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Introduction

Cancer is the second leading cause of  death globally1. Research on this multifactorial 
disease has expanded our knowledge significantly over the last two decades2, leading to 
public databases containing patient-derived data3. Cancer is typically the result of  com-
pounding mutations that transform healthy cells into malignant ones4. Previous work in-
volving large-scale mutational analysis picked up G Protein-coupled receptors (GPCRs) 
as the second most mutated class of  proteins in the context of  cancer after kinases5. 
Cancer cells are driven to proliferate and avoid the immune system. GPCRs have mul-
tiple functions in this process from increased growth (early stage) all the way to metas-
tasis (late stage)6. Thus, any anomalies in GPCR functioning might be related to cancer 
growth. Another interesting property of  GPCRs is that they are the most common drug 
target family with around 35% of  drugs acting through a GPCR7, providing a diverse set 
of  molecular tools to potentially combat cancer. 

GPCRs consist of  seven highly conserved transmembrane (TM) domains, typically 
harboring the ligand binding pocket for natural ligands, e.g. endogenous hormones or 
neurotransmitters. Human GPCRs are divided into several classes based on sequence 
similarity: A, B, C, D, F, and T (as used on GPCRdb)8,9. The TM domains are connected 
via extra- and intracellular loops (ECL; ICL) displaying a lower degree of  conservation. 
Most GPCRs also have an eighth TM domain that is connected by intracellular loop 4. 
The extracellular loops are known to also be involved in ligand recognition and activa-
tion, whereas the intracellular part of  the receptor is linked to G protein recognition and 
activation. Finally, GPCRs contain an N- and C-terminus which are also relatively little 
conserved between and within classes9,10. 

In previous work, knock-down studies have been performed on several proteins to iden-
tify their role in the context of  cancer, typically embarked upon after prior identification 
of  the protein’s role in cancer11,12. One of  the main reasons these in vivo studies are 
done is to identify whether a mutation is either a driver, providing a selective growth 
advantage and promoting cancer development, or a passenger mutation occurring co-
incidentally. Moreover, these studies provide insight into whether a driver mutation is 
located on either an oncogene or a tumor suppressor gene13. The prioritization of  point 
mutations for experimental characterization, when the role of  the protein in cancer is 
still unknown, could accelerate the discovery of  relevant oncogenic alterations.

Here, we focused on GPCRs in the context of  cancer by using patient-derived data 
sets and specifically looked at trends and mutational patterns in this protein family. We 
performed a deeper investigation into several “motifs”, parts of  the GPCR sequence 
that are conserved that contribute most to the stability and function of  the GPCR14–19. 
Class-specific motifs and several broad differences between classes were also consid-
ered. Moreover, we provided a list of  GPCRs with known small molecule ligands (in-
cluding approved drugs), ranked by interest for follow-up using multi-objective ranking. 
They were ranked on mutational count, mutations in regions of  interest, availability 
of  in-house expertise, and ability to perform virtual screening (by QSAR). Finally, we 
exemplified our findings in a more in-depth analysis of  C-C chemokine receptor type 5 
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(CCR5) to show the feasibility of  our approach.

Results

Overview of datasets

Missense mutations in all GPCR human classes were collected from the GDC and 1000 
Genomes datasets (Table 5.1). The GDC dataset contained more subjects than the 1000 
Genomes set, but both were in the same order of  magnitude based on missense muta-
tion count. However, as fewer unique missense mutations were found in natural vari-
ance, most cancer-related mutations had a small frequency. To account for differences 
in the datasets’ number of  data points, the mutation ratio per dataset was used instead 
of  absolute mutation frequency in the subsequent comparative analyses (see Methods). 

Table 5.1. Overview of the composition of the GDC and 1000 Genomes datasets.

 GDC dataset (v 22.0) 1000 Genomes dataset (2020) 

Total subjects 10,179 3,202
Total cancer types 53 n/a

Missense mutations 2,129,235 2,943,276
Missense 

mutations in 

GPCRs
Class

Total Unique Unique 
receptors

Total Unique Unique 
receptors

All class 45,902 40,431 394 43,884 24,237 396
Class A 26,342 23,122 284 20,528 11,454 286
Class B 10,745 9,588 47 15,439 8,814 47

Class B1 1,499 1,342 15 2,174 1,283 15
Class B2 9,246 8,246 32 13,265 7,531 32

Class C 5,592 4,842 22 5,273 2,644 22
Class F 1,155 1,039 11 487 368 11
Class T 1,675 1,494 24 1,639 719 24
Other GPCRs 393 346 6 518 238 6

Two-Entropy Analysis  

A two-entropy analysis (TEA) was performed on our dataset as was done previously19. 
This method was chosen primarily to evaluate residue conservation across GPCRs and 
within GPCR subfamilies. Secondarily, we tried to leverage its ability to define residue 
functional characterization. Of  note, we performed this analysis not only for Class A 
GPCRs but for all classes defined in GPCRdb; together and independently. Key to the 
TEA approach is that for each alignment position the Shannon entropy, which mea-
sures the level of  conservation of  amino acid residues at a certain position in a multiple 
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sequence alignment, is calculated both within a GPCR subfamily and within all GPCRs. 
Therefore, the combination of  these can provide a measure for the position function. 
Multiple interesting groups were identified, such as residues relevant for receptor func-
tion/activation (type Q3). Type Q3 are positions with a low Shannon entropy both 
within GPCR subfamilies and for the entire GPCR superfamily, this high conservation 
is linked to involvement in GPCR-conserved working mechanisms. Separating the graph 
into quadrants (Q1-4), type Q3 residues are represented in the bottom left quadrant in 
Figure 5.1. A second group is residues relevant for ligand recognition (type Q2), made 
up of  residues that are conserved within subfamilies, but not within the GPCR super-
family. Hence, these are associated with ligand recognition that is specific and conserved 
within a given subfamily. Type Q2 residues, represented in the top left quadrant were 
less noticeable in the all-class TEA (Figure 5.1a) since the inclusion of  a larger number 
of  subfamilies led to an increase in the overall entropy. However, it was more obvious in 
Classes A-C (Figure 5.1b-d). Finally, in the top right quadrant of  the TEA plot a third 
group of  residues, Q1, is represented that are conserved neither among all GPCRs nor 
GPCR subfamilies. These are more likely to have only a small implication in receptor 
functions. 

Residue conservation was linked to absolute mutation count frequency per position 
with Ballesteros-Weinstein number in cancer patients (color coding in Figure 5.1 and 
Supplementary Figure 5.1). Residues with a high mutation frequency were defined 
as those above the 90th percentile in the distribution of  mutation counts by position. 
Conversely, residues with a low mutation frequency were defined as those under the 
10th percentile. Absolute mutation count was (anti)correlated with entropy (Figure 5.1). 
We observed a trend where more conserved type Q3 residues (bottom left quadrant, 
low entropy) had a higher mutation rate in cancer compared to the less conserved Q1 
residues (top right quadrant, high entropy). We illustrated this with the mean ± SD 
entropy overall and across families (Figure 5.1 and Supplementary Table 5.1). In the 
all-class TEA (Figure 5.1a), the low mutation range had mean entropy values of  0.45 ± 
0.38 and 0.41 ± 0.27 (Shannon and Average entropy across families, respectively). The 
high mutation range had lower mean entropy values of  0.30 ± 0.10 and 0.28 ± 0.13, 
respectively. On the contrary, this trend was not observed in natural variance data from 
the 1000 Genomes dataset (Supplementary Figure 5.2). There, mean entropy values 
for the low mutation range were 0.40 ± 0.30 and 0.33 ± 0.23, respectively; and 0.34 ± 
0.08 and 0.39 ± 0.12, respectively, for the high mutation range. We observed an average 
downward shift in entropy values for highly mutated positions per subfamily (not in 
the overall Shannon entropy) and an upward shift for less frequently mutated positions. 
Combined this showed a pressure in the GDC data for mutations in subfamily-con-
served positions at the expense of  mutations in non-conserved positions. This trend was 
maintained across classes, although less marked for Classes B and C, and supported by 
the fact that from the type Q3 residues highlighted in Figure 5.1a, higher mutation fre-
quencies were associated with the most conserved positions in TM domains 3, 4, and 7 
(i.e. 3x50, 4x50, and 7x50). These are part of  the “DRY” (TM3), “GWGxP” (TM4), and 
“NPxxY” (TM7) conserved GPCR functional motifs. The high amount of  mutations in 
residues of  these and other motifs was further investigated in the section Mutation pat-
terns within functionally conserved motifs. Overall, cancer mutation frequency was correlated 
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with individual residue conservation, hence we investigated groups of  residues as de-
fined by GPCR domains to further explore cancer mutation patterns. 

3x50

4x50

2x46

3x25

1x50

7x50

6x50

7x53

Class CClass BClass A

All class
a

b c d

Figure 5.1. Shannon entropy across GPCR subfamilies versus Shannon global Entropy correlated to 
cancer-related mutations. A two-entropy analysis plot for all GPCRs with aligned positions. The average 
entropy across subfamilies (as defined by GPCRdb), i.e. conserved within a subfamily is on the x-ax-
is, and the Shannon entropy is on the y-axis. a) Analysis for all GPCR classes combined. Residues are 
colored by the frequency of mutations found in the GDC dataset, with blue being low (< 10th percen-
tile), orange medium (10-90th percentiles), and red high (> 90th percentile). Residues with no defined 
Ballesteros-Weinstein (BW) generic numbers are colored grey. Blue, orange, red, and grey lines repre-
sent the mean entropy values for each axis per mutation range (high, medium, low, and non-defined 
Ballesteros-Weinstein, respectively). Blue, orange, red, and grey shadows represent the standard devi-
ation to the mean entropy values for each axis per mutation range (high, medium, low, and non-defined 
Ballesteros-Weinstein, respectively). b) Analysis for Class A GPCRs. c) Analysis for Class B GPCRs. d) 
Analysis for Class C GPCRs. The coloring scheme for panels (b)-(d) is equivalent to that of panel (a). 
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Mutation rates over GPCR structural domains 

We hypothesized that mutations associated with altered function in the context of  can-
cer would occur more frequently in domains with higher conservation (i.e. TM domains) 
where positive selective pressure would favor them. Conversely, we expected mutations 
to be distributed more randomly over the sequence among the 1000 Genomes set and to 
be underrepresented in the conserved TM domains. However, the distribution in both 
sets was quite similar (Figure 5.2a,b). Most mutations were in the N-terminus (~ 25% 
of  the total across all classes), followed by the C-terminus (~ 15% of  the total across all 
classes), which are on average the longest domains. The TM domains were next in mu-
tation count, followed by ICL3 and ECL2. Finally, the remaining loops had the lowest 
 

a

b

c
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f

Figure 5.2. Distribution of mutation frequencies per GPCR structural domain. a) Mutation ratio found 
in each structural domain in the GDC dataset for GPCRs in all classes combined and independently. b) 
Mutation ratio found in each structural domain in the 1000 Genomes dataset for GPCRs in all classes 
combined and independently. c) Mutation ratio enrichment in the GDC dataset over the 1000 Genomes 
dataset. d) Mutation ratio normalized over average domain length found in each structural domain in the 
GDC dataset for GPCRs in all classes combined and independently. e) Mutation ratio normalized over    
average domain length found in each structural domain in the 1000 Genomes dataset for GPCRs in all 
classes combined and independently. f) Length-normalized mutation ratio enrichment in the GDC data-
set over the 1000 Genomes dataset. “TM”, “ICL” and “ECL” represent the (normalized) mutation ratios 
in aggregated domains. In panels (d-f), “Average” represents the average ratio considering a domain as 
the whole protein. In panels (a) and (d), a darker shade of red represents a higher (normalized) mutation 
ratio in the GDC dataset. In panels (b) and (e), a darker shade of blue represents a higher (normalized) 
mutation ratio in the 1000 Genomes dataset. In panels (c) and (f), a darker shade of red represents a 
higher (normalized) mutation ratio enrichment towards the GDC dataset, while a darker shade of blue 
represents a higher (normalized) mutation ratio enrichment towards the 1000 Genomes dataset. 



Page 130 | Getting personal - Chapter 5

amount of  mutations. Around 40% of  the mutations were found in the aggregated 7TM 
domains across all classes. No major differences between GDC and 1000 Genomes 
were observed when we compared mutation ratios (Figure 5.2c), although there was 
enrichment observed in cancer-related mutations in the TM regions, as opposed to the 
N-terminus and C-terminus. To remove the bias caused by differences in the average 
length of  the different domains, we calculated the mutation ratio normalized over aver-
age domain length. 

After normalization mutation ratios were more consistent over domains for every class 
in both the GDC and 1000 Genomes datasets (Figure 5.2d,e). This correction was cru-
cial to compare classes as observed in the N-terminus: Class B2 had a higher mutation 
ratio than Class T (Figure 5.2a) but after normalization (Figure 5.2d) a hotspot ap-
peared in Class T. In general, all domains were slightly enriched in the GDC data except 
N-terminus and C-terminus (Figure 5.2f). Of  note were the differences observed be-
tween classes. For example, ICL2 was enriched across all classes (except B1) and highly 
enriched in Class Other GPCRs. Conversely, Class B1 showed a cancer enrichment in 
the C-terminus that was not observed in any other class. Zooming into specific do-
mains showed mutational hotspots in different classes that can result in a therapeutic 
advantage. We concluded that some domains may be more amenable to mutation in the 
context of  cancer. To further investigate these incipient mutation patterns in protein 
domains, we proceeded to the analysis of  previously identified motifs that have a con-
served function in GPCRs and that were also highlighted in our two-entropy analysis.

Mutation patterns within functionally conserved motifs

Several highly conserved motifs relevant to GPCR function are known in different 
classes. They are “DRY”, “CWxP”, and “NPxxY” in Class A; “GWGxP”, “RE”, and 
“PxxG” in Class B; “HETx” in Class B2; and the “R/K” mutational hotspot in Class 
F (Table 5.2). Point mutations in these motifs usually cause a disruption or change in 
function14–18. We therefore hypothesized that mutational pressure in these motifs would 
occur in cancer to disturb normal GPCR function. For direct comparison between mo-
tifs, we calculated a mutation ratio normalized over motif  length. As a reference, the 
average normalized mutation rates obtained over the whole GDC and 1000 Genomes 
datasets are shown.

In each motif  investigated the mutation rate in cancer patients was higher than the 
natural variation in that motif  (Figure 5.3a). Moreover, in the GDC dataset (red bars) 
“DRY”, “RE”, and “R/K” motifs were enriched in cancer compared to the average 
mutation ratio, whereas for the 1000 Genomes (blue bars) there was a clear reduction 
for all motifs. The GDC enrichment is shown for the most populated classes (Figure 
5.3b) and for all classes (Supplementary Figure 5.3). Class A-specific domains (i.e. 
“DRY”, “CWxP”, and “NPxxY”) were enriched in Class A. Class B-specific domains 
(i.e. “HETx”, “RE”, “GWGxP”, and “PxxG”) were enriched mostly in Class B but also 
in Class A. Interestingly, the enrichment pattern was very different in Class B1 and B2. 
Of  note, the B2-specific motif  “HETx” was more highly enriched for cancer mutations 
in Class B1. Finally, the “R/K” motif  was slightly enriched in all classes except Class 



Pan-cancer functional analysis of somatic mutations in GPCRs | Page 131

5

B1, but highly enriched in Class F. Class C showed minimal cancer enrichment across all 
motifs. An absolute count of  the mutations found in the motifs in both sets is shown 
in Supplementary Figure 5.4. We concluded that conserved motifs are increasingly 
mutated in cancer samples over natural variance, confirming their essential role and 
conservation. 

a

b

Figure 5.3. Distribution of mutation frequencies per functionally conserved motif. Mutation ratios nor-
malized over motif length in GDC and 1000 Genomes datasets of conserved motifs found in different 
GPCR classes. Motifs analyzed are “DRY”, “CWxP”, and “NPxxY” (Class A); “HETx”, “RE”, “GWGxP”, and 
“PxxG” (Class B); and “R/K (Class F)”. “Average” represents the average ratio considering the whole 
protein length. a) Analysis of all GPCR classes combined. Red bars show the normalized mutation ratio 
in the GDC dataset, while blue bars show the ratio of the 1000 Genomes dataset. b) Length-normalized 
mutation ratio enrichment in the GDC dataset over the 1000 Genomes dataset in all classes combined 
and independently. The most populated classes are included in the main heatmap for visualization pur-
poses. An extension of Class B is provided by breaking the heatmap row into Class B1 and Class B2. An 
extension of the all-class enrichment of the “R/K” motif is also provided for all classes independently. A 
darker shade of red represents a higher enrichment over the GDC dataset, and a darker shade of blue 
represents a higher enrichment over the 1000 Genomes dataset. The intensity of shades can be com-
pared within the main heatmap (Classes A-C and all-class), and across each extension separately. 
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To gain further insights we selected the most mutated individual positions in the GDC 
dataset corrected for mutation frequency in natural variance. We represented this for all 
classes together and for Class A-C in Figure 5.4. A count overview of  unique GPCR 
cancer mutations is provided in Supplementary Figure 5.5, and an overview of  the 
substitutions found in all of  the mutations is in Supplementary Figure 5.6. Most of  
the mutations analyzed derived from Class A (Figure 5.4), hence proving the relevance 
of  a per-class analysis. Overall and in Class A the most frequently mutated residue was 
3x50 (BW numbering), part of  the “DRY” motif. This was followed by 7x50 (“NPxxY” 
motif) in Class A. In Class B, 4x51 and 4x53 (“GWGxP” motif  ) and 6x45 (“PxxG” mo-
tif) were among the top 10. Interestingly, in Class A and Class C, several residues in H8 
were highly mutated (i.e. 8x49, 8x51, and 8x53), and in Class C we found an ICL1 residue 
(12x48) in the top 10. Given the enrichment in cancer found in functionally conserved 
motifs (Figure 5.3), we suggest that the residues found among the most frequently 
mutated should be further functionally characterized since we hypothesize that they are 
relevant to receptor function. 

a b

c d

All class Class A

Class B Class C

Figure 5.4. Most frequently mutated residues in GDC corrected for natural variance. The 10 positions 
with the highest mutation frequency in GPCRs in the GDC dataset corrected for the mutation frequen-
cy in the 1000 Genomes dataset. a) Analysis of all GPCR classes combined. b) Analysis of Class A 
GPCRs. c) Analysis of Class B GPCRs. d) Analysis of Class C GPCRs. The residue location in Ballesteros-
Weinstein notation is shown on the x-axis, while on the y-axis the corrected mutation frequency of that 
residue is given. “Average” is the average mutation frequency per residue over all the data.
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Ranking GPCRs for follow-up

Having confirmed that patterns can be identified in GPCR mutations in cancer, we 
ranked GPCRs for experimental follow-up. Pareto sorting was performed as a recom-
mendation system to identify GPCRs with a suggested high impact in cancer biolo-
gy amenable to small molecule intervention and follow-up. Pareto sorting is based on 
multiple (not always correlating) properties. The Pareto analysis was done in two ways. 
Firstly, we implemented Pareto ranking solely based on somatic mutation data. The four 
selected properties for Pareto ranking were: Mutations in highly conserved TEA Q3 
residues in GDC (maximized) and 1000 Genomes (minimized), and mutation rate in 
TM domains in GDC (maximized) and in 1000 Genomes (minimized). Additionally, we 
introduced two practical objectives to bias the mutation-based recommendation towards 
a set of  in-house objectives representing the feasibility of  in vitro or in silico follow-up. 
The feasibility of  small molecule intervention was assessed by training a machine-learn-
ing model (random forest) for each GPCR in our data set using bioactivity data from 
ChEMBL 27, with circular fingerprints as molecular descriptors. The two practical ob-
jectives introduced were the average R2 of  ChEMBL QSAR prediction models (maxi-
mized), and the in-house availability of  proteins for experiments (maximized). The order 
of  the properties determined the priority during the Pareto sorting.

The first front in the Pareto optimization is considered “dominating”, which means that 
this set of  GPCRs scored better in the combined properties than any other set. For the 
remaining data points a second front can be calculated, with GPCRs that scored worse 
than those in the first front but better than the rest of  the solutions. Therefore, we 
used the first and second fronts for a subsequent ranking based on crowding distances 
between the receptors (Figures 5.5a and 5.5b, respectively). Crowding distances are a 
measure of  how dense the environment is; denser environments mean more balance in 
the objectives and thus more interesting GPCRs. As the crowding distance can go up to 
near infinite, we used a cut-off  at a value of  10. 

Twenty-four GPCRs from the best scoring (first) front translated to the GPCRs with the 
most desirable scores in the combined objectives of  the Pareto optimization including 
“practical objectives” (Figure 5.5a). The 13 receptors identified in the first front using 
exclusively mutation-derived objectives were contained in their totality in the first Pareto 
front with all objectives and, similarly, the 12 receptors in the mutation-only second 
front were entirely distributed between the first and second fronts (Figure 5.5). GPCRs 
previously linked to cancer showed up in the first front alongside others that have not 
been thoroughly investigated yet. This was confirmed in a similar ranking for GPCR 
subfamilies (Supplementary Figure 5.7). The second Pareto front (Figure 5.5b), con-
tained 28 GPCRs. Hence, our recommendation system produced Pareto fronts that rep-
resented a list of  potential candidates for follow-up experimental research. From the re-
ceptors of  our first Pareto front, we selected one for which there was in-house expertise, 
CCR5, as a case study for further investigation using a crystal structure-based analysis to 
characterize the potential effects of  the retrieved mutations in receptor function and/
or ligand binding.
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a

b

Figure 5.5. Crowding distances of the first and second Pareto fronts. a) First Pareto front, consisting of 
24 GPCRs. b) Second Pareto front, consisting of 28 GPCRs. On the x-axis, the gene names of GPCRs 
are shown, while on the y-axis their crowding distance is shown. Crowding distance was cut off at 10, as 
the differences between these high-scoring receptors become negligible above that threshold. In grey, 
GPCRs detected by Pareto ranking using exclusively four mutation-derived objectives (light gray for the 
1st front and darker grey for the 2nd front). In green, additional GPCRs that show up in the first two Pareto 
fronts by adding practical objectives to the recommendation system. 

CCR5 structural analysis

Mutations found in the GDC dataset for CCR5 were cross-linked to GPCRdb data to 
find prior mutagenesis data. We then mapped the mutations onto the protein struc-
ture (PDB code 4MBS20). We focused on regions relevant to protein function and li-
gand binding. These mutations are widely spread across the receptor’s structure (Figure 
5.6a), including mutations in ECL2 – a region that largely contributes to chemokine 
ligand recognition (Figure 5.6b), G protein binding region (Figure 5.6c), and ortho-
steric binding site (Figure 5.6d). The crystal structure of  CCR5 used as a reference 
in Figure 5.6 (PDB code 4MBS) contains the thermostabilizing mutation A2336.33E, 
which has been characterized for the inactive CCR5 conformation. In this structure, a 
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small molecule inhibitor – maraviroc – is co-crystalized in the orthosteric binding site 
(i.e. spanning the so-called major and minor binding pocket). Of  note, some of  the mu-
tations found in the GDC dataset were in positions in close proximity to the inhibitor. 
Out of  the 73 mutations found in our dataset, only 12 mutations had been previously 
annotated, while 37 mutations had no data available and 24 consisted of  not-annotated 
data. Further analysis of  previously annotated data shed some light on the functional 
implications of  these mutations. 

a b

c d

R1263.50

E(A)2336.33

I1985.42

E2837.39

Q1945.38

E172ECL2

R168ECL2

H181ECL2

Figure 5.6. Cancer-derived mutation mapping in CCR5 structure. a) The mutations found in the GDC 
dataset for CCR5 mapped on the 3D structure of the receptor. b) Mutated residues found in the ECL2 
region. c) G protein binding site, containing the mutation A2336.33E, which has been characterized as a 
thermostabilizing mutation for the inactive CCR5 structure (PDB code 4MBS). d) The orthosteric bind-
ing site, with the small molecule inhibitor maraviroc (orange).
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Discussion

Here we performed a comprehensive comparison of  mutations found in cancer patients 
(GDC dataset) versus mutations found in natural variance (1000 Genomes dataset) in 
all classes of  GPCRs together and independently. We followed this up by investigat-
ing several highly conserved motifs for an increase in mutation rate compared to the 
other residues. Finally, we performed a Pareto Front analysis to create a ranking of  
GPCRs that warrant follow-up for their context in cancer, and we analyzed some of  the 
cancer-related mutations found for one of  the top-ranking receptors from a function-
al-structural point of  view. 

Our original hypothesis was that more conserved residues (i.e. lower entropy in a 
two-entropy analysis of  all residue positions in the GPCRdb alignment) would expe-
rience a higher mutational pressure in cancer patients. We confirmed a trend for the 
all-class analysis showing that positions with a low amount of  mutations per position 
were assigned higher entropy values than positions with a high amount of  mutations 
per position (Figure 5.1a). Conversely, the trend was not observed in a similar analysis 
in the 1000 Genomes dataset (Supplementary Figure 5.2). Overall, we identified an 
incipient pattern between functional conservation and mutation rates in the GDC set, 
which was maintained in class-specific analyses thus confining the applicability domain 
of  the TEA originally established by Ye et al.19. However, subfamily-specific residues 
were not identified in the all-class analysis, possibly due to discrepancies in subfamily 
classification in GPCRdb. Other methods could be used to better distinguish functional 
residues across GPCR classes that, for example, are not dependent on a fixed subfamily 
classification (e.g. TEA-O also defined by Ye et al.19) or define the classification levels on 
the fly (e.g. TreeDet21).  

We then studied mutation distribution after aggregating residues by protein (Figure 5.2) 
and subsequently compared these across all available classes. The total count of  muta-
tions found in the larger and less conserved domains (i.e. C- and N-terminus) is higher 
as the chance of  mutations occurring is therefore higher. However, when corrected for 
average length most of  them showed similar mutation rates. Of  note, mutations in TM, 
ICL, and ECL domains showed an enrichment in cancer patients, while the contrary 
was observed for the C- and N-terminus (Figure 5.2f). The ICL and ECL domains 
are known to be important in receptor stabilization, signal transmission, and ligand and 
G protein recognition22,23. However, they also represent the most variable domains in 
terms of  length and motif  composition explaining the lack of  consistent enrichment 
across GPCR classes in cancer in these domains. This also aligns with the observation 
that GPCR mutation rates were not homogeneously distributed among cancer types. For 
example, some primary sites (e.g. Corpus uteri) showed a clear enrichment compared to 
others (see Supplementary Figure 5.8). Literature confirms this distribution with an 
emphasis on specific residue changes that affect the entire function of  the protein24,25. 

A clearer pattern emerged in conserved motifs of  GPCRs. We speculate that changes 
in these positions have a very high chance of  disabling receptor function, supported by 
the observed higher mutation pressure in cancer compared to natural variance across 
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classes (Figure 5.3a). Thus, mutations might not be tolerated in healthy tissue but can 
be advantageous to cancer development. “DRY” mutations can decrease G protein cou-
pling and recognition leading to reduced binding affinity of  drugs26. For both mutations 
in “DRY” and “NpxxY,” it has been shown that a decrease in ligand-receptor complex 
stability may occur, decreasing the response from the GPCR27,28. These motifs have been 
shown to be collectively involved in a conserved Class A GPCR activation pathway14. As 
expected, “HETx”, “RE”, “GWGxP” and “PxxG” all showed mutation enrichment in 
cancer in Class B GPCRs, but also in Class A GPCRs. These motifs are important for 
TM signaling, with those with a mutated motif  showing loss of  function15. The same 
principle is found for the mutational “R/K” hotspot, which is highly mutated in Class 
F GPCRs, serving as a switch for receptor activation18. Additionally, we found highly 
mutated H8 residues, in line with their recent identification as a functionally conserved 
motif  in Class A GPCRs related to downstream signaling29.  

Subsequently, we ranked individual GPCRs for follow-up work via Pareto front analysis 
(Figure 5.5). Several of  the top-ranked receptors had a known link to cancer. Notable 
entries include the C-C Chemokine receptor (CCR) type 5, which has been linked to 
regulatory T cells mediating tumor growth30, and CCR type 2, a key player in microen-
vironment-derived tumor progression31, LPA (Lysophosphatidic acid) receptor LPAR6, 
upregulated in bladder cancer32, GRM (Metabotropic glutamate) receptors 2 (GRM2) 
and 8 (GRM8), known for dysregulating signaling pathways that are crucial in cancer 
prevention33; serotonin receptors 5HT1A (HTR1A), known to be involved in at least 
breast, ovarian, and pancreatic cancer, 5HT5A (HTR5A), recently linked to breast cancer 
34,35, and the adenosine A1 (ADORA1) and A2A (ADORA2A) receptors, linked to the 
progression and metastasis of  a variety of  cancer types as well as immune escape and 
immunotherapy36,37. An example of  a GPCR not previously linked directly to cancer 
was the P2Y receptor family member 10 (P2RY10), found in the first Pareto front. 
P2RY10 has been linked to chemotaxis via eosinophil degranulation, which could make 
it a potential target in cancer, although this is still highly speculative38. Of  note, can-
cer-related receptors were identified in our Pareto fronts both using exclusively somatic 
mutation-derived objectives and including practical objectives. The recommendation 
system proposed here is meant to allow user-specific objectives and therefore the practi-
cal objectives proposed here could be substituted by e.g. availability of  crystal structures 
or cell lines overexpressing the receptor of  interest. 

Finally, the structural analysis of  site-mutagenesis data in one of  the top receptors from 
the first Pareto front (CCR5) shed light on the functional implication of  some of  the 
cancer-related mutations. This included a cluster of  six residues in ECL2 found with-
in the GDC dataset, from which four positions were previously shown to influence 
chemokine binding when mutated to Ala39,40. In the G protein binding site, the Class A 
highly conserved R1263.50 was found to be mutated. This position is in the “DRY” motif  
and it is the most frequently mutated position in the GDC set, resulting in altered G 
protein coupling to the receptor in for instance the adenosine receptor family41. Some 
experimental evidence is available for CCR5 as well, where mutation to Asn abolished G 
protein signaling42. In the orthosteric site, four amino acids were previously investigated 
by a site-directed mutagenesis study by Garcia-Perez et al., Y1875.31, I1985.42, N2586.58, and 
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E2837.39 40 with variable effects. Mutating residue E2837.39, to Ala or to the more conser-
vative Gln, had the biggest effect on maraviroc affinity decrease. The structural effect 
of  I1985.42 and E2837.39 mutations in maraviroc binding can be derived from the crystal 
structure of  CCR5 with this negative allosteric modulator (Figure 5.6c). Mutations on 
these two positions had an important effect on the ligand binding of  two other HIV-1 
drugs – vicriviroc and aplaviroc – and clinical candidates – TAK-779 and TAK-220 – in 
two studies43,44. Whilst E2837.39A abolishes maraviroc binding, chemokine CCL5 binding 
is mildly (20-fold) affected43. On the contrary, Y1875.31A showed almost no effect on the 
binding affinity of  maraviroc, while affecting chemokine recognition40. These observa-
tions exemplify the relevance of  our method to prioritize cancer-related mutations in 
site-mutagenesis studies and link them to receptor activation, endogenous ligand recog-
nition, and the recognition of  small (drug-like) molecules.

While completing this manuscript the TCGA dataset was used to identify significantly 
mutated GPCRs in cancer in a complementary extensive study by Wu et al.45. In compari-
son, we elaborated on our findings through a motif  analysis of  highly conserved residues 
in GPCRs, a link to positional entropy, and a link to structural information (i.e. analyzing 
the CCR5 chemokine receptor). Moreover, we included the availability of  chemical tools 
to study the selected GPCRs, as exemplified by our QSAR models. Another recent study 
by Huh et al.46 focused on Class A GPCRs expressed in tumors reaching similar con-
clusions regarding Class A-specific functional motifs. There, a similar method was used 
to calculate mutation enrichment from natural variance which predicted the impact of  
mutations in specific sequence positions. Their results were validated in vitro, confirming 
the parallel effect of  Class A GPCR mutations in receptor signaling. Our results extend 
to all GPCR class-specific functional motifs, opening novel paths to GPCR cancer re-
search. Recently, we have published analyses of  two other GPCRs, the Adenosine A1 
and A2B receptors, for which cancer-related somatic mutations were identified similar 
to the analysis as presented here47,48. There we used a yeast system to explore the effect 
said cancer-related mutations have on receptor function directly and found that there 
is a complex pattern of  activation modulation. Similar approaches could be used to ex-
perimentally validate the relevance in cancer of  somatic mutations in across all GPCR 
classes prioritized in this work. 

While here the focus was on GPCRs, other receptor families can be investigated in a 
similar manner. Notable examples include solute carriers or receptor-tyrosine kinases, as 
highlighted in Chapter 3 and through this thesis. The objectives in the Pareto optimiza-
tion can also be adapted, providing a modified way of  scoring the receptors depending 
on the scope of  the study. While our analysis focused on differences in missense mu-
tations occurring in cancer patients and natural variance, many other alterations (e.g. 
insertion/deletions, gene and protein expression levels) have been reported for GPCRs 
in the context of  cancer6,49, and complementary analyses could be executed focusing on 
these. Finally, this computational approach can become part of  a targeted therapy pipe-
line, suggesting key locations for in vitro and in vivo cancer-associated studies. 
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Conclusions

We conclude that mutations found in GPCRs related to cancer are in general weakly 
correlated to specific domains in the protein or functional conservation. However, there 
is a higher mutational pressure in class-specific functionally conserved motifs in cancer 
patients (as shown in the GDC set) compared to healthy individuals. Moreover, we show 
that the role and mechanism of  specific mutations can be elucidated using structural 
analysis as an intermediate step toward experimental validation. Finally, we provide a list 
of  GPCRs that are amenable to experimental follow-up. The data may help in exploring 
new avenues in the design of  cancer therapies, either by linking existing data to ligand 
binding and recognition, or the identification of  potential new roles for residues not 
previously studied.

Materials and Methods

Cancer-related mutations

Cancer-associated mutations were obtained from the Genomic Data Commons (GDC), 
part of  the US National Cancer Institute effort (version 22.0, January 16th, 2020)3. GDC 
contains multi-dimensional mapping of  genomic changes in several cancer types, in-
cluding the complete dataset from The Cancer Genomic Atlas project (TCGA)50. We 
re-compiled part of  the GDC database version 22.0 in a MySQL format to facilitate 
reproducible, version-consistent, big data cancer data analysis. Data was obtained from 
the GDC API engine and data transfer tool, depending on availability (unrestricted-ac-
cess data only). The SQL database contains 19 tables distributed in eight different fields. 
Some data fields (i.e. gene expression data) contain analyzed data derived from GDC 
raw data files. A more extensive description of  the database architecture, analyses per-
formed, and the end-to-end mapping strategy is available in Appendix A. We used data 
on somatic missense mutations found in a diverse set of  cancer types, which we will 
refer to as the “GDC” data set. 

Natural variation

As a reference, we used the 1000 Genomes data51, including an additional data set re-
leased in 2020 by the New York Genome Center (NYGC). This is a dataset containing 
the natural variation of  mutations in the genome. The dataset used in this study was 
obtained from the UniProt variance database in October 202052. From this data, all 
somatic missense mutations were gathered. Subsequently, only mutations found in the 
1000 Genomes subset were kept, removing cancer-derived mutations from COSMIC 
and known pathological mutations. We refer to this dataset as “1000 Genomes”.
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Mutation dataset curation

We filtered both sets for GPCR-unique mutation pairs, along with the frequency. At the 
same time, we annotated the resulting GDC and 1000 Genomes datasets with identifiers 
from GPCRdb8. This set was used for two entropy analysis, domain-based analysis, and 
motif-based analysis. Subsequently, prior to QSAR modeling and Pareto sorting, both 
datasets were enriched with bioactivity data from ChEMBL (release 27)53. 

Bioactivity data

From ChEMBL (release 27)53 ligand-protein interaction data was gathered for all 
GPCRs in GPCRdb8. Data points were filtered as follows: confidence score of  9, avail-
able pchembl value, and the protein belonging to the GPCR family (L2 protein class). A 
pchembl value is a standardized value that equals the negative logarithm of  the measured 
activity for records with dose-response activity types.

Structural information

The data set was enriched with structural information from GPCRdb8 for GPCRs pres-
ent in the GDC and 1000 Genomes dataset. Included were the family trees to find 
related proteins, the amino acid sequence of  a protein, and sequence alignment data to 
add generic numbering to the residues. Finally, we used the HUGO Gene Nomenclature 
Committee (HGNC) identifiers for source-to-source mapping.

Multiple sequence alignment and generic numbering

The structurally supported multiple sequence alignment (MSA) provided by GPCRdb 
was used to study sequence conservation and link sequence positions to sequence- and 
structure-based generic GPCR numbering schemes. Generic numbering schemes (such 
as Ballesteros-Weinstein for Class A54) can be used to compare positions between GPCRs 
but are often limited to the TM domains. There are two parts to the number separated by 
a decimal sign. The first identifies the domain (e.g. TM), and the second is relative to the 
most conserved residue in that TM. The most conserved residue is defined to be position 
50, with downstream positions receiving a lower number (towards the N-terminus) and 
upstream positions receiving a higher number (towards the C-terminus). Other schemes 
are available for Class B, C, and F. Structure-based curations of  these schemes have 
been developed by GPCRdb8. The GPCRdb generic values contain the same two parts 
but are separated by an “x” for differentiation purposes. We annotated the MSA with 
class-specific structure-based GPCRdb numbering schemes. Finally, we cross-linked the 
class-specific generic numbers with the more abundant class-A GPCRdb (GPCRdb(A)) 
equivalent to facilitate all-class analyses. For consistency, we refer to generic residue 
numbers in our work as Ballesteros-Weinstein, or BW, but give the GPCRdb(A) notation 
(i.e. 3x50 instead of  3.50) to denote the structural correction. 
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Investigated motifs 

Several conserved motifs commonly found in GPCRs were investigated (Table 5.2). 
All are found in the literature to be functionally relevant in specific classes and often are 
referred to with the class-specific generic residue numbering schemes. To select these 
motifs across all classes, the Ballesteros-Weinstein residue numbering scheme was used. 

Table 5.2. Investigated motifs, and their residues as noted by their generic residue numbering, both 
class-specific and Ballesteros-Weinstein. 

Motif Class Generic residues 
(Class-specific)

Ballesteros-Weinstein  
generic residues

DRY Class A 3.49, 3.50, 3.51* 3x49, 3x50, 3x51
CWxP Class A 6.47, 6.48, 6.49, 6.50* 6x47, 6x48, 6x49, 6x50
nPxxY Class A 7.49, 7.50, 7.51, 7.52, 7.53* 7x49, 7x50, 7x51, 7x52, 7x53
HETx Class B 2.50, 3.50, 6.42, 7.57 ** 2x43, 3x46, 6x37, 7x53
RE Class B 2.46, 8.49 ** 2x39, 8x49
GWGxP Class B 4.49, 4.50, 4.51, 4.52, 4.53 ** 4x49, 4x50, 4x51, 4x52, 4x53
PxxG Class B 6.47, 6.48, 6.49, 6.50 ** 6x42, 6x43, 6x44, 6x45
R/K Class F 6.32 *** 6x36

* Class-specific generic residue numbering scheme: Ballesteros-Weinstein8,54 

** Class-specific generic residue numbering scheme: Wootten8 

*** Class-specific generic residue numbering scheme: Wang8

Two-Entropy Analysis

Two-entropy analysis (TEA) was performed as described previously in the literature19. 
We reimplemented the revised TEA algorithm, adjusted by Ye et al. to account for gaps 
in the multiple sequence alignment and for the differences in number of  subfamily 
members. The reimplementation was validated by application to the synthetic dataset 
provided by Ye et al. (Supplementary Figure 5.9)19. We renamed “Total entropy” as 
“Rescaled Shannon entropy” and “Average entropy” as “Average entropy across sub-
families” for clarification. While the algorithm was not modified, two adaptations were 
made in the application, firstly using the GPCRdb hierarchy levels to define GPCR 
subfamilies, resulting in 83 subfamilies across all GPCR classes. From these, “Class A 
orphans” and “Class C orphans” were removed from the analysis. Secondly, we did not 
limit the entropy calculation to Class A GPCRS but applied it to all GPCR classes with 
more than one subfamily per class (Supplementary Table 5.2). However, contrary to 
previous work we included only human GPCR sequences. 

Statistical analysis per position

The frequencies of  mutations in both sets were analyzed per class and in combination 
(Supplementary Table 5.2). Mutation frequency was calculated as the sum of  patients 
bearing any unique mutation in any receptor in a position of  the multiple sequence 
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alignment included in: 

a) GPCR structural domains (i.e. N-terminus, TM domains, ECL and ICL loops, 
and C-terminus; also aggregated domains “TM”, “ECL”, and “ICL”)

b) Functionally conserved motifs (Table 5.2) 
c) Individual alignment positions 

To allow pairwise comparisons between sets, mutation ratios were calculated for cases 
(a) and (b), as defined in equations (1)-(3):

 (1)       (2)      (3)

where  is the mutation frequency in a set s,  is the mutation frequency in a set s 
per domain d,  is the average length per set s and domain d,  is the number of  
proteins per set s and domain d, and  is the length (number of  residues) per set s 
and domain d in a protein i. 

The mutation ratio,  , was visualized in Figure 5.2a-c. The mutation ratio normal-
ized over average domain length, , was visualized in Figure 5.2d-f and in Figure 
5.3. In Figure 5.2d-f, domains refer to GPCR structural domains and in Figure 5.3 
domains refer to functionally conserved GPCR motifs. In Figures 5.2d-f and 5.3, a to-
tal mutation ratio, , was calculated for reference. This represents the average 
mutation ratio in one residue if  the totality of  the protein sequence is taken into account 
and in Figures 5.2d-f and 5.3 is visualized as domain/motif  “Average”.  and 

are derived from equations (1)-(3) as follows:

In Figures 5.2c,d and 5.3b we calculated GDC enrichments by subtracting 
 and , respectively. 

For case (c) we calculated mutation frequency for each alignment position for the GDC 
and 1000 Genomes sets separately. Subsequently, we corrected the GDC frequency for 
natural variance by subtracting the 1000 Genomes frequency from the GDC frequency. 
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Pareto front

The multi-objective ranking was done within the Pareto method as implemented in 
Pipeline Pilot (version 18.1)55. Two implementations were designed. The first one was 
based exclusively on mutation data and the following properties were used: Mutation 
rate in TM domains in GDC (maximized), mutation rate in TM domains in the 1000 
Genomes set (minimized), GDC mutations in highly conserved TEA Q3 residues 
(maximized), and 1000 Genomes mutations in TEA Q3 residues (minimized). For this 
purpose, TEA Q3 residues were defined as those in the all-class TEA with “Rescaled 
Shannon entropy” < 0.5 and “Average entropy across subfamilies” < 0.5. The second 
implementation included two practical objectives to bias the ranking towards recom-
mendations for subsequent in vitro or in silico studies. These practical objectives were 
the average R2 of  ChEMBL QSAR prediction models (maximized) and the in-house 
availability for experimental assays (maximized). The first and second fronts from each 
implementation were used in further analysis, but all data is provided as supporting 
information. The suitability of  including practical objectives as part of  a tunable recom-
mendation system was evaluated by comparing the results of  the two implementations. 
The performed QSAR models were Random Forest R models trained in Pipeline Pilot 
using 500 trees and a default seed of  12345. A 50/50 percent training/ hold-out test set 
was used in duplicate to create and validate these models, with ECFP6 used as molecular 
descriptors56. 

3D structural analysis

CCR5 crystal structure (PDB code 4MBS) was obtained from the Protein Data Bank20. 
Mutagenesis data was retrieved from the GPCRdb and mapped onto the 3D crystal 
structure using PyMol57.

Software

Accelrys Pipeline Pilot 2018 (version 18) was used for all the calculations and analysis55. 
Any calculations performed were done in SI units, using the infrastructure provided in 
Pipeline Pilot. Data was written in plain text files and Excel. Graphs were created using 
Python’s module Matplotlib58.
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Supplementary Table 5.1. Two-Entropy Analysis parameters for GDC and 1000 Genomes sets in all GPCR classes analyzed combined and independently. 
Shannon (Sh.) and Average group (Gr.) entropy mean and standard deviation (SD) values for all three levels of mutation rates: low (< 10th percentile), medium 
(10th - 90th  percentile), and high (> 90th percentile).

GDC 1000 Genomes

Class

10
th/90

th 
percentiles

Low 

Mean ± SD

Medium 

Mean ± SD

High 

Mean ± SD

10
th/90

th 
percentiles

Low 

Mean ± SD

Medium 

Mean ± SD

High 

Mean ± SD

Sh. Gr. Sh. Gr. Sh. Gr. Sh. Gr. Sh. Gr. Sh. Gr.

All class 41/74 0.45 ± 
0.38

0.41 ± 
0.27

0.32 ± 
0.08

0.32 ± 
0.12

0.30 ± 
0.10

0.28 ± 
0.13

18/40 0.40 ± 
0.30

0.33 ± 
0.23

0.31 ± 
0.09

0.31 ± 
0.12

0.34 ± 
0.08

0.39 ± 
0.12

Class A 28/55 0.40 ± 
0.25

0.34 ± 
0.19

0.39 ± 
0.13

0.32 ± 
0.13

0.38 ± 
0.16

0.32 ± 
0.15

10/25 0.38 ± 
0.22

0.28 ± 
0.17

0.39 ± 
0.14

0.32 ± 
0.13

0.41 ± 
0.10

0.38 ± 
0.12

Class B1 1/5 - - 0.41 ± 
0.26

0.35 ± 
0.30

0.39 ± 
0.23

0.34 ± 
0.28

1/5 - - 0.42 ± 
0.25

0.35 ± 
0.29

0.53 ± 
0.26

0.49 ± 
0.29

Class B2 3/9 0.53 ± 
0.17

0.45 ± 
0.21

0.46 ± 
0.18

0.43 ± 
0.21

0.43 ± 
0.23

0.37 ± 
0.22

2/9 0.43 ± 
0.18

0.40 ± 
0.20

0.47 ± 
0.18

0.43 ± 
0.21

0.41 ± 
0.14

0.39 ± 
0.12

Class B 4/13 0.62 ± 
0.22

0.59 ± 
0.26

0.44 ± 
0.15

0.38 ± 
0.19

0.41 ± 
0.25

0.34 ± 
0.24

3/13 0.52 ± 
0.25

0.47 ± 
0.26

0.45 ± 
0.16

0.39 ± 
0.2

0.46 ± 
0.14

0.40 ± 
0.14

Class C 1/6 - - 0.48 ± 
0.17

0.39 ± 
0.18

0.45 ± 
0.17

0.39 ± 
0.16

1/4 - - 0.50 ± 
0.18

0.40 ± 
0.19

0.50 ± 
0.14

0.46 ± 
0.11

Class F * - - - - - - - - - - - - - -

Class T * - - - - - - - - - - - - - -

Other GPCRs * - - - - - - - - - - - - - -

* Two Entropy Analysis was not performed in classes with only one GPCRdb subfamily defined.
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Supplementary Table 5.2. GPCR classes analyzed, number of members per class and GPCRdb sub-
families defined in the Two-Entropy Analysis. 

Class Number of  receptors in 
alignment

GPCRdb hierarchy levels 
(subfamilies)

All class 401 83
Class A (Rhodopsin) 289 61
Class B* 48 14

Class B1 (Secretin) 15 5
Class B2 (Adhesion) 33 9

Class C (Glutamate) 22 5
Class F (Frizzled) 11 1
Class T (Taste 2) 25 1
Other GPCRs 6 1

* Synthetic class formed by aggregation of Class B1 and Class B2 to facilitate the analysis of class-spe-
cific functional motifs described in the literature.
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Supplementary Figure 5.1. Shannon entropy across GPCR subfamilies versus Shannon global Entropy 
correlated to cancer-related mutations, with residue and GDC labels. A two-entropy analysis plot for all 
GPCRs with aligned positions and labeled residues. The average entropy across families, i.e. conserved 
within a family is on the x-axis, and the Shannon entropy overall is on the y-axis. Residues are colored 
by the frequency of mutations found in the GDC dataset, with blue being low (< 10th percentile), orange 
medium (10th - 90th percentiles), and red high (> 90th percentile). Residues with no defined Ballesteros-
Weinstein labels are colored grey. Blue, orange, red, and grey lines represent the mean entropy values for 
each axis per mutation range (high, medium, low, and non-defined Ballesteros-Weinstein, respectively). 
Blue, orange, red, and grey shadows represent the standard deviation to the mean entropy values for 
each axis per mutation range (high, medium, low, and non-defined Ballesteros-Weinstein, respectively). 
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Supplementary Figure 5.2.  Two-entropy analysis correlated to cancer-related mutations and natural variance across GPCR classes. The analysis is performed 
on all GPCR classes combined, as well as Class A-C independently. Residues are colored by the frequency of mutations found in the GDC dataset (top row), and 
the 1000 genomes dataset (bottom row). In the all-class analysis, blue is low (< 10th percentile), orange medium (10-90th percentiles), and red high (> 90th percen-
tile) mutation frequency. Residues with no defined Ballesteros-Weinstein generic numbers are colored grey. Blue, orange, red, and grey lines represent the mean 
entropy values for each axis per mutation range (high, medium, low, and non-defined Ballesteros-Weinstein, respectively). Blue, orange, red, and grey shadows 
represent the standard deviation to the mean entropy values for each axis per mutation range (high, medium, low, and non-defined Ballesteros-Weinstein, respec-
tively). The coloring scheme for classes A-C is equivalent to that of all classes combined.
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Supplementary Figure 5.3. Enrichment of mutation frequencies per GPCR functionally conserved 
motifs across all GPCR classes. Length-normalized mutation ratio enrichment in the GDC dataset over 
the 1000 Genomes dataset in all classes combined and independently. Motifs analyzed are “DRY”, 
“CWxP”, and “NPxxY” (Class A); “HETx”, “RE”, “GWGxP”, and “PxxG” (Class B); and “R/K” (Class F). 
“Average” represents the average ratio considering the totality of the protein length. A darker shade 
of red represents a higher enrichment over the GDC dataset, and a darker shade of blue represents a 
higher enrichment over the 1000 Genomes dataset.
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Supplementary Figure 5.4. Mutation frequency cancer and natural variance in GPCR functionally con-
served motifs across GPCR classes. Motifs analyzed are “DRY”, “CWxP”, and “NPxxY” (Class A); “HETx”, 
“RE”, “GWGxP”, and “PxxG” (Class B); and “R/K” (Class F). a) Analysis of all GPCR classes combined. b) 
Analysis of Class A. c) Analysis of Class B. d) Analysis of Class B1. e) Analysis of Class B2. f) Analysis of 
Class C. g) Analysis of Class F. h) Analysis of Class T. i) Analysis of Class Other GPCRs.
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Supplementary Figure 5.5.  GPCR cancer mutations on Ballesteros-Weinstein positions. GPCR cancer mutations plotted for the Ballesteros-Weinstein positions 
found in the GDC data. Positions are ordered from lowest to highest and X-axis labels are displayed every five residues for visualization purposes.
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Supplementary Figure 5.6. Heat-map cancer substitutions. a) Heat-map showing the frequency of 
substitutions found in the GDC dataset. A darker shade of red means a higher frequency. b) Heat-map 
showing the frequency of substitutions found in the 1000 Genomes dataset. A darker shade of blue 
means a higher frequency.
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Supplementary Figure 5.7. Average Rank of GPCR families and their link to cancer in the literature. 
Average rank of GPCR families related to the mutation ratio in individual family members. For each 
GPCR, the absolute mutation count was divided by receptor length, to provide a mutation rate for each. 
To identify patterns within GPCR families, a family-wide rank was calculated by averaging the ranking of 
each of the members in a family and subsequently compared to the other families. Shown on the y-axis 
are the different GPCR families as categorized by GPCRdb, while on the x-axis their average rank as a 
receptor family is given. The lower the average rank value, the better. The error bars represent the stan-
dard deviation of individual GPCR rankings within the family. Color coding represents the link to cancer in 
the literature for the family. Red represents a strong link (i.e. all members of the family have been linked 
to cancer), salmon represents a partial link (i.e. some members of the family have been linked to cancer), 
and grey represents no link to cancer reported. 
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Supplementary Figure 5.8. GPCR mutation rates by cancer type. Normalized GPCR mutation rate per 
primary site (i.e. cancer type). The mutation rate per primary site is normalized by the number of patients 
in GDC with that cancer type.
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Supplementary Figure 5.9. Two-entropy analysis re-implementation. a) Re-implementation of 
two-entropy analysis in a synthetic dataset as defined by Ye et al. in 19. b) Original analysis, figure adapt-
ed from Ye et al. in 19.   


