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Introduction

Therapy selectivity, defined as the ability of  a drug to bind specifically to its intended 
target, is a critical aspect of  the drug development pipeline. Many therapies fail in clin-
ical trials due to side effects caused by off-target binding – or, in other words, lack of  
selectivity1. While the treatment of  most diseases primarily requires target selectivity, 
other features may be crucial, such as tissue selectivity or, in the case of  anticancer 
treatments, cancer-cell selectivity2,3. Target selectivity is related to the pharmacological 
properties of  the drug, whereas tissue selectivity is associated with its pharmacokinetic 
properties4. Cancer-cell-selectivity involves specifically attacking targets predominantly 
present in cancer cells while sparing healthy cells5. In combination, the optimization of  
these selectivity features is crucial to enabling efficient and safe therapies4,6.

The advent of  targeted anticancer therapies, also referred to as personalized or precision 
oncology, represents a significant shift in cancer treatment strategies and is based on the 
concept of  therapy selectivity7. Compared to traditional cancer treatments such as che-
motherapy and radiation therapy, targeted therapies leverage the unique genetic makeup 
of  tumors to selectively target cancer cells7. Some of  the characteristics of  tumors that 
make this possible include the differential expression and the mutation of  certain targets 
compared to their counterparts in healthy cells8,9. Protein kinases are predominantly 
used as personalized anticancer targets given their high relevance in cancer signaling and 
aberrant genetic landscape across cancer types10,11. In particular, mutated kinases may 
present functional or structural differences that distinguish them from their otherwise 
highly conserved protein family and that can be selectively targeted12,13. 

Current anticancer kinase targets commonly overexpressed in tumor tissue include hu-
man epidermal growth factor receptor 2 (HER2) in breast cancer and fms-like tyrosine 
kinase 3 (FLT3) in acute myeloid leukemia8. Mutated anticancer kinase targets leveraged 
in the clinic exhibit distinguishing features, such as the fusion protein BCR-ABL present 
in most patients with chronic myeloid leukemia and resulting from the aberrant coupling 
of  the genes of  breakpoint cluster region protein (BCR) and tyrosine-protein kinase 
ABL114. Other structurally distinguishing features of  mutated anticancer targets that 
promote selectivity include altered orthosteric binding pocket conformations and novel 
allosteric binding pocket formation15,16. These have also been leveraged in the clinic, as 
exemplified by the epidermal growth factor receptor 1 (EGFR) L858R activating muta-
tion targeted by selective orthosteric small molecule tyrosine kinase inhibitors (TKI)17 
and clinical candidates targeting an allosteric pocket selectively in phosphoinositide 3-ki-
nase α (PI3Kα) activating mutants18. 

To make personalized oncology more accessible, the scientific community is actively 
engaged in expanding the range of  druggable (mutated) targets19. However, several chal-
lenges arise regarding the criteria for identifying suitable candidates20. As previously dis-
cussed, the target should exhibit distinct characteristics compared to its healthy tissue 
counterpart to improve selectivity. Additionally, the candidate must play a functional-
ly significant role in cancer progression to enhance efficacy. Lastly, the target should 
be relevant to a large group of  patients with the cancer subtype. To achieve this, it is 
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necessary to conduct various experiments that delve into potential candidates, covering 
structural, functional, and multi-omics analyses – a process that can be quite time- and 
cost-intensive21. In this context, different holistic computational strategies have emerged 
as particularly effective in compiling heterogeneous data types and prioritizing target 
candidates22–25.

Knowledge graphs, or complex networks, stand out as significant computational tools 
employed in cancer research due to their high versatility and interpretability26. By adopt-
ing graph-based data representations, these methods facilitate the storage and compre-
hensive analysis of  diverse data entities (nodes) and their interrelations (edges). This 
functionality not only enables explicit knowledge retrieval but also facilitates the explo-
ration and prediction of  implicit knowledge by applying complex network algorithm 
analyses or deep learning approaches27. Some of  the most fundamental graph-data rep-
resentations in cancer research are gene regulatory networks and protein-protein inter-
action (PPI) networks, which represent causal or physical associations between entities 
of  the same data type28. The nodes in these networks can be enriched with other types 
of  data, such as clinical-relevant genomic data29,  transcriptomics30–32, multi-omics33, 
disease-associated scores32, or inhibitor profiling32, and also combined with other net-
works34,35. Alternatively, knowledge graphs can be constructed with heterogeneous data 
nodes representing entities other than genes or proteins, such as genetic variants36, dis-
eases36–39, phenotypes38,40,41, symptoms39, treatments41, drugs36,37,40,41, and risk and preven-
tion factors39. These graphs have a broad range of  applications, spanning from cancer 
diagnosis and subtype classification35 to prevention41 and treatment planning40. Among 
these applications, there are also various tasks related to oncological drug discovery such 
as pathogenesis analysis38, mutant driver34 and resistance29 prediction, biomarker30 and 
target33 identification, drug repurposing37, and drug sensitivity prediction23,31. However, 
the multi-faceted nature of  anticancer drug selectivity, which makes it an intriguing sub-
ject for study as a knowledge graph, remains largely unexplored in this context. 

In this study, we introduce a knowledge graph approach for prioritizing cancer muta-
tions with clinical, functional, and structural significance as potential targets for selective 
anticancer therapies. Due to limitations in data availability, our focus was on the human 
kinome, representing the complete set of  protein kinases encoded in the human genome. 
This knowledge graph was constructed by integrating two distinct networks. Firstly, a 
pre-existing PPI network was used, linking protein-encoding genes through phosphor-
ylation events, which are the main kinase signaling events42. Secondly, a patient-centric 
network was developed, connecting kinase somatic mutations based on their co-occur-
rence in cancer patients sourced from the Genomic Data Commons (GDC) database43. 
To enhance clinical and functional relevance, gene nodes in the knowledge graph were 
annotated with transcriptomics data. Additionally, mutation nodes underwent structural 
and functional annotation through analyses from primary sources including the protein 
data bank (PDB)44 and KLIFS45. Finally, all nodes were enriched with bioactivity data 
from ChEMBL to evaluate the druggability and drug sensitivity of  mutations46. This 
comprehensive network serves as a valuable resource in cancer research, potentially fa-
cilitating the identification of  relevant mutations for targeted therapeutic interventions. 
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Results and discussion 

Overview of primary sources: clinical, structural, and functional relevance

A knowledge graph was constructed to enable the prioritization of  kinase cancer muta-
tions as selective targets for anticancer therapies. The perfect candidate was defined as a 
mutation of  clinical relevance with the maximum potential to induce differential phar-
macological effects compared to its wild-type counterpart and negligible potential to de-
velop resistance mechanisms47. Clinical relevance was defined by a mutation recurrence 
in multiple cancer patients, but also by the kinase overexpression in a particular cancer 
type, which is a common druggability and cancer-cell selectivity indicator in targeted 
anticancer therapies. The last two conditions were further linked to the mutation’s struc-
tural and functional relevance. In this context, orthosteric ligand binding pocket muta-
tions were considered structurally relevant due to their potential to modify the pocket’s 
conformation, which can be exploited to promote selectivity. These mutations were also 
considered functionally relevant because targeting them has the potential to directly dis-
rupt the protein’s function. Moreover, additional resistance mutations in the pocket have 
the risk of  disrupting the binding of  endogenous substrates needed for their activation 
and have thus a higher resistance threshold. Allosteric pockets have also been targeted in 
the past to increase target selectivity in cancer cells15, but they were not directly consid-
ered here due to constraints locating them. Functional relevance was also characterized 
by the importance of  the target kinase in the cellular phosphorylation network. Apart 
from being central to crosstalk in cancer, kinases with a central role are less likely to have 
their signaling network re-routed and are therefore less prone to developing resistance48.

Data was therefore collected from primary sources across five layers of  information to 
address the key questions guiding the selection of  selective mutation target candidates 
with clinical, structural, and functional relevance (Figure 8.1). The information per-
tained to either mutations (top three layers in Figure 8.1) or their corresponding targets 
(bottom two layers in Figure 8.1). Kinase mutations were derived from cancer somatic 
mutation data from the NIH GDC dataset compiled in Chapter 543,49 and their connec-
tions enabled the analysis of  mutation co-occurrence in a patient and overall mutation 
recurrence (third layer). Mutations were further annotated with information regarding 
their location on the protein (second layer) and their pharmacological effect with re-
spect to the wild-type protein (first layer). Structural location was determined through 
the analysis of  data from a family-independent source (PDB)44 and a kinome-specific 
source (KLIFS)45. The analysis of  PDB complexes enabled the annotation of  the dis-
tance between the mutated residue and the ligand centroid as a proxy for the distance to 
the orthosteric binding site, as described in Chapter 4. Additionally, the aligned position 
in the kinase binding pocket was annotated from KLIFS. The pharmacological effect of  
mutations was annotated from the combined analysis of  the differences between bioac-
tivity distributions in mutant and wild-type targets in ChEMBL and the Papyrus dataset, 
as previously introduced in Chapter 4. Apart from the kinases with cancer-related mu-
tations, targets were derived from the phosphorylation PPI network defined by Olow 
et al.42 and their connections supported the analysis of  phosphorylation events between 
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kinases and their substrates (fourth layer). Genes encoding the protein targets were fur-
ther annotated with their differential expression in different cancer types compared to 
normal tissue that was derived from the GDC dataset (fifth layer).  
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Figure 8.1. Overview of five layers of information contained in the knowledge graph. The top three layers 
correspond to somatic mutations, while the two bottom layers correspond to gene / protein targets. 
From top to bottom, the first layer represents the bioactivity differences triggered by mutations with 
respect to wild-type. The second layer represents the mutation’s structural location in the target pro-
tein. The third layer represents the occurrence of mutations in cancer patients. The fourth layer rep-
resents the phosphorylation events between targets. Finally, the fifth layer represents the differential 
expression of the target genes in tumor tissue in different cancer types (defined by the primary site 
where the tumor developed) compared to normal tissue. Each layer answers a distinct question about 
the mutation’s relevance as an anticancer target. The connections represented by lines between enti-
ties (nodes) within the third and fourth layers are used as edges in the knowledge graph, as well as the 
connections between nodes of those two layers. The connections within the rest of the layers, repre-
sented by dashed lines, are not kept in the knowledge graph but indicate how nodes relate based on 
the data represented in each layer. The red line connecting and highlighting nodes across the five layers 
exemplifies a potential candidate with information spawning across the five layers.  

While knowledge graphs can incorporate a larger variety of  information, such as Astra 
Zeneca’s BIKG which was constructed with 37 public and internal datasets50, subsets 
of  the graphs29,51 or more tailored representations32 are needed to answer specific re-
search questions. For example, the CancerOmicsNet graph was created with the pur-
pose of  predicting therapeutic effects in various cancer cell lines. It incorporated layers 
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of  information similar to those mentioned here, consolidated into a single graph using 
a phosphorylation PPI network32. In contrast, our approach involves integrating mu-
tation-specific data that aligns with the specific objectives set for this graph. The data 
across these five layers enables an investigation into the clinical, structural, and function-
al implications of  mutations and targets, while also tackling important considerations 
around druggability, like selectivity towards cancer cells and mutations. This information 
was incorporated into a knowledge graph and analyzed accordingly, as detailed in the 
following sections. 

Knowledge graph architecture

Mutations and targets were connected in the knowledge graph by association edges 
and comprised the two types of  nodes available. Mutation nodes were connected by 
edges representing co-occurrence in the same cancer patient. Target nodes – referred 
to as gene nodes from now on to denote target protein-coding genes – were connected 
by edges representing all phosphorylation events between kinases and their substrates 
(Figure 8.2a). The rest of  the information collected from primary sources was col-
lapsed from the five layers of  information into one and stored as – mutation or gene 
– node attributes (Figure 8.2b). Edges representing cancer patient co-occurrence were 
also annotated with attributes representing the corresponding patient and cancer type, 
which allowed analysis per cancer type in subsequent sections. This simple graph archi-
tecture was chosen to keep mutations and their corresponding protein-coding genes 
as the central elements. The knowledge graph was constructed in NetworkX52 allow-
ing multiple connections between the same two nodes. In the final kinome graph, this 
amounted to 78,782 nodes and 6,515,059 edges. Node entities and their relationships 
were determined manually here to maximize accuracy. However, other options are be-
coming available to extract them automatically, such as using large language models53, 
in turn facilitating ontology mapping39. These novel approaches are particularly relevant 
and promising in large knowledge graphs comprising numerous primary sources, al-
though several challenges still need to be addressed, particularly regarding precision and 
biases in the data extracted54. 

The distribution of  types and subtypes of  nodes and edges is presented in Table 8.1. 
Gene nodes amounted to 1,571, of  which 667 were kinases and 904 substrates. Of  note, 
the original phosphorylation PPI network contained 774 kinase nodes but only 625 were 
kept after applying the filter for proteins with kinase activity as defined in the methods 
section. Additionally, 42 genes coding for proteins with kinase activity that were not in-
cluded in the original phosphorylation PPI network were added to the graph due to the 
presence of  mutations in cancer patients. Substrate types were further investigated, par-
ticularly within the context of  membrane proteins. Specifically, 17 nodes were identified 
as G protein-coupled receptors (GPCRs), while 14 were categorized as solute carriers 
(SLCs). Additionally, 130 other substrates were found to be primarily localized to the 
plasma membrane. Moreover, out of  the kinase nodes, 65 were also receptors. The ma-
jority of  nodes (77,009) represented cancer mutations. Out of  these, only 34 were asso-
ciated with bioactivity data from both ChEMBL and the Papyrus dataset. Consequently, 
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an additional 202 kinase mutation nodes with bioactivity data were incorporated into the 
graph to allow the interpolation of  mutation characteristics affecting bioactivity. In an 
expanded version of  the graph aimed at drug discovery, other node types could include 
small molecules36,37,40 instead of  summarizing the effects of  mutations over all tested 
drugs. This could result in an additional layer of  information where edges represent 
similarity between small molecules55. An alternative would be to report the effect of  
individual kinase inhibitors as individual attributes in each kinase node32. However, other 
primary sources for mutation-driven bioactivity changes should be considered before 
implementing any of  these expansions56. 
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Figure 8.2. Knowledge graph architecture. a) Schematic representation of the two types of nodes in 
the graph (circles) and their edges (arrows). b) Example graph representation with attributes linked to 
mutation and gene nodes, as well as to cancer co-occurrence edges. Mutation nodes are represented 
in orange and gene nodes in blue. Edges connecting different types of nodes correspond to the edges 
described in a). 

Filtering nodes from the original phosphorylation network resulted in a reduction of  
phosphorylation edges between gene nodes from the original count of  5,963 to 5,759. 
Cancer mutation nodes were connected to their respective genes via one or multiple edg-
es, indicating the frequency of  the mutation within that gene across patients. Cancer mu-
tations were collected from 8,518 patients across 48 cancer types. As a result, the number 
of  edges between cancer mutations and genes exceeded the count of  cancer mutation 
nodes by 10,239. Conversely, the number of  edges connecting genes and non-cancer 
mutations equaled the count of  non-cancer mutation nodes. Over 6.4 million edges 
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represented the co-occurrence of  two mutations in the same cancer patient, highlighting 
a high mutation burden in kinases. The distribution varied widely, with some patients 
having just one edge representing one mutation and others having up to 672,220 edges 
representing up to 1,159 unique mutations. The median number of  co-occurring edges 
per patient was six, indicating most patients had few kinase mutations, while a few had 
a large number of  mutations. 

Table 8.1. Distribution of node and edge types and subtypes across the kinome knowledge graph. 

Entity Type Subtype Number of  entities

N
od

es

Gene Kinase 667
Substrate 904

Mutation Cancer 77,009
Other (ChEMBL + Papyrus) 202

E
dg

es

Gene - Gene Phosphorylation 5,759
Gene - Mutation Cancer 87,248

Other (ChEMBL + Papyrus) 202
Mutation 
- Mutation

Cancer patient co-occurrence 6,421,798
Other (ChEMBL + Papyrus multiple 
substitutions)

52

The analysis of  node degrees in the knowledge graph confirmed this irregular pat-
tern, highlighting the presence of  a few nodes with exceptionally high degrees and a 
much larger number of  nodes with lower degrees (Figure 8.3). A node degree rep-
resents the number of  edges linking it to other nodes. As anticipated, recurrent cancer 
mutations and their corresponding genes exhibit high degrees within the knowledge 
graph. PIK3CA R88Q and BRAF V600E are the two mutations with the highest degree 
(10,275 and 6,219, respectively) and were present in 68 and 565 patients respectively 
(Supplementary Table 8.1, 8.2). Interestingly, other PIK3CA mutations with a higher 
occurrence frequency in cancer patients (PIK3CA E545K and H1047R present in 258 
and 234 patients, respectively) showed comparatively lower node degrees (2,484 and 
2,439, respectively). These results emphasize the importance of  mutation co-occurrence 
and tumor mutation burden (TMB), which has recently been highlighted as a tumor 
biomarker57. Accordingly, genes linked to TMB, such as TTN and OBSCN58, were also 
highlighted in the knowledge graph based on their node degree. In a similar manner, 
mutations not highly recurrent across cancer patients but present in patients with a high 
TMB across cancer types (Supplementary Table 8.3) showed a high node degree, three 
of  them even being present in natural variance (Supplementary Table 8.2).  Mutation 
co-occurrence in patients has also been highlighted in other graph approaches indepen-
dent of  mutation recurrence59. However, in order to pinpoint exclusively functionally 
relevant mutations, it might be appropriate to filter frequent mutations a priori60. From a 
graph architectural point of  view, the emphasis on individual patients that is central to 
our approach has also been reported in other patient-centric graphs. The most common 
approaches also consider genes in PPI networks that are enriched with multi-omics 
data61,62. However, other graph architectures are possible where nodes represent individ-
ual patients with different multi-omics attributes63. Incorporating patient nodes into the 
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existing graph and linking them to their corresponding mutations and genes could aid in 
filtering out patients with high TMB and mutations with low recurrence rates, resulting 
in a more refined graph. As elaborated in the subsequent sections, addressing data spar-
sity within the graph is a significant bottleneck for analysis, and constructing focused 
subgraphs can sometimes mitigate this issue.

PIK3CA R88Q

TTN

BRAF V600E

PRKDC R2522Q

TTN

PIK3CA

OBSCN
BRAF

MAP3K19

CIITA

MAPT
TP53

PIK3CA R88Q

BRAF V600E

PRKDC R2522Q
MTOR R2152C

a

b c d e
CDK2 F82H_L83V_H84D_K89T

CDK2 F82H_L83V_H84D
CDK2 L83V
CDK2 H84D

Figure 8.3. Node degree rank analysis in the kinome knowledge graph. Nodes are ranked based on their 
degree, which is calculated as the number of edges connecting the node to other nodes in the graph. 
The degree rank analysis is calculated for all nodes in the graph (a) as well as for each node subtype 
independently: kinase (b) and substrate (c) gene nodes, and cancer (d) and other (e) mutations. The top 
four ranked nodes in each case are labeled accordingly.  

Attribute annotation sparsity across the graph

Nodes in the graph representing mutations and genes were annotated with attributes 
covering the information across the five layers of  information previously described in 
Figure 8.1. Node attributes are crucial for graph analysis, as they can further denote the 
embeddings or labels for predictions in machine learning applications. In particular, the 
number of  approved drugs and bioactivity changes were key mutation attributes that 
could be used to classify mutations for targeted therapy. However, the annotation densi-
ty (this is, how many nodes have non-null values for a particular attribute) of  these two 
and many other node attributes was rather low (as depicted in Figure 8.4 for mutation 
nodes, and in Supplementary Figure 8.1 for gene nodes). 

Of  the 1,571 gene nodes in the graph, 351 (22.34%) have at least one drug in any phase 
of  development directly linked on ChEMBL as its target (Supplementary Figure 8.1). 
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However, only three kinase mutations are listed as the target for drugs approved or in 
development (Figure 8.4f-h). These are BRAF V600E and EGFR L858R activating 
mutations and EGFR T790M acquired resistance mutation, all previously linked to can-
cer. Apart from being too low to generate labels for classification tasks, these annota-
tions are a direct consequence of  the non-triviality of  the variant annotation pipeline in 
bioactivity databases that we described in Chapter 4. For example, EGFR L858R does 
not have any approved drug directly linked to the mutation in the mechanism of  action, 
probably due to the fact that most approved first-generation EGFR inhibitors were 
developed to target selectively either the activating deletion in exon 19 or the activating 
mutation L858R, and deletions are not fully curated in ChEMBL as of  yet – although 
this is work in progress. Similarly, only 215 (0.28%) mutation nodes have a bioactivity 
change annotation (Figure 8.4e), which is a very small number for further machine 
learning analysis. These numbers could be increased with data from additional primary 
sources for mutant-induced bioactivity changes, such as the mutation-induced drug re-
sistance database (MdrDB)56.
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Figure 8.4. Density and distribution of mutation node attributes in the kinome knowledge graph. For 
each of the attributes, the number of mutation nodes with non-null values for the particular attribute is 
depicted on the y-axis. Moreover, the graphs represent the distribution of the attribute values across 
the mutation nodes on the x-axis, in the form of histograms or bar plots, depending on the density of 
each attribute. Distribution is represented as histograms for the distance to the pocket centroid cal-
culated from PDB complexes (a), the mutation type as determined by the Epstein coefficient of dif-
ference (b), the mutation type as described by the Grantham distance (c), the evolutionary probability 
of the mutation type as described by the Blosum score in the Blosum62 matrix (d), and the bioactivity 
change represented by the Wasserstein distance between the bioactivity distribution for the mutation 
and the wild-type protein found in ChEMBL (e). Bar plots represent the number of drugs in different 
phases of development according to ChEMBL labeling: clinical phases 2-3 (f-g), and approved drugs 
(h). Pre-clinical candidates (phase 0) and drugs in clinical phase 1 are not included because they were not 
annotated in any mutation nodes. The mutations represented in the bar plots are labeled for reference.  

Mutation attributes representing the characteristics of  the amino acid substitution that 
could be used for the node embeddings were less sparsely represented (Figure 8.4a-
d). Mapping of  the three metrics representing mutation types (Epstein coefficient of  
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difference64, Grantham distance65, and Blosum62 score66) could be done for all 100% of  
the mutations. These three metrics were selected to cover different aspects defining the 
amino acid substitutions, namely physicochemical properties (Epstein coefficient of  dif-
ference, which is directional and represents the size and polarity difference between the 
wild-type and mutated amino acid; and Grantham distance, which is non-directional and 
calculates said difference based on atomic composition and molecular volume on top of  
polarity), and evolutionary conservation (Blosum score, which defines the evolutionary 
probability of  a substitution relative to random probability, calculated for proteins clus-
tered at 62% sequence similarity). Of  note, 57% of  the mutations had an Epstein coef-
ficient of  difference lower than 0.4, and 74% a Grantham distance below 100, meaning 
that the majority of  substitutions were rather conservative. Simultaneously, 54% of  the 
mutations were likely to happen by chance, as represented by a Blosum score of  zero or 
higher, and in fact, 2,759 (3.57%) of  all the mutations were also found to occur as natural 
variance in the 1000 Genomes dataset previously compiled in Chapter 5. The comple-
mentarity of  the three amino acid substitution metrics was illustrated by the variations 
observed in their distributions (Figure 8.4b-d) while still aligning with clinical signifi-
cance (Figure 8.5). From the 19 most recurrent mutations in cancer patients (occurring 
in more than 20 patients), six mutations (BRAF V600E, FGFR3 S249C, ERBB2 S310F, 
FGFR2 S252W, EGFR L858R, and PIK3CA C420R) were identified as disruptive based 
on an Epstein coefficient of  difference over 0.4 and a Grantham distance greater than 
100. Additionally, these mutations were determined to be less likely to occur by random 
chance based on a negative Blosum score. The most common mutation, BRAF V600E, 
occurring in 565 patients, had an Epstein coefficient of  difference of  1.0 (Figure 8.5a), 
a Grantham distance of  121 (Figure 8.5b), and a Blosum score of  -2 (Figure 8.5c). It is 
key to note, however, that three oncogenic PIK3CA mutations highly recurrent in breast 
cancer (E545K, H1047R, and E542K67) would not be captured by any of  these three 
metrics, while the three mutations with associated drugs under development (BRAF 
V600E, EGFR L858R, EGFR T790M) would. Therefore, although these annotations 
are useful to get a general understanding of  the potential effect of  an amino acid substi-
tution, more advanced amino acid embeddings may be preferred for machine learning 
applications68.

Attributes representing the structural location of  the mutation in the protein were 
mapped to 9,126 mutations (11.82%) occurring in 161 genes when calculated from 
PDB complexes (Figure 8.4), and 3,854 mutations (4.99%) occurring in 295 genes were 
annotated with a KLIFS pocket position (Supplementary Figure 8.2a). Interestingly, 
only 1,890 mutations (2.44%) occurring in 138 kinases had a double structural anno-
tation (from PDB and KLIFS), which highlighted the complementarity of  these ap-
proaches. The annotations extracted from KLIFS covered a larger number of  kinases 
since they also included pocket annotations for kinases with only apo structures available 
in the PDB, such as TTN. An additional advantage of  the KLIFS annotation is that it 
can be directly linked to its structural relevance – functionally and pharmacologically. 
The PDB annotations, on the other hand, enabled the annotation of  mutations in an 
additional 22 genes for which there was no data available in KLIFS. More importantly, 
they enabled the annotation of  mutations outside of  the ATP binding pocket, providing 
a more holistic view of  the structural location of  the mutations, which is very relevant 
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for drug response prediction69. In fact, while secondary resistance mutations tend to 
be part of  the ATP binding site, many activating mutations crucial for cancer develop-
ment are outside of  the KLIFS-defined binding pocket. For example, from the 25 most 
frequent cancer mutations shown in Supplementary Table 8.1 and Figure 8.5, only 
EGFR L858R is part of  the KLIFS binding site. This is also exemplified by the discrep-
ancy identified between the number of  mutations within the KLIFS binding pocket and 
the maximum mutation frequency at those positions (Supplementary Figure 8.2a,c). 
While positions c.l.69 and c.l.74  in the kinase catalytic loop were the most frequently 
mutated overall with 91 and 88 individual mutations respectively, the two most frequent 
individual mutations in cancer patients within the pocket were EGFR L858R in the acti-
vation loop (a.l.84) and ERBB2 V842I in the β-sheet VI (VI.67), occurring in 23 and 17 
patients, respectively. It is worth noting that none of  the seven binding pocket positions 
with mutations occurring in 10 or more patients were highly conserved, as reported by 
KLIFS. This highlights the need for cancer cells to not fully disrupt kinase function70. 
The analysis of  mutations annotated with both structural sources allowed for the cor-
relation of  the KLIFS pocket positions with precise distances to the ligand centroid. 
This demonstrated variability in the distances that is consistent with varying ligand sizes 
and binding modes observed among kinases (Supplementary Figure 8.3). However, 
this analysis also highlighted the presence of  outliers representing measurement errors, 
which may arise from inconsistencies in sequence numbering and should be corrected in 
the pipeline. For kinases, one solution could be to utilize the KLIFS-curated structures, 
although this approach is specific to the kinome and cannot be expanded to other pro-
tein families. Other solutions are possible to structurally annotate cancer mutations and 
incorporate this information into PPI networks, but the existence of  incomplete and 
incorrect structures in the PDB is a constant bottleneck71.

a b c
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EGFR L858R
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Figure 8.5. Correlation between cancer mutation frequency and three metrics describing the amino 
acid substitution in the kinome knowledge graph:  Epstein coefficient of difference (a), Grantham dis-
tance (b), and Blosum score (c). Mutations occurring in more than 100 patients pan-cancer are labeled 
for reference. In a), an Epstein coefficient of difference of 0.4 is taken as an arbitrary threshold to distin-
guish between conservative (<0.4) and disruptive substitutions (>0.4), which are labeled for reference 
if they occur in more than 20 patients pan-cancer. In b), a Grantham distance of 100 is taken as an ar-
bitrary threshold to distinguish between conservative (<100) and disruptive substitutions (>100), which 
are labeled for reference if they occur in more than 20 patients pan-cancer. In c), substitutions with an 
alignment happening less often than random chance as collected in the Blosum62 matrix (Blosum score 
< 0) are labeled for reference if they occur in more than 20 patients pan-cancer.  
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In general, the sparsity of  knowledge graphs is a significant bottleneck for machine 
learning applications as it compromises the quality of  the embedding methods used a 
posteriori72. However, sparsity in node attributes may not be a problem if  the bias is in 
sync with the graph’s objective and can be utilized for additional analysis. For example, 
some applications use customized attention mechanisms to prioritize nodes with more 
information for efficient data propagation to their neighbours23. Similar approaches 
could be used in the knowledge graph developed here to predict bioactivity differences 
or approved drug development for mutations using node attribute competition tasks, 
where node attributes are inferred from the collective data in the graph73. While some 
of  the methods used for node attribute competition tasks are still robust with high node 
attribute sparsity (up to 80%)73,74, a minimum might still be required. It is important to 
note that some knowledge graphs are not necessarily developed with the aim to apply 
additional (machine learning) analyses but with the intention to be a resource that can be 
interactively explored to gain a holistic view of  a certain problem36,39. In the last section, 
we explore the development and analysis of  different subsets of  the kinome knowledge 
graph, which can be a strategy both to decrease node attribute sparsity with the aim to 
apply machine learning analyses, as well as to create biologically relevant subgraphs that 
can be interactively explored for data extraction. 

Subgraph analysis and interactive exploration: A case study for RTKs 

The architecture of  the knowledge graph supported the construction of  biologically 
relevant subgraphs based on node and edge attributes. Although the Python package 
developed to build and analyze the graph supports filtering the graph for any attribute 
of  interest, two main types of  subgraphs were pre-defined and explored in this section. 
To illustrate these analysis options, a smaller graph was created specifically focusing on 
receptor tyrosine kinases (RTKs) and their substrates, mimicking the structure of  the 
kinome graph (Supplementary Tables 8.4-8.6 and Supplementary Figures 8.4-8.8). 
The smaller graph was built to facilitate analysis and interactive visualization, but it also 
served as a way to increase node attribute density while maintaining biological relevance. 
Compared to the kinome graph, the RTK graph contained approximately a seventh of  
the original nodes (11,989 nodes instead of  77,211) and almost 50 times fewer edges 
(141,311 instead of  6,515,059). All mutation node attributes considered in the previous 
section remained sparse, but in all cases the percentage of  mutation nodes annotated 
increased. For example, the percentage of  mutation nodes annotated with bioactivity 
data increased from 0.28% to 0.77%, and the number of  nodes annotated with distance 
data increased from 11.82% to 15.31% for PDB-annotated nodes and from 4.99% to 
7.17% for KLIFS-annotated nodes. While modest, this rise in attribute density is con-
sistent with the significant emphasis on cancer research related to RTKs, as detailed in 
Chapter 3. The interactive visualization module enabled, among other views, the visu-
alization of  the phosphorylation edges in the RTK graph between the selected kinases 
and their substrates (dark and light blue, respectively in Figure 8.6a, where node size 
is proportional to the total number of  drugs under development or approved for that 
node). To improve visualization, different node and edge types and subtypes can be left 
in the background, as was done in Figure 8.6a for mutation nodes and their edges. Of  
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note, the RTK graph still contains some kinases that are not receptors because they are 
substrates of  RTKs, such as JAK2 which is phosphorylated by EGFR. This can be easily 
explored by zooming into a particular node, as shown in Figure 8.6b for EGFR and all 
nodes connected to it. The zoomed-in view also enables the interactive exploration of  
node attributes, on the right-side panel, which for a gene node includes among others 
expression values for different cancer types.  

a

b

Figure 8.6. Interactive visualization example for the receptor tyrosine kinase knowledge graph. a) 
Visualization of the phosphorylation events between kinases (dark blue nodes) and their substrates 
(light blue nodes). Every highlighted edge represents a phosphorylation event. The visualization mod-
ule, powered by IPysigma75, includes a legend panel on the right side that enables search options and 
filtering and describes the attributes used for node color and size. To improve visualization, all mutation 
nodes and edges are hidden here. b) Example visualization when clicking on a particular node, in this 
case, EGFR. All edges connecting the node of interest and the paired nodes are highlighted, while the 
rest of the graph is kept in the background. When a node is selected, all the attributes associated with it 
are displayed on the right-side panel.  

The first of  the two pre-defined analysis options supports the construction and explo-
ration of  individual “layer” subgraphs that are based on the type of  edges. This enables 
the division of  the knowledge graph into three subgraphs: a purely cancer patient-centric
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a b

c d

Figure 8.7. Node degree comparison across layers in the receptor tyrosine kinase knowledge graph, 
with a focus on nodes connected to EGFR for visualization purposes, as done in Figure 8.6b. Gene nodes 
are represented in blue and mutation nodes are represented in orange. Nodes that are not connected 
to EGFR are kept in the background and represented in grey. Node size in each panel is determined by 
the node degree calculated from the whole graph (a) or one of the three pre-defined analysis layers: 
kinase-mutation layer (b), cancer-mutation co-occurrence layer (c), or phosphorylation layer (d).

network linked by mutation co-occurrence, an association network between kinases and 
their mutations, and a phosphorylation PPI network. This division is important be-
cause it allows for the calculation of  graph metrics for each layer independently. This, 
in turn, enables the characterization of  the importance of  specific nodes at various 
levels. By analyzing EGFR across multiple layers, it was possible to determine which 
layers influenced the final degree metric in the graph (Figure 8.7a). In this particular 
case, a high degree in gene nodes mostly arose from the kinase-mutation layer (Figure 
8.7b) since there was an additional edge for each patient carrying a specific mutation. 
However, this high node degree could also result from a high degree in the phosphor-
ylation layer (Figure 8.7d). A high degree in mutation nodes, however, mostly resulted 
from mutation co-occurrence in the same patient (Figure 8.7c). While the results were 
consistent with the anticipated graph architecture, conducting an analysis of  each layer 
reveals that EGFR exhibits a high degree of  connectivity not only due to its prevalence 
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in mutations across various patients but also because of  its multiple interaction partners 
within the phosphorylation network. This analysis can also be extended to other metrics, 
for example, betweenness centrality (Supplementary Figure 8.9), which represents the 
influence a node has on the flow of  information in the graph. This metric can in turn 
help determine different community clusters within the graph, as well as key nodes and 
edges relevant to connections between these communities. 

a

b

Figure 8.8. Interactive visualization of cancer type subgraphs derived from the receptor tyrosine kinase 
knowledge graph for the two most populated cancer types: bronchus and lung (a, 723 patients) and skin 
(b, 356 patients). Gene nodes are represented in blue and mutation nodes are represented in orange. 
Node size represents the differential expression (Log2 fold change) of genes in that cancer type tumor 
tissue compared to normal tissue. Each edge color represents a different patient. 

The second pre-defined analysis module allowed individual subgraphs to be easily con-
structed for each cancer type by filtering the cancer-related edges corresponding to pa-
tients with a particular cancer type. These subgraphs also included the phosphorylation 
events pertinent to cancer-type filtered nodes. The RTK graph covered 44 cancer types, 
of  which the six most populated cancer types were bronchus and lung (723 patients), 
skin (356 patients), brain (312 patients), corpus uteri (302 patients), bladder (289 pa-
tients), and breast (273 patients). The analysis of  cancer type subgraphs enabled the 
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distinction between recurrent and patient-specific mutations, since the former aggregate 
in the central part of  the graph while the latter form clusters in the graph periphery. This 
phenomenon was clearly distinctive between the bronchus and lung subgraph (Figure 
8.8a) and the skin subgraph (Figure 8.8b), where edges were colored to represent dif-
ferent patients. Most of  the RTK mutations occurring in lung cancer patients were re-
current across patients, while several skin cancer patients harbored mutations that were 
specific for that patient. Similarly to the full graph, different node attributes can be used 
to interactively explore the graph. For example, the use of  cancer type-specific gene 
expression (Log2 fold change) illustrated in Figure 8.8 can aid in distinguishing genes 
with a higher relevance in that particular biological context. In fact, the construction 
of  individual graphs for different genetic makeups is a common strategy when trying 
to prioritize cancer-related mutations76,77. Additionally, each subgraph can be analyzed 
independently and the results can be combined and displayed in the main graph, as done 
with the layer analysis. This further enables the investigation of  cancer type-specific 
relationships in a pan-cancer context (Supplementary Figure 8.10 for degree analysis 
and Supplementary Figure 8.11 for differential expression analysis), which tends to be 
the preferred strategy in personalized anticancer therapies78.  

Gene /
Protein Mutation

Associated

Phosphorylates

Occurs in 
cancer patient

Cancer
patient

Drug

Cancer
type

Healthy
Tissue

Clinical data
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Interacts 

Differentially 
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Regional 
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Tested on
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Substitution type

Figure 8.9. Proposed alternative knowledge graph architecture for the kinome patient-centric knowl-
edge graph. Each circle represents a different node type and the arrows represent the edges between 
nodes. Dashed boxes include attributes that could be associated with specific types of nodes to in-
crease information density. 
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Conclusions

A cancer patient-centric knowledge graph was constructed to aid in identifying muta-
tions with advantageous characteristics to be targeted selectively by small molecules, 
hence reducing the side effects of  anticancer therapies while maintaining high efficacy. 
Known oncogenic and targeted genes and mutations stand out from this exercise based 
on several of  the node attributes collected across five layers of  information, highlighting 
the potential of  this graph in oncology drug discovery. Although initially tailored for 
the kinome, this framework can readily be adapted to other protein families by mod-
ifying kinome-specific primary sources. While the current graph facilitates interactive 
exploration and basic analyses, its limited node attribute density poses challenges for 
advanced machine learning applications following GNN embedding. To address this 
constraint, future exploration of  alternative graph topologies, including the proposed 
complex topology in Figure 8.9, is recommended. This study underscores both the syn-
ergistic potential of  integrating diverse data types and the critical need for expanded data 
availability to enhance predictive capabilities. Broader testing and reporting in publicly 
available databases will therefore be pivotal in advancing the value of  knowledge graphs 
in personalized oncology applications.

Materials and Methods

Data collection from primary sources

Cancer-specific data was collected from the SQL implementation of  the Genomic Data 
Commons (GDC) database version 22.0 previously described in Chapter 5 and publicly 
available24,49. This included cancer patient IDs (case_id_id) linked to their tumor’s primary 
site where the cancer started developing. Through the manuscript, we refer to primary 
sites as cancer types for simplicity. Somatic mutations leading to amino acid substitutions 
were also collected from this dataset and linked to the patient in which they occurred. 
Finally, results from the differential expression analysis in cancer vs. normal samples 
conducted per cancer type in this dataset were also extracted for all available genes. All 
GDC-derived data was extracted with HUGO Gene Nomenclature Committee (HGNC) 
gene symbols. For reference, mutations were also annotated based on their inclusion in 
the natural variance dataset 1000 Genomes, previously described in Chapter 5.  

A PPI phosphorylation network of  the kinome was collected from the work of  Olow 
et al.42 Nodes in the PPI network represent protein-coding genes of  kinases and their 
substrates, identified by their HGNC symbols. The network was reconstructed using 
the edges file, and the nodes file was used to get node attributes, in particular the node 
subtype (“kinase”, “substrate”, or “both”). Nodes with subtype “both” were annotated 
as “kinase”. 

Bioactivity differences between mutants and wild-type proteins were computed as de-
scribed in Chapter 4 for the dataset of  mutants annotated in ChEMBL 31 and the 
Papyrus dataset (version 5.5). In particular, the Wasserstein distance was calculated 
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between the bioactivity distributions of  all annotated mutants and the wild-type protein. 
ChEMBL 31 was also used to extract drugs in all phases of  development (0: preclinical, 
1-3: clinical, 4: approved) linked via their mechanism of  action to particular proteins and 
mutations. All proteins were represented by their UniProt accession codes. 

The structural location of  mutations was assessed twofold. The first approach was pro-
tein family-independent and entailed the calculation of  the average distance between 
the mutated residues’ centroid and the co-crystallized ligand’s centroid across available 
structures for the protein in the PDB. All proteins were represented by their UniProt 
accession codes. This method was explained in detail in Chapter 4. The second ap-
proach was kinome-specific and entailed querying the KLIFS database45. Through the 
API, the protein-coding gene’s HGNC symbol was linked to all available structures in 
the database. These structures were used to query the 85-residue KLIFS binding pocket 
and the residues forming it. Finally, a consensus KLIFS binding pocket was defined for 
each queried gene by selecting the most representative residue numbers for each aligned 
position in the pocket. 

Amino acid substitutions were annotated with their corresponding Epstein coefficient 
of  difference64 and Grantham’s distance65, as defined in Chapter 4. The Epstein coef-
ficient of  difference is directional and was therefore annotated for each individual sub-
stitution. Grantham’s distance, on the other hand, is non-directional and was therefore 
linked to each absolute amino acid change independently of  its direction. The Blosum62 
score66 was also included as a metric to define the likelihood of  an amino acid substi-
tution to happen more or less frequently than random change, based on evolutionary 
conservation.

Ontology mapping and protein family annotation

The complete dataset from The Human Protein Atlas resource79 was downloaded to 
facilitate protein family filtering and ontology mapping between proteins (UniProt ac-
cession codes) and genes (HGNC gene symbols). The downloaded tab-separated file 
contained a subset of  the data from version 23.0 of  the resource corresponding to the 
fields available in the data portal. Kinases were annotated by selecting entries contain-
ing the term “Kinase” in their Molecular function field. Receptor tyrosine kinases (RTKs) 
were annotated as kinases additionally containing the term “Receptor” in their Molecular 
function field. Membrane proteins were annotated as those containing the term “Plasma 
membrane” in their Subcellular main location field. Substrates in the PPI phosphorylation 
network were further annotated as members of  two membrane protein families of  inter-
est, G protein-coupled receptors (GPCRs) and solute carriers (SLCs). The former were 
filtered when the field Protein class contained the term “G-protein coupled”. The latter 
was defined when the field Gene started with “SLC”. 

Graph building and interactive exploration

The knowledge graph constructed contained gene and mutation nodes. Gene nodes 
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were all nodes from the PPI phosphorylation network, including both kinases and sub-
strates and kinases with somatic mutations in the GDC dataset. Edges between gene 
nodes were directly derived from the PPI network. Mutation nodes were kinase somatic 
mutations in the GDC dataset and kinase mutations with bioactivity annotations ob-
tained from the dataset constructed in Chapter 4. Edges between mutations represent-
ed co-occurrence in the same patient of  the GDC dataset. Mutation and gene nodes 
were connected by edges representing the association between mutations happening 
in a specific gene. Cancer mutations were additionally linked to their gene with an edge 
representing the patient where the mutation occurs. Gene nodes (both kinases and sub-
strates) were annotated with differential expression data from GDC for all available 
cancer types. Mutation nodes were annotated with bioactivity and structural data when 
available. Structural data was annotated based on the mutation residue. All mutations 
were annotated with the Epstein coefficient of  difference, based on the amino acid 
substitution. All nodes (genes and mutations) were annotated with the number of  drugs 
in different phases of  development that were associated with the protein encoded by 
the gene or the mutation in their mechanism of  action. Gene nodes were further anno-
tated as part of  certain protein families of  interest (membrane proteins, RTKs, GPCRs, 
SLCs). These data were saved in nodes and edges files.

NetworkX52 was used to build a multigraph in Python. The graph was built from the 
edges file and the nodes were annotated with their attributes using the nodes file. A 
package was constructed in Python to enable modular build, storage, and updates of  the 
graph. To this end, a graph metadata file is created every time a graph is initialized with 
a new combination of  graph name and edges/nodes files. The package also contains 
modules to facilitate visual interactive exploration of  the data in the knowledge graph 
based on the graph visualization python package IPysigma75. 

Network analysis

Network analysis algorithms implemented in NetworkX were used to explore the 
knowledge graph and pinpoint relevant nodes. The network node metrics calculated 
were degree, degree centrality, betweenness centrality, closeness centrality, eigenvector 
centrality, and information centrality. The Python package built for this project enabled 
the calculation of  these metrics for the complete network but also for subsets of  it. 
Precomputed subsets included those containing only one type of  edge: cancer co-oc-
currence, phosphorylation, and gene-mutation association. This distinction enabled the 
identification of  key nodes in each of  those layers of  information. Additionally, each 
cancer type was analyzed independently by computing network subsets containing only 
edges corresponding to patients in a specific cancer type and the phosphorylation edges 
linking the subset genes. The package analysis modules not only enable the separate 
examination of  these and other subsets but also facilitate the integration of  the subset 
analysis results into the entire knowledge graph. The computed metrics can be further 
explored interactively. 
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Supplementary Information

Supplementary Table 8.1. Top 25 cancer mutation nodes with the highest mutation frequency 
(pan-cancer) in the kinome knowledge graph. 

Cancer mutation Frequency
BRAF_V600E 565
PIK3CA_E545K 258
PIK3CA_H1047R 234
PIK3CA_E542K 167
PIK3CA_R88Q 68
AKT1_E17K 53
BRAF_V600M 40
FGFR3_S249C 39
ERBB2_S310F 38
PIK3CA_H1047L 37
PIK3CA_N345K 34
PIK3CA_E726K 30
PIK3CA_G118D 28
FGFR2_S252W 26
ERBB3_V104M 25
EGFR_L858R 23
PIK3CA_C420R 23
PIK3CA_Q546R 22
EGFR_A289V 21
PIK3CA_E453K 19
EGFR_G598V 19
PIK3CA_R108H 19
PIK3CA_E545A 18
PIK3CA_M1043I 18
MAPK1_E322K 18
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Supplementary Table 8.2. Top 25 ranked cancer mutation nodes in the kinome knowledge graph ac-
cording to their degree. For reference, the mutation frequency across all cancer patients analyzed is 
reported, and the rank that would correspond to the cancer mutation if it was calculated based on the 
mutation frequency, if this rank is 1-25 (otherwise reported as >25). Additionally, the number of unique 
mutations reported for the gene is reported. *Mutations present in the natural variance dataset 1000 
Genomes. 

Cancer mutation Degree Rank Mutation 
frequency

Frequency 
rank 

Gene cancer 
mutations

PIK3CA_R88Q 10275 1 68 5 268
BRAF_V600E 6219 2 565 1 132
PRKDC_R2522Q 3376 3 11 >25 521
MTOR_R2152C 3042 4 4 >25 345
NEK3_S284L* 2898 5 6 >25 52
PAK5_E144K 2705 6 7 >25 203
GCK_A2V 2661 7 4 >25 79
PIK3CA_E545K 2484 8 258 2 268
PDK2_A259V 2483 9 3 >25 40
PIK3CA_H1047R 2439 10 234 3 268
TTN_R2506Q 2409 11 8 >25 7791
CAMK1D_S360L 2352 12 6 >25 74
TEK_S599L 2321 13 4 >25 185
DCAF1_R855Q 2262 14 5 >25 153
MAP3K15_R493W 2191 15 7 >25 199
TTN_D19391N 2175 16 8 >25 7791
ROCK1_R1012Q 2159 17 5 >25 186
SMG1_R803H 2127 18 3 >25 386
HIPK1_R875H 2123 19 5 >25 148
ROCK1_R590Q 2118 20 5 >25 186
STK3_S344L 2089 21 5 >25 963
ROCK2_R339Q 2071 22 4 >25 153
TTN_R33466C* 2064 23 4 >25 7791
DGKB_R685Q* 2059 24 3 >25 217
IP6K1_R329H 2054 25 4 >25 45
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Supplementary Table 8.3. Top 25 most frequently mutated proteins per cancer type (as defined by 
primary site). Mutation frequency is calculated as the sum of all mutations in that protein-cancer type 
pair. 

Protein Cancer type Mutation frequency

TTN Skin 1,931

TTN Corpus uteri 1,808

TTN Bronchus and lung 1,402

TTN Colon 581

TTN Stomach 553

PIK3CA Corpus uteri 367

PIK3CA Breast 357

OBSCN Corpus uteri 334

TTN Bladder 328

TTN Brain 321

BRAF Thyroid gland 290

BRAF Skin 290

TTN Breast 277

TTN Cervix uteri 207

TTN Ovary 202

OBSCN Skin 195

TTN Rectum 192

SMG1 Corpus uteri 173

LRRK2 Corpus uteri 170

TAF1 Corpus uteri 168

PRKDC Corpus uteri 161

MYO3A Corpus uteri 157

OBSCN Bronchus and lung 150

OBSCN Colon 147

EGFR Brain 146
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Supplementary Table 8.4. Distribution of node and edge types and subtypes across the receptor ty-
rosine kinase knowledge graph.

Entity Type Subtype Number of  entities

N
od

es

Gene Kinase 110
Receptor kinase (not in PPI as kinase) 1
Substrate 142

Mutation Cancer 11,660
Other (ChEMBL + Papyrus) 76

E
dg

es

Gene - Gene Phosphorylation 673
Gene - Mutation Cancer 13,353

Other (ChEMBL + Papyrus) 76
Mutation - Mutation Cancer patient co-occurrence 127,187

Other (ChEMBL + Papyrus multiple 
substitutions)

22
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Supplementary Table 8.5. Top 25 cancer mutation nodes with the highest mutation frequency 
(pan-cancer) in the receptor tyrosine kinase knowledge graph. 

Cancer mutation Frequency

FGFR3_S249C 39

ERBB2_S310F 38

FGFR2_S252W 26

ERBB3_V104M 25

EGFR_L858R 23

EGFR_A289V 21

EGFR_G598V 19

ERBB2_V842I 17

ERBB2_R678Q 14

ERBB2_L755S 13

FGFR2_N550K 12

FGFR3_Y375C 10

ERBB2_V777L 10

EPHA6_R268C 8

KIT_D816V 8

FLT3_D835Y 8

KDR_R1032Q 8

EGFR_L62R 7

EGFR_R222C 7

FGFR2_C383R 7

MUSK_R854Q 7

ERBB4_R711C 7

EGFR_L861Q 6

KIT_K642E 6

FGFR1_N577K 6
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Supplementary Table 8.6. Top 25 ranked cancer mutation nodes in the receptor tyrosine kinase 
knowledge graph according to their degree. For reference, the mutation frequency across all cancer 
patients analyzed is reported, and the rank that would correspond to the cancer mutation if it was cal-
culated based on the mutation frequency, if this rank is 1-25 (otherwise reported as >25). Additionally, 
the number of unique mutations reported for the gene is reported. *Mutations present in the natural 
variance dataset 1000 Genomes.

Cancer mutation Degree Rank Mutation 
frequency

Frequency rank Gene cancer 
mutations

TEK_S599L 391 1 4 >25 185

EPHA10_D881N 305 2 2 >25 140

KDR_R1032Q 300 3 8 17 331

KIT_R888Q 274 4 4 >25 214

EPHA6_D243N 263 5 6 >25 336

PDGFRA_E156D 252 6 2 >25 293

DDR1_D714N 246 7 2 >25 112

ERBB3_R916Q* 237 8 2 >25 229

FGFR2_R165W 232 9 2 >25 166

EPHA4_R745H 232 10 2 >25 192

CSF1R_D565N 229 11 2 >25 138

INSR_R924Q 226 12 2 >25 201

EGFR_R977H 217 13 2 >25 265

EPHA6_R788C 209 14 2 >25 336

ACVR1C_R245Q 207 15 3 >25 91

EPHA2_E523K 203 16 2 >25 171

FLT1_E144K* 201 17 3 >25 264

PDGFRA_K196N 200 18 2 >25 293

EPHA8_A685T 199 19 2 >25 185

MET_R412C 198 20 2 >25 214

RYK_R563Q 195 21 4 >25 64

MET_L982M 195 22 2 >25 214

EPHB1_R743W 194 23 2 >25 286

EPHA1_R261W 194 24 3 >25 133

MUSK_R572K 192 25 2 >25 174
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a b c d

e f g h

i j

Supplementary Figure 8.1. Density and distribution of gene node attributes. For each of the attributes, 
the number of gene nodes with non-null values for the particular attribute is depicted on the y-axis. 
Moreover, the graphs represent the distribution of the attribute values across the gene nodes on the 
x-axis, in the form of histograms or bar plots, depending on the density of each attribute. Four cancer 
types are selected as an example to show the distribution of differential expression Log2 fold change 
(Log2FC) between the tumor tissue and normal tissue (a-d). The rest of the graphs represent the num-
ber of drugs in different phases of development according to ChEMBL labeling: pre-clinical “0” phase 
(e), clinical phases 1-3 (f-h), and approved drugs (i). The total number of drugs in any phase is represent-
ed in (j). 
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c

d

EGFR L858R

ERBB2 V842I

MAP2K1 P124SERBB2 L755S
FGFR2 N550K

Supplementary Figure 8.2. Density and distribution of KLIFS structural attribute annotations in muta-
tion nodes. a) Number of mutation nodes with an annotation for each particular position of the 85-con-
sensus kinase pocket defined by KLIFS. b-d) Cancer mutation frequency statistics for each pocket po-
sition: sum of mutation frequency in each position (b), maximum mutation frequency reported for each 
position, with the mutations with the top five frequencies labeled (c), and mean +/- standard deviation 
of mutation frequency reported for each pocket position (d). 
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a

b

Supplementary Figure 8.3. Average distance to ligand centroid for every KLIFS pocket position calcu-
lated for each mutation in that position from available PDB complexes. One distance value is recorded 
per available mutation in the kinome graph. a) Complete distribution. b) Distribution of values in the 
range 0-40 Å. 
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ROS1
EGFR
ERBB4
EPHA6

GAB1

PLCG1
CBL; FOXM1

TEK S599L

EPHA10 D881N
KDR R1032Q
KIT R888Q

a

b c d e
FGFR1 L457V_C488A_C584S

EGFR T790M_C797S_L858R

EGFR T790M_L858M
EGFR C797S

EGFR

ROS1
EGFR
ERBB4
EPHA6

Supplementary Figure 8.4. Node degree rank analysis for the receptor tyrosine kinase knowledge 
graph. Nodes are ranked based on their degree, which is calculated as the number of edges connecting 
the node to other nodes in the graph. The degree rank analysis is calculated for all nodes in the graph (a) 
as well as for each node subtype independently: kinase (b) and substrate (c) gene nodes, and cancer (d) 
and other (e) mutations. The top four ranked nodes in each case are labeled accordingly.
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a b c d

e f g h

i j

Supplementary Figure 8.5. Density and distribution of gene node attributes in the receptor tyrosine 
kinase knowledge graph. For each of the attributes, the number of gene nodes with non-null values for 
the particular attribute is depicted on the y-axis. Moreover, the graphs represent the distribution of the 
attribute values across the gene nodes on the x-axis, in the form of histograms or bar plots, depending 
on the density of each attribute. Four cancer types are selected as an example to show the distribution 
of differential expression Log2 fold change (Log2FC) between the tumor tissue and normal tissue (a-d). 
The rest of the graphs represent the number of drugs in different phases of development according to 
ChEMBL labeling: pre-clinical “0” phase (e), clinical phases 1-3 (f-h), and approved drugs (i). The total 
number of drugs in any phase is represented in (j).
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a b c d

e f g h

Supplementary Figure 8.6. Density and distribution of mutation node attributes in the receptor tyro-
sine kinase knowledge graph. For each of the attributes, the number of mutation nodes with non-null 
values for the particular attribute is depicted on the y-axis. Moreover, the graphs represent the distri-
bution of the attribute values across the mutation nodes on the x-axis, in the form of histograms or 
bar plots, depending on the density of each attribute. Distribution is represented as histograms for the 
distance to the pocket centroid calculated from PDB complexes (a), the mutation type as determined 
by the Epstein coefficient of difference (b), the mutation type as described by the Grantham distance 
(c), the evolutionary probability of the mutation type as described by the Blosum score in the Blosum62 
matrix (d), and the bioactivity change represented by the Wasserstein distance between the bioactivity 
distribution for the mutation and the wild-type protein found in ChEMBL (e). Bar plots represent the 
number of drugs in different phases of development according to ChEMBL labeling: clinical phases 2-3 
(f-g), and approved drugs (h). Pre-clinical candidates (phase 0) and drugs in clinical phase 1 are not in-
cluded because they were not annotated in any mutation nodes.

a b cEGFR L858R

ERBB2 S310F

FGFR2 S252W

FGFR3 S249C

EGFR A289V

ERBB2 S310F

FGFR2 S252W

FGFR3 S249C

EGFR L858R

EGFR L858R

FGFR3 S249C

ERBB2 S310F
FGFR2 S252W

ERBB3 V104M

ERBB3 V104M

ERBB3 V104M

EGFR A289V

EGFR A289V

Supplementary Figure 8.7. Correlation between cancer mutation frequency and three metrics 
describing the amino acid substitution in the kinome knowledge graph: Epstein coefficient of differ-
ence (a), Grantham distance (b), and Blosum score (c). Mutations occurring in more than 20 patients 
pan-cancer are labeled for reference. In a), an Epstein coefficient of difference of 0.4 is taken as an 
arbitrary threshold to distinguish between conservative (<0.4) and disruptive substitutions (>0.4). In b), 
a Grantham distance of 100 is taken as an arbitrary threshold to distinguish between conservative (<100) 
and disruptive substitutions (>100). In c), substitutions with an alignment happening less often than ran-
dom chance as collected in the Blosum62 matrix are represented by a Blosum score < 0. 
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Supplementary Figure 8.8. Number of mutation nodes in the receptor tyrosine kinase graph with an 
annotation for each particular position of the 85-consensus kinase pocket defined by KLIFS.

a b

c d

Supplementary Figure 8.9. Node betweenness centrality comparison across layers in the receptor 
tyrosine kinase knowledge graph, with a focus on nodes connected to EGFR for visualization purposes. 
Gene nodes are represented in blue and mutation nodes are represented in orange. Nodes that are not 
connected to EGFR are kept in the background and represented in grey. Node size in each panel is deter-
mined by the node degree calculated from the whole graph (a) or one of the three pre-defined analysis 
layers: kinase-mutation layer (b), cancer-mutation co-occurrence layer (c), or phosphorylation layer (d).
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Supplementary Figure 8.10. Node degree comparison across the six most populated cancer types 
in the receptor tyrosine kinase knowledge graph, with a focus on nodes connected to EGFR for visual-
ization purposes. Gene nodes are represented in blue and mutation nodes are represented in orange. 
Nodes that are not connected to EGFR are kept in the background and represented in grey. Each edge 
color represents a different cancer type. Node size in each panel is determined by the node degree cal-
culated from the subgraphs for six cancer types: bronchus and lung (a, 723 patients – 56 with EGFR ▶ 

c d

a b

e f

Bronchus and lung

Skin

Brain

Corpus uteri

Breast

Bladder

EGFR A237D
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▶ mutations. Represented by blue edges), skin (b, 356 patients – 29 with EGFR mutations. Represented 
by orange edges), brain (c, 312 patients – 127 with EGFR mutations. Represented by green edges), cor-
pus uteri (d, 302 patients – 29 with EGFR mutations. Represented by yellow edges), bladder (e, 289 
patients – 7 with EGFR mutations. Represented by purple edges), or breast (f, 273 patients – 13 with 
EGFR mutations. Represented by pink edges).

c d

a b

Bronchus and lung

Brain

Skin

Supplementary Figure 8.11. Comparative visualization of the receptor tyrosine kinase knowledge 
graph with node sizes representing different attributes. The focus is on nodes connected to EGFR for vi-
sualization purposes. Gene nodes are represented in blue and mutation nodes are represented in orange. 
Nodes that are not connected to EGFR are kept in the background and represented in grey. Each edge 
color represents a different cancer type. Node size represents the number of approved drugs (a) or the 
differential expression (Log2 fold change) in tumor tissue compared to healthy tissue in the three most 
populated cancer types: bronchus and lung (b, 723 patients – 56 with EGFR mutations. Represented by 
blue edges), skin (c, 356 patients – 29 with EGFR mutations. Represented by orange edges), and brain 
(d, 312 patients – 127 with EGFR mutations. Represented by green edges).
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