy-preserving machine learning ar-
chitectures may offer the path of least resistance towards a bright future for
educational analytics.



182 federated learning for educational analytics

Federated learning is perhaps the most commonly used privacy-preserving
machine learning strategy, but certainly not the only one. We did not cover
other paradigms within this chapter, such as split learning (Thapa et al.,
2022), swarm learning (Warnat-Herresthal et al., 2021), and transfer learn-
ing (Gardner et al., 2023). In future work, it will be crucial to compare the
privacy-performance trade-off for various approaches. We should be aware
that in contexts where performance takes precedent, combining strategies
(e.g., federated learning and split learning (Thapa et al., 2022)) might be
the optimal choice, whereas in contexts where privacy is paramount, a local
learning approach that fosters stakeholder trust could provide the perfect fit.
Regardless of the privacy-preserving paradigms considered, insights regard-
ing the privacy-performance trade-off provided by FLAME can serve as a
useful starting point for discussion.

A limitation of our work is that all benchmarking datasets had drawbacks.
OULAD is extensively documented and publicly available, but is comprised
of scenarios with imbalanced classification tasks where the metrics currently
used in the literature (accuracy and F1) are inadequate for thorough compar-
isons of model performance. EdNet is publicly available, but recent work has
relied on a version of the dataset that is not publicly available (D. Shin et al.,
2021), or has worked with subsets of the full dataset that hinder replicabil-
ity (Long et al., 2022; Y. Yang et al., 2021). The KDD Cup 2015 dataset is not
publicly available from a dedicated website, and the most relevant publications
covering this dataset in recent years only report model accuracy (Fachola et al.,
2023; Guo and Zeng, 2020), when this is a highly imbalanced dataset with
79% of students dropping out. These drawbacks are not ideal, but we strongly
believe these datasets offer an accurate representation of currently available
benchmarks. Still, we require better benchmark datasets and accompanying
research in the future.

9.5.1 Interviews with stakeholders

To uncover the views of stakeholders at educational institutions regarding
federated learning, we plan to conduct a follow-up study where we use
a grounded theory approach to analyse the data resulting from a series of
qualitative interviews. The analysis of the first two interviews with educational
technology experts in higher education have been completed at this stage,
and we deem it relevant to report two preliminary findings here.

Firstly, the experts we interviewed pointed out that federated learning
could serve as a stepping stone for educational institutions to move from
experimental situations to wide-scale impact. Interestingly, the two experts
both used the metaphor of a chicken and egg situation, whereby a prerequisite
to scale up an educational innovation is a demonstration of its impact, but
to demonstrate impact you need the data of students that you only get after
you scale up. One of the interviewees put it as follows: “It’s kind of chicken
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and egg situation. To demonstrate that an algorithm can be trusted, you
have to do some kind of analysis, so people can see that it offers advantages
and makes education better. But then you have to be able to start, and if
there is suspicion regarding an innovation then you can never start anything.”
Federated learning could help to perform the required analysis without
immediately having to implement a solution that is not trusted by students.

Secondly, one of the interviewees explained why they consider it worthwhile
to keep developing privacy-preserving machine learning techniques with
regards to the concept of proportionality: “If you have no other option than
central learning, then you can talk all you want about proportionality, but
then you have no choice. If you can use different methods, you can try to find
a balance in privacy risk and usability.” In other words, if we do not keep
developing privacy-preserving machine learning techniques for education,
cases will occur where our only realistic option is central learning. We will
then find ourselves in a situation where we cannot adequately attend to the
proportionality principle which is central to regulations such as GDPR.

9.6 conclusion and future work

With education becoming more datafied than ever, researchers interested in
optimising learning environments are increasingly faced with questions re-
garding ethics, privacy, fairness, and trustworthiness. Decisions to intrude on
student privacy should be taken with the utmost caution. There are legitimate
concerns whether any type of optimisation warrants the collection of sensitive
learner data. Within this context, privacy-preserving machine learning that
respects privacy while maintaining model performance is an intriguing recent
development. However, until now, we lacked rigorous investigations of the
impact of privacy-preserving architectures on educational analytics model
performance.

We compared algorithm performance across three architectures (local learn-
ing, federated learning, central learning) for three different prediction use
cases (learning outcome, question correctness, dropout). In doing so, we
provided a comprehensive image of what can be achieved with privacy-
preserving architectures. We found that even when dividing data over 100

clients, federated learning can compete with state-of-the-art results. A major
finding was that although for 50 or more clients federated learning outper-
formed local learning, differences were often not significant when dividing
data over 20 or fewer clients. This points to the importance of considering local
learning as a privacy-preserving strategy for educational analytics. Future
work will need to extend the investigation of how students, teachers, and
other stakeholders view federated learning, since the relative complexity of
privacy-preserving machine learning may diminish trust. Nevertheless, as
evidenced by the preliminary findings from our interviews with stakeholders,
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the datafication of education combined with the clear wish of students to
preserve privacy signal a promising future for federated learning analytics.


