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INTRODUCTION

You're a hairdresser with a small salon tucked away somewhere in the Swiss country-
side. You have a fixed group of returning customers that you know well, to the point
that you consider them to be trusted friends. One of your elderly customers has just
sent you an e-mail asking if you can help with a document they cannot open for some
reason. You hesitate for a moment, since you're not particularly tech-savvy yourself.
You decide it’s worth a try, manage to open the document, but find that it’s empty.
You click around to see if anything happens. Your computer responds strangely for a
few seconds. Then everything goes back to normal. You conclude that whoever shared
this document with your elderly customer must have made a mistake.

A few days later, the elderly customer drops in for an appointment. You tell them
about your finding, but they seem confused. They haven’t e-mailed you recently. Now
you're the one who’s confused, and you check the e-mail you received. All of a sudden
you notice that the e-mail address looks similar to the customer’s, but is definitely
different. You start to get scared and then the phone rings. It’s the bank. Someone on
the other side of the world has just spent thousands in a casino and your account is
blocked. The money is gone. You have a dejected look on your face and the customer
asks what’s wrong. Nothing, you say.

The contents of
this chapter are
based on: Van
Haastrecht (2021).
Doctoral
Consortium.
European
Conference on
Information
Systems.



INTRODUCTION

Although it may seem dramatised, some version of this story occurs on
a daily basis at small businesses across Europe and the world. Small- and
medium-sized enterprises (SMEs) make up 99% of all companies in the EU
(European Commission, 2016). SMEs are more vulnerable to cyber threats than
larger companies, due to their limited cybersecurity knowledge and resources
(Heidt et al., 2019). This makes them an ideal target for cybercriminals. A
2019 report surveying 2,176 small businesses showed that 66% experienced a
cyberattack in the preceding 12 months (Ponemon Institute, 2019).

The GEIGER project (GEIGER Consortium, 2020) aimed to address the
cybersecurity challenge faced by SMEs by providing a trusted solution for
assessing cybersecurity risk. The work of this dissertation centres around
the activities of the GEIGER project. In this introduction, we will cover why
projects like GEIGER are necessary to solve the cybersecurity challenge SMEs
face, how we approached the process of finding a solution for this challenge,
and what methods we used to find answers to concrete research questions
about this challenge.

1.1 WHY

We established in the previous paragraphs that SMEs tend to lack the cyber-
security knowledge and resources required to deal with the cyber attacks
they regularly face. Given that SMEs comprise 99% of all businesses in the
EU, it is no wonder that the European Commission is intent on helping these
businesses to protect themselves.

However, protecting SMEs against cyber threats is not trivial. Although
cybersecurity is often primarily seen as a technical challenge, it is the human
element that regularly forms the weakest link at SMEs (Shojaifar, Fricker,
and Gwerder, 2020). A project like GEIGER, therefore, should not only offer
technical countermeasures to cyber threats, but should also educate SME
employees to increase cybersecurity awareness. In fact, one could even argue
that having a basic level of awareness about the existence of cyber threats
is a prerequisite for an SME to be motivated to protect themselves. The
GEIGER project attempted to solve this apparent catch-22, where awareness
is a prerequisite for motivation and motivation is a prerequisite for awareness,
by fostering trust.

We know from self-determination theory (SDT) (Deci and Ryan, 1985; Ryan
and Deci, 2000) that the psychological needs of autonomy, competence, and
relatedness are what drive motivation. We realised early on in the GEIGER
project that perceived autonomy and competence were difficult to influence, as
SME:s often do not yet have the cybersecurity knowledge to act independently
and effectively. This leaves perceived relatedness as the primary need which
can be externally influenced.

Consider again the example of the hairdresser in the opening paragraphs
of this introduction. The hairdresser regards their customers to be trusted
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friends. Supposing one of these trusted friends would have followed a training
to become a cybersecurity expert, this friend could then motivate the hair-
dresser to improve the cybersecurity maturity of the salon by appealing to the
connection and mutual trust they have. Training trusted advisors to become
security defenders creates a pathway towards motivating SMEs to become
more secure. The strategy to actively involve trusted security defenders is
unique to the GEIGER project, and we now have a sense of why such an
approach is necessary for a solution to the cybersecurity challenges faced by
SMEs.

Nevertheless, the socio-technical context of SMEs is complex, and training
a trusted security defender is just a small piece in the overall GEIGER puzzle.
Figure 1.1 shows the full ecosystem of the GEIGER project, highlighting both
its social and technical elements. Associations and networks provide informa-
tion to SMEs regarding the GEIGER application. Security defenders act as a
trusted advisor and help SMEs to make a smooth start with installation and
taking the first steps. GEIGER helps SME employees to become more aware
of cybersecurity topics, as well as helping the business to assess and manage
their cybersecurity risks. Cybersecurity tool and service providers contribute
technical countermeasures that SMEs can implement, while Computer Emer-
gency Response Teams (CERTs) provide information on the threat landscape
that can be used to prioritise threats for users and to issue notifications. In
the ideal situation, the SME improves their cybersecurity awareness while
countering technical security risks, with tech-savvy employees potentially
becoming the new generation of security defenders. The SME can thus itself
contribute to making future businesses more secure.

Figure 1.1 gives a sense of the complexity of helping SMEs improve their
cybersecurity. We need to find a balance between a solution that is technically
sound and designed based on rigorous principles, while concurrently ensuring
that users with relatively little knowledge about the topic of cybersecurity
stay motivated and engaged. The frequently conflicting values of rigour
and simplicity in a socio-technical context are characteristic to the class of
wicked problems (Buchanan, 1992; Rittel and Webber, 1973). Rittel and Webber
(1973) provide some further properties of such problems, which include:
“there is no definitive formulation of a wicked problem”, “wicked problems
have no stopping rule”, and “solutions to wicked problems are not true-
or-false, but good-or-bad.” All of these properties apply to our context of
SME cybersecurity risk assessment. There is no definitive way to formulate
and approach SME cybersecurity risk assessment. There is no such thing as
absolute security and, therefore, no stopping rule stating that SMEs have
done all they can to counter cybersecurity threats. Finally, there is not a single
right way to assist SMEs, but rather a whole spectrum of strategies, where
one strategy may focus primarily on the social elements of the socio-technical
system and another may focus primarily on technical elements. Strategies
may be poorly implemented or unsuccessful, but cannot be a priori false. We
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Figure 1.1: The socio-technical ecosystem of the GEIGER project. Used with permission
from the creator of the visualisation, Heini Jarvinen. Source: https://cybe
r-geiger.eu/.
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1.2 HOW

detail the research strategy we use for this dissertation, the how, in the next
section.

1.2 HOW

Our overarching research methodology should be suited to the socio-technical,
complex, and wicked nature of our cybersecurity problem and should accom-
modate the integration of knowledge from several different research fields,
such as cybersecurity and education. Additionally, our methodology needs
to facilitate the active involvement of all stakeholders, including voices from
academia and society. Transdisciplinary research is a research strategy that
addresses our requirements exceptionally well.

Jantsch (1970) originally defined transdisciplinary research as: “the coor-
dination of all disciplines and interdisciplines in the education/innovation
system.” Over time, the concept of transdisciplinarity evolved to explicitly
include societal partners beyond the education system, and to aim at per-
forming societally relevant research through reflexive practice (Lawrence
et al., 2022). Figure 1.2 depicts how transdisciplinary research differs from
traditional strategies such as disciplinary, participatory, and interdisciplinary
research. By crossing both disciplinary and sectoral boundaries, transdisci-
plinary research stimulates the development of integrated knowledge that
benefits both science and society.

Lawrence et al. (2022) outline three phases of the transdisciplinary research
process. The first phase involves framing the research problem, the second
phase involves the co-creation of transferable knowledge by societal and
academic actors, and the third phase aims to integrate and apply the newly
created knowledge. Lawrence et al. (2022) stress that “often the whole se-
quence or individual phases need to be iterated, and the phases often run in
parallel.” This is another reminder that wicked, complex problems call for
solutions that are themselves rather complex. An issue that arises with the
transdisciplinary research process is that although it helps to describe how
we will tackle our overarching research problem, it gives minimal guidance
on the exact research questions that should be answered and the research
methods that could be used.

To bridge the gap between the why and the how, we use the engineering
cycle of Wieringa (2014). In design science, the cyclic process of design gener-
ally includes phases of problem framing, design, and evaluation. Wieringa
refers to these phases as problem investigation, treatment design, and treat-
ment validation. However, Wieringa extends the design cycle with a fourth
phase of treatment implementation: “the application of the treatment to the
original problem context.” Where design science research projects are gener-
ally concerned with the first three phases, our work in the GEIGER project
had the express intent of applying the designed solution within the original
problem context. The engineering cycle therefore offers a better fit to our re-
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Goal, shared knowledge
Discipline
Stakeholder participants
Academic knowledge
Conventional knowledge

Thematic umbrella

DISCIPLINARY

o Within one academic discipline

o Disciplinary goal setting

o Development of new
disciplinary knowledge

MULTIDISCIPLINARY

o Multiple disciplines

o Multiple disciplinary goal
setting under one thematic
umbrella

PARTICIPATORY

o Academic and non-academic
participants

+ Knowledge exchange without
integration

INTERDISCIPLINARY

o Crosses disciplinary
boundaries

o Development of integrated
knowledge

TRANSDISCIPLINARY

o Crosses disciplinary and
sectorial boundaries

o Common goal setting

o Develops integrated knowledge
for science and society

Figure 1.2: Comparison of transdisciplinary research to more traditional research

strategies. This visualisation is based on Morton et al. (2015) and Tress et al.
(2005), with a difference being that we consider participatory research to

involve stakeholder participants.
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Table 1.1: The four parts of this dissertation, with the corresponding phases of the
transdisciplinary research process and the engineering cycle indicated.

PART TRANSDISCIPLINARY RESEARCH PROCESS PHASE ENGINEERING CYCLE PHASE

I Problem framing Problem investigation

I Co-creation Treatment design
i Co-creation & integration and application Treatment validation
v Integration and application Treatment implementation

search project than the design cycle, and the treatment implementation phase
aligns well with the integration and application phase of the transdisciplinary
research process.

Perhaps most importantly, Wieringa’s engineering cycle suggests concrete
knowledge questions and design problems that are paired to each phase in
the cycle. During the first phase of problem investigation, Wieringa suggests
to address knowledge questions regarding the involved stakeholders, the
conceptual problem framework, and the phenomena that arise in the problem
setting. A research method suggested by Wieringa for the problem investi-
gation phase is a survey, or systematic review. The second phase, treatment
design, involves specifying requirements, surveying available treatments, and
designing new treatments. In the GEIGER setting, this involves collecting user
requirements from SMEs and incorporating these requirements into a newly
designed cybersecurity risk assessment application. The treatment design
phase, therefore, involves research methods centred around collaborative
design together with stakeholders and use case experiments to demonstrate
the viability of developed artefacts.

The third phase of the engineering cycle concerns treatment validation.
Wieringa suggests to address the knowledge questions of this phase, regarding
whether our new designs produce the intended effects, using action research
methods supplemented with techniques to infer information from data, such
as grounded theory. In the fourth and final phase of treatment implementation,
we aim to answer questions concerning the implemented artefact, such as
to what extent the artefact contributes to stakeholder goals. In the GEIGER
setting, this could involve questionnaires aimed at SME users, but could also
involve interviews with educational technology experts regarding the ability
of a solution like GEIGER to contribute to the educational experience of SMEs.
Table 1.1 provides an overview of how the different parts of this dissertation
correspond to the phases of the engineering cycle and the transdisciplinary
research process.

Figure 1.3 visualises the connection between the transdisciplinary research
process and the engineering cycle, and connects the topics of our chapters
to the respective phases of both. The research methods used in the chapters
are informed by the research methods suggested by Wieringa for the various
phases of the engineering cycle. We additionally show how we gradually

7
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included knowledge from different scientific disciplines and non-academic
stakeholders to evolve from a simple interdisciplinary setting to a true trans-
disciplinary project.

Ch. 2 Developing a systematic
review methodology using case
studies

Ch. 3 A systematic review of
cybersecurity metrics literature

Ch. 4 Designing a cybersecurity
application for SMEs based on
behavioural theory

ICh. 5 Experimental demonstration of|
a shared cyber threat intelligence
solution for SMEs

Figure 1.3: A visualisation of our research process. We combine the transdisciplinary
process described by Lawrence et al. (2022) and the engineering cycle of
Wieringa (2014). An overview of the different phases of the transdisciplinary
research process and the engineering cycle is provided in Table 1.1.

Recall that the transdisciplinary research process and the engineering cycle
emphasise that there is no true end to the research process, just as there is no
stopping rule for wicked problems. Rather, a first cycle of the research process
generates new ideas and hypotheses for the next cycle. In our concluding
Chapter 10, we will reflect on possibilities for future research cycles. For now,
we will turn our attention to the methods we intend to use to find answers
to concrete research questions regarding the challenge of using a technology-
enhanced learning (TEL) solution to educate and assess SMEs on the topic of
cybersecurity.

1.3 WHAT

Inspired by the goals of the GEIGER project, the main research question of
this dissertation is:
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How can transdisciplinary research inform the design and validation of
technology-enhanced learning solutions?

In the following paragraphs, we will cover the various sub-questions that
are addressed in the chapters of this dissertation. The chapters and questions
are ordered using the phases of the transdisciplinary research process and the
engineering cycle.

PART I  of this dissertation covers the problem investigation phase of the
engineering cycle, and consists of Chapter 2 and Chapter 3.

CHAPTER 2 addresses the question: What are the elements of an accessible
and swift systematic review methodology? We begin our research with the
problem framing phase of the transdisciplinary process and the problem
investigation phase of the engineering cycle. Systematic literature reviews
are commonly used to create an overview of existing literature in a specific
research domain. However, systematic reviews are time-intensive affairs and
traditional approaches that rely purely on database searches regularly leave
out grey literature such as technical reports. In a field such as cybersecurity,
where reports from industry are a common source of knowledge, traditional
systematic review methodologies can thus be problematic. This provided the
motivation to develop a novel systematic review methodology, SYMBALS,
that incorporates active learning innovations to speed up the process and a
snowballing phase to better cover grey literature. We use two case studies to
demonstrate the effectiveness of this method.

CHAPTER 3 addresses the question: How can SME cybersecurity be mea-
sured? Using our novel systematic review methodology SYMBALS, we con-
duct a systematic review of cybersecurity metrics literature, to gain insight
into how cybersecurity indicators are measured in the complex socio-technical
context of SMEs. This chapter is part of the problem framing and problem
investigation phases, as it helps to answer questions regarding the conceptual
framework that we can employ in the design phase that follows. The key
artefact produced is a socio-technical cybersecurity framework for SMEs that
contains insights relevant to practice.

PART II  of this dissertation covers the treatment design phase of the en-
gineering cycle, and consists of Chapter 4 and Chapter 5. We combine our
insights from the problem investigation phase with elicited user requirements,
to design a relevant solution with a rigorous foundation.

CHAPTER 4 addresses the question: How should an SME cybersecurity
application be designed to motivate users? This chapter therefore moves from
the introductory problem framing and investigation phases to the phases
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related to co-creation and design. Through a collaborative design research
approach, we design a first version of our cybersecurity application based
on insights from behavioural theories. The presented design is the result
of an iterative process of eliciting SME user requirements and feedback to
inform design improvements. We contribute to societal knowledge in two
ways. Firstly, through the direct interaction with SME stakeholders in the
GEIGER project. Secondly, via the dissemination of our cybersecurity risk
assessment application to the broader public, the resulting artefact contributes
to our understanding of how ideas from behavioural theories can be used to
guide design choices.

CHAPTER 5 addresses the question: How can cyber threat intelligence be
incorporated in an SME cybersecurity application? In collaboration with the
Romanian CERT, we develop a shared cyber threat intelligence platform,
and demonstrate the ability of the GEIGER application to turn advanced
cyber threat intelligence into actionable suggestions for SMEs. The research
performed in this chapter can be described as technical action research, which
Wieringa (2014) defines as “the use of an artefact prototype in a real-world
problem to help a client and to learn from this.” The artefact prototype is our
threat intelligence platform, and the client is the SME user. Key contributions
are a detailed process description of how threat intelligence can be turned
into actionable insights, and a bolstering of societal knowledge through the
co-creation of the platform with industry partners.

PART III  of this dissertation covers the treatment validation phase of the
engineering cycle, and consists of Chapter 6, Chapter 7, and Chapter 8. Besides
shifting the focus from design to validation, this part of the dissertation
additionally shifts from a narrow, context-specific view used to design an
educational cybersecurity application for SMEs (GEIGER), to a broad view
used to develop a validation framework for TEL more generally. GEIGER is
an example of a TEL application, where analytics regarding SME employee
performance in various cybersecurity learning activities are used to inform
an eventual SME cybsercurity risk assessment. To holistically validate the
GEIGER solution, we thus need a holistic validation framework for TEL
solutions. Part III aims to develop such a framework.

CHAPTER 6 addresses the question: Which criteria are essential to a holistic
validation strategy for an educational application? Chapter 6 moves us into
the treatment validation phase, where we ask questions about how we can
assess the effectiveness of our designed artefact. In terms of the transdis-
ciplinary research process, we are balancing between the co-creation and
integration phases. We are both in the process of co-creating knowledge about
our designed artefact and reflecting on what is required to create impact in
science and society with our final solution. In this chapter, we theorise about
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the epistemological basis required for validity considerations in learning an-
alytics. By conducting a systematic review of learning analytics validation
approaches, we create an overview of how existing validity criteria are used in
a Learning Analytics Validation Assistant (LAVA), which can aid researchers
in developing holistic validation strategies.

CHAPTER 7 addresses the question: How are validity criteria applied in
TEL research? This chapter is part of the same engineering cycle and trans-
disciplinary research process phases as Chapter 6, and can be considered
an extension of that work. We conduct a systematic literature review using
SYMBALS, to uncover which validity criteria are considered in TEL research,
which methods are used to gain insight into these criteria, and whether they
are on average assessed positively or negatively. By comparing validity criteria
definitions and usage over time, we create a picture of the validity criteria
landscape, which can inform future holistic validation frameworks.

CHAPTER 8 addresses the question: How can e-assessment solutions be val-
idated comprehensively and practically? We employ a multi-grounded action
research (Goldkuhl, Cronholm, and Lind, 2020; Karlsson and Agerfalk, 2007)
approach to develop a validation framework for e-assessment solutions such
as GEIGER. Multi-grounded action research contains elements of grounded
theory and action research, and is therefore suited to the treatment validation
phase of the engineering cycle and to transdisciplinary theorising. As with the
previous two chapters, the research of this chapter sits in the balance of the
co-creation and integration phases of the transdisciplinary process. Since our
validation framework is developed with repeated, active input from project
partners, it not only contributes to the scientific literature, but also introduces
societal stakeholders to valuable insights concerning validation strategies.

PART 1V  of this dissertation covers the treatment implementation phase of
the engineering cycle, and consists of Chapter 9. We reflect on the question of
what happens after a validated solution is implemented in practice. In our
concluding Chapter 10, we look ahead to which research hypotheses could be
addressed in a next iteration of our engineering cycle.

CHAPTER 9 addresses the question: How does the privacy-performance
trade-off manifest itself in educational analytics? We conduct technical experi-
ments to demonstrate the potential of privacy-preserving machine learning in
an educational analytics context. Through the preliminary results of a series of
interviews with educational technology experts, we reflect on the viability of
introducing advanced machine learning techniques into educational contexts.
This mixed-methods study brings to light several conditions for a successful
implementation of an educational innovation such as the GEIGER application,
and can therefore be considered as part of the treatment implementation phase

11
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Table 1.2: An overview of the main research question and sub-questions addressed
in this dissertation. We indicate how the individual studies relate to the
transdisciplinary process and the engineering cycle. Additionally, we specify
the artefacts resulting from our studies.

CH. RESEARCH QUESTION PROCESS CYCLE ARTEFACT
Main  How can transdisciplinary research - -

inform the design and validation of
technology-enhanced learning solu-
tions?

2 RQ Ch. 2 What are the elements of an Problem framing Problem investigation SYMBALS
accessible and swift systematic review
methodology?

3 RQ Ch. 3 How can SME cybersecurity Problem framing Problem investigation Socio-technical cybersecu-
be measured? rity framework

4 RQ Ch. 4 How should an SME cyberse- Co-creation Treatment design SME cybersecurity algo-
curity application be designed to moti- rithm
vate users?

5 RQ Ch. 5 How can cyber threat intel- Co-creation Treatment design Cyber threat intelligence
ligence be incorporated in an SME cy- platform
bersecurity application?

6 RQ Ch. 6 Which criteria are essential Co-creation, integra- Treatment validation LAVA
to a holistic validation strategy for an tion and application
educational application?

7 RQ Ch. 7 How are validity criteria ap- Co-creation, integra- Treatment validation Validity criteria landscape
plied in technology-enhanced learning tion and application
research?

8 RQ Ch. 8 How can e-assessment so- Co-creation, integra- Treatment validation VAST
lutions be validated comprehensively tion and application
and practically?

9 RQ Ch. 9 How does the privacy- Integration and appli- Treatment implemen- FLAME

performance trade-off manifest itself
in educational analytics?

cation

tation

of the engineering cycle and the integration phase of the transdisciplinary

process.

CHAPTER 10

, finally, reflects on the findings of the previous chapters.
Using the insights we gained, we consider the possibilities for future research
cycle iterations. Table 1.2 summarises the research questions of this disser-
tation, indicating their positions in the transdisciplinary research process
and the engineering cycle. Not every individual chapter explicitly contributes
knowledge to science and society, but the sum of all individual parts possesses
the clear characteristics of a transdisciplinary research project. In Chapter 10,
we will discuss whether our transdisciplinary approach has been successful
in tackling our wicked problem.
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Ch. 9 Investigating federated
learning for educational analytics
using experiments and interviews

Ch. 8 Developing a validation

Ch. 2 Developing a systematic
review methodology using case
studies

framework using multi-grounded 4
action research

Ch. 7 Understanding the validity | Ch. 3 A systematic review of
CHliiE (EREREERE [DizE ey 3 cybe;rsecurity metrics literature
enhanced learning

Ch. 6 Building a case for 2 Ch. 4 Designing a cybersecurity
trustworthiness in validation using a application for SMEs based on
review and epistemological analysis

behavioural theory

Ch. 5 Experimental demonstration of
a shared cyber threat intelligence
solution for SMEs






SYMBALS: A SYSTEMATIC REVIEW METHODOLOGY

Research output has grown significantly in recent years, often making it diffi-
cult to see the forest for the trees. Systematic reviews are the natural scientific
tool to provide clarity in these situations. However, they are protracted pro-
cesses that require expertise to execute. These are problematic characteristics
in a constantly changing environment. To solve these challenges, we introduce
an innovative systematic review methodology: SYMBALS. SYMBALS blends
the traditional method of backward snowballing with the machine learning
method of active learning. We applied our methodology in a case study,
demonstrating its ability to swiftly yield broad research coverage. We proved
the validity of our method using a replication study, where SYMBALS was
shown to accelerate title and abstract screening by a factor of 6. Additionally,
four benchmarking experiments demonstrated the ability of our methodology
to outperform the state-of-the-art systematic review methodology FAST?.

The contents of
this chapter are
based on: van
Haastrecht,
Sarhan,

Yigit Ozkan, et al.
(2021).
SYMBALS: A
systematic review
methodology
blending active
learning and
snowballing.
Frontiers in
research metrics
and analytics.
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2.1 INTRODUCTION

Both the number of publishing scientists and the number of publications
are constantly growing (Ware and Mabe, 2015). The natural scientific tool to
provide clarity in these situations is the systematic review (Glass, 1976), which
has spread from its origins in medicine to become prevalent in a wide number
of research areas (Petticrew, 2001). Systematic reviews offer a structured and
clear path to work from a body of research to an understanding of its findings
and implications (Gough et al., 2017; Higgins et al., 2019). Systematic reviews
are ubiquitous in today’s research. A search in the Scopus abstract database
for the phrase ‘systematic review’ yields more than 45,000 results for the year
2020 alone.

Nevertheless, systematic reviews have shortcomings. They are particularly
protracted processes (Borah et al., 2017, O’Connor et al., 2019), that often
require an impractical level of expertise to execute (Zhang and Ali Babar,
2013). These issues have been recognised for decades (Petticrew, 2001), but
not solved. This hampers our ability as researchers to apply this potent tool
in times where change is ceaseless and sweeping.

However, with recent advances in machine learning and active learning,
new avenues for systematic review methodologies have appeared (Marshall
and Wallace, 2019). This is not to say that these techniques make traditional
systematic review techniques obsolete. Methodologies employing automation
techniques based on machine learning are often found to omit around 5% of
relevant papers (Gates et al., 2019; Yu, Kraft, et al., 2018; Yu and Menzies, 2019).
Additionally, usability and accessibility of automation tools is a common issue
(Gates et al., 2019; Harrison et al., 2020) and many researchers do not trust
machine learning methods enough to fully rely on them for systematic reviews
(O’Connor et al., 2019).

Therefore, in this chapter, we argue for the combination of the proven
method of backward snowballing (Wohlin, 2014) with novel additions based
on machine learning techniques (van de Schoot et al., 2021). This yields
SYMBALS: a SYstematic review Methodology Blending Active Learning and
Snowballing. The challenges faced by systematic review methodologies moti-
vate the research question of this chapter:

* RQ: How can active learning and snowballing be combined to create an
accessible and swift systematic review methodology?

The remainder of this chapter is structured as follows. In Section 2.2, we
cover related work on systematic review methodologies and active learning
techniques for systematic reviews. In Section 2.3, we introduce SYMBALS,
our innovative systematic review methodology. We explain each step of the
methodology in detail. Section 2.4 evaluates and demonstrates the effec-
tiveness of our methodology using two case studies: a full application of
SYMBALS 2.4.1 and a benchmarking study 2.4.2. In Section 2.5, we discuss
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the implications of the case studies and the limitations of our research. Finally,
we conclude and present ideas for future research in Section 2.6.

2.2 RELATED WORK
2.2.1  Systematic review methodologies

From its origins (Glass, 1976) and main application in the field of medicine,
the use of systematic reviews has spread across the research community
(Petticrew, 2001). In the area of information systems, the use of this tool was
limited only two decades ago (Webster and Watson, 2002). Yet, systematic
reviews are ubiquitous in the field now.

Software engineering is a field of research that has been specifically active
in propelling systematic review practice. Since the first push for Evidence-
Based Software Engineering (EBSE, (Kitchenham, Dyba, et al., 2004)), many
contributions to systematic review practice have been made. Learning from
applying the process in their domain (Brereton et al., 2007), clear guidelines
for performing systematic reviews were developed (Kitchenham and Charters,
2007). These guidelines have been implemented and new methodologies have
been developed and formalised. An example is the snowballing methodology
(Wohlin, 2014).

Hybrid strategies have emerged which combine results from abstract
databases with snowballing (Mourdo, Kalinowski, et al., 2017; Mour&o, Pi-
mentel, et al., 2020), as well as those that suggest automating certain steps of
the systematic review process with machine learning techniques (Osborne et
al.,, 2019). The use of systematic reviews in software engineering has matured
to a stage where even tertiary studies - reviews of reviews - are common
(Kitchenham, Pretorius, et al., 2010). These studies focus on issues such as
orientation towards practice (F. Q. B. da Silva et al., 2011), quality evaluation
(Khan et al., 2019), and time investment (Zhang and Ali Babar, 2013). Tertiary
studies give insight into what constitutes a high-quality systematic review.
We used these insights in constructing our methodology.

Even with all of the developments in systematic review methodologies,
challenges remain. At the heart of these challenges lie the tradeoffs between
automation and completeness and between automation and usability. Ap-
proaches using automation techniques to speed up the systematic review
process generally miss approximately 5% of the relevant papers that would
have otherwise been found (Gates et al., 2019; Yu, Kraft, et al., 2018; Yu and
Menzies, 2019). Additionally, many automation tools for systematic reviews
still suffer from usability issues. Some tools are evaluated as hard to use
(Gates et al., 2019), while others are not suitable due to limited accessibility
(Harrison et al., 2020).

The usability issues are certainly solvable. Certain automation tools already
offer a good user experience (Harrison et al., 2020) and some are making their
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code available open-source (van de Schoot et al., 2021), making these tools
increasingly accessible and transparent. The concerns regarding complete-
ness remain. However, we should be aware that the metric used to assess
completeness - the percentage of the total relevant papers found using an
automated process (Gates et al., 2019) - is quite strict. The metric assumes
that the complete set of relevant papers were found in the original review,
meaning the automated method can at best perform equally well.

With SYMBALS we advocate for the adoption of usable and accessible
automation tools, specifically those facilitating active learning for title and
abstract screening. By combining automation with backward snowballing,
we hope to address the completeness concerns that are still prevalent in
many fully automated methods. Given the relative novelty and complexity
of active learning techniques, we opt to provide further explanation and
contextualisation of active learning in Section 2.2.2.

2.2.2  Active learning for systematic reviews

Active learning is a machine learning method whereby a learning algorithm
chooses the most relevant data points to learn from. The key concept motivat-
ing this approach is that the algorithm will perform better with fewer training
samples if it can guide the learning process towards the most informative sam-
ples (Settles, 2012). This makes it very well suited to be applied in the title and
abstract screening phase of systematic reviews, where researchers often start
with a large set of papers and prefer to not perform the full time-consuming
task manually (Yu, Kraft, et al., 2018).

Active learning for title and abstract screening works as follows. Researchers
construct a dataset of potentially relevant research, with at least a title and
abstract for each paper. Researchers should then define an initiation process
and an appropriate stopping criterion for the active learning algorithm. The
exact initiation process will differ, but the initial sample provided to the
algorithm should contain at least one relevant and one irrelevant paper for
the algorithm to learn from. At the same time, the sample should be relatively
small compared to the complete set of papers, as there is no time advantage
in this phase of the process.

After the algorithm has learned from the initial samples, it will present
the researchers with the most informative paper first (Yu and Menzies, 2019).
The researcher indicates whether the paper is relevant or irrelevant and the
algorithm uses this input to retrain. The key challenge is to balance exploration
and exploitation. The algorithm should learn to distinguish relevant from
irrelevant papers as quickly as possible (exploration) while presenting the
researchers with as many relevant papers as possible (exploitation). Active
learning techniques have been shown to significantly reduce the time spent
on title and abstract screening (Miwa et al., 2014), while minimally affecting
the total number of relevant papers found (Yu, Kraft, et al., 2018). Using active
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learning for title and abstract screening can intuitively be characterised as
“researcher-in-the-loop” (van de Schoot et al., 2021) machine learning. Figure
2.1 depicts the active learning process using Business Process Model and

Notation (BPMN).
e o Start active Set model Provide initial Assess presente
! leaming process parameters sample paper

Construct ttle
and abstract
datset
Get modk Select 0! & s
cevvvvod] Load dataset etimene (Re)irain model he.ccliodt Store decisions
parameters relevant paper
De

ons
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No—1 stored

Figure 2.1: The active learning for title and abstract screening process, depicted using
BPMN. One can clearly see why this process is characterised as “researcher-
in-the-loop” (van de Schoot et al., 2021) machine learning.

In an evaluation of 15 software tools that support the screening of titles and
abstracts (Harrison et al., 2020), Abstrackr (Wallace et al., 2012), Covidence
(Babineau, 2014), and Rayyan (Ouzzani et al., 2016) emerged as the tools that
scored best. FASTREAD (Yu, Kraft, et al., 2018) and ASReview (van de Schoot
et al., 2021) are two additional tools incorporating active learning that have
recently been introduced.

The first research using active learning techniques to supplement system-
atic reviews is beginning to appear. For the steps of ‘identify research’ and
‘select studies’ (Kitchenham, Budgen, et al., 2015), some suggest using active
learning on database results as the sole method (Yu and Menzies, 2019). This
yields a fast approach, as seen with the FASTREAD (Yu, Kraft, et al., 2018)
and FAST? (Yu and Menzies, 2019) methodologies. However, these methods
sacrifice a degree of completeness to manual screening (Gates et al., 2019),
which itself can omit up to 30% of the relevant papers that could have been
found by additionally using other techniques than database search (Mouréao,
Kalinowski, et al., 2017, Mourao, Pimentel, et al., 2020).

Approaches relying solely on database search also have no way of incor-
porating grey literature. Grey literature is research that does not originate
from traditional academic publishing sources, such as technical reports and
dissertations. This issue could be solved by searching for grey literature before
screening (Rios et al., 2020), although this requires the researchers to know
where to find relevant grey sources. The issues relating to the completeness of
the review can be solved by incorporating a backward snowballing phase after
database searching and screening (Mourdo, Kalinowski, et al., 2017; Mouréo,
Pimentel, et al., 2020), which is exactly what we suggest to do in our approach.
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Table 2.1: Overview of systematic review methodologies discussed in Section 2.2, the
methods they use, and the properties they possess.

Methods Properties

RESEARCH DB SEARCH AUTOMATION SNOWBALLING ACCESSIBLE SWIFT

SYMBALS

Miwa et al. (2014)

Wohlin (2014)

Ros et al. (2017)

Mourdo, Kalinowski, et al. (2017)
Yu, Barik, et al. (2018)

Yu and Menzies (2019)

Mourdo, Pimentel, et al. (2020)

XX X NNAX ([N
X X X XAXAX I[N

ASCRNNNRNEN
ECEXSEENEN
CRRAX Ax &[N

Rios et al. (2020)

Active learning is not the only machine learning approach used to automate
systematic reviews. Some researchers have suggested using natural language
processing techniques to aid database search (Marcos-Pablos and Garcia-
Penalvo, 2020; Osborne et al., 2019), while others prefer to use reinforcement
learning in title and abstract screening, rather than active learning (Ros et al.,
2017). However, with the prevalence of active learning systematic review tools
(Harrison et al., 2020), active learning is at this point the most approachable
machine learning method for systematic reviews, with the clearest benefits
coming in the title and abstract screening phase (van de Schoot et al., 2021).
By incorporating active learning, SYMBALS expedites the systematic review
process while remaining accessible.

Table 2.1 provides an overview of the discussed papers that present a
systematic review methodology. Methodologies that include automation tech-
niques will generally be swifter, but accessibility can suffer. These methodolo-
gies can be less accessible due to their reliance on techniques and tooling that
is not freely and publicly available, as is the case for the reinforcement learn-
ing approach of Ros et al. (2017). Additionally, since many researchers still
do not fully trust automation techniques for systematic reviews (O’Connor
et al., 2019), methodologies using these techniques are less accessible in the
sense of being less approachable. One way to solve this issue is to incorporate
trusted systematic reviews methods such as snowballing, as we propose to
do with SYMBALS. Table 2.1 shows that a methodology that manages to be
both accessible and swift is unique. Therefore, if SYMBALS manages to foster
accessibility and swiftness, it has the potential to be of added value to the
research community.
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2.3 SYMBALS

In this chapter, we introduce SYMBALS: a SYstematic review Methodology
Blending Active Learning and Snowballing. Figure 2.2 presents our methodol-
ogy. Focusing on the planning and conducting phases of a systematic review
(Kitchenham and Charters, 2007), SYMBALS complements existing review
elements with active learning and snowballing steps. The following sections
outline the steps that together constitute SYMBALS.

2.3.1  Develop and evaluate protocol

Any systematic review is instigated from a motivation and a need for the
review (Wohlin, Runeson, et al., 2012). These lead to the formulation of
research questions and the design of a systematic review protocol (Kitchenham
and Charters, 2007). A protocol for SYMBALS should contain the following
items:

* Background, rationale, and objectives of the systematic review.
* Research questions the systematic review aims to answer.

* Search strategy to be used.

Selection criteria to be applied.

Selection procedure to be followed.
¢ Data extraction, management, and synthesis strategy.

¢ Validation method(s) used to validate the procedure and the results.

Quality assessment checklists and procedures (Kitchenham and Charters,
2007) are vital to include if one plans to apply a quality assessment step.
However, it is recognised that this is not a necessary phase in all systematic re-
views (Brereton et al., 2007). Additional items that can potentially be included
in a protocol are the risks of bias in the primary studies and the review itself
(Moher et al., 2015), as well as a project timetable and dissemination strategy
(Kitchenham and Charters, 2007; Wohlin, Runeson, et al., 2012).

For researchers in the field of information systems and other comparable
fields, it is important to be aware of two potential roadblocks to implementing
our methodology. Firstly, not all databases are designed to support system-
atic reviews (Brereton et al., 2007), meaning researchers may need to apply
different search criteria in different sources. Secondly, abstracts in the infor-
mation systems field are often of a quality that is too poor to be relied upon
when applying selection criteria (Brereton et al., 2007). This problem can be
circumvented by additionally inspecting the conclusions of these papers, and
we have not found this issue to extensively impact the effectiveness of the
active learning phase of SYMBALS.
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Figure 2.2: SYMBALS, our proposed systematic review methodology. The method-
ology consists of the SYMBALS core (dashed box), supplemented with
elements of the stages of planning and conducting a review (Kitchenham
and Charters, 2007).
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2.3.2  Database search

Once researchers are content with their search string selection, they can start
with the database search step of SYMBALS. Techniques exist to aid researchers
in formulating their search query (Marcos-Pablos and Garcia-Pefialvo, 2018),
even involving machine learning methods (Marcos-Pablos and Garcia-Pefialvo,
2020). We highly recommend researchers consult these methods to help in
swiftly constructing a suitable search string.

The advantage of SYMBALS is that the search string does not need to be
perfect. Not all databases offer the same search capabilities (P. Singh and
K. Singh, 2017), meaning that complex, tailor-made search queries are often
not reproducible across databases (Mourao, Kalinowski, et al., 2017). By using
active learning, the impact of including papers that should not have been
included is minimised. Concurrently, backward snowballing limits the impact
of excluding papers that should have been included. By facilitating the use of
a broad search query, SYMBALS is accessible for researchers without extensive
experience in the field being considered. This is not only a benefit to junior
researchers and students but also to researchers looking to map findings from
other areas to their field of interest.

Different databases are relevant in different disciplines, and the set of
relevant databases is bound to change over time. This is the reason that we
do not recommend a fixed set of databases for our approach. Nevertheless, a
few points are worth noting regarding the choice of database. Generally, there
is a consensus of which databases are relevant to a particular field (Brereton
et al., 2007; Kitchenham and Charters, 2007), and research has shown which
databases are suitable for systematic reviews (Gusenbauer and Haddaway,
2020). Additionally, researchers should be aware of the required data of the
active learning tool they intend to use for screening.

2.3.3 Screening using active learning

In the active learning phase, we recommend using existing and freely accessi-
ble active learning tools that are aimed at assisting title and abstract screening
for systematic reviews. Researchers can consult tool evaluations (Harrison
et al., 2020) to decide for themselves which tool they prefer to use. Although
even the tools specifically aimed at automating systematic reviews suffer from
a lack of trust by researchers (O’Connor et al., 2019), we believe that initiatives
such as those to make code available open-source (van de Schoot et al., 2021)
will solve many of the trust issues in the near future.

It is difficult to choose an appropriate active learning stopping criterion
(Yu and Menzies, 2019). Some tools choose to stop automatically when the
algorithm classifies none of the remaining papers as relevant (Wallace et
al., 2012). Although this accommodates reproducibility, it is generally not
acceptable for researchers to have no control over when they are done with
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their screening process. Commonly used stopping criteria are to stop after
evaluating # irrelevant papers in a row or after having evaluated a fixed
number of papers (Ros et al., 2017). The simplicity of these stopping criteria
is pleasant, but these criteria are currently not considered best practice (Yu
and Menzies, 2019).

Of particular interest are those criteria that are based on an estimate of the
total number of relevant papers in the starting set (Cormack and Grossman,
2016). Let N be the total number of papers and R the number of relevant
papers. In general, R is not known. To estimate R we can evaluate papers
until we have marked r papers as relevant. Let i denote the number of papers
that are marked as irrelevant at this stage. We can then estimate R as:

R~ N x L (2.1)
r+i

A potential stopping criterion is then to stop once a predefined percentage
p of the estimated number of relevant papers R has been marked relevant.
This criterion solves the issues that the earlier criteria faced. Implementations
of this approach that are more mathematically grounded exist (Cormack and
Grossman, 2016; Yu and Menzies, 2019), and we encourage researchers to
investigate those methods to decide on their preference.

2.3.4 Backward snowballing

There are systematic review methods that move straight to the quality as-
sessment stage after applying active learning (Yu and Menzies, 2019). In
SYMBALS we choose to blend active learning and backward snowballing.
This allows researchers to complement their set of relevant papers with addi-
tional sources. There are three main classes of relevant papers that may not
be included at this stage. The first is the group of relevant papers included
in the set that was automatically excluded in the active learning phase. An
appropriately defined stopping criterion should keep this set relatively small.
Additionally, there are relevant papers that do not satisfy the search query
used. Last, and certainly not least, is the group of relevant papers that are not
present in the databases considered. This will mostly be grey literature and,
from our experience, relatively old research.

Altogether these groups form the motivation to include a snowballing step,
and it has been shown that this step has the potential to add many relevant
papers, even after a database search (Mourdo, Pimentel, et al., 2020). Addi-
tional relevant research can be identified from the reference lists (backward
snowballing) and citations (forward snowballing) of included papers (Wohlin,
2014). After constructing an initial set of relevant inclusions and defining a
stopping criterion, the backward snowballing procedure begins. In SYMBALS,
the set of inclusions to consider is the set originating from the active learning
process. This set will generally be much larger than the initiating set of a
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regular snowballing procedure (Wohlin, 2014). This makes it vital to define
a suitable stopping criterion, to prevent the backward snowballing process
from taking up too much time.

Figure 2.3 depicts the backward snowballing procedure in our setting.
The procedure differs from the traditional backward snowballing procedure
(Wohlin, 2014) due to the large set of inclusions that already exist in our
process from the active learning phase. This also implies the stopping criterion
for backward snowballing has to differ from traditional stopping criteria
(Wohlin, 2014). One could consider stopping after evaluating n irrelevant
references or papers in a row. We recommend stopping when in the last N,
references, the number of new relevant additions r; is less than some constant
C, given that the number of snowballed papers s is at least S. For example, if
our set of inclusions contains 100 papers, we may set the minimum number
of papers to snowball to S = 10. Once 10 papers have been snowballed, we
stop when the last N, = 100 references contained less than C = 5 additions
to our inclusions.

Papers e n ining? Include?

ey Detne St backand
incl lu sic n criterion snowhalling

Stopping criterion?

inclusion

SYMBALS Backw:

Figure 2.3: The backward snowballing process in the SYMBALS setting, depicted using
BPMN. Although our process clearly differs from the traditional backward
snowballing process, the diagram is undeniably similar to conventional
snowballing diagrams (Wohlin, 2014).

Although both backward snowballing and forward snowballing can be
potentially relevant, we argue to only apply backward snowballing in SYM-
BALS. Given that grey literature and older papers will generally constitute
the largest group of relevant papers not yet included, it is more apt to inspect
references than citations. Forward snowballing is well suited to updating
systematic reviews (Wohlin, Mendes, et al., 2020), but, as we show in Section
2.4.1.7, SYMBALS can also be used to update a systematic review.

2.3.5 Quality assessment

From the core of SYMBALS, we now move back to traditional stages in
systematic review methodologies. It is common to apply a quality assessment
procedure to the research included after the completion of title and abstract
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screening (Kitchenham and Charters, 2007). It is certainly not a mandatory
step in a systematic review (Brereton et al., 2007), nor is it a mandatory step.

Based on criteria for good practice (Kitchenham, S. L. Pfleeger, et al., 2002),
the software engineering field outlines four main aspects of quality assessment:
reporting, rigour, credibility, and relevance (Dyba and Dingseyr, 2008). We
believe these aspects to be broadly applicable. According to the specific needs
of a systematic review, quality criteria can be formulated based on the four
main aspects (Y. Zhou et al., 2015).

No universally accepted quality assessment methodology exists (Zhang
and Ali Babar, 2013). Automation of quality assessment is generally not
even discussed. This highlights that there are possibilities to improve current
quality assessment practice with machine learning techniques.

2.3.6  Data extraction and synthesis

Researchers should design data extraction and collection forms (Kitchen-
ham and Charters, 2007) based on the research questions formulated during
protocol development. These forms have the express purpose of helping to
answer the research questions at hand but can also facilitate verifiability of the
procedure. A well-designed data extraction form can even be made publicly
available in conjunction with a publication (Morrison et al., 2018), to stimulate
further research based on the results.

Data synthesis involves either qualitatively or quantitatively summarising
the included primary studies (Kitchenham and Charters, 2007). Quantitative
data synthesis, or meta-analysis, is especially useful if the extracted data is
homogeneous across the included primary studies (Wohlin, Runeson, et al.,
2012). Homogeneity can be promoted through a well-defined data extraction
form. When performing a meta-analysis, researchers should be careful to
evaluate and address the potential for bias in the primary studies (Wohlin,
Runeson, et al., 2012), as this can threaten the validity of the results. It is
recommended to include quality assessment results in the data synthesis
phase, as it can offer additional insights into the results obtained by primary
studies of varying quality.

2.3.7  Validation

The last step in our methodology is validation. Although validation is not
explicitly included in all systematic review methodologies (Kitchenham and
Charters, 2007; Wohlin, Runeson, et al., 2012), its importance is clearly recog-
nised (Brereton et al., 2007; Moher et al., 2015). It is quite common for sys-
tematic reviews to assess the quality of primary studies based on whether
limitations and threats to validity are adequately discussed (Y. Zhou et al,,
2015). We want to promote validation in systematic reviews themselves, which
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is why validation is a separate step in SYMBALS, rather than simply another
reporting item.

There are four main validity categories: construct, internal, external, and
conclusion (X. Zhou et al., 2016). We designed our methodology to counter
threats to validity from all categories. Examples are unclear inclusion and
exclusion criteria (Khan et al., 2019) and a subjective quality assessment (X.
Zhou et al., 2016). Other commonly included elements during validation are
an estimate of coverage of relevant research (Zhang, Babar, et al., 2011) and
an investigation of bias handling in data extraction and synthesis (X. Zhou
et al., 2016).

The swiftness of our methodology allows us to introduce a new validation
method in this chapter: replication. An application of this novel validation
method is presented in Section 2.4.1.7.

2.4 CASE STUDIES

To assess the properties and the validity of our methodology, we performed
two case studies. The first investigates the ability of SYMBALS to accom-
modate both broad coverage and a swift process. The second compares our
methodology to the FAST? (Yu and Menzies, 2019) methodology on four
benchmark datasets. This allows us to evaluate both the effectiveness of our
methodology in an absolute sense (case study 1) and relative to a state-of-the-
art methodology (case study 2).

In both case studies, we used ASReview (van de Schoot et al., 2021) to
perform title and abstract screening using active learning. Besides the fact
that we found this tool to be easy to use, we applaud the commitment of the
developers to open science and welcome their decision to make the codebase
available open-source. Nonetheless, we want to stress that there are many
other potent active learning tools available (Harrison et al., 2020).

As with most tools that support active learning for title and abstract screen-
ing, ASReview offers many options for the model to use (van de Schoot et al.,
2021). We elected to use the default Naive Bayes classifier, with TF-IDF feature
extraction and certainty-based sampling. The authors state that these default
settings produced consistently good results across many datasets (van de
Schoot et al., 2021). Since Naive Bayes is generally considered to be a relatively
simple classifier, and the default feature extraction and sampling settings are
available in most other active learning tools (van de Schoot et al., 2021), using
these default settings facilitates reproducibility of our results.

2.4.1  Case study 1: cybersecurity metric research

The field of cybersecurity needs to deal with a constantly changing cyber
threat landscape. Security practitioners and researchers feel the need to ad-
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dress this challenge by devising security solutions that are by their nature
adaptable (Sengupta et al., 2020; C. Wang and Lu, 2018). This requires a
corresponding adaptivity in cybersecurity research methods, which is why
cybersecurity metric research is an appropriate domain to apply and examine
our approach.

Although research into the measurement of cybersecurity risk has matured
in past decades, it remains an area of fierce debate. Some researchers feel
that quantified security is a weak hypothesis, in the sense that “it lacks
clear tests of its descriptive correctness” (Verendel, 2009). Others feel it is
challenging, yet feasible (S. Pfleeger and Cunningham, 2010). Yet others
conjecture that security risk analysis does not provide value through the
measurement itself, but through the knowledge analysts gain by thinking
about security (Slayton, 2015). Nevertheless, the overwhelming consensus is
that cybersecurity assessment is necessary (Jaquith, 2007).

Reviews are common in the cybersecurity metric field, but they are gener-
ally not systematic reviews. There are exceptions, although most are either
outdated at this stage (Rudolph and Schwarz, 2012; Verendel, 2009), or only
cover a specific area of cybersecurity, such as incident management (Cadena
et al., 2020). In a particularly positive exception in the area of software security
metrics (Morrison et al., 2018), the researchers did not only provide a clear
explanation of their methodology but have also made their results publicly
available and accessible. Still, there is a need for a broad systematic review in
this area, and with this first demonstration and future research, we hope to
build on initial positive steps.

In the interest of brevity, we will only cover those facets and findings of
our application that are of general interest, leaving out specific details of this
implementation.

2.4.1.1  Develop and evaluate protocol

The first step in SYMBALS is to develop and evaluate a systematic review
protocol. Our protocol was constructed by one researcher and evaluated by
two others. Based on existing guidelines on relevant databases (Kitchenham
and Charters, 2007), we selected the sources depicted in Figure 2.4. CiteSeerx
and JSTOR were excluded due to the inability to retrieve large quantities
of research from these sources. The search string selected for the Scopus
database was:

AUTHKEY (( security* OR cyber *)

AND (assess* OR evaluat* OR measur* OR metric+* OR model* OR risk=x
OR scor*))

AND LANGUAGE( english) AND DOCTYPE(ar OR bk OR ch OR cp OR cr OR re

)
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The asterisks denote wildcards. We only considered English language
publications and restricted the search to articles (ar), books (bk), book chapters
(ch), conference papers (cp), conference reviews (cr) and reviews (re).

2.4.1.2 Database search

The Scopus search string did not always translate well to other databases.

This is a known issue (P. Singh and K. Singh, 2017) which we cannot fully

circumvent, although a simpler search string helps to solve this problem.

Other problems we encountered were that ACM Digital Library and IEEE
Xplore limit the number of papers you can reasonably access to 2,000 and that
IEEE Xplore only allows the use of six wildcards in a query. In the end, we
chose to stick with our original query and sources, knowing that the active
learning and snowballing phases would help in solving most of the potential
issues. After cleaning and deduplication, 25,773 papers remained.

Scopus’

ACM & DIGITAL i =
LIBRARY ASReview %

o —

IEEE Xplore” 44 v=

Publ@ed

Figure 2.4: The SYMBALS implementation for the cybersecurity metric research case
study. The database search, screening using active learning, backward
snowballing, and quality assessment steps are shown, with the number of
inclusions at each stage.

2.4.1.3 Screening using active learning

For the active learning phase, we used ASReview (van de Schoot et al., 2021).
We elected to stop evaluating when 20 consecutive papers were marked
irrelevant; a simple criterion similar to criteria used in earlier work (Ros et al.,
2017). Figure 2.4 shows that 1,644 papers remained at the end of the active
learning phase.

2.4.1.4 Backward snowballing

Next, we applied backward snowballing. We copied the evaluation order of
the active learning phase. This is a simple and reproducible strategy, that
we recommend others to follow when applying our methodology. We chose
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Table 2.2: The quality criteria applied to 60 papers during the quality assessment phase.
The most commonly used criteria (Y. Zhou et al., 2015) were assessed for
relevance. The most relevant criteria were reformulated to be suitable for
use in combination with a Likert scale. Statements could be responded to
with strongly disagree (SD), disagree (D), neutral (N), agree (A), or strongly

agree (SA).
ASPECT CRITERION sD D N A SA
There is a clear statement of the research aims. o 4 7 28 21
Reporting There is an adequate description of the research context. o 6 11 17 26
The paper is based on research. o 3 3 16 38
Metrics used in the study are clearly defined. o 10 19 16 15
Rigour Metrics are adequately measured and validated. 1 24 22 8 5
The data analysis is sufficiently rigorous. o 21 17 14 8
Credibility Findings are clearly stated and related to research aims. o 8 19 25 8
Limitations and threats to validity are adequately discussed. 30 18 8 2 2
Relevance The study is of value to research and/or practice. o 9 12 28 11

to stop when 10 consecutive papers contained no additions to our set of
inclusions; a strict but simple criterion. If researchers are looking for an
alternative strategy, we recommend considering a stopping criterion based
on the inclusion rate over the last N, references, where N; is a predefined
constant. An example of such a strategy is given in Section 2.3.4. The backward
snowballing phase left 1,796 included papers.

2.4.1.5 Quality assessment

Given the large number of included papers at this stage, the logical choice was
to apply a quality assessment step. We adapted the most relevant commonly
used quality criteria (Y. Zhou et al., 2015), to be suitable for use in combination
with a Likert scale. Two researchers evaluated 40 papers each, with 20 of those
papers being evaluated by both researchers. Table 2.2 shows the averaged
results, where the scoring of the first researcher was used for the 20 duplicate
papers.

The response to each quality criterion was scored with o, 0.25, 0.5, 0.75 or
1, corresponding to the five possible evaluations. With the sheer size of the
set of inclusions, it was not possible to assess the quality of all papers. One
possible solution to this problem is the following. We split the 60 evaluated
papers into a training set (48 papers) and a test set (12 papers). Each paper
was labelled as having sufficient quality if it obtained a score of at least 6 out
of 9. In the 20 papers that were evaluated by both researchers, there were 5
edge cases where a disagreement occurred. On average, the quality scores
differed by roughly o.7 points. The researchers were almost equally strict in
the evaluation of the papers, with the total sum of all quality scores differing
by just o.25.
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We extended our quality scores with three explanatory features: years
since publication, citation count, and the number of pages. A binary decision
tree was trained on the explanatory features for the 48 training papers and
evaluated on the 12 test papers. The model predicted 11 of the 12 papers
correctly, incorrectly predicting one edge case with a quality score of 6 as
having insufficient quality.

This short demonstration shows that training decision trees on assessed
papers is a viable alternative to other strategies to filter a large set of inclusions.
Commonly used alternatives are to only consider articles or to limit the time
frame of the search. A decision tree trained on actual researcher quality
assessments is an interesting substitute for traditional approaches, although
we wish to stress that it is fully up to researchers using SYMBALS to choose
which approach they apply. Additionally, quality assessment is an optional
phase in SYMBALS, meaning researchers could even choose to not apply this
step.

2.4.1.6  Data extraction and synthesis

After applying the resulting criteria of the decision tree to our inclusions,
the 516 inclusions indicated in Figure 2.4 remained. The set of excluded
papers comprised both research that did not pass the decision tree assessment
and research that had insufficient data for assessment. Figure 2.5 illustrates
the importance of the backward snowballing phase. Of our inclusions, 17%
originated from backward snowballing. Considering only papers from before
2011, this figure jumps to 45%, highlighting the potential weakness of using
only a database search step. Figure 2.5 therefore demonstrates the ability of
SYMBALS to ensure broad coverage over time.

After an initial analysis of our inclusions, we formulated our data extraction
form and used this as a guide to extract the necessary data. We then used
quantitative data synthesis to produce more detailed and insightful results,
aided by the homogeneity of our extracted data. Given that this is a demon-
stration of our methodology, rather than a complete systematic review study,
we leave further analysis and presentation of our detailed results for future
work.

2.4.1.7 Validation

To validate our case study, as well as the methodology itself, we performed a
replication experiment. We extended the existing review with research from
the months following the initial database search, using the same initiation
process and stopping criteria as defined in Sections 2.4.1.3 and 2.4.1.4. The
replication was performed by both the main researcher and a researcher who
was not involved in the initial review. This allowed us to answer the question
of whether SYMBALS contributes to an accessible and swift process.
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Figure 2.5: The absolute number of cybersecurity metric papers per year in the final
inclusion set. We distinguish papers resulting from database search (dark)
from those resulting from backward snowballing (light). For papers from
2010 and earlier, 45% originated from backward snowballing.

The database search procedure uncovered 2,708 papers, of which 222 were
evaluated in the active learning phase. In the backward snowballing phase
the main researcher evaluated 300 references. A common estimate for the
time taken to screen a title-abstract record is a minute (Shemilt et al., 2016).
This aligns with our time spent on the screening phase, which was 4 hours
(222 minutes is 3.7 hours). The average time to scan one reference during
backward snowballing can be expected to be lower than a minute, since a
certain portion of the references will either have been evaluated already or will
be obviously irrelevant (e.g., website links). Our backward snowballing phase
took 3.5 hours, which corresponds to 0.7 minutes per reference. Altogether
the process took 7.5 hours, whereas screening the titles and abstracts of 2,708
papers would have taken over 45 hours. Hence, we were able to speed up the
title and abstract screening phase by a factor of 6.

To address the question of accessibility, we asked a researcher that had not
been involved in the review to also perform the replication experiment. After
2 hours of explanation, the researcher was able to complete the active learning
and snowballing phases, albeit roughly 3 times as slow as the main researcher.
Note that this is still twice as fast as the traditional process. Automatic
exclusion during active learning contributes to this speed. However, given the
relatively short time that was required to explain the methodology, we argue
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that the structure SYMBALS offers is another reason that it accommodates a
swift process.

An additional element that is worth addressing is trust in the active learn-
ing process (O’Connor et al., 2019). One question that hovers over machine
learning techniques is whether their random elements negatively impact re-
producibility. To test this statement for the ASReview tool, we investigated
how the first 100 papers of the active learning phase would change under
different levels of disagreement with the main researcher. Our ASReview pro-
cess starts after presenting 5 prior relevant papers to the tool and evaluating 5
random papers. In our first experiment, we copied all earlier decisions by the
main researcher. This already resulted in small changes to the order in which
papers were recommended. This poses a problem when using our stopping
criterion, as changes in the order can alter the moment at which a researcher
has reached n consecutive irrelevant papers. This is one of the reasons we
recommend using more sophisticated stopping criteria.

The changes in order persisted when for 20% of the papers the initial
evaluation of the main researcher was reversed. In both cases, the changes in
order were minimal for the first 20 papers. This is important, as these papers
will be the first papers considered in the backward snowballing phase. The
replication of the second researcher had an even higher level of disagreement
in the first 100 papers of 37%, which was a natural consequence of differing
experience in the cybersecurity metrics field. Interestingly, even with this level
of disagreement, the first 17 papers did not contain a paper outside of the
first 25 papers of the main researcher. We believe this shows that the process
is robust to inter-rater disagreement, given the correct stopping criterion.

2.4.2 Case study 2: benchmarking

Besides evaluating the performance of our methodology in an absolute sense,
we additionally evaluated its performance compared to an existing state-of-
the-art methodology. We benchmarked the SYMBALS methodology using
datasets (Yu, Barik, et al., 2020) developed for the evaluation of the FAS-
TREAD (Yu, Kraft, et al., 2018) and FAST? (Yu and Menzies, 2019) systematic
review methodologies. The datasets of both inclusions and exclusions were
constructed based on three systematic reviews (Hall et al., 2012; Radjenovié¢
et al., 2013; Wahono, 2007) and one tertiary study (Kitchenham, Pretorius,
et al., 2010).

In our benchmarking, we compare to the results obtained by the FAST?
methodology, since it is an improvement over the FASTREAD methodol-
ogy (Yu and Menzies, 2019). For the three systematic reviews (Hall et al.,
2012; Radjenovi¢ et al., 2013; Wahono, 2007), the authors reconstructed the
datasets based on information from the original papers. For the tertiary study
(Kitchenham, Pretorius, et al., 2010), the dataset was provided by the original
authors of the review. The reason that we chose to compare to FAST? is not
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only because it is a state-of-the-art methodology, but also because the FAST?
datasets were so easily accessible and in a compatible format for SYMBALS.
This was not the case for the other methodologies covered in Table 2.1, such
as Mourao, Kalinowski, et al. (2017) and Mourao, Pimentel, et al. (2020).

SYMBALS and FAST? cannot be fairly compared without first adjusting
the datasets. After a database search, the FAST? method uses active learning
as the sole approach for title and abstract screening. In the FASTREAD and
FAST? papers, the authors make the necessary assumption that the datasets
encompass all relevant papers since these methodologies have no way of
discovering relevant research outside of the original dataset. However, in
research that incorporates snowballing in systematic reviews, it has been
shown that between 15% and 30% of all relevant papers are not included in
the original dataset (Mourdo, Kalinowski, et al., 2017; Mourdo, Pimentel, et al.,
2020). This aligns with our results in the first case study, where 17% of the
inclusions originated from backward snowballing.

To enable a fair comparison of SYMBALS and FAST?, we randomly removed
15% of both the relevant and irrelevant papers in the datasets before initiating
our active learning phase. The removed papers were then considered again
in the backward snowballing phase of SYMBALS. This adjustment allows
our benchmarking study to accurately reflect the actual situation faced by re-
searchers performing systematic reviews. The consequence of this adaptation
is that the recall achieved by the FAST?> methodology is multiplied by a factor
of 0.85.

Both the FASTREAD and FAST? papers address the definition of an initia-
tion process and a stopping criterion. Regarding initiation, two approaches
are posited: ‘patient’ and ‘hasty.” The patient approach generates random
papers and initiates active learning once 5 inclusions are found. The hasty
approach initiates active learning after just 1 inclusion is found. To leave room
for the backward snowballing phase, we used the hasty method for initiation.

Many of the stopping criteria considered in FAST? cannot be applied in
our setting, since they rely on properties of the specific active learning tool
used for the methodology. To ensure a transparent approach, we opted to
stop after 50 consecutive exclusions. This stopping criterion, sourced from
earlier work (Ros et al., 2017), was found to yield the fastest active learning
phase on average in the FAST? paper. This is useful in our setting, as it again
leaves time for the backward snowballing phase.

We conducted the active learning phase of our benchmarking experiments
using the ASReview tool (van de Schoot et al., 2021) that we also used in our
first case study. The results are shown in Figure 2.6. As mentioned before, the
recall achieved by the FAST? methodology was multiplied by a factor of 0.85,
to align with the removal of 15% of the papers.

The FAST? results are linear interpolations of the median results provided
by the authors in their paper. For the later data points, this linear extrapo-
lation represents the actual data with reasonable accuracy. However, for the
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earlier data points, the linear extrapolation overestimates the recall achieved
by FAST2. FAST?, like SYMBALS, takes time to find the first few relevant
papers, due to the nature of the applied initiation process. This observation
is confirmed when examining the graphs presented in the FAST? paper. Al-
though the overestimation of recall in the early phase is not ideal for our
comparison, we are mainly interested in how the methods compare beyond
initiation. We employ the same initiation process as FAST?, meaning differ-
ences in performance during the initiation phase are purely due to random
deviations.
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Figure 2.6: The recall achieved by the FAST? (Yu and Menzies, 2019) and SYMBALS
methodologies, for the four review datasets studied in our benchmarking
case study. For the FAST? method we provide linear interpolations of the
median results. A vertical dotted line indicates the start of the backward
snowballing phase for SYMBALS.

For the three traditional systematic review papers (Hall et al., 2012; Radjen-
ovié et al., 2013; Wahono, 2007), our methodology achieved a higher recall than
FAST?. At the maximum number of reviewed papers, SYMBALS achieved
a 9.6% higher recall for the Wahono dataset (90.3% compared to 80.7%), a
0.4% higher recall for the Hall dataset (83.7% compared to 83.3%), and a 7.6%
higher recall for the Radjenovic dataset (87.5% compared to 79.9%). In all
three of these cases, the active learning phase of SYMBALS performed well,
achieving a recall higher than the recall of FAST? after evaluating the same
number of papers. Nevertheless, in each case, the recall achieved after the
active learning phase was lower than the eventual recall of FAST?.
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The backward snowballing phase of our methodology raised the recall
achieved in the active learning phase by 9.7% for the Wahono dataset, by 1.9%
for the Hall dataset, and by 10.4% for the Radjenovic dataset. At first, these
contributions may seem to be minor. However, as recall increases, further
improving recall becomes increasingly difficult. In light of this observation,
the backward snowballing additions are the key element in ensuring that
SYMBALS outperforms FAST? for the Wahono, Hall, and Radjenovic datasets.
Considering the finding from our first case study that reviewing references
during backward snowballing is faster than screening titles and abstracts
during active learning, SYMBALS achieves a higher recall in less time than
FAST?.

For the tertiary study (Kitchenham, Pretorius, et al., 2010), the performance
of SYMBALS (64% recall) was relatively poor compared to FAST? (82% recall).
Both the active learning phase and the backward snowballing phase underper-
formed compared to the other studies. Regarding the active learning phase,
one explanation could be that the content of the titles and abstracts were not
identifiably different for relevant and irrelevant papers. This is certainly a
plausible scenario given that the tertiary study screens systematic reviews,
which are likely to differ more in their content than regular papers aimed at a
specific topic. This does not explain, however, how FAST? was able to achieve
a high recall. The difference between the performance of ASReview and the
active learning of FAST? is a consequence of algorithmic differences, but these
algorithmic differences were not investigated further.

It is not surprising that backward snowballing is less useful for tertiary stud-
ies, as the systematic reviews that they investigate are less likely to reference
each other. Furthermore, systematic reviews often have many references. The
400 references we evaluated for the tertiary study, came from just 5 papers.
With fewer papers to investigate, the scope of the backward snowballing
phase is narrowed. A final factor that may have influenced results, is that
the authors of the tertiary study explicitly focus on the period between the
1st of January 2004 and the 30th of June 2008. A short timespan restricts the
effectiveness of backward snowballing.

We believe this benchmarking study highlights the areas where our ap-
proach can improve upon existing methodologies. When researchers are
looking to systematically review research over a long period, SYMBALS can
trump state-of-the-art methodologies on their home turf. When researchers
are interested in additionally including grey literature or expect that not all
relevant papers are included in their initial dataset, our methodology offers
further advantages through the inclusion of a backward snowballing step.
When researchers are performing a tertiary study, fully automated methods
such as FAST? may be more appropriate than SYMBALS. Future research
employing and evaluating our methodology will help to further clarify its
strengths and weaknesses.
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2.5 DISCUSSION AND LIMITATIONS

We posed the following research question at the outset of this chapter: How
can active learning and snowballing be combined to create an accessible and
swift systematic review methodology? The review of existing research in
systematic review methodologies and active learning in Section 2.2, combined
with the additional analysis in Sections 2.3.3 and 2.4.1.4, helped us to for-
mulate a methodology inspired and motivated by existing work. Figure 2.2
outlines the resulting proposal. We found that active learning is best suited to
the screening of titles and abstracts and that backward snowballing provides
an ideal supplement. The combination facilitates coverage of relevant (grey)
literature while maintaining a reproducible procedure.

In the case study of Section 2.4.1, 17% of the relevant research would not
have been found without backward snowballing. This figure jumps to 45%
when only considering research from before 2011. We further investigated the
properties of our methodology in Section 2.4.1.7. The fact that a researcher
who was new to the case study review was able to execute our methodology
after just two hours of explanation, shows that it is easily understandable and
accessible. Moreover, SYMBALS was shown to accelerate title and abstract
screening by a factor of 6, proving that it accommodates a swift procedure
through its active learning component.

Section 2.4.2 compared the performance of our approach to the state-of-
the-art systematic review methodology FAST? (Yu and Menzies, 2019). We
found that SYMBALS achieves a 6% higher recall than FAST? on average
when applying the methodologies to systematic reviews. FAST? was found to
outperform SYMBALS for a tertiary study benchmark, pointing to a possible
case where SYMBALS may not be the most suitable methodology.

Our methodology has its limitations. The lack of trust in systematic review
automation technologies (O’Connor et al., 2019) is not fully solved by SYM-
BALS. Active learning methods and tools have matured, but there will still
be researchers who feel uncomfortable when applying them in reviews. This
limits the use of our approach to only those researchers who trust the automa-
tion technologies employed. Likewise, practical limitations exist. Depending
on the exact implementation, researchers will have to have some computer
programming skills. ASReview, for example, requires the installation and use
of the ASReview Python package. The heterogeneity of online databases is
another limitation our methodology cannot fully address, although the fact
that SYMBALS allows researchers to avoid complex search queries partially
counters this issue.

Lastly, we should address potential threats to validity. A handful of re-
searchers evaluated SYMBALS throughout this process. Although their vary-
ing experience levels and areas of expertise allowed us to address questions
of accessibility and reproducibility, we admit that in the future more eval-
uation is desirable. Another potential pitfall is the quality of abstracts in
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fields outside the fields considered in our case studies. There are areas of
research where it is known that abstract quality can be poor (Brereton et al.,
2007). This can potentially harm the effectiveness of active learning in abstract
screening. Altogether, we believe that the benefits of SYMBALS far outweigh
its limitations, which is why we strongly believe it can have a lasting impact
on the systematic review landscape.

2.6 CONCLUSION AND FUTURE RESEARCH

This chapter introduced SYMBALS: a SYstematic review Methodology Blend-
ing Active Learning and Snowballing. Our methodology blends the proven
techniques of active learning and backward snowballing to create an effective
systematic review methodology. A first case study demonstrated the ability of
SYMBALS to expedite the systematic review process, while at the same time
making systematic reviews accessible. We showed that our approach allows
researchers to accelerate title and abstract screening by a factor of 6. The need
for backward snowballing was established through its contribution of 45% to
all inclusions from before 2011. In our benchmarking study we demonstrated
the ability of SYMBALS to outperform state-of-the-art systematic review
methodologies, both in speed and accuracy.

In future research, we hope to further evaluate and validate our method-
ology, including the completion of the full cybersecurity metric review case
study. Another interesting avenue for future research is to investigate which
choices in the selection of active learning tools, classification models, and
stopping criteria are optimal in which scenarios. Optimising SYMBALS in
these areas can certainly benefit researchers performing systematic reviews,
although they should take care to not reduce the reproducibility of their
results.

Finally, we believe that there are promising possibilities for further system-
atic review automation. Machine learning techniques and opportunities exist
for all areas of the systematic review procedure. As these techniques mature,
we will see an increase in their use. Research into how to incorporate these
techniques in systematic review methodologies in a way that harbours trust,
robustness, and reproducibility, is of paramount importance. We hope that
SYMBALS is the next step in the right direction.
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Cybersecurity threats are on the rise, and small- and medium-sized enter-
prises (SMEs) struggle to cope with these developments. To combat threats,
SMEs must first be willing and able to assess their cybersecurity posture.
Cybersecurity risk assessment, generally performed with the help of metrics,
provides the basis for an adequate defence. Significant challenges remain,
however, especially in the complex socio-technical setting of SMEs. Seem-
ingly basic questions, such as how to aggregate metrics and ensure solution
adaptability, are still open to debate. Aggregation and adaptability are vital
topics to SMEs, as they require the assimilation of metrics into actionable
advice adapted to their situation and needs. To address these issues, we
systematically review socio-technical cybersecurity metric research in this
chapter. We analyse aggregation and adaptability considerations and inves-
tigate how current findings apply to the SME situation. To ensure that we
provide valuable insights to researchers and practitioners, we integrate our
results in a novel socio-technical cybersecurity framework geared towards the
needs of SMEs. Our framework allowed us to determine a glaring need for
intuitive, threat-based cybersecurity risk assessment approaches for the least
digitally mature SMEs. In future, we hope our framework will help to offer
SMESs some deserved respite by guiding the design of suitable cybersecurity
assessment solutions.

The contents of
this chapter are
based on: van
Haastrecht,

Yigit Ozkan, et al.
(2021). Respite for
SMEs: A
systematic review
of socio-technical
cybersecurity
metrics. Applied
Sciences. For the
full version
including
appendices, please
consult the
original article.
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3.1 INTRODUCTION

In recent times, we have seen a surge in cyber threats that businesses are
struggling to cope with (Bassett et al., 2021). Additionally, the frequency
with which cybersecurity incidents occur, and the costs associated with them,
are on the rise (Bissell and Lasalle, 2019). Among businesses, small- and
medium-sized enterprises (SMEs) are most vulnerable, due to a shortage of
cybersecurity knowledge and resources (Heidt et al., 2019). The vulnerable
position of SMEs is being exploited, as witnessed by the large proportion of
SMEs that experience cyber incidents (Ponemon Institute, 2019).

In SME cybersecurity, the interplay between the social and the technical
is essential (Malatji, Von Solms, et al., 2019), which is why SMEs are often
studied from a socio-technical systems (STS) perspective (Carias, Arrizabal-
aga, et al., 2020). The view of STS is that joint consideration of social and
technical elements is necessary (Davis et al., 2014). This view has interesting
implications in cybersecurity, where humans are generally found to be the
weakest link (Gratian et al., 2018; Shojaifar, Fricker, and Gwerder, 2020).

Due to their lack of resources (Heidt et al., 2019) and the complex socio-
technical setting they operate in, SMEs struggle to address their cybersecurity
issues autonomously (Benz and Chatterjee, 2020). Before SMEs can begin to
improve their cybersecurity posture, it is vital they first assess their current
situation (Jaquith, 2007). Assessment of cybersecurity posture is achieved
by measuring SME cybersecurity properties, which result in cybersecurity
metrics. Regardless of whether measurement results are deemed relevant by
the SME, the knowledge gained by those involved in the measurement process
is of value (Slayton, 2015). This observation touches once more on the socio-
technical nature of the problem, where furthering human knowledge and
improving the technical cybersecurity posture of an SME go hand-in-hand.

Cybersecurity assessment generally requires the aid of cybersecurity ex-
perts; personnel that SMEs typically do not have (Benz and Chatterjee, 2020;
Shojaifar, Fricker, and Gwerder, 2020). A solution to this issue is to automate
the cybersecurity assessment process where possible (Shojaifar, Fricker, and
Gwerder, 2020). Although automation is a promising approach, the diverse
nature of the SME landscape is often ignored (European DIGITAL SME Al-
liance, 2020; Yigit Ozkan, Spruit, et al., 2019), whereas we know from earlier
research that it is vital for SMEs to have solutions adapted to their context
and needs (Cholez and Girard, 2014; Mijnhardt et al., 2016).

Another issue is that cybersecurity assessment approaches aimed at SMEs
are still scarce (Carias, Arrizabalaga, et al., 2020), explaining why it is not
uncommon to see results from other cybersecurity focus areas being applied
to the SME setting (Benz and Chatterjee, 2020). Systematic literature reviews
are a logical approach to gather knowledge from one focus area, summarise
it, and make it available for use in other focus areas.
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Systematic reviews that address both the social and technical sides of
cybersecurity, already exist (J.-H. Cho et al., 2019; Pendleton et al., 2016).
These reviews identified a need for adaptable solutions (J.-H. Cho et al., 2019),
which we have seen are also craved by SMEs. Additionally, these papers stress
the need for more clarity on how to aggregate security metrics (J.-H. Cho
et al., 2019; Pendleton et al., 2016). Given the lack of resources available at
SMEs, aggregating information into understandable insights is a requirement
for a usable solution (Shojaifar, Fricker, and Gwerder, 2020).

The issue with these systematic reviews is that they offer adaptability and
aggregation as areas for future research, rather than addressing the topics
head-on. Additionally, they do not provide actionable insights for SMEs since
this is not their target audience.

In short, we can conclude that SMEs need (semi-)automated cybersecu-
rity assessment approaches that address their needs for adaptability and
aggregation of information. A systematic review offers the potential to gather
and summarise such information, providing guidelines for designing usable
solutions for SMEs. This motivates the need for a systematic review of cy-
bersecurity metric research, where both the social and technical sides of the
puzzle are acknowledged. This is exactly our aim in this chapter, as we try to
answer the following research questions:

* RQ1: How are cybersecurity metrics aggregated in socio-technical cy-
bersecurity measurement solutions?

* RQ2z: How do aggregation strategies differ in cybersecurity measure-
ment solutions relevant to SMEs and all other solutions?

— RQz2z.1: What are the reasons for these differences?

- RQ2.2: Which aggregation strategies can be used in SME cyberse-
curity measurement solutions, but currently are not?

* RQ3: How do cybersecurity measurement solutions deal with the need
for adaptability?

In Section 3.2, we cover related work from several different perspectives to
provide a basis for our systematic review. Our systematic review methodology
is detailed in Section 3.3, after which we present our results in Section 3.4.

To ensure that the insights we gain on aggregation and adaptability are
captured in an actionable form, we incorporate them in a novel socio-technical
cybersecurity framework geared towards SME needs. Our framework, intro-
duced in Section 3.5, integrates our systematic review results with existing
knowledge to arrive at concise guidelines for what can be expected of various
SME categories.

Section 3.6 focuses on outlining the answers to our research questions, as
well as covering limitations and threats to validity. Finally, we conclude in
Section 3.7, additionally outlining potentially fruitful areas for future research.
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3.2 RELATED WORK

Before covering work relating to our socio-technical cybersecurity metric
setting, we should be clear on our definition of what constitutes a cybersecurity
metric. We make use of the definition of a cyber-system as specified in Refsdal
et al. (2015): “A cyber-system is a system that makes use of a cyberspace.”
Refsdal et al. (2015) define cyberspace as “a collection of interconnected
computerized networks, including services, computer systems, embedded
processors, and controllers, as well as information in storage or transit.”
There is no standard definition of what constitutes a (cyber)security metric
(Pendleton et al., 2016). Borrowing ingredients from earlier definitions, we
define a cybersecurity metric to be any value resulting from the measurement of
security-related properties of a cyber-system (Bohme and Freiling, 2008; Pendleton
et al., 2016; Refsdal et al., 2015).

3.2.1  Socio-technical cybersecurity

Humans are often considered the weakest link in cybersecurity (Martens et al.,
2019). It is vital to recognise the interaction of the social and technical sides of
cyber-systems when modelling and measuring cybersecurity, which is why
the field of STS has played such an important role in cybersecurity metric
research (Gollmann et al., 2015). STS research has uncovered the dangers of
considering social and technical elements separately (Selbst et al., 2019) and
has offered insight into how to avoid these dangers (Davis et al., 2014).

Recognition of the human factor in cybersecurity goes beyond simply
including static human actors. This is where behavioural theories such as
Protection Motivation Theory (PMT) and Self-Determination Theory (SDT)
come in (Menard et al., 2017; Padayachee, 2012). PMT reserves a prominent
role for extrinsic motivators and threat appraisal (Herath and Rao, 2009).
SDT includes extrinsic motivation as a central concept but often focuses on
moving from extrinsic to increasingly internalised motivation (Padayachee,
2012). In the context of SMEs, intrinsic motivation to improve cybersecurity
is often hard to find. However, there are solutions to this problem. Commit-
ting to improving cybersecurity in an organisation can motivate employees
(Padayachee, 2012). From the STS perspective, it is common to distinguish
between metrics that include the real-life threat environment and those that
do not (Gollmann et al., 2015). Threat perception lies at the core of PMT and
is important in security applications using SDT (Menard et al., 2017). Another
solution to promote motivation among SME employees would therefore be to
incorporate the real-life threat environment in our cybersecurity metrics. Later
in this chapter, in Section 3.4, we describe whether this is indeed something
we observe in current research.

We will address the social dimension using the ADKAR model of Hiatt
(2006). This model, originating from change management, considers five
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Table 3.1: Existing cybersecurity metric (systematic) reviews. The research focus area
is shown, with ‘generic’ indicating research without a specific focus area.
We consider social factors to be evaluated when the review covers socio-
technical cybersecurity metrics.

RESEARCH YEAR FOCUS AREA SOCIAL FACTORS
Current chapter 2021 Generic /
Verendel (2009) 2009 Generic X
Rudolph and Schwarz (2012) 2012 Generic X
Pendleton et al. (2016) 2016 Generic /
J.-H. Cho et al. (2019) 2019 Generic ‘/
Husédk, Komarkov4, et al. (2019) 2019 Attack Prediction /
Tannacone and Bridges (2020) 2020 Cyber Defense X
Kordy et al. (2014) 2014 Directed Acyclic Graphs X
Cadena et al. (2020) 2020 Incident Management /
Knowles et al. (2015) 2015 Industrial Control Systems /
Asghar et al. (2019) 2019 Industrial Control Systems /
Eckhart et al. (2019) 2019 Industrial Control Systems X
Jing et al. (2019) 2019 Internet Security X
Sengupta et al. (2020) 2020 Moving Target Defense X
Liang and Xiao (2013) 2013 Network Security X
Ramos et al. (2017) 2017 Network Security /
Cherdantseva et al. (2016) 2016 SCADA Systems /
Morrison et al. (2018) 2018 Software Security X
W. He et al. (2019) 2019 Unknown Vulnerabilities X
Xie et al. (2019) 2019 Wireless Networks X

phases in managing the personal side of change: awareness, desire, knowledge,
ability, and reinforcement. ADKAR has previously been applied in assessing
information security culture within organisations (Da Veiga, 2018). We apply
ADKAR as a means to classify the socio-technical cybersecurity metrics we
encounter. We define a socio-technical cybersecurity metric to be a cybersecurity
metric that requires measuring the outcome(s) of the actions of at least one (simulated)
human actor. We do not address the technical dimension explicitly in this
definition, as the technical dimension is implicit in the term ‘cybersecurity.’
We hypothesise that all socio-technical cybersecurity metrics can be linked to
one or more of the ADKAR categories.

3.2.2  Cybersecurity metric reviews

Systematic reviews are common in cybersecurity metric research. However,
as Table 3.1 shows, they are often narrow in scope. Either the focus area is
narrow, or the research does not consider social factors. The papers that do
cover both social and technical factors, often do so passingly, and without
covering the intricacies and implications of socio-technical interactions.
Some exceptions are comprehensive and cover both social and technical
factors (J.-H. Cho et al., 2019; Pendleton et al., 2016). Interestingly, exactly
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these papers outline that future research should focus on “how to aggregate
and to what extent to aggregate” (Pendleton et al., 2016). Additionally, they
stress the importance of adaptability, meaning by this “the state of being
able to change to work or fit better” (J.-H. Cho et al., 2019). This need for
adaptability has been confirmed by experience from practice (Ray et al., 2020).

We address the acknowledged challenges of aggregation and adaptability
head-on in our systematic review, ensuring that our approach is both dis-
tinct from earlier work and provides a meaningful contribution to the field.
Furthermore, we employ a novel systematic review approach (as outlined in
Section 3.3) and target our analysis to aid SMEs, a group with specific needs
often not considered in earlier work.

3.2.3 Aggregation

In cybersecurity metric research, aggregation strategies vary, although the
importance of proper aggregation is widely recognised (J.-H. Cho et al., 2019;
Pendleton et al., 2016). To discuss different aggregation strategies, we define
a mathematical context with an aggregation strategy S : RZ; — R, where
R> is the set of non-negative real numbers. We define metric value variables
x;, corresponding to metrics i = 1, ...,n. The metric values are assumed to be
non-negative: x; € R>g Vi. We assume that for each metric, a higher metric
value corresponds to lower security, without loss of generality. A negative
relationship between a metric and security is common in the security literature,
as it is often the lack of security, or risk, which is being measured.

A desirable property of a strategy S is that it is responsive to changes in met-
ric values. This is captured by the property of injectivity, where we consider
a strategy S to be injective when for a,b € R>g, a # b, S(a,x1,x2,...,%Xn) #
S(b,x1,x2,...,xn). Injectivity implies that a change in a metric value will al-
ways result in a change of the aggregate, provided all else remains constant. A
stronger requirement would be strict monotonicity of the strategy S. Although
this property could be desirable in the cybersecurity context, we only consider
the less strict injectivity in this chapter.

A common property of averages, which constitute a specific branch of
aggregation, is idempotence. A strategy S is idempotent, when for a € R>,
S(a,a,...,a) = a. When an aggregation strategy S is both injective and idem-
potent, the result of the aggregation always lies between the minimum and
the maximum values of all metrics. Both injectivity and idempotence cap-
ture what we would intuitively expect of an aggregation strategy, as these
are properties satisfied by the Pythagorean means. In this sense, these are
desirable properties in the context of SMEs, where cybersecurity knowledge
is often lacking. To still allow employees to feel competence and relatedness
(Menard et al., 2017) in the complex cybersecurity setting, we should at least
use an aggregation strategy they understand.
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Three additional properties are important in the security context. The
possibility to prioritise certain metrics over others is desirable (Lippmann and
Riordan, 2016). Formally, we consider a strategy to allow for prioritisation
when for any 4,b > 0, a # b, there exists a pair i,j with i # j, such that
S(x1,...,% = a,...,xj= b,...,xn) #S(x1,...,% = b,...,xj= a,...,%n).

Strategies should also be able to accommodate dependencies between
security metrics. However, it is complicated to include metric dependencies,
with some seeing it as “the most challenging task” in aggregation (J.-H. Cho
et al., 2019). For strategies in the set ID of strategies that satisfy the necessary
differentiability properties, we define a strategy S to allow for dependencies,
when there exist distinct metrics 7, j, and k such that:

%S 9°S
ax,‘ax]‘ axiaxk ’

(3.1)

Equation 3.1 captures the idea that a strategy S allows for dependencies
among metrics when it allows for relationships among metrics that are not
proportional to other relationships. For aggregation strategies S ¢ D, we
employ the same verbal definition. Care should be taken to adjust the criterion
of Equation 3.1 appropriately where it cannot be applied directly for the
strategy S.

A last core principle in security is that systems are only as secure as their
weakest link (N. Ferguson and Schneier, 2003). Assuming that we have at least
two distinct values among our metrics, there exists a minimum value x,,;,, and
a maximum value x,4y. Since we assume metrics relate negatively to security,
Xmax corresponds to the weakest link. A strategy S satisfies the weakest link
principle if for any a > 0, S(Xyin + 4, - .., Xmax) < S(Xin, - - -, Xmax + a), and
there exists an a > 0, such that S(X,i, + &, ..., Xmax) < S(Xpmin, -« ) Xmax + ).
Thus, weakening the weakest link has more impact than weakening the
strongest link with an equal amount.

The most common aggregation strategy employed in the literature is the
weighted linear combination (WLC), which can be defined as:

n

Swic(x) =a+ #, a>0,b>0, w; >0Vi. (3.2)

WLC contains the special cases of the weighted sum (@ = 0, b = 1),
the weighted average (¢ = 0, b = )}_w;), and the arithmetic mean (a2 =
0, b = n, w; = 1Vi). WLC strategies are injective, idempotent, and allow for
prioritisation through weighting. However, these strategies do not allow for
dependencies and do not satisfy the weakest link principle.

A related set of strategies are the weighted product (WP) strategies:

n
Swp(x) =a+b-[]x", a>0,b>0, w; € (0,1] Vi. (3.3)
i=1
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Among the WP strategies are the simple product (¢ =0, b =1, w; =1 Vi)
and the geometric mean (1 =0, b =1, w; = % Vi). WP strategies satisfy
the same properties as WLC strategies, except for the idempotence property
which these strategies do not satisfy.

Using the weighted maximum (WM) - Syp(x) = max{w; - xq,..., Wy -
xn}, w; > 0 Vi- metric value as the aggregated value is uncommon in most
disciplines, since this strategy is not injective. However, it is used in the
security field (Lippmann, Riordan, et al., 2012), and is in fact an extreme
case of satisfying the weakest link principle. WM allows for prioritisation,
although the basic maximum function does not.

The complementary product is another aggregation strategy that is uncom-
mon outside of the security field (Lippmann, Riordan, et al., 2012). Let £;,
fori=1,2,...,n, denote the metric value normalised to [0,1). Let w; be the
weight of metric i fori = 1,2,...,n. We define the weighted complementary
product (WCP) class as:

n

Swep(x) =a- (1 ~TJa- ael-)wl'), a>0, w € (0,1] Vi. (3.4)
i=1

The regular complementary product is achieved with a = 1 and w; =1 Vi.
WCP strategies are injective and can satisfy the prioritisation and weakest
link principles, depending on the values of w;.

None of the strategies considered so far consider dependency. Bayesian
networks (BN) are probabilistic graphical models, often of a causal nature,
that are commonly applied in the security field (Kordy et al., 2014). In BN
aggregation strategies, the metric values x; are assumed to originate from
discrete, bounded random variables X;, corresponding to the metrics i =
1,...,n. The conditional dependencies between the random variables, and
with a potential unobserved variable Y, are made explicit. This allows us to
infer the probabilities of different values of Y, based on the metric values
x;. BN strategies are injective, but not idempotent. Although prioritisation is
generally not a goal within these strategies, the prioritisation property will
usually be satisfied. BN strategies accommodate dependencies by their nature,
but will mostly not satisfy the weakest link principle.

The strategy classes presented in Table 3.2 are not exhaustive but do cover
the large majority of all aggregation strategies employed, as we show in
Section 3.4. Two examples of other possibilities are the use of analytic network
process (ANP) techniques (Brozové et al., 2016; Lo and W.-J. Chen, 2012),
which relate to the deterministic equivalent of Bayesian networks, and the
analysis of game-theoretic equilibria (Rass et al., 2017). What is common to
all strategies, is that none satisfy all criteria of Table 3.2, where we should
additionally note that strategies within the classes of weighted maximum
and weighted complementary product cannot satisfy the prioritisation and
weakest link properties at the same time.
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Table 3.2: Various classes of metric aggregation strategies, and important security-
related properties their strategies can possess.

AGGREGATION INJECTIVE IDEMPOTENT PRIORITISATION DEPENDENCE WEAKEST LINK

Weighted linear combination
Weighted product
Weighted maximum

Weighted complementary product

AN NN
X X N x N
AN NENENEN
x NN XX

< X X X X

Bayesian network

3.2.4 Adaptability

Adaptability is crucial to any cybersecurity solution (Evesti and Ovaska, 2013).
Especially when measuring cybersecurity, a rigid solution that does not adapt
to a changing environment or a new use case is far from optimal (Baars et al.,
2016). It is not surprising to see, then, that adaptability is a key focus of many
studies (de las Cuevas et al., 2015; Yigit Ozkan, Spruit, et al., 2019), although
operationalisation of adaptability is still a challenge (Evesti and Ovaska, 2013).

We consider adaptability to be “the state of being able to change to work
or fit better” (J.-H. Cho et al., 2019). This definition outlines two important
dimensions of adaptability. Firstly, a solution is considered adaptable if it can
change to work better. There are several reasons why a cybersecurity metric
solution may not be functioning as it should. This can relate to problems
with the metrics themselves, such as missing or dirty data (W. Kim et al.,
2003). It can also relate to a changing security landscape, that invalidates an
existing model. This phenomenon is known as concept drift (Widmer and
Kubat, 1996). Secondly, a solution is considered adaptable if it can change to
fit better. Generally, cybersecurity solutions in research are made to fit their
use case. We can determine their adaptability in the ‘fitting” dimension by
determining how easily the solution can be deployed at other (similar) use
cases.

Adaptability is significant in the SME context. The SME landscape is diverse
(European DIGITAL SME Alliance, 2020), and SMEs often lack the knowledge
and expertise to perform extensive adaptations independently (Shojaifar,
Fricker, and Gwerder, 2020). In Section 3.6, we assimilate observations from
earlier research and our results of Section 3.4 to provide suggestions for
improving solution adaptability.

3.3 SYSTEMATIC REVIEW METHODOLOGY

We performed a systematic literature review to address our research questions.
To ensure broad coverage of the cybersecurity metrics field, we employed a
novel Systematic Review Methodology Blending Active Learning and Snow-
balling (SYMBALS, (van Haastrecht, Sarhan, Yigit Ozkan, et al., 2021)), which
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combines existing methods into a swift and accessible methodology, while fol-
lowing authoritative systematic review guidelines (Kitchenham and Charters,
2007; Liberati et al., 2009; Moher et al., 2015).

Active learning is one of the cornerstones of the SYMBALS approach. Active
learning is commonly applied in the title and abstract screening phase of
systematic reviews, where researchers start with a large set of papers and
prefer to not screen them all manually (van de Schoot et al., 2021). Active
learning is uniquely suited to this task, as this machine learning method
selects the ideal data points for an algorithm to learn from.

SYMBALS complements active learning with backward snowballing. From
a set of included papers, a researcher can find additional relevant papers by
consulting references (backward snowballing) and citations (forward snow-
balling) (Wohlin, 2014). Snowballing has proven to be a valuable addition to
systematic reviews, even when reviews already include an extensive database
search (Mourdo, Pimentel, et al., 2020). Backward snowballing is especially
useful in uncovering older relevant research. Forward snowballing is not em-
ployed within SYMBALS, based on the observation that databases generally
have excellent coverage of recent peer-reviewed research.

After the development and evaluation of a systematic review protocol for
this research, we commenced with the database search step of SYMBALS.
We retrieved research from abstract databases (Scopus, Web of Science) and
full-text databases (ACM Digital Library, IEEE Xplore, PubMed Central).

The Scopus API was used to retrieve an initial set of relevant research.
Results from other sources were then successively added to this set. The order
in which sources were consulted can be surmised from Table 3.3. The Python
Scopus API wrapper ‘pybliometrics” (Rose and Kitchin, 2019) was used to
retrieve all research available through the Scopus AP]I, that satisfied the query:

AUTHKEY (( security + OR cyber *)
AND (assess* OR evaluat* OR measur* OR metric+ OR model* OR risk=x

OR scor*))
AND LANGUAGE( english) AND DOCTYPE(ar OR bk OR ch OR cp OR cr OR re

)

The “AUTHKEY” field corresponds to the keywords that authors provided
for a paper. Our search query is intentionally broad, as the SYMBALS method-
ology allows us to deal with larger quantities of research, and we aim to
exclude as little relevant research as possible at this stage. We did choose to
only include English language research and document types where extensive
and verifiable motivations for findings can be reported.

Table 3.3 summarises the query results. ACM Digital Library and IEEE
Xplore limit the number of accessible papers to 2,000. This means only the
2,000 most relevant papers from these sources could be considered. Moreover,
IEEE Xplore only allows the use of 6 wildcards in the search query. We
removed the ‘security’ and ‘cyber’” wildcards for the IEEE Xplore search to
comply with this limitation. Any research without an abstract was excluded,
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Table 3.3: Statistics regarding the different databases used in the search procedure.

SOURCE RESULTS UNIQUE

Scopus 21,964 21,964
Web of Science 7,889 1,782

ACM Digital Library 2,000 660
IEEE Xplore 2,000 1,256
PubMed Central 660 111

Total 34,513 25,773

as this is vital to the active learning phase of SYMBALS. This led to a small
set of exclusions from the PubMed Central database. Duplicate removal was
performed based on the research title, although we found that this process
was not perfect, due to different character sets being accepted in different
databases.

Altogether, our dataset resulting from database search comprised 25,773
papers. This exemplifies the broad scope of our research, as the largest initial
set of papers from the reviews in Table 3.1 comprised 4,818 papers (Morrison
et al., 2018).

The set of 25,773 papers is too large to perform data extraction directly.
This is where the active learning phase of SYMBALS comes in. We chose to
use ASReview in this phase, a tool that offers active learning capabilities for
systematic reviews, specifically for the title and abstract screening step (van
de Schoot et al., 2021). Many other active learning tools exist that are worth
considering (Harrison et al., 2020). However, we found ASReview effective
and easy to use, and additionally value the commitment its developers have
made to open science. This shows in, among other things, the codebase that
they made available open-source.

In the ASReview process, as well as in the later review phases, we made
use of the following inclusion and exclusion criteria:

¢ Inclusion criteria:

— I1: The research concerns cybersecurity metrics and discusses how
these metrics can be used to assess the security of a (hypothetical)
cyber-system.

— I2: The research is a review of relevant papers.

¢ Exclusion criteria:
— E1: The research does not concern cyber-systems.

— E2: The research does not describe a concrete path towards calcu-
lating cybersecurity metrics (only applied if 12 is not applicable).

— E3: The research has been retracted.

— E4: There is a more relevant version of the research that is included.
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— E5: The research was automatically excluded due to its assessed
irrelevance by the ASReview tool.

— E6: The research does not satisfy the database query criteria on
language and document type.

— E7: No full-text version of the research can be obtained.
— E8: The research is of insufficient quality.

— Eo: The research does not contain at least one socio-technical cyber-
security metric.

Exclusion criterion E8 relates to the quality assessment phase of SYMBALS,
which is explained below. Criterion Eg requires the consideration of the full
text to be determined, as abstracts do not contain enough information to make
a decision regarding this intricate topic (Brereton et al., 2007). Thus, neither
of these criteria were applied during title and abstract screening.

ASReview requires users to specify prior relevant and irrelevant papers to
train its algorithm. We used five papers as initial indications of relevance to
ASReview (Allodi and Massacci, 2017; ].-H. Cho et al., 2019; Noel and Jajodia,
2014; Spruit and Roling, 2014; Stolfo et al., 2011). These papers were chosen
since they cover diverse topics, were written by different authors at different
times and were published in different journals and conferences. ASReview
additionally provides the option to label a certain number of random papers
before proceeding, assuming that a significant proportion of these papers
will be irrelevant. This provides the algorithm with a balance of relevant and
irrelevant papers for training. We labelled 5 random papers, giving us a total
training set of 10 papers.

The ASReview tool then presents the paper whose classification it deems
most informative to learn from. The tool quickly learns to distinguish between
relevant and irrelevant papers. By presenting the researcher mostly relevant
papers, the process of discovering relevant papers is accelerated.

Although ASReview offers several classifier options, we employed the de-
fault Naive Bayes classifier using term frequency-inverse document frequency
(TE-IDF) feature extraction and certainty-based sampling. The default settings
have been shown to produce consistently good results and are additionally
commonly available in other active learning tools (van de Schoot et al., 2021).
Thus, our decision to use the default settings can be motivated both from a
performance and a reproducibility standpoint.

At some point in the active learning process, mostly irrelevant research
remains. To reduce the time spent on assessing irrelevant research, a stopping
criterion is used (van de Schoot et al., 2021). We stop evaluating research
when the last 20 reviewed papers were considered irrelevant, although more
sophisticated stopping criteria exist that are worth considering (Cormack
and Grossman, 2016). All research that was not evaluated at this stage, was
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Table 3.4: The quality criteria applied to 60 papers during the quality assessment phase.
Possible responses were strongly disagree (SD), disagree (D), neutral (N),
agree (A), or strongly agree (SA).

ASPECT CRITERION sD D N A sA
There is a clear statement of the research aims. o 4 7 28 21
Reporting There is an adequate description of the research context. o 6 11 17 26
The paper is based on research. o 3 3 16 38
Metrics used in the study are clearly defined. o 10 19 16 15
Rigour Metrics are adequately measured and validated. 1 24 22 8 5
The data analysis is sufficiently rigorous. o 21 17 14 8
Credibility Findings are clearly stated and related to research aims. o 8 19 25 8
Limitations and threats to validity are adequately discussed. 30 18 8 2 2
Relevance The study is of value to research and/or practice. o 9 12 28 11

excluded based on exclusion criterion E5. As Figure 3.1 shows, 1,644 papers
remained after the active learning phase.

Screening
Using
Active

Learning

Backward

Database  NOYOURY Snowballing JRELE] e 516 £

1644

Search

Figure 3.1: Visualisation of the SYMBALS steps as applied in our cybersecurity metric
systematic review.

We then proceeded with the backward snowballing phase of SYMBALS.
We followed the ASReview evaluation order in our backward snowballing
procedure. We concluded backward snowballing once 10 consecutive papers
contained no new references satisfying the inclusion criteria. As can be seen
in Figure 3.1, 1,796 papers were contained in our inclusion set after the
completion of this phase.

SYMBALS specifies quality assessment as an optional step, but given the
large number of papers remaining, assessing quality was deemed necessary.
Table 3.4 outlines the quality criteria that were applied. Commonly used
research quality criteria were adapted for use with a Likert scale (Y. Zhou et
al.,, 2015). Statements could be responded to with strongly disagree, disagree,
neutral, agree, or strongly agree. Instead of applying these criteria to all 1,796
inclusions, the two researchers involved in quality assessment evaluated 40
papers, with 20 papers being evaluated by both researchers.

A simple, yet effective, solution to extrapolate these results is to train a
binary decision tree on basic research characteristics, to create a model that can
distinguish research of sufficient quality from research of insufficient quality.
The five Likert scale responses were assigned scores of o (strongly disagree),
0.25 (disagree), 0.5 (neutral), 0.75 (agree), and 1 (strongly agree). Summing the
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quality criteria scores, each paper received a score between o and 9. To make
the problem a binary decision problem, we labelled papers with a score of at
least 6 as having sufficient quality. The height of this threshold determines
how strict the eventual model will be.

Next, we split our set of 60 evaluated papers into a training set of 48 papers
(80%) and a test set of 12 papers (20%). To be able to train a model on this set,
we need explanatory variables which explain the quality scores obtained by
the papers. We opted to use three features: years since publication, citation
count, and the number of pages. The maximum depth of the binary decision
tree was set to 3, meaning at most 3 binary splits are performed before
classifying a paper as having sufficient or insufficient quality. The model was
trained on the 48 training papers and evaluated on the 12 test papers. Despite
- or perhaps because of - the model’s simplicity, 11 of the 12 test papers were
labelled correctly. The only incorrect labelling occurred in an edge case with a
quality score of 6. Similar results were obtained in replications with different
random seeds. Figure 3.1 shows that 516 papers remained after applying the
binary decision tree to our complete inclusion set.

Finally, we applied exclusion criterion Eg using a manual screening process,
to filter out the papers that do not consider the social side of cybersecurity, as
defined in Section 3.5. Figure 3.1 shows that in total 60 papers were included
after our filtering step.

3.4 RESULTS

In this section, we focus on descriptive analysis of aggregate results. In
Sections 3.5 and 3.6, we will dive deeper, to interpret and contextualise the
results.

Figure 3.2 depicts the relative prevalence of each of the five ADKAR factors
over the years. Since 2010, awareness and reinforcement together constituted
over half of the ADKAR considerations. Desire is the element that receives
the least attention in research. Table 3.5 lists the related concepts which we
encountered and mapped to each of the ADKAR terms.

Part of the reason for the prevalence of reinforcement research is that cyber-
security training and education belong to this ADKAR element. Researchers
feel that organisational reinforcement is an important aspect of the social side
of cybersecurity. At the same time, reinforcement can be easier to measure
than other factors, which may offer a partial explanation for its prevalence.
For example, many researchers choose to include a metric of cybersecurity
awareness training (reinforcement), rather than of cybersecurity awareness
itself (awareness).

Various security concepts were assessed in our inclusions, as shown in Table
3.6. Some researchers choose to measure security itself (Bhilare et al., 2008;
You et al., 2015), but this approach is too general for most. Risk was assessed
in two-thirds of all papers. This is interesting, as risk can be seen as having
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Figure 3.2: The consideration of the five ADKAR factors over the years, based on the
60 inclusions of our systematic review.

Table 3.5: The ADKAR factors and the related concepts we encountered which were
associated to each factor.

ADKAR

ABBREVIATION

RELATED CONCEPTS

Awareness
Desire
Knowledge
Ability

Reinforcement

AW
DE
KN
AB
RE

Consciousness

Motivation, loyalty, attendance

Understanding

Behaviour, capability, capacity, experience, skill

Culture, education, evaluation, policy, training
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Table 3.6: The various security assessment concepts discussed in research, with an
indication of the ADKAR elements covered and the aggregation strategies
employed. Each paper should consider at least one ADKAR element. A
paper may not aggregate at all, but could also employ several aggregation
strategies. Reviews were not labelled with a specific assessment concept.

‘ ‘ ADKAR elements Aggregation strategy classes

CONCEPT TOTAL AW DE KN AB RE wLC wr WM wcere BN NONE
Risk 40 24 9 14 19 28 27 10 7 1 4 4
Awareness 5 5 3 4 3 2 3 1 1 o o 2
Maturity 5 o o o o 5 4 o 1 o o o
Resilience 3 3 1 o 1 1 3 o o o o o
Security 2 1 o o o 2 1 o o o o 1
Vulnerability 1 1 o 1 o o 1 o o o o o

a negative connotation, whereas awareness, maturity, and resilience have
positive connotations. This finding conflicts with the general tendency in the
security community to favour SDT approaches over the fear- and threat-based
approaches more associated with PMT (Menard et al., 2017), especially in the
context of organisations (N. Yang et al., 2020).

When analysing the ADKAR factors by assessment concept, the papers
assessing security maturity stand out. These papers place a large focus on the
organisational reinforcement of security and ignore all other ADKAR factors.
This is not a surprising finding. Maturity is generally a concept that requires
an assessment of the organisation, rather than the individuals who make up
this organisation.

Table 3.6 shows that most papers stick to WLC, WP, and WM as aggregation
strategies. It is worth pointing out that not aggregating is a reasonable choice.
If it is not necessary for a particular context, it should be avoided, based on
our conclusion from Table 3.2 that no aggregation method satisfies all ideal
security properties.

Table 3.7 focuses on the actors that were considered from the social view-
point. Almost all papers focus solely on the defender. It is interesting to
see that the desire and ability factors of ADKAR are much more promi-
nent in research including the attacker. We would expect to see more focus
from research on desire, and the related concept of motivation, based on
the important role that motivation and internalisation play in SDT and PMT
(Padayachee, 2012). Desire and motivation are not easily measurable concepts,
but metrics such as ‘attendance at security sessions’ can serve as useful proxies
here (Manifavas et al., 2014).

Nearly all research that considers the attacker perspective considers the
real-life threat environment as specified in Gollmann et al. (2015). In papers
covering the defender, it is quite common to ignore threats entirely (Y. Shin
et al., 2011) or to use a proxy such as the prevalence of vulnerabilities to
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Table 3.7: The different social viewpoints considered in our inclusions.

‘ ‘ ADKAR

SOCIAL VIEWPOINT TOTAL AW DE KN AB RE REAL-LIFE THREAT

Attacker

Defender 52
5

Both

Table 3.8: Different aggregation strategy classes and the situations in which they were

employed.
Classification
AGGREGATION STRATEGY THEORETICAL IMPLEMENTATION REVIEW
WLC 38 1 3
WP 11 o o
WM 8 1 o
wcCp 1 o o
BN 4 o o
None 7 2 1

represent threats (Marconato et al., 2013). This is remarkable given the vital
role that threat perception plays in both SDT and PMT (Menard et al., 2017).

Table 3.8 groups research based on the employed aggregation strategy.
Inclusions were classified into one of three classes: theoretical, implementation,
or review. The research was classified as an implementation if either clear
and described actions were taken based on the implemented method, or the
model was assessed at more than one point in time. This strict requirement
explains why most papers were classed as theoretical.

One immediately notices from Table 3.8 that two of the four implementation
papers do not employ an aggregation strategy. As we discussed in Section
3.2.3 and showed in Table 3.2, aggregation should only be carried out if
deemed necessary. In half of the implementation research of our inclusions,
researchers felt the benefits of aggregation did not outweigh the drawbacks.

We additionally see that most research sticks to WLC and WP strategies,
which do not satisfy the weakest link principle and cannot take into account
dependencies. Researchers prefer simple and explainable strategies, that are
injective or idempotent, over strategies that satisfy more security properties.
Out of our 60 inclusions, 10 used fuzzy logic approaches. Although translating
qualitative statements to fuzzy numbers differentiates these methods from
approaches using crisp numbers, most still use some combination of WLC,
WP, and WM to aggregate (for example, (X. Li et al., 2018; Shameli-Sendi,
Shajari, et al., 2012; Silva et al., 2014)).

Exceptions are Lo and W.-J. Chen (2012) and BroZova et al. (2016), who use
an ANP approach to capture dependencies. Lo and W.-J. Chen (2012), BroZova
et al. (2016) and the four papers using a bayesian network approach (Dantu
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Table 3.9: ADKAR and aggregation strategy frequencies of enterprise research and
other research.

Application area

PROPERTY VALUES ANY ENTERPRISE M/L ENTERPRISE OTHER

AW 9 6 20
DE 3 1 10
ADKAR KN 7 N 0
AB 6 3 16
RE 11 13 15
WLC 13 7 22
WP o 3 8
Aggregation WM 2 2 5
wcr o o 1
BN o 1 3
None 1 4 5

and Kolan, 2005; Dantu, Kolan, and Cangussu, 2009; N. Feng et al., 2014;
Sahinoglu, 2008) are the only papers that consider dependencies between
metrics. Interestingly, all of these papers were published in 2016 or earlier. It is
not immediately clear what the underlying reason is for the current drought
in research considering dependencies, but it is certainly a research area that
deserves more attention.

Table 3.9 provides detailed results regarding the research application area.
Although more enterprise sizes were considered, we only encountered re-
search applicable to medium- and large-sized enterprises, and research appli-
cable to any enterprise size. As with research focused on maturity modelling,
we see a strong focus on the reinforcement factor of ADKAR in enterprise
research, especially for larger enterprises.

In research intended to apply to any enterprise, Table 3.9 shows that WLC
is by far the most popular aggregation strategy class. The only other strategy
class that is used is WM. We believe it is not a coincidence that these are
the only aggregation strategy classes that are both injective and idempotent.
Strategies with these properties are likely to be more intuitive and easy to
understand, as explained in Section 3.2.3. Therefore, it is not surprising that
these strategies are proposed in research addressing all enterprise sizes, since
especially smaller businesses need to be motivated through approachable
solutions.

Regarding adaptability, of the 56 inclusions that were not review papers,
44 do not make any consideration for missing or dirty data. Of the papers
that do consider one or both of these issues, the most common strategy is
to ignore the associated problems. Out of these 56 papers, 46 are not able to
adapt to a security event occurring, mostly since they do not operate in a live
setting, but are formulated as periodic assessments. Even then, most authors
do not cover this topic, and it is certainly not always clear how the security
assessment would be adapted after an incident.
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Concept drift and adaptation to other use cases are also often not con-
sidered. Just four of our inclusions explicitly consider concept drift and no
paper mentions a concrete timeline for when a solution should be updated.
Adaptation to other use cases is discussed in 24 of our inclusions. However,
the majority of these papers only give a rough outline of how the solution
could be adapted. A better practice would be to give concrete guidelines
on how to adapt the solution or to immediately analyse several use cases.
The former approach was not seen in research, whereas the latter was (for
example, (Chan, 2011; M.-K. Chen and S.-C. Wang, 2010; Luh et al., 2020;
Proenca and Borbinha, 2018)).

3.5 SOCIO-TECHNICAL CYBERSECURITY FRAMEWORK FOR SMES

To offer more insight into how we can create effective cybersecurity assessment
solutions for SMEs, we position our results and findings in the STS analysis
framework of Davis et al. (2014). Figure 3.3 shows the view of STS as consisting
of six internal social and technical aspects, within an external environment. We
rename the ‘Buildings/Infrastructure” aspect of Davis et al. (2014) to ‘Assets.’
This ensures that our view is better aligned with standard terminology in
cybersecurity literature. Based on the importance of policies in socio-technical
cybersecurity frameworks (Malatji, Von Solms, et al., 2019), we explicitly
include policies in the ‘Processes/Procedures’ aspect of Davis et al. (2014) and
rename this aspect to ‘Processes.’

The socio-technical system we study is the SME, in the context of cybersecu-
rity. However, the complete set of SMEs is too diverse to consider this group as
a single collective. This is why the European DIGITAL SME Alliance proposes
to use four SME categories, based on the different roles SMEs can play in
the digital ecosystem: start-ups, digitally dependent SMEs, digitally based
SMEs, and digital enablers (European DIGITAL SME Alliance, 2020). The
European DIGITAL SME Alliance specifies these categories in the context of
cybersecurity standardisation, which is intricately related to our cybersecurity
assessment setting, making it a suitable classification.

The European DIGITAL SME Alliance defines start-ups as SMEs where
“security has a low priority.” They “typically neglect (or are not aware of)
requirements” for running a secure business. Digitally dependent SMEs are
companies that depend on digital solutions (as end users) to run their business.
Digitally based SMEs “highly depend on digital solutions for their business
model,” and, finally, digital enablers are SMEs that develop and provide
digital solutions (European DIGITAL SME Alliance, 2020).

Table 3.10 introduces our framework, which synthesises the SME categories
of the European DIGITAL SME Alliance (2020) with the STS aspects of Davis
et al. (2014). Each SME category has different cybersecurity goals based on
their different roles in the digital ecosystem. In Table 3.10, the SME categories
are ordered from least to most mature regarding cybersecurity. We expect the
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Figure 3.3: A socio-technical system embedded within an external environment, based
on Davis et al. (2014).

more mature SME categories to have achieved the goals of less mature SME
categories.

Our framework was constructed based on earlier cybersecurity frameworks
focusing on SMEs (Benz and Chatterjee, 2020; Carias, Borges, et al., 2020;
Cholez and Girard, 2014) or STS (AlHogail, 2015; Da Veiga et al., 2020; Malatji,
Marnewick, et al., 2020; Malatji, Von Solms, et al., 2019; Sittig and H. Singh,
2016). Interestingly, none of these frameworks focused on both SMEs and
STS. To address the singular characteristics of our setting, we additionally
incorporated the findings from our systematic review, as well as principles
for designing cybersecurity maturity models for SMEs (Yigit Ozkan and
Spruit, 2020), in our framework. Our findings appear most prominently in
the “Technology’ aspect, explaining why this column of Table 3.10 contains
relatively few references to earlier work.

Our results relating to the various ADKAR dimensions serve as input for the
‘People” and ‘Culture’ aspects. Start-ups and digitally dependent SMEs should
focus on making their employees aware and providing initial cybersecurity
knowledge to inspire desire and motivation. This can be achieved through
a culture of organisational commitment to cybersecurity (AlHogail, 2015;
Da Veiga et al., 2020). Digitally based SMEs and digital enablers should
progress through the ADKAR phases, with the aid of cybersecurity training,
policy, and assessment. Eventually, employees should mutually reinforce each
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other’s cybersecurity abilities (Da Veiga et al., 2020). The ideal cybersecurity
culture will lead to trust from both the people inside the SME, as well as the
environment outside of the SME (Carias, Borges, et al., 2020; Da Veiga et al.,
2020).

Start-ups and digitally dependent SMEs are often not aware of the existence
of cybersecurity standards (European DIGITAL SME Alliance, 2020). These
SMEs should first become aware and then begin to formulate basic cyber-
security policies, processes, and procedures (Da Veiga et al., 2020; Malatji,
Von Solms, et al., 2019). Digitally based SMEs should have formal processes
in place to reinforce desired cybersecurity behaviour of employees (Malatji,
Von Solms, et al., 2019). Digital enabler SMEs should strive towards continu-
ous process improvement (Cholez and Girard, 2014; Malatji, Von Solms, et al.,
2019), which enables business continuity (Carias, Borges, et al., 2020).

We map the ‘“Technology”’ aspect of STS to the advised cybersecurity assess-
ment approach and tooling for the SME. This is in line with the approach of
Malatji, Von Solms, et al. (2019), who incorporate “cybersecurity tools and
resources” in the “Technology’ aspect of their socio-technical cybersecurity
framework.

Start-ups should understand relevant cybersecurity asset types and digitally
dependent SMEs should begin identifying and documenting assets (Carias,
Borges, et al., 2020). Without an asset inventory or internal cybersecurity
expertise, most risk assessment and maturity model approaches are not
suited to these SMEs. Additionally, they are just beginning to cultivate a
desire among employees to improve cybersecurity. Incorporating the real-
life threat environment (Gollmann et al., 2015) is an attractive option to
promote motivation. Focusing on the real-life threat environment can increase
the feelings of task relevance and significance employees feel, which are
key motivators (Kam et al., 2020). This is why we advise a threat-based
cybersecurity risk assessment approach for start-ups and digitally dependent
SMEs.

In the same vein, we advise to not aggregate scores in cybersecurity assess-
ment solutions for start-ups and digitally dependent SMEs. If aggregation
is deemed necessary, injective and idempotent aggregation strategies should
be used, such as WLC and WM. Strategies that satisfy injectivity and idem-
potence can be seen as intuitive. Using these strategies allows for feelings of
competence and relatedness among employees, which stimulate motivation
(Menard et al., 2017). This puts employees in a position to be a part of the
solution to SME cybersecurity challenges, rather than being the source of the
challenges (Zimmermann and Renaud, 2019).

The combination of simple aggregation and a threat-based approach offers
another benefit: the corresponding assessments do not necessarily require
extensive internal expertise and data. Many of the more complex aggregation
strategies and comprehensive assessment approaches require cybersecurity
experts at the SME to determine parameters and weights. Such resources are
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limited at SMEs (Heidt et al., 2019), and especially at start-ups and digitally
dependent SMEs. This is why assessment approaches for these SMEs should
preferably be largely based on data that can be automatically collected. Threat-
based approaches are ideally suited to this requirement, as general incident
data is widely available (Y. Liu et al., 2015), and can be mapped to threats to
offer SMEs insight into what is important for them (Casola et al., 2019).

Digitally based SMEs and digital enablers can be expected to have a com-
plete inventory of assets (Carias, Borges, et al., 2020). Digital enablers should
additionally be aware of internal and external dependencies (Carfas, Borges, et
al., 2020), allowing them to specify their attack surface (Manadhata and Wing,
2011). For these SME categories, complete risk- and maturity assessments are
desirable. Digital enablers will often require comprehensive assessments that
can prove compliance with cybersecurity standards and regulations.

Digitally based SMEs should consider using aggregation strategies that
reflect desirable security properties, such as the weakest link principle. Using
a WCP strategy can guide these SMEs towards more accurate assessments,
although intuitiveness is sacrificed. Digital enablers with cybersecurity ex-
pertise, a specified attack surface, and large volumes of internal data, should
consider more advanced aggregation strategies.

Figure 3.4 provides a visual summary of the STS interactions inherent to our
framework. We use coloured arrows to indicate interactions that are explicitly
mentioned in Table 3.10. It is implicit in the STS model of Davis et al. (2014)
that all aspects are interrelated.

The direction of the arrows indicates which aspect serves as an input for
another aspect. For start-ups, the external environment aspects motivate
the SME to realise the necessity of investing in cybersecurity, leading to
the initial goals. For digitally dependent SMEs, the goals formulated by
management serve as catalysts for culture and processes. We observe that
from an initial external motivation for start-ups, SMEs gradually build up
internal interactions. For digital enablers, we see many interactions, both
internally and with the external environment.

3.6 DISCUSSION

We extensively analysed and interpreted our results in Sections 3.4 and 3.5.
This section will focus on a discussion of our research questions and the
potential limitations of our research.

Our first research question asked: how are cybersecurity metrics aggregated
in socio-technical cybersecurity measurement solutions? One interesting find-
ing from Table 3.8 is that half of the research involving implementations
did not aggregate at all. Table 3.2 gives a partial explanation for this phe-
nomenon: no aggregation strategy satisfies all desirable security properties.
Thus, aggregation should preferably be avoided. Nevertheless, aggregation
using basic approaches such as WLC is prevalent, with 42 of our 60 inclusions
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Figure 3.4: A visualisation of the framework presented in Table 3.10 using the repre-
sentation of Figure 3.3.

using this aggregation technique. We observed a clear lack of dependency
consideration among metrics, which could be solved using Bayesian network
(Dantu and Kolan, 2005; Dantu, Kolan, and Cangussu, 2009; N. Feng et al.,
2014; Sahinoglu, 2008) or ANP techniques (Brozova et al., 2016; Lo and W.-J.
Chen, 2012). Our cybersecurity framework presented in Table 3.10 provides
clear guidance on which aggregation strategies suit which SME categories.

Our second research question was formulated as: How do aggregation
strategies differ in cybersecurity measurement solutions relevant to SMEs and
all other solutions? Our analysis of Table 3.9 demonstrated that in enterprise
research little to no attention is paid to aggregation strategies that satisfy
the weakest link and dependency properties. One of the main obstacles in
making aggregation strategies suitable for SMEs is the time and expertise
required to carry them out. Generally, more complex aggregation strategies
require the determination of more parameters and relationships, which in
turn often requires consultation of security experts at the cyber-system being
assessed (for example, (Alencar Rigon et al., 2014, Damenu and Beaumont,
2017; Proencga and Borbinha, 2018; Shokouhyar et al., 2018)). This expertise
is rarely available at smaller SMEs, although when it is, ANP approaches
(Brozova et al., 2016; Lo and W.-]. Chen, 2012) could offer a path towards
more accurate aggregation.
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Our final research question covered the consideration of adaptability: “the
state of being able to change to work or fit better” (J.-H. Cho et al., 2019).
We found that very few papers consider the effects of missing data, dirty
data, security events, or concept drift; all are vital elements in determining
the ability of a solution to adapt to unexpected circumstances to work better.
Research does often recognise the need for being able to change to fit better, as
shown by the relatively large proportion that considers adaptation to other use
cases. Nevertheless, there is still much to be gained in this area. It is vital that
authors of research on socio-technical cybersecurity measurement solutions
explicitly address the adaptability dimension in the future. Our framework
of Table 3.10 helps in this regard, with its focus on proactive processes and
active monitoring and detection capabilities.

We additionally analysed the ADKAR factors that were addressed in our
inclusions. We found that desire was rarely considered in research. This was
especially true for research focusing on the defender perspective. Additionally,
we found that the real-life threat environment, as defined in Gollmann et al.
(2015), is considered in less than half of our inclusions. Both of these findings
offer an interesting contrast to the increasingly important role SDT and PMT
play in security research (Menard et al., 2017). These theories focus heavily on
(intrinsic) motivation and threat perception (Padayachee, 2012). Given the low
intrinsic motivation among SMEs and their employees to improve security
(Heidt et al., 2019), and the relatively large impact individual employees can
have in the SME context, future research focusing on motivation and the
real-life threat environment could provide an interesting avenue for making
cybersecurity solutions more suitable to SMEs.

3.6.1 Limitations and threats to validity

We should mention at this stage that our research is not without its limitations.
One potential issue is that our systematic review was not restricted to recent
years, which meant that contemporary research was not as prominent in this
review as it is in most other reviews. This could mean that we are overlooking
certain recent developments, although 18 of our 60 inclusions were published
in the past three years.

Additionally, although we believe our 60 inclusions are sufficient to help us
answer our research questions, certain groupings of the inclusions resulted
in relatively small sub-samples from which to draw conclusions. This could
limit the generalisability of our analysis and conclusions, meaning that one
could have different findings when considering different cybersecurity focus
areas.

We believe in the construct validity of our systematic review methodology
SYMBALS (van Haastrecht, Sarhan, Yigit Ozkan, et al., 2021), as it is based
on widely-accepted methods (van de Schoot et al., 2021; Wohlin, 2014) and
guidelines (Kitchenham and Charters, 2007; Liberati et al., 2009; Moher et al.,
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2015). However, it is still a novel methodology that remains to be extensively
tested. We feel this does not threaten the validity of our research, since
SYMBALS is geared towards reproducibility and satisfies standard reporting
item guidelines for systematic reviews (Moher et al., 2015).

A final mention should be made of our choice to approach the social dimen-
sion through the ADKAR change management model (Hiatt, 2006). Although
the model has been applied in the cybersecurity domain (Da Veiga, 2018), it is
certainly not a standard approach to use ADKAR in this setting. Nevertheless,
Table 3.5 summarised the natural mapping of social cybersecurity metric con-
cepts to the ADKAR framework and our framework presented in Table 3.10
showed how the ADKAR terms can be instinctively imported from previous
research. Hence, we feel justified in using this approach.

3.7 CONCLUSION AND FUTURE RESEARCH

Businesses, and especially small- and medium-sized enterprises (SMEs), strug-
gle to cope with the existing cyber threat landscape. Researchers have turned
to cybersecurity measurement to deal with these issues, although many chal-
lenges remain, such as how to aggregate sub-metrics into higher-level metrics
(J.-H. Cho et al., 2019). The challenges faced by SMEs are compounded by
the dynamic nature of the cyber threat landscape, necessitating adaptable
solutions. These current challenges motivated us to investigate the topics of
aggregation and adaptability in this review, with a focus on SMEs.

The social side of cybersecurity deserves attention, certainly in the SME
context. This is why we chose to direct our review at socio-technical cyberse-
curity measurement solutions. The ADKAR (Awareness, Desire, Knowledge,
Ability, Reinforcement) change management model of Hiatt (2006) guided
us in covering the social dimensions considered in research. To aid in the
analysis of aggregation approaches, we outlined five main aggregation strat-
egy classes in Section 3.2.3: weighted linear combinations, weighted products,
weighted maxima, weighted complementary products, and Bayesian networks.
We looked towards existing research to determine interesting dimensions of
adaptability, such as missing or dirty data (W. Kim et al., 2003) and concept
drift (Widmer and Kubat, 1996).

Based on our analysis in Sections 3.2.3 and 3.4, we found that aggregation
should only be carried out if necessary, since no single aggregation strategy
exists that satisfies all of the desired security properties. Notably, dependencies
among metrics are often not considered. Solutions can be found in this area
in Bayesian networks (Dantu and Kolan, 2005; Dantu, Kolan, and Cangussu,
2009; N. Feng et al., 2014; Sahinoglu, 2008) and analytic network process
(Brozova et al., 2016; Lo and W.-J. Chen, 2012) techniques.

We used our findings as input to construct a socio-technical cybersecurity
framework for SMEs. We presented our framework in Table 3.10 and visualised
it in Figure 3.4. Offering a single solution for all SMEs is too simplistic. This
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is why we divided SMEs into four categories, as suggested by the European
DIGITAL SME Alliance (2020): start-ups, digitally dependent SMEs, digitally
based SMEs, and digital enablers. By detailing what can be expected of each
SME category, we were able to determine which cybersecurity assessment
strategies were suitable in each case. For start-ups and digitally dependent
SMEs, threat-based risk assessment approaches that either do not aggregate
or use intuitive aggregation strategies are ideal. By focusing on the real-life
threat environment (Gollmann et al., 2015), relevance and significance of the
assessment task are given a central role. A simple and intuitive aggregation
strategy accommodates feelings of competence and relatedness. Altogether,
this ensures optimal organisation and employee motivation (Kam et al., 2020;
Menard et al., 2017).

Digitally based SMEs and digital enablers are advised to use more compre-
hensive risk assessment approaches and maturity models. These assessment
techniques should assist in working towards or proving compliance with
standards and regulations. Under ideal circumstances, this will build trust in
the cybersecurity posture of the SME, both internally and externally. Digital
enablers are also prime candidates for using more advanced aggregation
strategies such as Bayesian networks, since they often have the cybersecurity
expertise and data required to make these solutions successful.

We hope that our socio-technical cybersecurity framework will provide a
basis to design successful cybersecurity assessment solutions for SMEs. SMEs
should not be forced to use solutions that are not suited to their situation.
Especially start-ups and digitally dependent SMEs currently lack suitable
cybersecurity assessment solutions, even though they are most in need of
“easily understandable and practical solutions” (European DIGITAL SME
Alliance, 2020). In future work, we aim to help these SMEs to become more
secure. An important first step is to formulate a properly motivated, intuitive,
and usable threat-based cybersecurity risk assessment approach, to offer this
most vulnerable group some deserved cybersecurity respite.
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THREAT-BASED CYBERSECURITY RISK ASSESSMENT FOR
SMES

Cybersecurity incidents are commonplace nowadays, and Small- and Medium-
Sized Enterprises (SMEs) are exceptionally vulnerable targets. The lack of
cybersecurity resources available to SMEs implies that they are less capable of
dealing with cyber-attacks. Motivation to improve cybersecurity is often low,
as the prerequisite knowledge and awareness to drive motivation is generally
absent at SMEs. A solution that aims to help SMEs manage their cybersecurity
risks should therefore not only offer a correct assessment but should also
motivate SME users. From Self-Determination Theory (SDT), we know that
by promoting perceived autonomy, competence, and relatedness, people can
be motivated to take action. In this chapter, we explain how a threat-based
cybersecurity risk assessment approach can help to address the needs out-
lined in SDT. We propose such an approach for SMEs and outline the data
requirements that facilitate automation. We present a practical application
covering various user interfaces, showing how our threat-based cybersecu-
rity risk assessment approach turns SME data into prioritised, actionable
recommendations.

The contents of
this chapter are
based on: van
Haastrecht,
Sarhan, Shojaifar,
etal. (2021). A
threat-based
cybersecurity risk
assessment
approach
addressing SME
needs. In
Proceedings of the
16th International
Conference on
Availability,
Reliability and
Security.
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4.1 INTRODUCTION

Cybersecurity incidents are commonplace nowadays and can have a devas-
tating impact on businesses (Yigit Ozkan, van Lingen, et al., 2021). Small-
and Medium-Sized Enterprises (SMEs, (European Commission, 2016)) are
especially vulnerable since they have limited resources to deal with cyber-
attacks (Heidt et al., 2019). Additionally, the lack of cybersecurity knowledge
and awareness of SME employees causes low motivation to improve the SME
cybersecurity posture (Heidt et al., 2019).

A vital first step towards managing cybersecurity risks is to assess these
risks (Shameli-Sendi, Aghababaei-Barzegar, et al., 2016). Several cybersecurity
risk assessment approaches tailored to SMEs exist (Mijnhardt et al., 2016;
Spruit and Roling, 2014; Yigit Ozkan, Spruit, et al., 2019). From the two
leading behavioural theories in the security field - Protection Motivation
Theory (PMT) and Self-Determination Theory (SDT) - we know that users
are most likely to take action if risk assessment solutions manage to convince
the user of the risk associated with cybersecurity threats and their ability to
deal with those threats (Martens et al., 2019; Menard et al., 2017; van Bavel
et al., 2019). In PMT, this translates to a focus on threat- and coping appraisal
(Martens et al., 2019), whereas in SDT perceived autonomy, competence, and
relatedness are seen as the main drivers of motivation.

Knowing that motivation to improve cybersecurity is relatively low among
SMEs (Heidt et al., 2019), it is reasonable to expect that cybersecurity risk
assessment solutions for SMEs address the PMT and SDT factors. This is
especially relevant for SMEs that are less digitally mature, as they are often
unaware of cyber threats and require easily understandable solutions due
to their limited (initial) cybersecurity knowledge (European DIGITAL SME
Alliance, 2020). Sadly, most solutions are not adapted to suit SME needs
(Heidt et al., 2019), with researchers insisting it is the responsibility of SMEs
to take action (Benz and Chatterjee, 2020; Kaila and Nyman, 2018), rather than
designing solutions that motivate SMEs (Carias, Borges, et al., 2020; Shojaifar,
Fricker, and Gwerder, 2020). By not properly addressing the psychological
needs identified by PMT and SDT, these solutions are much less likely to
motivate SME users (Hanus and Wu, 2016).

Threat-based cybersecurity risk assessment approaches are a common
tool to address the motivational issues of existing solutions. Threat-based
approaches motivate threat appraisal through the incorporation of real-life
threat information (Gollmann et al., 2015). Additionally, as Menard et al.
(2017) recognise, any appeal for adopting cybersecurity countermeasures will
be directly or indirectly based on a particular threat. Threat-based approaches
offer a natural way to prioritise countermeasures, which is an important
requirement in facilitating a usable solution for SMEs (Carias, Borges, et al.,
2020).
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It is no surprise that threat-based approaches are common in both the
privacy (Deng et al., 2011; Wuyts et al., 2014) and cybersecurity (Atamli and
Martin, 2014; Lippmann and Riordan, 2016; Xiong and Lagerstrom, 2019)
fields. Threat-based cybersecurity risk assessment approaches specifically
aimed at enterprises already exist (Lippmann and Riordan, 2016; B. Tucker,
2020). However, it has been well documented that approaches for enterprises
in general do not map well to the SME situation (European DIGITAL SME
Alliance, 2020; Heidt et al., 2019).

As a result, it is essential to discover how a threat-based cybersecurity
risk assessment can be made to work for SMEs, without losing its ability to
motivate users through the needs identified in PMT and SDT. This inspires
the research question of this chapter:

* RQ: How can we create a cybersecurity risk assessment approach for
SMEs that promotes user motivation?

In Section 4.2, we provide further insight into the context and motivation
of this research. Section 4.3 introduces our algorithm, along with the require-
ments - both technically and in terms of data - for it to function properly. A
practical application of our approach is outlined in Section 4.4. Section 4.5
discusses the dependencies within our solution and the privacy implications
of our risk assessment approach. Finally, in Section 4.6, we conclude and
propose ideas for future work.

4.2 CONTEXT AND MOTIVATION

The European Horizon 2020 project GEIGER (GEIGER Consortium, 2020)
aims to help SMEs, and specifically micro-enterprises, to improve their cy-
bersecurity posture and protect themselves against cybersecurity risks. The
GEIGER project targets the smallest and least digitally mature SMEs. This
group requires simple and understandable solutions, that nonetheless man-
age to address all areas of cybersecurity risk assessment (European DIGITAL
SME Alliance, 2020). We believe a threat-centric cybersecurity risk assessment
approach addresses these needs.

Cybersecurity risk assessment approaches inherently include a view on
threats, due to the link between the concepts of risk and threat. At times
researchers make this link explicit when employing some variant of the defi-
nition risk = threat x vulnerability x consequence (Cox, 2008; Stergiopoulos
et al., 2018). In other approaches, such as when building on the vulnerability-
threat-control paradigm (C. P. Pfleeger and S. L. Pfleeger, 2012), the link is
implicit, but present.

Nevertheless, we can distinguish threat-based cybersecurity risk assessment
approaches - that centrally position the threat concept - from approaches that
are not threat-based. In Section 4.2.1 we focus on cybersecurity risk assessment
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methodologies that are aimed at SMEs and not threat-based. These approaches
will often not include the real-life threat environment (Gollmann et al., 2015).
Section 4.2.2 covers threat-based approaches not specifically geared towards
SMEs.

4.2.1  Cybersecurity risk assessment for SMEs

Although SMEs are often addressed as a single group, in the cybersecurity
context there are large differences among SMEs (European DIGITAL SME
Alliance, 2020). This motivates a need for solutions that adapt based on the
organisational characteristics of SMEs, such as the SME country or region
(Sarabi et al., 2016), the SME sector (Mijnhardt et al., 2016) and the cyberse-
curity knowledge available in the SME (Yigit Ozkan and Spruit, 2020). The
European Digital SME Alliance additionally proposes to take into account
the role that an SME plays in the digital ecosystem, distinguishing four cate-
gories: digital enablers, digitally based SMEs, digitally dependent SMEs, and
start-ups (European DIGITAL SME Alliance, 2020).

To attend to the needs of SMEs, certain cybersecurity risk assessment
methodologies have been adapted to be suitable for smaller businesses (Al-
berts et al., 2005; ENISA, 2007). Maturity models are also often employed,
due to their ability to provide a complete assessment while being able to
adapt based on SME characteristics (Baars et al., 2016; Mijnhardt et al., 2016;
Yigit Ozkan, Spruit, et al., 2019). The difficulty with all of these approaches
is that they generally require a certain level of cybersecurity expertise to be
present at the SME and that they assume to be dealing with a motivated user.
Although these assumptions may hold for digital enablers and digitally based
SMEs, this certainly cannot be expected of the digitally dependent SMEs and
start-ups, who generally have little to no cybersecurity knowledge and are
therefore also minimally motivated to improve their cybersecurity situation
(Heidt et al., 2019).

Cybersecurity risk assessment solutions would be better suited to digitally
dependent SMEs and start-ups if they could incorporate the important psy-
chological factors outlined by PMT and SDT (Martens et al., 2019; Menard
et al., 2017). Approaches explicitly incorporating behavioural theory insights
are promising (Shojaifar, Fricker, and Gwerder, 2020), but contain knowl-
edge requirements that digitally dependent SMEs and start-ups cannot fulfil.
Threat-based risk assessment approaches offer interesting possibilities to assist
these least digitally mature SMEs.

4.2.2  Threat-based cybersecurity risk assessment

Threat-based cybersecurity risk assessment approaches are not commonly ap-
plied to SMEs. That certainly does not imply, however, that these approaches
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are not prominent. In privacy risk assessment, the ability to prioritise controls
from a threat-based methodology is one of the reasons mentioned for prefer-
ring such an approach (Deng et al., 2011). In cybersecurity risk assessment,
threat-based approaches are popular not only for their prioritisation ability
(Atamli and Martin, 2014; Lippmann and Riordan, 2016; Muckin and Fitch,
2019), but also due to their ability to facilitate automation through threat
catalogues (Casola et al., 2019) and publicly shared incident information (Y.
Liu et al., 2015). Common risk assessment methodologies used in practice,
such as STRIDE (Scandariato et al., 2015) and OCTAVE (B. Tucker, 2020), are
also regularly threat-based.

The prevalence of threat-based cybersecurity risk assessment methodolo-
gies aligns with the observation that real-life threat information should be
incorporated in these approaches (Gollmann et al., 2015). Threat appraisal is
central in PMT and surfaces when applying SDT in the cybersecurity setting
(Menard et al., 2017; Padayachee, 2012). By using insights from PMT and SDT
to design appropriate nudges (Shojaifar, Fricker, and Gwerder, 2020; van Bavel
et al., 2019), threat-based approaches have the potential to be highly suitable
to SMEs (Y. Lee and Larsen, 2009).

We can conclude that threat-based cybersecurity risk assessment approaches
can motivate SMEs to improve their cybersecurity under the right circum-
stances. The least digitally mature SMEs - digitally dependent SMEs and
start-ups - stand to gain the most (European DIGITAL SME Alliance, 2020).
Nevertheless, threat-based approaches are not commonly employed to assist
SMEs. In the remainder of this chapter, we formulate a threat-based cyber-
security risk assessment approach for SMEs and argue for the motivational
benefits of such an approach.

4.3 A THREAT-BASED CYBERSECURITY RISK INDICATOR

A threat-based cybersecurity risk assessment algorithm must be supported
by a data model and data sources that are equally threat-centric. In this sec-
tion, we describe how a threat-based view of SME cyber-systems produces a
data model supporting a threat-based approach to cybersecurity risk assess-
ment. We outline the data required to enable our approach and describe the
algorithm that transforms the data into a cybersecurity risk indicator.

4.3.1  Data model

The impetus for an SME owner to perform a cybersecurity risk assessment is
that they want to learn how to protect their SME. Figure 4.1, adapted from
Casola et al. (2020), shows how this original motivation serves as one of the
aspects involved in a threat-based cybersecurity risk assessment. The SME
consists of assets that are valuable to the SME, such as users and devices.
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The vulnerability-threat-control paradigm (C. P. Pfleeger and S. L. Pfleeger,
2012) is a general framework that can be used as a basis for our assessment
approach. Within the paradigm assets can have vulnerabilities that can be ex-
ploited by threats, leading to loss or harm. Cybersecurity metrics can be used
to indicate the cybersecurity risk faced by a particular asset. Cybersecurity
metrics result from measuring the cybersecurity properties of an asset. The
metric value should correlate to the vulnerability of the asset being measured
so that it can be used in assessing risk. In this context, the risk indication
given by cybersecurity metrics signifies the potential of threats to exploit
vulnerabilities. To counter vulnerabilities and mitigate risk, the SME owner
can enforce countermeasures, which are sometimes referred to as controls.

wants to
rotect consists of
SME Owner P > SME > Asset <«
‘ may have results from
enforces .
measuring
v
counters - influences .
Countermeasure > Vulnerability > Metric —
exploits gives indication of
signifies
otential of .
Threat <P Risk

Figure 4.1: View on cyber-systems, adapted from Casola et al. (2020) to fit a threat-
based cybersecurity risk assessment approach for SMEs.

Although the model in Figure 4.1 provides a clear depiction of the concepts
involved in our threat-based approach, it is not detailed enough to serve as a
basis for defining our algorithm data requirements. Figure 4.2, a conceptual
data model, addresses this issue.

The risk profile, location, and sector elements of the enterprise entity shown
in Figure 4.2 allow the algorithm to adapt based on the characteristics of
the SME. Threats, metrics, and recommendations are core elements of our
model. We use the term recommendation rather than countermeasure within
the GEIGER solution, to distinguish the textual explanation and motivation
(recommendation) - which is the element shown to the user of our application
- from the action it describes (countermeasure). Both the recommendations
and metrics of our solution are related to threats, which have a central position
in our approach.
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The metrics of our GEIGER solution measure two types of assets: users
and devices. For users, we measure their knowledge and ability through
interactive cybersecurity training and education. Device metrics result from
the measurement of device properties by tools incorporated in the GEIGER
solution. The metric values we calculate allow us to determine an indication
of the cybersecurity risk faced by the SME: the GEIGER score. We can then
present the user with the most relevant recommendations, where relevance is
determined by the impact that the countermeasures corresponding to the rec-
ommendations have on the threats included in the GEIGER solution. The user
can implement countermeasures based on the suggested recommendations,
to counter vulnerabilities and mitigate risk. Implemented countermeasures
lead to an improved GEIGER score.

Ed
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Location 009 supervising " Y Type T
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Threat Impact Type
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Number of Metrics
Type
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GEIGER Score J GEIGER Recommendations

Figure 4.2: The conceptual data model underlying our threat-based cybersecurity risk
assessment approach.

4.3.2 Data requirements

From Figure 4.2 we can derive the three main inputs required for our algo-
rithm: metrics, threats, and recommendations. Each metric and each recom-
mendation must relate to at least one threat.

Additionally, as discussed in Section 4.2.1, our algorithm must be able to
adapt to different SME profiles. For the GEIGER project, we focus on three
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specific characteristics to form the SME profile: the SME category (European
DIGITAL SME Alliance, 2020), the SME country, and the SME sector. The
required data then enters the system as global algorithm settings through the
curator of the project, as aggregate data from Computer Emergency Response
Teams (CERTs) linked to the solution, through the user entering data, or from
tools that are linked to the solution. This process is depicted in Figure 4.3.

Figure 4.3 shows how users interact with the local component and how
CERTs and the curator provide data to the cloud component of the solution.
The local component is the application the user installs on their device. The
cloud component is required to facilitate data sharing, as well as to update
the algorithm based on new insights and data.
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Figure 4.3: Data flow diagram showing how data from various sources flows through
the system to be used in the algorithm.

To define the threats that should be considered for our SME target group, we
look towards the European Union Agency for Cybersecurity (ENISA). Since
2012, ENISA publishes an annual list of top cybersecurity threats (Marinos
and Sfakianakis, 2013). Through the years the list has remained remarkably
unchanged, which is why it serves as an excellent basis for our threat-based
approach. From the list of top threats in 2020 (ENISA, 2020), we select those
threats which have been present since the first list in 2012 and are not indi-
cated by ENISA to be part of another threat (ENISA, 2019). An exception is
ransomware, which is a type of malware, but is considered to be a sufficiently
significant threat to SMEs on its own to warrant inclusion.
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To this set of threats, we add a threat category covering legal, third party,
and supply chain threats. These three threats are a part of the general ENISA
taxonomy (ENISA, 2016). They are especially relevant to our SME target
group, who have a large dependency on third parties in the digital envi-
ronment (European DIGITAL SME Alliance, 2020; Heidt et al., 2019). We
name this category ‘external environment threats’, using terminology from
socio-technical systems (Davis et al., 2014). This gives the following threats, in
order of appearance of the ENISA top threats:

e Malware,

¢ Web-based threats,

¢ Phishing,

* Web application threats,
* Spam,

¢ Denial of service,

¢ Data breach,

¢ Insider threats,

¢ Botnets,

¢ Physical threats,

¢ Ransomware,

e External environment threats.

Figure 4.1 shows that metrics result from measuring the properties of assets
within the SME. Assets in our solution are classified as employees or devices.
The properties of these assets can either be measured directly, or employees
of the SME can be asked to provide the necessary information on the assets.
Within the GEIGER solution, we choose to (mainly) source our data from the
direct measurement of asset properties by tools included within the solution.
This is shown in Figure 4.3, by the data flows from local and cloud tools to
their respective data storages.

Besides improving metric values, SMEs can also implement countermea-
sures (or controls) to counter vulnerabilities. Common countermeasures can
be sourced from a variety of parties, from National Cyber Security Centres
(NCSCs) and CERTs (NCSC UK, 2014; Swiss NCSC, 2021), to standards organ-
isations (International Organization for Standardization (ISO)/International
Electrotechnical Commission (IEC), 2012, 2013), to peer-reviewed research
(Yigit Ozkan, van Lingen, et al., 2021). In our SME context, we should be
able to argue that the countermeasures included in our solution are both
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necessary and sufficient. We should not include more countermeasures than
necessary, to keep our solution simple. At the same time, the countermeasures
we include should be sufficient to cover all relevant areas of cybersecurity.

To address this issue we followed the following process. We first collected
a large set of over 300 countermeasures from publicly available sources. We
distilled this list to remove duplicates. We then mapped our list to a standard
set of security countermeasure categories (International Organization for
Standardization (ISO)/International Electrotechnical Commission (IEC), 2013),
to see which countermeasures could be removed without losing coverage of a
category. This process left a set of necessary and sufficient countermeasures,
of which four examples are shown in Figure 4.4.

For a functioning threat-based cybersecurity risk assessment approach, we
do not only need to define the necessary components, but we also need to de-
termine their relationships. In our concept, both metrics and countermeasures
impact threats. Furthermore, each metric and countermeasure impacts only a
subset of all threats. Once tool owners and the curator of the solution have
established which metrics and countermeasures relate to which threats, they
must then determine impacts. To guide this process, we base ourselves on the
NIST Cybersecurity Framework (Barrett, 2018), which has been used to guide
cybersecurity evaluation for SMEs before (Benz and Chatterjee, 2020).

The NIST framework distinguishes five core functions: identify, protect,
detect, respond, and recover. The functions can be related to various stages
of a cybersecurity incident, from before the incident (identify, protect), to
during the incident (detect, respond), to after the incident (recover). Since
each phase is increasingly less likely to occur, the impact of countermeasures
and metrics in these phases also decreases. Our approach, therefore, defines
a default impact of ‘high” for countermeasures and metrics relating to the
identify and protect functions, ‘medium’ for those relating to the detect and
respond function, and ‘low’ for those relating to the recover function.

Metric Threat  Countermeasure
Malicious URLs count——Phishing¢—Money transfer policy
Awareness training score Limit access

Malware infection count—*Malware—Employ mail filtering
Malicious app count Update regularly

Figure 4.4: An indication of the impact of metrics and countermeasures on the common
SME cybersecurity threats of phishing and malware. Green arrows indicate
improving scores, whereas red arrows indicate that scores worsen.

The final piece of the puzzle, that allows us to calculate a single indicator
value for an SME, is determining the relative risks associated with each
threat for each SME profile. This involves making estimates of impacts and
likelihoods, to calculate the common risk value: risk = impact x likelihood
(Stergiopoulos et al., 2018; B. Tucker, 2020). By surveying experts as well as
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security literature and reports, we can gain initial insights. However, this will
not be sufficient to formulate risk estimations for each SME profile, which is
an essential part of creating an adaptable approach (Baars et al., 2016).

This is why we propose to use CERT incident data to be able to create
risk estimations per profile. Figure 4.3 shows how CERT incident data can
be fed into our solution and aggregated, to then be used in determining
threat-specific risks for each SME profile. Besides facilitating adaptability, the
CERT incident data also allows us to incorporate real-life threat information
into our solution. We hope this will promote perceived relatedness among
SMEs.

4.3.3 Algorithm description

In this section, we will describe the general mathematical representation of
our algorithm. An SME can be seen as a cyber-system using the definition of
Refsdal et al. (2015). Similarly, each asset of the SME, such as an employee
or device, can be seen as a cyber-system. This allows us to formulate an
algorithm that assesses sub-systems and recursively iterates to arrive at an
overall SME score.

Let S be the total set of cyber-systems of the SME, including the SME itself.
Let T be the set of threats and P the set of SME profiles. Each combination of
threat t € T and profile p € P has an associated relative risk Tpt € (0, 100].

Let M be the set of metrics. The normalised value of a metric m € M
for cyber-system s € S is given by vys € [0,1]. We distinguish metrics that
indicate improved security from metrics that indicate worsened security.
Theoretically, a single metric may even relate positively to security for one
threat, but negatively for another. Hence, we define the Boolean indicator J,,
which equals 1 when a metric m € M relates positively to the relative risk
associated with threat t € T.

We further define the impact of metric m € M on threat t € T as iy.
Recall that this impact may either be low, medium or high. We map these
categories to values of 0.1, 0.5, and 1.0, respectively. To be able to keep track
of which metrics have been calculated, we define the Boolean variable A,
which equals 1 if metric m € M has been calculated for cyber-system s € S.

We let C be the set of countermeasures. The variable i has an identical
definition as in the metric case. The Boolean variable A is now used to
indicate whether a countermeasure ¢ € C has been implemented for cyber-
system s € S. Since we only allow for countermeasures to be implemented or
not implemented, without assigning a specific value, we have no analogue for
the variable v;,s specifying the metric value. Similarly, since countermeasures
always relate positively to security, there is no analogue to the J,,;; variable.

All of our defined variables allow us to calculate the indicator value Is¢
specific to threat t € T, for a cyber-system s € S, which is (part of) an SME
with profile p € P:
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Equation 4.1 ensures the indicator value Iy ranges from o to 100 and
initially takes a value of 50. Note that our current assumption is that counter-
measures always apply to all cyber-systems under consideration. However, if
necessary, the algorithm could easily be extended with an additional Boolean
variable to permit variation in this dimension.

Some of the divisors of Equation 4.1 equal o when no values have been
calculated. In this scenario, we set the value of the relevant fraction to o. The
total indicator score over all threats, again ranging between o and 100, is given

by:

Lipt = 50 + 50-

. YieT ISpt *Tpt
Lsp Yier ot : (4-2)

In essence, Equation 4.2 could be used to calculate the indicator value for
the complete SME, if the system s € S considered is the SME itself. However,
in practice, there are privacy constraints to sharing all data within the full
company. Some of this data, especially the security information related to
employees, can be sensitive. So, we need to formulate a process to arrive at
an indicator value representing the entire SME, without needing to share all
data items.

To solve this issue we recognise that SMEs, like any enterprise, are generally
hierarchically structured. The owner of the SME is positioned at the top of the
hierarchy and supervises one or more employees. These employees, in turn,
may supervise further employees. By incorporating this supervision structure
in our scoring mechanism, we can ensure that a minimal amount of data is
shared, while still arriving at an indicator value that accurately represents the
complete SME.

Within our approach, we distinguish two types of scores: user scores and
device scores. User scores relate to the knowledge and ability of an employee
within the SME, whereas device scores relate to the security properties of the
device. Each employee e € S that has installed the GEIGER application on a
device they own will therefore have at least two scores: their user score and
the score of the device they own. An employee may own multiple devices and
can therefore have more than two associated scores.

An employee may not wish to share their user score per threat with their
supervisor, due to the sensitive nature of this information. This is why we
propose to only share aggregated data. Let 115 be the total number of metrics
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calculated to arrive at the indicator value for cyber-system s € S. Based on
our earlier definitions, we have:

ng = 2 Ams.

meM

We define the set of employees E C S, to help in addressing supervision.
We then define S, C S to be the set of cyber-systems belonging to employee
e € E. This set corresponds to the employee themselves and the devices they
own. Let E, C E be the set of employees supervised by employee e € E. We
then define the aggregate score of employee e € E as:

agg agg
agg _ Lwes, Isp - 1s + Yoer, Igp” - 11
Iep = agg ’ (4.3)
Yses, s + Yeck, 1

where:

neS =Y ng+ Y n®s. (4-4)

SES, écE,

The recursive nature of Equation 4.3 and Equation 4.4 allow us to iteratively
calculate aggregate scores until we reach the aggregate score of the SME
owner. The aggregate score of the SME owner represents all of the information
available for scoring, and therefore accurately represents the cybersecurity
posture of the SME. Since only aggregate data is shared, the scoring procedure
preserves privacy while still managing to achieve an accurate score. Table 4.1
provides an overview of all of the variables discussed in this section.

The formulation of our algorithm allows us to determine the place our
threat-based cybersecurity risk assessment approach takes within the informa-
tion security risk assessment (ISRA) taxonomy of Shameli-Sendi, Aghababaei-
Barzegar, et al. (2016). Our approach is quantitative and asset-driven. Addi-
tionally, assets are evaluated independently of each other and risk assessment
scores are propagated through recursive formulas. Furthermore, we do not
assign a monetary value to assets.

Based on the ISRA taxonomy, our approach is similar to other risk as-
sessment approaches (Alpcan and Bambos, 2009; Ben Mahmoud et al., 2011;
Schmidt and Albayrak, 2010). However, none of these methodologies uses
threat-based techniques, nor do they use the hierarchical structure we propose
to use for SMEs. We can conclude that although our approach follows estab-
lished guidelines for formulating a cybersecurity risk assessment methodology,
it has unique elements. These elements are included to make our approach
suitable for SMEs. The following section provides further explanation on how
our algorithm results are translated into visual representations to effectively
nudge SME users.
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Table 4.1: The variables used within the algorithm.

VARIABLE DEFINITION

S The set of all cyber-systems within the SME.

Se The set of cyber-systems belonging to employee e € E, Se C S.

E The set of all employees within the SME, E C S.

Ee The set of employees supervised by employee ¢ € E, E¢ C E.

T The set of all threats.

P The set of all SME profiles.

M The set of all metrics.

C The set of all countermeasures.

Ipt Relative risk of threat t € T, for profile p € P.

Ums Normalised value of metric m € M, for cyber-system s € S.

imt Impact of metric m € M on threat t € T.

ict Impact of countermeasure ¢ € C on threat t € T.

Ams Boolean variable equalling 1 when metric m € M has been calculated for cyber-system s € S.
Acs Boolean variable equalling 1 when countermeasure ¢ € C is implemented for cyber-system s € S.
OSmt Boolean variable equalling 1 when metric m € M relates positively to the risk of threat t € T.
ISF” Threat-specific cybersecurity risk indicator for cyber-system s € S.

Isp Cybersecurity risk indicator for cyber-system s € S.

Iggg Aggregate cybersecurity risk indicator for employee e € E.

nggg Total number of metrics calculated to arrive at I?gg.

4.4 EXEMPLAR OF PRACTICAL APPLICATION

Self-Determination Theory (SDT) is a theoretical framework used in the
study of motivational dynamics and individual behaviours (Deci and Ryan,
1985; Ryan and Deci, 2000). SDT distinguishes intrinsic and extrinsic types
of motivation and explains people’s psychology of being self-determined to
adopt behaviour and persist in an activity. SDT elaborates three fundamental
psychological needs — autonomy, competence, and relatedness — and assumes
that their satisfaction leads to self-motivation, engagement, and positive
outcomes (Vallerand, 1997).

¢ Autonomy: A desire to engage in activities with willingness and a
freedom of choice,

¢ Competence: A desire to interact effectively with the environment for
developing wanted outcomes and preventing undesired events,

¢ Relatedness: A sense of belongingness and connectedness to others or
a social environment.

SDT is applied in cybersecurity (Menard et al., 2017) and security solution
design (Shojaifar and Fricker, 2020; Shojaifar, Fricker, and Gwerder, 2020)
to explain the relationships between design features and user motivation in
cybersecurity. The basic psychological needs are reliable mediators to study
how security tool features support user need satisfaction and consequent
tool adoption. This section presents the main GEIGER toolbox interfaces and
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outlines how the toolbox features operationalised SDT constructs (auton-
omy, competence, and relatedness) to encourage users to adopt GEIGER for
protecting their companies.

4.4.1 Main interface

The structure of the main screen depicted in Figure 4.5 follows the approach
that the most important elements are displayed on top. If a risk scan has
already been carried out, the first thing the user sees is their aggregated score,
which is displayed in green (low), yellow (medium), orange (high), or red
(very high), depending on the level of the risk. This gives a first impression of
the overall risk potential and should trigger the need to act depending on the
threat situation.

The score is shown noticeably large because it is an aggregation of the user
scores and the device scores across all threats. Depending on the role of the
user, the labelling of the score adapts to convey whether the score represents
the whole company or just one person with its employees. The aggregated
score and its colour support the user’s familiarity with the overall potential
risks in the company and motivate the user for a desirable practice.

v 4 = 12:30 v 4 = 1230
= GEIGER Toolbox & GEIGER Toolbox
Your total Risk Score:
70_25 Scanning...
o
© ()
N
[ Device Risks J [ Employee Risks }
... Calculating Your Total Risk Score
000 00
Current Threats Threat Risk 7025
Phishing 87 '\ Phishing 2 E]
Very High
Malware o E]
A
Web-based attacks g D
Web app attacks g D
Malware 78 v\ Spam 2 D
Very High

Improve

Figure 4.5: Main interface (left) and score calculation process (right).
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By pressing the scan risk button, the calculation of the latest risk score
is initiated. An intermediate screen shows that the app is working in the
background and how far advanced the calculation process is. Furthermore,
during this waiting period, the user should be shown how their aggregated
score is achieved, as well as those of the employees they supervise. As soon
as the calculation process has finished, the main screen will be shown again
with the current aggregated score of the user as well as all threats with their
current scores.

Threats with higher risk scores are shown first. Each threat is shown as a
so-called card with the threat name, a threat visualisation, a threat score, and
a button that leads to the recommendations for a threat. The button ‘improve’
is coloured green, which contrasts with the colours of high-risk scores to
convey a positive action.

To get a quick overview of the situation of other devices or employees, the
coloured dots below the buttons show how many devices or employees have
been classified with which risk level (left image of Figure 4.5).

4.4.2  Device and employee risk

Using the buttons ‘device risks” and ‘employee risks’ of Figure 4.5, the user
can either navigate to a list with all their devices or to a list with all their
employees. Here, the aggregated scores over all threats are displayed for each
device or employee (Figure 4.6). The employee and device lists help the user
to better handle security measures in the company. Moreover, the prioritised
list of visualised threats and texts and the available tailored recommendations
support user competence and autonomy.

In general, as soon as a scan is carried out, the scores of the devices are no
longer up to date. This is depicted in the device risk screen of Figure 4.6. The
device is marked and the user is prompted to open the app on the device and
perform a scan.

In the case of employees, when the supervisor scans, they receive a request
to allow or deny sharing their scores with their supervisor. For this reason,
either the score is displayed on the employee screen if permission has been
granted, or the score is displayed as pending or rejected (right image of Figure
4.6). Information sharing in GEIGER is based on users’ permission. A user
may choose to allow or deny sharing their information with the supervisor,
stimulating perceived autonomy.

4.4.3 Recommendations

Using a tab, the user can switch between user- and device-specific recommen-
dations and sees the respective score directly on the tab (left image of Figure
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v 4 = 12:30

; Y
& Your Devices P
Refresh

Add devices here that have the toolbox installed
and monitor their risks

ﬁ IIT Dell XPS 15

Outdated since 11.03.21 /’ 25 \
Low

Open Geiger-Toolbox on this
device and start a risk scan!

|;| Louis Desktop

Up to date: 17.03.21 [ 82 '\
Very high
D Samsung Galaxy S8 N,
Up to date: 17.03.21 56 \
High

& Your Employees

v 4 = 12:30

Monitor your employees risk consisting of
their device and user scores .

Mitchell Bradbury
Score shared on 17.03.21

25

Max Schreiber
Score shared on 17.03.21

65

Very High

Rebecca Buckland
Score pending since 15.03.21

©

Colin Sutherland
Score denied on 17.03.21

Remove Employee Add Employee

Figure 4.6: Interfaces of all devices (left) and all employees (right) with respective risk

scores.
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4.7). Depending on the tab, the user is shown either their name or that of their
active device.

Since the target group may still be unfamiliar with threat terminology or
with the concept of user and device scores, they are given the opportunity
to obtain additional information. Figure 4.7 shows how this information can
be accessed, for example, via a button labelled ‘About Phishing” or ‘About
User Score.” To prevent flooding the user with information, the respective
input is presented in the form of several small blocks and with corresponding
illustrations.

v 4 = 1230 v 4 = 12:30
¢« Phishing [ <« Phishing [
User Device User Device
. —
89 \ [ 65 \ 89 W\ [ s \

Very High High

Domian Baumann

[ ® About Phishing ] [ @ About User Score ]

Very High High

Domian Baumann

{ @ About Phishing } [ @ About User Score }

Personal Recommendations  Risk Reduction Personal Recommendations  Risk Reduction

O Unsolicited e-mails Low v O Unsolicited e-mails ~ High A~
Be wary of any unsolicited e-mails you
(O Disable mail actions Medium receive. Particularly trustworthy
Difficult companies are often used as false

sender addresses.

Required Tool
Name of Tool with long name

Medium v

& Strong passwords Medium

) Be careful when Medium

passing on information

(O Disable mail actions

Difficult
@& Tech support calls Low Vv e

Figure 4.7: Interfaces of user-specific recommendations for phishing.

The recommendations with the highest impact on risk reduction are dis-
played, given that they correspond to the knowledge level of the user and are
yet to be implemented. Recommendations that have been implemented are
marked with a green tick. Each recommendation is categorised with a risk
reduction impact of low, medium, or high.

The recommendations can contain learning content so that the user is
more likely to recognise dangers and improve their behaviour in the long
term. There are also recommendations in which the user must implement
a precautionary measure, guided by step-by-step instructions. The user can
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implement some recommendations directly with the help of the app, while
others require additional tools that take on more complex tasks.
Recommendations that could be too demanding are marked as ‘Difficult,’
whereby the user is asked to contact a security defender if necessary. In
any case, the user can use the ‘Get Help’ button to access a list of security
defenders to receive more personal support. The recommendation support
embedded in GEIGER helps to promote perceived autonomy and competence.
By enabling contact with a trusted advisor, in the form of a security defender,
we hope to stimulate perceived relatedness and competence among users.
The GEIGER features are designed to provide information and familiarity
with different types of potential security threats and improve user experience.
Various colours and scores support users’ appraisal of the risks, and in turn,
support extrinsic motivation to enact security measures (Padayachee, 2012).
Consistent with SDT’s three basic psychological needs, GEIGER features are
designed to facilitate daily self-determined cybersecurity improvement.

4.5 DISCUSSION AND LIMITATIONS

The GEIGER indicator relies on several threat-related metrics collected by
different GEIGER tools to provide relevant insight into the risk level of an
SME, including its devices and employees. This module is part of the GEIGER
ecosystem composed of scanning tools (for threat detection), education tools
(for training) and components integrating data coming from different CERTs.

The confidence in the GEIGER indicator depends on the completeness
of the collected data. In other words, the more data that is available and
recent, the more accurate the GEIGER indicator is. Ideally, the uncertainty
associated with a lack of data would be quantified and communicated to the
user. Although this is currently not part of the GEIGER user interface, it could
prove to be a valuable addition.

The GEIGER solution is composed of several interdependent components.
The accuracy of the GEIGER indicator may come at a cost; the cost of com-
plexity. We should take care to translate this underlying complexity into a
simple and clear message to the user, which is what we aim to achieve with
the user interface outlined in Section 4.4.

An important facet in harbouring user trust is adequately addressing con-
fidentiality concerns (Shojaifar and Fricker, 2020). The GEIGER indicator is
computed for each employee and no sharing - to the employees’ supervi-
sor or the GEIGER cloud - is allowed before the consent of this employee.
The GEIGER indicator is GDPR-compliant by respecting user preferences
regarding data privacy.

Yet, we wish to go further than just compliance. Since the accuracy of the
GEIGER indicator is largely determined by the amount of data underlying
its value, it will be necessary to create a comfortable environment for the
user to provide consent to information sharing (Shojaifar and Fricker, 2020).
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However, we recognise that it will be challenging to find the right balance
between pushing users to share data and providing a comfortable setting, as
these are somewhat conflicting goals.

The GEIGER indicator is still in its prototype release. More validation with
end-user SMEs is planned in the coming months to refine its scope and
improve its reliability in terms of the suggested recommendations to protect
SMEs from the most impactful cyber-threats.

46 CONCLUSION AND FUTURE WORK

Less digitally mature Small- and Medium-Sized Enterprises (SMEs) are per-
haps the most vulnerable to cybersecurity threats of all organisations. These
SMEs often lack the cybersecurity knowledge, awareness, and resources to
deal with cyber-attacks. Perhaps even more worryingly, their limited con-
nection to the cybersecurity topic often causes a low motivation to improve
their cybersecurity posture. This is why we set out to answer the question:
How can we create a cybersecurity risk assessment approach for SMEs that
promotes user motivation?

Any appeal for adopting cybersecurity countermeasures is, directly or
indirectly, motivated by a particular threat. Unsurprisingly, threat-based cy-
bersecurity risk assessment methodologies are a popular tool. Besides hav-
ing a natural ability to promote threat appraisal, an important concept in
behavioural theories such as Protection Motivation Theory (PMT) and Self-
Determination Theory (SDT), threat-based approaches facilitate automation
and prioritisation.

Nevertheless, threat-based cybersecurity risk assessment approaches are not
commonly used to assist SMEs. We introduced a threat-based cybersecurity
risk indicator specifically aimed at SMEs and discussed the data requirements
to make the algorithm behind such an indicator work. After outlining the
details of our algorithm, we covered a practical application of our approach,
delineating how different user interface screens satisfied the three SDT needs:
autonomy, competence, and relatedness.

Our work shows that it is feasible to create a cybersecurity risk assessment
approach for SMEs that promotes user motivation. We strongly believe that
threats should play a central role in any such solution.

We recognise that challenges remain and that more validation of our ap-
proach is necessary. In future work, we plan to refine our algorithm through
the incorporation of extensive user feedback. Additionally, we intend to fur-
ther investigate threat prioritisation and the possibilities of incorporating
privacy-preserving ideas in our algorithm. We hope that the new insights we
gain will bring the most vulnerable SMEs another step closer to security.



A SHARED CYBER THREAT INTELLIGENCE SOLUTION
FOR SMES

Small- and medium-sized enterprises (SMEs) frequently experience cyberat-
tacks, but often do not have the means to counter these attacks. Therefore,
cybersecurity researchers and practitioners need to aid SMEs in their defence
against cyber threats. Research has shown that SMEs require solutions that
are automated and adapted to their context. In recent years, we have seen
a surge in initiatives to share cyber threat intelligence (CTI) to improve col-
lective cybersecurity resilience. Shared CTI has the potential to answer the
SME call for automated and adaptable solutions. Sadly, as we demonstrate
in this chapter, current shared intelligence approaches scarcely address SME
needs. We must investigate how shared CTI can be used to improve SME
cybersecurity resilience. In this chapter, we tackle this challenge by using
a systematic review to discover current state-of-the-art approaches to utilis-
ing shared CTI. We find that threat intelligence sharing platforms such as
MISP have the potential to address SME needs, provided that the shared
intelligence is turned into actionable insights. Based on this observation, we
developed a prototype application that processes MISP data automatically,
prioritises cybersecurity threats for SMEs, and provides SMEs with actionable
recommendations tailored to their context. Our application will increase SME
cybersecurity awareness and resilience, which will enable them to thwart
cyberattacks in future.

The contents of
this chapter are
based on: van
Haastrecht,
Golpur, et al.
(2021). A Shared
Cyber Threat
Intelligence
Solution for
SMEs.
Electronics.
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5.1 INTRODUCTION

The cybersecurity threat landscape is diverse and dynamic, as witnessed by
several recent supply chain attacks with worldwide impact (Browning, 2021;
Lazarovitz, 2021). Attack sophistication is increasing (Skopik et al., 2016) and
it is now widely accepted that even nation-states are actively involved in the
most advanced and persistent threats (Lemay et al., 2018). Unsurprisingly, the
trend of increased complexity in attacks is expected to continue in the future
(Lella et al., 2021).

These observations stand in stark contrast to the situation of small- and
medium-sized enterprises (SMEs), who lack the knowledge and resources
to appropriately address any cybersecurity threats (Heidt et al., 2019); never
mind advanced threats. SMEs require the help of their external environment
to deal with cybersecurity attacks since they do not have internally available
expertise (van Haastrecht, Yigit Ozkan, et al., 2021).

In this sense, the maxim “a problem shared is a problem halved” is fitting
in the SME context. It is this maxim that is the driving force behind infor-
mation sharing in the cybersecurity community (Skopik et al., 2016). Sharing
cybersecurity intelligence has long been recognised as a key ingredient in
raising our collective cybersecurity resilience. Yet, until recently, efforts in
this area were fragmented and unsuccessful (Kampanakis, 2014), with many
feeling the advantages to sharing data were outweighed by the disadvantages
(Albakri et al., 2018; Ring, 2014).

This changed with the introduction of standardised cybersecurity intelli-
gence taxonomies (Barnum, 2012; Burger et al., 2014; Connolly et al., 2012)
and intelligence sharing platforms (Sauerwein et al., 2017; Wagner et al., 2016).
Especially the sharing of threat (Johnson et al., 2016; Mavroeidis and Bro-
mander, 2017; Qamar et al., 2017) and incident (Baesso Moreira et al., 2018)
information gained acceptance and popularity.

Privacy concerns still remain regarding the sharing of cybersecurity in-
telligence (Shojaifar and Fricker, 2020; Zibak and Simpson, 2019). However,
the focus has now shifted to finding solutions rather than simply detailing
problems (Azad et al., 2021; de Fuentes et al., 2017; Ezhei and Tork Ladani,
2017). Exploiting the properties of blockchain for privacy preservation is an
example of a novel and promising approach (Brotsis et al., 2019; Purohit et al.,
2020).

Recently, the use of advanced data analytics (Husdk, Komérkova, et al.,
2019; N. Sun et al., 2019) and machine learning (Sarker, Furhad, et al., 2021;
Sarker, Kayes, et al., 2020) techniques to extract further insights from shared
intelligence has spurred on optimism regarding the future of cybersecurity in-
formation sharing. Nevertheless, the literature remains eerily silent regarding
the use of shared incident data to support SMEs; a group in dire need of help
from their external environment.



5.2 LITERATURE REVIEW

SMEs have their own concerns regarding information sharing (Shojaifar
and Fricker, 2020), and certainly require different treatments and solutions
than other enterprise types (Yigit Ozkan, Spruit, et al., 2019). This is perhaps
most true for the least digitally mature SME categories: start-ups and digitally
dependent SMEs. Along with the more mature digitally based SMEs and digital
enablers, the European DIGITAL SME Alliance (European DIGITAL SME
Alliance, 2020) distinguishes these SME categories to emphasise that SMEs
are not one homogeneous group, but rather a diverse set of businesses, with
diverse needs.

SMEs require distinctly different solutions than other enterprises due to
their lack of internally available cybersecurity knowledge and resources. Addi-
tionally, any solution looking to aid SMEs should recognise the heterogeneity
within this group of enterprises. Based on what we know of current trends
in cybersecurity intelligence sharing literature, it is therefore unlikely that
any of the prevailing approaches to utilising shared incident data are suitable
for SMEs. Nevertheless, it can be expected that current approaches contain
building blocks for useful SME approaches, especially due to the automatic
nature of today’s machine learning techniques.

Finding out how we can use shared cybersecurity information to aid SMEs
is our main focus in this chapter. Hence, we ask:

* RQ: How can shared incident information be utilised to help improve
SME cybersecurity?

We will answer our research question by first systematically reviewing
current approaches to utilising shared incident data in Section 5.2. Here we
will also provide a detailed analysis of the difficulties of using the VERIS
Community Database (VCDB) (The VERIS Community Database 2021) in the
SME context. These efforts will provide insight into what adaptations to
current approaches are necessary to yield a useful solution for SMEs.

We then describe our proposed solution using the Malware Information
Sharing Platform (MISP) (Wagner et al., 2016) in Section 5.3, covering the
input (5.3.1), process (5.3.2), and output (5.3.3). In Section 5.3.4, we provide
a practical example of how our application helps SMEs, demonstrating the
potential impact of our solution. Finally, we discuss our findings in Section
5.4 and conclude in Section 5.5.

5.2 LITERATURE REVIEW

Before proposing our methodology, we should investigate current approaches
to utilising shared cybersecurity threat intelligence. We conducted this investi-
gation via a systematic literature review using the SYMBALS (van Haastrecht,
Sarhan, Yigit Ozkan, et al., 2021) methodology. We searched the Scopus
database for the keywords presented in Table 5.1, where we restricted our
search to conference and journal articles and English-language documents.
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Table 5.1: Keywords and accompanying synonyms used in our search of the Scopus
database.

KEYWORD SYNONYMS

cybersecurity cyber security, information security
threat event, attack, incident

sharing share

Additionally, we focused on research published since 2016. In 2016, the
Malware Information Sharing Platform (MISP) was introduced (Wagner et
al., 2016). MISP is one of the most widely used threat sharing platforms,
along with the Trusted Automated eXchange of Indicator Information (TAXII)
(Connolly et al., 2012). Both MISP and TAXII facilitate information exchange
using the Structured Threat Information eXpression (STIX) language (Barnum,
2012), the de-facto standard format for exchanging threat intelligence.

The choice to focus our review on the period since 2016 is no coincidence.
Since the introduction of MISP, the subject matter of shared threat intelligence
research has shifted. Whereas earlier research explored information sharing
options (Kampanakis, 2014; Steinberger et al., 2015) and outlined the barriers
to sharing (Ring, 2014), research since 2016 has largely centred around how
we can use shared intelligence.

Our database search yielded 546 results, of which 47 inclusions remained
after applying the filtering steps of SYMBALS. The most common reason for
exclusion was that a paper did not cover our topic of interest: the utilisation
of shared threat intelligence. This is not surprising, as the keywords we
employed do not provide a guarantee of papers in our focus area.

We then proceeded to extract relevant data from our inclusions. One di-
mension we considered was the suitable organisation type for an approach.
The European DIGITAL SME Alliance outlines four SME categories: start-ups,
digitally dependent SMEs, digitally based SMEs, and digital enablers (Eu-
ropean DIGITAL SME Alliance, 2020). The cybersecurity maturity of these
SME categories progresses from the least mature start-ups to the most mature
digital enablers (van Haastrecht, Yigit Ozkan, et al., 2021).

Where start-ups are only beginning to realise the importance of cybersecu-
rity, we can expect digital enablers to have embedded, automated cybersecu-
rity processes (van Haastrecht, Yigit Ozkan, et al., 2021). Nevertheless, even
digital enablers are unlikely to have the capacity to run a Security Operations
Centre (SOC) which can monitor and analyse continuously gathered internal
security intelligence. This is why we included a ‘large enterprises’ category to
collect any methods unsuited to any SME category. The first column of Table
5.2 depicts our considered enterprise categories.

Ramsdale et al. (2020) offer a concise classification of cyber threat intel-
ligence (CTI) sources. They divide sources into internally sourced intelli-
gence, externally sourced intelligence, and open-source intelligence. Internally
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Table 5.2: The type of cyber threat intelligence used in each of our 47 inclusions,
along with the minimum SME category maturity required to implement the
proposed methodology.

CATEGORY EXTERNAL INTELLIGENCE OPEN-SOURCE INTELLIGENCE INTERNAL INTELLIGENCE

Start-ups
Digitally dependent

Digitally based

Digital enablers

Vakilinia et al. (2018)

Tanriverdi and Tekerek
(2019) Riesco, Larriva-
Novo, et al. (2020)

Y. Zhao et al. (2017)
Gonzalez-Granadillo et
al. (2019) Ansari et al.
(2020)

Badsha et al. (2019)

S. He, G. M. Lee, et al.
(2016)

Qamar et al. (2017)
Faiella et al. (2021) J.
Zhao et al. (2020) Ural
etal. (2021)

Husari et al. (2018) W.
Yang and Lam (2020)
Koloveas et al. (2021)
Khramtsova et al. (2020)
Mutemwa et al. (2017)

Brotsis et al. (2019) Best et al. (2017)

Purohit et al. (2020) H. Zhao and Sil-
verajan (2020) Lin et al. (2019) Serketzis
et al. (2019) Mohasseb et al. (2020) Y.
Sun et al. (2020) Husék, Bartos, et al.
(2021) Jeng et al. (2019) Husak, Bajtos,
et al. (2020) Huang et al. (2020) Riesco
and Villagra (2019)

Large enterprises

E. Kim et al. (2018) S. He,
Fu, et al. (2020) Schlette
etal. (2021) Schaberreiter
et al. (2019) Settanni et
al. (2017) Manfredi et al.
(2021)

Mtsweni et al. (2016) J.
Yang et al. (2020)

Takahashi and Miyamoto (2016) Kure
and Islam (2019) Graf and King (2018)
S. Brown et al. (2019) Leszczyna and
Wrébel (2019) Badri et al. (2016) Mc-
Keever et al. (2020) Abe et al. (2018)
Leszczyna, Wallis, et al. (2019)

sourced intelligence relates to data on events occurring within an organisa-
tion’s IT infrastructure. External intelligence comes from structured threat
intelligence feeds, such as those sourced from the TAXII and MISP platforms.
Finally, open-source intelligence is defined as intelligence from publicly avail-
able sources such as news feeds and social media. We choose to not employ
the commonly used abbreviation of open-source intelligence OSINT, as OS-
INT is more broadly associated with the methodology of collecting threat
intelligence from publicly available sources.

Table 5.2 categorises our inclusions based on the suitability of their approach
to different enterprise types and the type of intelligence source they build
on. We should note that the enterprise categories of Table 5.2 are ordered
by cybersecurity maturity. This means that if start-ups can use a particular
approach, digitally dependent SMEs will automatically also be able to use that
approach. Similarly, if an approach is classed as being suitable for digitally
based SMEs, it is not suitable for the less digitally mature start-ups and
digitally dependent SMEs.

The first thing to notice about Table 5.2 is that very few of our inclusions
specify shared CTI solutions suitable for start-ups and digitally dependent
SMEs. We cannot expect these SMEs to collect and analyse internal intelligence,
which explains why none of the internal intelligence approaches is suited
to start-ups and digitally dependent SMEs. Internal intelligence approaches
often require an internal security expert or even a SOC, which make them
difficult to implement even for digitally based SMEs and digital enablers.

Open-source intelligence methodologies often suffer from their open-ended
nature, making them less actionable for SMEs. The collected data is often
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unstructured text and will generally only serve to inform the user, rather than
assist them in concrete tasks. The two open-source approaches that are suited
to less digitally mature SMEs have a very specific goal. In the first, the authors
create a spam filter based on open-source spam data, which can then be used
by organisations to prevent spam from reaching employee inboxes (Badsha
et al., 2019). The second approach also uses publicly available spam data, but
this time it is connected to organisation IPs and used as a tool to confront
companies with their security level (S. He, G. M. Leg, et al., 2016).

Although the mentioned open-source intelligence sharing methods have
their merits for start-ups and digitally dependent SMEs, they only scratch the
surface of what can be done to help SMEs. Structured external intelligence
could be an outcome here, but, as Table 5.2 shows, most research is geared
towards large enterprises. All of the external intelligence approaches for large
enterprises use STIX as their data sharing format, and most use TAXII as
the sharing platform. The benefit of STIX is that it is flexible and therefore
facilitates many different indicators of compromise (IoCs). However, most
research proposes methodologies whereby the STIX data is shared without
much processing. This means the shared data retains much of STIX’s com-
plexity, and it is left to analysts at an organisation to interpret this data. SMEs
simply do not have the resources for such activities.

The external intelligence approaches suited to SMEs still regularly employ
STIX. However, they no longer use TAXII as a sharing platform, preferring less
common platforms or a custom sharing platform. Approaches that apply a
more extensive filtering process to provide organisations with concise insights
are most suited to the least digitally mature SMEs. By comparing shared data
to blacklists (Tanriverdi and Tekerek, 2019) or using the shared intelligence
to advise on suitable production rules (Riesco, Larriva-Novo, et al., 2020),
digitally based SMEs are aided in their detection process. However, detection
is still a step too far for start-ups and digitally dependent SMEs, who are
often still in the process of understanding their assets and attack surface (van
Haastrecht, Yigit Ozkan, et al., 2021).

The external intelligence approach suited to start-ups uses a feed of pass-
words identified in breaches to inform users of susceptible passwords (Vak-
ilinia et al., 2018). As with the open-source intelligence approaches, it is the
focused nature and clear aim of this approach that makes it accessible to
all types of SMEs. The question remains whether we can go beyond these
specific implementations while maintaining usability for the least digitally
mature SMEs. Such solutions currently do not exist and would be immensely
beneficial to SMEs.

We certainly believe it is possible to create such solutions. It is clear from
our systematic review results that the solution lies in the use of structured
external threat intelligence, preferably conforming to the STIX standard, which
is sufficiently processed and filtered to yield actionable insights for SMEs.
Section 5.3 explains our solution.
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Before diving into our solution, it is worth investigating whether a similar
approach using open-source intelligence would also be feasible. We noted
earlier that one of the main issues with open-source intelligence for SMEs is
its unstructured nature. However, structured open-source intelligence sources
do exist. The VERIS Community Database (VCDB) (The VERIS Community
Database 2021) is commonly used in cybersecurity research (Baesso Moreira
et al., 2018; Y. Liu et al., 2015) and also serves as the basis for Verizon’s yearly
Data Breach Investigations Report (DBIR) (Bassett et al., 2021). Altogether,
VCDB seems like the ideal CTT source.

As we look closer, however, problems start to emerge. VCDB is largely
composed of data breach incidents collected by analysts from news reports.
Although a data breach can be considered an outcome of a cybersecurity
threat, it is more commonly classified as a type of threat. The European Union
Agency for Cybersecurity (ENISA) is a prominent example of an institution
classifying data breaches as a threat type.

ENISA publishes a yearly list of top threats (ENISA, 2020) and ‘data breach’
appears every year. Figure 5.1 shows a comparison of VCDB and ENISA threat
rankings from 2012 to 2017. Of the 12 threats depicted, 11 appear in the ENISA
top threats each year. The exception is the ‘external environment threat” which
was introduced by van Haastrecht, Sarhan, Shojaifar, et al. (2021). External
environment threats comprise the threats resulting from third parties and
suppliers interacting with an organisation. This threat category is especially
relevant for SMEs, as we have seen in the proliferation of recent supply chain
attacks (Browning, 2021; Lella et al., 2021). Although ENISA has not included
it in their top threats, the threats making up the external environment threats
do appear in their overall threat taxonomy.

To produce Figure 5.1, we analysed confirmed SME incidents included
in VCDB from 2012-2017, with 2017 being the most recent year for which
confirmed incidents were available. VCDB can be seen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>