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Introduction

Bioactivity prediction is one of  the key techniques in the computational drug discovery 
pipeline, mostly applied in virtual screening campaigns1,2. Quantitative structure-activ-
ity relationship (QSAR) modeling has been around for a long time and can be used to 
predict ligand bioactivity for a target of  interest based on the compound’s chemical 
structural characteristics3. Over time other bioactivity prediction strategies have emerged 
that include information other than chemistry-derived features4–8. An example is pro-
teochemometric (PCM) modeling, where the protein characteristics are considered in 
addition to ligand molecular structure, allowing for bioactivity predictions on several 
targets simultaneously8–10. 

Every year an increasing number of  articles showcase improvements in machine learn-
ing and artificial intelligence (AI/ML) bioactivity modeling in the form of  novel model 
architectures or chemical and protein descriptors, among other innovations11–16. Still, 
previous literature shows that one of  the main bottlenecks in bioactivity prediction is 
the amount and quality of  the available data for model training and testing17,18. Several 
databases, such as ChEMBL and PubChem, aim to compile as much data as possible by 
extracting it from the literature or accepting deposited datasets, which on its own can 
introduce errors19,20. Certain annotations like assay cell type, tissue, or genetic variants 
are not present in all articles or are described differently. In turn, this can result in in-
consistencies in information content that affect the quality and comprehensiveness of  
the data21,22.

Variant annotation in particular is one of  the key aspects that should be considered when 
analyzing bioactivity data23. The same compound can have a very different bioactivity on 
different genetic variants of  the same protein24–27. In fact, some compounds are explic-
itly designed to have differential bioactivity across variants to, for example, reduce side 
effects by avoiding targeting the wild-type (WT) protein in anticancer therapies, or to 
target escape variants in antibiotics or antivirals28,29. However, variant annotation tends 
to be overlooked in bioactivity databases where, in many cases, it is not present or lacks 
validation. Moreover, even when variants are annotated - as is the case in the ChEMBL 
database - they are often ignored when constructing a bioactivity dataset, which only re-
cently has been explicitly described as a potential source of  noise30,31. The advantage of  
modeling variant-annotated data has been demonstrated in variant-rich organisms, such 
as HIV32, and the implications in human proteins could be similarly important. 

Here, we thoroughly evaluate the risks and opportunities presented by variant annota-
tion in bioactivity databases by extensively characterizing variant-annotated bioactivity 
data in the ChEMBL 31 database. Through an assessment of  annotation fidelity, the 
non-triviality of  this task is highlighted, and adjustments are proposed to improve the 
ChEMBL variant annotation pipeline for future releases. A revised bioactivity dataset 
with protein amino acid substitution annotations is derived from this work and enriched 
with curated data from literature33 (Christmann subset) previously curated as part of  
the Papyrus dataset34. The additional data is aggregated in this work with the ChEMBL 
annotated data following the pipeline with rigorous data curation and filtering, and 
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standardization of  molecular structures that were applied to obtain the Papyrus dataset. 
Furthermore, we investigate the distribution of  variant-annotated bioactivity data points 
in the combined dataset across organisms, protein families, individual targets, and spe-
cific variants; and evaluate the effect of  variants in bioactivity distribution and modeling. 
These findings not only contribute to advancing our understanding of  the effects of  
amino acid substitutions in bioactivity but also provide invaluable insights for refining 
bioactivity data curation practices, particularly concerning variants, for enhanced predic-
tive modeling purposes. Our work also highlights the importance of  reporting compre-
hensively the full sequences of  proteins used in bioassays and bioactivity measurements, 
in both the literature and when depositing data directly into databases. 

Results

Variant annotation in bioactivity databases is far from trivial

Genetic variants are currently annotated in the ChEMBL database by manually extract-
ing this information from the original articles for data originating from the scientif-
ic literature. Since ChEMBL 22 this information has been mapped to protein targets 
(alongside their UniProt accessions) and made available in a structured format via the 
variant_sequences table. In this work, an orthogonal approach has been used to evaluate 
the fidelity and comprehensiveness of  these annotations and to include as many variants 
as possible for the analysis of  bioactivities against proteins carrying amino acid substitu-
tions (Figure 4.1, steps 1-7). This approach is expert knowledge-agnostic and embodies 
an automatic pipeline based exclusively on data previously extracted from the database. 
Its first step consisted of  the automatic extraction of  amino acid substitution patterns 
from the assay descriptions of  unique pairs of  assays and protein targets, and their sub-
sequent validation against the WT protein sequence (Figure 4.1, step 2). The extracted 
substitutions were then compared to the ChEMBL variant annotations in a feedback 
loop in which mismatches were semi-automatically classified and used to rescue or re-
vert annotations (Figure 4.1, step 3). Finally, variant targets were annotated based on 
this feedback and mapped to ChEMBL bioactivity data. The final variant-enhanced bio-
activity dataset (VEBD) was constructed by keeping exclusively bioactivity data for pro-
teins with at least one variant annotated and was lastly enriched with variant-annotated 
bioactivity data from the Christmann dataset.

Regular expressions were used to extract amino acid substitution patterns from assay 
descriptions, starting from 376,233 assay-protein target pairs in the ChEMBL 31 da-
tabase with data suitable for regression modeling. Assay descriptions are extracted and 
curated in ChEMBL from the primary literature sources in a combined manual and 
semi-automated pipeline. Of  note, genetic alterations other than amino acid substitu-
tions were deemed out of  the scope for the initial stage of  this project. As exemplified 
in Figure 4.1 (step 2) for the assay-target pair CHEMBL832660 - P47900, these expres-
sion patterns could extract true substitutions, such as Y306F, but also incorrect patterns 
from the assay description, like P2Y. This first step yielded potential substitutions in 
52,922 assay-target pairs. Therefore, exceptions were defined from other fields related 
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to the assay and the target protein, in particular cell type, target preferred name, and 
target synonyms. This helped to refine the pipeline by rejecting extracted patterns such 
as P2Y that map to a part of  the name of  the assay target (purinoceptor P2Y1 in this 
case, UniProt accession P47900) and does not refer to a proline to tyrosine substitution. 
Indeed, 34,676 assay-target pair substitutions raised at least one exception flag. Of  note, 
these exceptions are less of  an issue in the original ChEMBL variant annotation pipeline, 
since some manual curation is performed. The substitution patterns that had not been 
flagged as exceptions were validated in the next step by checking the existence of  the 
WT amino acid at the specified position in the target sequence. For example, in the case 
of  the aforementioned Y306F substitution pattern, P2Y1 has indeed a tyrosine residue 
at position 306 of  its sequence, hence this extracted substitution was validated. At this 
point, several additional exceptions were introduced by extracting patterns that were 
likely to be falsely validated, such as M1, as substitutions are unlikely to appear at the 
first position of  the sequence, yet they would be given a false valid status as the starting 
codon AUG codes for methionine. This resulted in 8,455 assay-target pairs with WT 
sequence-validated extracted substitutions. 

Next, the extracted and validated substitutions were compared to the originally anno-
tated ChEMBL variants for all assay-target pairs (Figure 4.1, step 3, Supplementary 
Figure 4.1). This step, which we refer to as the annotation feedback loop, was includ-
ed for three reasons, namely 1) to pinpoint highlights and pitfalls, 2) to suggest im-
provements to the ChEMBL variant annotation pipeline, and 3) to include additional 
ChEMBL variants and collect the most complete dataset with variant annotated data in 
the scope of  this project. Additionally, it served as a reminder of  the non-triviality of  the 
variant annotation process. Given its complexity, the feedback loop is now under review 
and remains subject to revision. The updated results will be incorporated in a revised 
version, therefore it is advisable to approach the following preliminary results with cau-
tion. Out of  the 8,455 assay-target pairs with extracted substitutions, 7,622 (90%) had 
an identical annotation in ChEMBL. The remaining 833 were missing in ChEMBL, ei-
ther completely (651) or because they had been flagged as “Undefined mutation” (182). 
Mismatching variants were further classified to determine their suitability for the VEBD 
(Supplementary Table 4.1, Supplementary Figure 4.1). Assays assessing more than 
one target were rejected for this analysis, as well as assays testing targets with variation 
corresponding to alterations or genotypes with ambiguous definitions. If  a multiple sub-
stituted protein was only partially validated; the annotations were rejected. If  a validated 
amino acid substitution was combined with an insertion/deletion/truncation then the 
substitution was included in this analysis. Finally, non-substitution patterns that had been 
incorrectly validated against the WT sequence were identified as potential novel excep-
tions for improving the pipeline. Subsequently, these 833 entries were manually classified 
into 648 true positives that represent potential novel annotations missed by ChEMBL, 
and 185 false positives that arise from substitution extraction errors and will be used to 
refine the current pipeline. The true positive group was included in the final VEBD. Of  
note, among these were assay-target pairs with either completely novel extracted substi-
tutions or rescues from previously undefined variants that were not fully annotated but 
were deemed inside the scope of  this project. For example, we deemed within scope, 
variants with co-occurring amino acid substitutions and deletions/duplications, flagged 
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by ChEMBL as undefined variants and “rescued” for this project. 
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Figure 4.1. Pipeline to construct the variant-enhanced bioactivity dataset (VEBD) from ChEMBL and 
Papyrus data. (1) Unique assay-target pairs with bioactivity data are extracted from ChEMBL 31. (2) 
Regular expressions are used to extract amino acid substitution patterns, which are validated by intro-
ducing exceptions and mapping them to wild-type (WT) sequences. (3) Extracted substitutions are 
compared to ChEMBL annotated variants, and the classification of mismatches is used to determine the 
final annotations. More details of this step are available in Supplementary Figure 4.1. (4) A variant target 
identifier is defined based on the final variant annotations. (5) The variant target identifier is mapped 
back to the ChEMBL bioactivity dataset. (6) Proteins with only WT data are filtered out. (7) The bioactiv-
ity dataset is standardized and curated similarly to, and enriched with variant data from the Papyrus 
dataset. 

Apart from the 8,455 assay-target pairs with extracted substitutions, 1,600 pairs were 
found to be annotated only in ChEMBL and not identified by the current variant an-
notation pipeline. These ChEMBL-only annotated pairs were further evaluated in light 
of  the underlying reasons that led to their exclusion from the current variant anno-
tation pipeline (Supplementary Table 4.2, Supplementary Figure 4.1). ChEMBL 
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substitutions missed by the regular expression, such as those with unconventional defi-
nitions, were incorporated into this analysis unless their initial annotation was “unde-
fined” or a deletion. Extracted substitutions failing validation against the WT sequence 
were categorized into three groups: 1) If  the extracted substitutions matched those in 
ChEMBL in all aspects except the residue number, the original substitutions were con-
sidered a sequence number shift exception and included. 2) If  the extracted substitutions 
fully matched the original ChEMBL annotation but were not valid according to the WT 
sequence, they were either a) excluded (i.e. if  the associated target was a protein family) 
or b) classified as ambiguous due to a sequence mismatch. 3) Finally, if  the extracted 
substitutions did not align with the original annotation, they were deemed ambiguous 
due to substitution mismatch or omission and are under review. This analysis led to the 
classification of  ChEMBL-only variants into true negatives (686 misclassified ChEMBL 
annotations), false negatives (798 ChEMBL expert annotations), and ambiguous (416 
ChEMBL-only annotations). True negatives were excluded from the final dataset, while 
false negatives were rescued from ChEMBL and included. Pairs in the ambiguous group 
were flagged as undefined variants and included in the final dataset. After the annotation 
feedback loop, 9,229 assay-target pairs (774 additional assays) were annotated with vari-
ants. These were annotated with a variant target identifier as done in the Papyrus dataset 
by adding the amino acid substitutions as a suffix to the UniProt accession code of  the 
protein. Similarly, bioactivity data points tested on WT proteins were identified by the 
suffix “WT” after the accession code. Note that the final number of  annotated pairs 
relies on the feedback loop, which is currently under revision; thus, the ultimate count is 
subject to change in an updated version. 

To construct the VEBD, the variant target identifiers were mapped to ChEMBL bioac-
tivity data based on assay-target pairs. Duplicated data from several assays for the same 
variant target were joined into one single point by dropping data with questioned validity, 
considered low-quality, and calculating the mean pchembl value or the most common 
activity flag. This resulted in 1,870,748 compound-target pairs across 6,777 targets, of  
which 25,259 contained variant targets - 736 with undefined variants - and the rest were 
WT. The ChEMBL 31 annotated set was merged with the fraction of  the Papyrus data-
set version 5.5 originating from the Christmann subset, keeping only targets with at 
least one variant defined for the follow-up analysis of  variant-annotated bioactivity. The 
final combined VEBD for bioactivity analysis contained 455,839 compound-target pairs 
across 335 proteins, of  which 25,086 data points represented data on variant proteins. 
Of  these, 22,992 compound-target pairs originated from ChEMBL 31, 672 from the 
Papyrus Christmann subset, which were not present in ChEMBL, and 1,422 from both 
sources. In the following sections, we explore in detail the VEBD. 

Variants are heterogeneously represented in bioactivity datasets across protein 
families

The first observation from the review of  the VEBD was that bioactivity data points were 
not homogeneously distributed across protein families. Proteins were assigned to their 
corresponding protein families using the levels L1-L5 in the protein family classification 
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table in ChEMBL. Out of  the 455,839 bioactivity data points in the VEBD, more than 
half  were in enzymes (266,328), followed by membrane receptors (96,037), and then the 
remaining protein families (Figure 4.2a, Supplementary Table 4.3). The percentage 
of  variant-tested bioactivity data with respect to the total amount of  bioactivity data – 
hereby referred to as variant bioactivity percentage – was highest for secreted proteins 
(10.8%) followed by enzymes (7.8%), but in both cases, it was in the same order of  mag-
nitude as the variant bioactivity percentage for the whole dataset (5.5%). 

a c

b d

Figure 4.2. Distribution of variant bioactivity data across protein families in targets with at least one 
annotated variant. a) Bioactivity data in the VEBD for all protein families (L1 classification). b) Comparison 
of originally ChEMBL-annotated and novel variant data for all protein families (L1 classification). c) 
Bioactivity data in the VEBD for subfamilies of the Kinase enzymes family (L4 classification for L2 = 
Kinase). d) Comparison of originally ChEMBL-annotated and novel variant data for subfamilies of the 
Kinase enzymes family (L4 classification for L2 = Kinase). Bar heights represent the number of total bio-
activity points (in a,c) or total variant bioactivity points (in b,d) on a logarithmic scale. The height of the 
black dots along the dashed lines represents the number of variant bioactivity points (in a,c) or novel 
annotated variant bioactivity points (in b,d). The color gradient represents the percentage of variant 
bioactivity data with respect to total bioactivity data (in a,c) or the percentage of novel annotated vari-
ant data with respect to total variant bioactivity data (in b,d).
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Of  note, the secreted proteins family included only one protein while the enzymes fam-
ily included 195. Compared to the highest classification level of  protein families, the 
variant load drastically differed between protein subfamilies. For example, the variant 
bioactivity percentage across subfamilies of  the kinase enzyme family ranged from 0.1% 
for the CMGC protein kinase group to 35% for the TKL protein kinase group (Figure 
4.2c, Supplementary Table 4.4). 

Similar trends were observed while focusing only on ChEMBL-exclusive data and ex-
ploring the differences between the original and the current variant annotation pipelines. 
The highest amount of  bioactivity data points with potential novel variant annotations 
corresponded to enzymatic targets (3,631), followed by membrane receptors (218). 
However, at the highest protein classification level, the percentage of  potentially novel 
annotated bioactivity data to the totality of  the variant-annotated data significantly dif-
fered across protein families, ranging from 0% in secreted proteins to 17.5% in enzymes 
(Figure 4.2b, Supplementary Table 4.5). Again, this effect was exacerbated across ki-
nase subfamilies. Here, in four subfamilies (i.e. atypical, STE, CK1, and CAMK protein 
kinase groups) the totality of  the variant bioactivity data had previously been annotated 
in ChEMBL, resulting in a novel annotated variant bioactivity percentage of  0%, while 
in the AGC protein kinase group, 89.7% of  the variant data was introduced by the cur-
rent variant annotation pipeline (Figure 4.2d, Supplementary Table 4.6). Similarly, 
in the kinase subfamily with the highest amount of  variant data (i.e. TK protein kinase 
group), 5.1% of  the variant data had not been previously annotated in ChEMBL. 

The distribution of  data in the VEBD across individual proteins was similarly unbal-
anced. Of  the 335 proteins included in the annotated dataset, eight viral and bacterial 
proteins and one human protein did not include any WT data. However, only three of  
these (Hepatitis C viral NS3 protease Q0ZMF1 and polyprotein K7XJL6, and Human 
immunodeficiency virus 1 – HIV-1 – reverse transcriptase Q9WKE8) had more than 
30 bioactivity data points. From the remaining 326 proteins, the vast majority (315) 
had simultaneously less than 20 variants and less than 10,000 bioactivity data (Figure 
4.3, Supplementary Table 4.7). Only three human proteins (aldehyde dehydrogenase 
AL1A1 - P00352, phosphatidylinositol kinase PK3CA - P42336, and epidermal growth 
factor receptor EGFR - P00533) had more than 10,000 bioactivity data points, of  which 
only one (EGFR) had a variant bioactivity percentage over 2%, specifically 18.36%. 
Moreover, eight different proteins had more than 20 annotated variants, including WT 
(Figure 4.3a). Some of  these variants were single amino acid substitutions, while other 
variants accumulated several substitutions (Supplementary Table 4.8). The two most 
tested proteins among these eight with high genetic variance were viral proteins from 
HIV-1, namely polyprotein RNase H - reverse transcriptase (RNaseH-RT, Q72547) 
and polyprotein Q72874. The other six were mammalian membrane proteins, some 
of  which may have been subjected to experimental mutagenesis programs: five class  
A G protein-coupled receptors (GPCRs) – the human gonadotropin-releasing hormone 
receptor GNRHR (P30968), the rat muscarinic receptor ACM3 (P08483), the human 
chemokine receptor CXCR4 (P61073), the rat opioid receptor OPRK (P34975), and 
P2Y1 (P47900) – and one solute carrier transporter – human betaine transporter S6A12 
(P48065). The protein with the largest number of  annotated variants was GNRHR, with 
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70 variants other than the WT. Among the eight proteins with high genetic variance, the 
variant bioactivity percentages ranged between 1.72% and 71.83%. 

a

b

From the 315 proteins that had simulta-
neously less than 20 variants and less 
than 10,000 bioactivity data, only 100 
displayed a variant bioactivity percentage 
equal to or greater than 10% (Figure 
4.3b), and only 10 of  these had more 
than 1,000 bioactivity data points. For 
reference, we consider 1,000 data points 
as an arbitrary threshold to enable bioac-
tivity modeling. Constraining the variant 
bioactivity percentage to 20% resulted in 
only 62 proteins out of  which only six 
had more than 1,000 bioactivity data 
points; most of  these contained clinically 
relevant mutations. The five proteins 
with the largest amount of  bioactivity 
data were all tyrosine, tyrosine-like, or 
AGC kinases, namely ABL1 (P00519), 
BRAF (P15056), leucine-rich repeat ki-
nase LRRK2 (Q5S007), ALK 
(Q9UM73), and ribosomal protein ki-
nase RPKS6B1 (P23443) in descending 
order of  bioactivity data points and in 
line with the distributions per protein 
family (Figure 4.2a,c). The sixth pro-
tein was the oxidoreductase isocitrate 
dehydrogenase IDHC (O75874). 

Save for the exceptions mentioned 
above, generally higher variant bio-
activity percentages correlated with 
lower total bioactivity data, regardless 
of  the number of  variants annotated 
(Supplementary Figure 4.2d). From 
the total of  335 proteins in the dataset, 
only 32 showed as much or more bioac-
tivity data for variants than for WT (i.e. 
50% variant bioactivity percentage or 
higher), and out of  these, only three had 
more than 1,000 bioactivity data points, 

namely IDHC (seven variants apart from WT), BRAF (one variant), and RPKS6B1 (two 
variants), and variant bioactivity percentages of  86.29%, 60.27%, and 55.21%. 

Figure 4.3. Variant annotation load per protein in 
terms of the number of variants and bioactivity data, 
as well as variant bioactivity percentage. a) Overall. 
Labelled are proteins with more than 10,000 data 
and/or more than 20 annotated variants, including 
WT. b) Proteins with less than 10,000 bioactivity 
data and less than 20 variants. Labelled are proteins 
with a variant bioactivity percentage higher than 
10% and more than 500 data.
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In general, annotated proteins with more than 1,000 data points had a small number of  
variants, and most of  their data was tested on the WT protein (Supplementary Figure 
4.2d). However, the data-rich protein targets highlighted in this section emphasized the 
potential relevance of  hidden variant data in bioactivity modeling and were therefore 
the focus for the rest of  the analysis. In particular, we defined a set of  13 data-rich 
proteins (Table 4.1) with the highest variant bioactivity percentages (i.e. equal or above 
10%) that had simultaneously sufficient data for bioactivity modeling (i.e. equal or above 
1,000 bioactivity data points) and that were subsequently analyzed in more detail in the 
following sections.

Amino acid substitution types represented in bioactivity datasets align with 
organism mutation rates

The type of  amino acid substitutions represented in bioactivity datasets was also not 
homogeneously represented and may reflect the community’s interest in protein vari-
ant sampling. As such, the majority of  the 
reported variants were amino acid substitu-
tions to alanine (Figure 4.4a), as part of  the 
commonplace alanine scanning strategies 
to determine key structural and functional 
residues. Indeed, as expected, the alanine 
enrichment was not maintained in the num-
ber of  bioactivity data points (Figure 4.4b). 
Instead, biologically relevant variants such 
as cancer-related BRAF V600E and EGFR 
T790M and L858R were responsible for the 
largest density of  bioactivity data around 
particular amino acid substitutions. For ex-
ample, the amino acid substitution with the 
largest amount of  associated bioactivity data 
was valine to glutamic acid, with 2,864 bio-
activity data points, out of  which 99.7% cor-
responded to the BRAF V600E variant. 

In line with the amount of  data in ChEMBL 
per organism (Supplementary Table 4.9), 
the most frequently tested variants were in 
human proteins (BRAF, IDHC, RPKS6B1, 
EGFR). Indeed, out of  the variant annotat-
ed bioactivity data, 90.56% corresponded to 
Homo sapiens. Viral and bacterial variants 
were also represented, however with only 
Figure 4.4. Amino acid substitutions reported in bioactivity databases. a) Unique variants reported per 
amino acid substitution. b) Number of bioactivity data points per amino acid substitution. Highlighted, is 
the substitution with the highest representation for the top five amino acid substitutions. In variants with 
multiple substitutions reported, each variant was accounted for individually. 

a

b

1,569 (95.9%)
IDHC R132H 

1,262 (98.9%)
KS6B1 T412E

1,599 (96.9%)
EGFR T790M

2,857 (99.7%)
BRAF V600E

1,935 (98.6%)
EGFR L858R
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4.82% and 0.70% of  the bioactivity data. The remaining bioactivity data corresponded 
to 13 non-human Eukaryotic organisms of  interest in preclinical studies, such as Rattus 
norvegicus or Mus musculus, among others. The type of  amino acid substitutions reported 
in bacterial variants were similar to human variants (Figure 4.5a,b). These featured 
many disruptive amino acid substitutions (91.53% in bacteria and 89.67% in humans), 
either affecting the size or polarity of  the original amino acid or, in most cases, both. To 
further characterize the disruptive potential of  each amino acid substitution, we calcu-
lated the Epstein coefficient of  difference35, which is higher for more disruptive chang-
es. In line with the previous observations, the Epstein coefficient of  difference for most 
of  the variants was higher than 0.4 (50.00% of  the bacterial and 55.30% of  the human 
variants), thus indicating changes in amino acid properties that would likely affect the 
protein’s function. On the other hand, viral variants featured a larger proportion of  
conservative amino acid substitutions (17.81%, Figure 4.5c). This observation was also 
backed up by a lower proportion of  amino acid substitutions with an Epstein coefficient 
of  difference higher than 0.4 (41.21%), even when the size or polarity was affected. 
From a biological perspective, organisms with a higher mutation rate, such as viruses, are 
indeed prone to accumulate fewer damaging substitutions than organisms with a lower 
mutation rate subjected to more checkpoints, such as humans. 

Among the 14 viruses and 16 bacteria for which 217 and 115 variants were tested, re-
spectively, two organisms concentrated the majority of  the data available (Supplementary 
Table 4.9). HIV-1 accumulated 54.8% of  the viral variants and 70.6% of  the viral bio-
activity data in just five proteins. Similarly, Escherichia coli concentrated 20.9% of  the 
bacterial variants and 42.0% of  the bacterial bioactivity data tested in eight proteins. A 
closer look into the nature of  the substitutions reported in these organisms offered 
some interesting insights when compared to EGFR as a proxy for a human protein with 
disease-relevant variants. In line with the general observation across human proteins, the 
nine single substitutions reported for EGFR were few but of  high relevance, with only 
one conservative substitution and Epstein coefficients of  difference around (three) or 
higher than (five) 0.4 (Figure 4.5d). Based on the 77 crystal structures available, all re-
ported EGFR substituted amino acids were located from 8Å to almost 25Å of  the 
center of  geometry (centroid) of  the protein ligands. Of  note, the two most tested sub-
stitutions (resistance substitution T790M and activating substitution L858R) showed 
very high coefficients of  difference but different locations with respect to the binding 
pocket (0.80 and 9.77Å, and 1.01 and 16.60Å, respectively). These two substituted resi-
dues are in the binding pocket of  EGFR and correspond, respectively, to the gatekeeper 
residue and the back cleft. In contrast, HIV-1 RNaseH-RT harbored 31 single substitu-
tions, of  which 64.52% had an Epstein coefficient of  difference lower than 0.4 (Figure 
4.5f). Of  note, these substitutions were concentrated around the non-nucleoside reverse 
transcriptase inhibitor (NNRTI) binding site, with distances to the ligand centroid most-
ly below 15Å. The only E. coli proteins with structural data, acetylglucosamine deacetyl-
ase LPXC (P0A725), and dihydrofolate reductase DYR (P0ABQ4), showed six substitu-
tions affecting either size or polarity (Figure 4.5e), and were located around 15Å of  the 
ligand centroid. The type of  amino acid substitution, as well as the distance from the 
substituted residue to the ligand binding site, could affect the bioactivity of  certain small 
molecules towards different variants. From a biological point of  view, enriched 

https://www.zotero.org/google-docs/?l7r1i9
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Homo sapiens - EGFR
a

b

c

d

e

f HIV-1 - RNaseH-RT

Escherichia coli - LPXC, DYR

Figure 4.5. Types of amino acid substitutions in bioactivity databases across taxonomic categories: 
Homo sapiens (a,d), Bacteria (b,e), and Viruses (c,f). a-c) Number of variants according to their amino 
acid change, divided into six categories related to the effect in the amino acid polarity and size and 
colored by the Epstein coefficient of difference of the corresponding amino acid substitution. d-f) 
Correlation between amino acid change relevance (Epstein coefficient of difference, x-axis), distance 
to ligand (average distance of substituted residue to ligand center of geometry or centroid, y-axis), and 
sampling frequency (number of bioactivity data points, bubble size) in variants of d) Homo sapiens EGFR 
(P00533), e) Escherichia coli LPXC (P0A725) and DYR (P0ABQ4), and f) Human immunodeficiency virus 1 
(HIV-1) polyprotein RNase H - reverse transcriptase (RNaseH-RT, Q72547). Note that although Q72547 
is the code for RNaseH-RT, the substitutions were concentrated in the RT domain, with only three sub-
stitutions in the RNaseH domain. In variants with multiple substitutions reported, each variant was ac-
counted for individually.
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human variants are likely to be disease-related whereas variants in pathogenic organisms 
are more likely linked to drug resistance. The extent of  such an effect and its potential 
relevance in bioactivity modeling was analyzed in the following sections. 

Genetic variants affect bioactivity at different levels 

Heterogeneity was found in annotated variants not only regarding the type and location 
of  amino acid substitutions but also the number and structure of  small molecules tested 
across them, as well as their relative bioactivity compared to WT. These observations 
reflected the interest in therapeutically targeting disease-relevant variants. In previous 
sections, it was shown that the majority of  proteins have a small amount of  variant bio-
activity data compared to WT, in particular in proteins with sufficient data for modeling 
(Figure 4.3). Even in the proteins with the highest variant bioactivity percentages (i.e. 
equal to or above 10%) that had sufficient data for bioactivity modeling (i.e. equal to or 
above 1,000 data), data density across variants was rather uneven. Out of  the 13 data-rich 
proteins satisfying these conditions, WT was the most populated variant in all cases ex-
cept for BRAF (P15056) V600E, IDHC (O75874) R132H, and RPKS6B1 (P23443) 
T412E (Supplementary Table 4.10), with the two first mutations corresponding to 
clinically relevant variants in cancer. BRAF and RPKS6B1 were also the only proteins, 
together with LRRK2 (Q5S007), where the most populated variant-annotated target 
had less than twice the amount of  data of  the second most populated variant, namely 
1.52, 1.21, and 1.96 times. The rest of  the proteins ranged from 4.73 (ALK, Q9UM73) 
to 104.64 (GNRHR, P30968) times more data in the most populated variant-annotated 
target – generally WT – compared to the second. The proteins with the largest relative 
data density differences between the first and second variants were those with the largest 
number of  variants annotated (Supplementary Figure 4.3a). In these cases, the exis-
tence of  many variants compensated for their data scarcity and still amounted to a rel-
evant variant bioactivity percentage, above 10%. However, for all 13 data-rich proteins, 
only up to three variants – generally the most established clinically relevant – contained 
more than 500 data points, with some of  the remaining variants dropping to as little data 
as one data point (Supplementary Figure 4.3b). These numbers corroborated the high 
data sparsity and hinted at the potential challenges to accurately reflect the differences in 
bioactivity caused by variants. 

Two scenarios were contemplated to reduce the effect of  chemical data sparsity across 
variants. The first one simulated an ideal scenario where all compounds would have been 
tested on all variants. For this purpose, fully dense common subsets were computed for 
targets with sufficient data, where only those compounds tested across all available vari-
ants were kept. Given the number of  variants with extremely low data density, this task 
was not trivial. In fact, approximately two-thirds of  the 335 targets in the VEBD did not 
have a single compound that had been tested on all reported variants. For the other third 
consisting of  114 targets, the fully dense common subset represented a small portion 
of  the target’s set, with only 18 targets exceeding 10% and the maximum representation 
being 50%. Moreover, the size of  their fully dense common subsets was very small, with 
only four targets surpassing 35 compounds tested across all their annotated variants 
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(Supplementary Figure 4.4). However, the computation of  fully dense common sub-
sets proved to be relevant to achieve fair comparisons. In many cases, like for breakpoint 
cluster region protein BCR (P11274) and JAK2 kinase (O60674), the modeling protein 
set was highly biased towards WT bioactivity, making the fully dense common subset 
valuable for comparison (Supplementary Figure 4.4b,c,f,g). Given these results, a 
strategy was developed to compute non-fully dense common subsets - referred to as 
common subsets - for the previously mentioned two-thirds of  proteins for which a fully 
dense common subset was not available. Common subsets generated for compounds 
tested in at least two variants with a variant coverage of  at least 20% identified 115 
targets for which a fully dense common subset was not possible. Overall, using these 
parameters to compute the common subsets resulted in very diverse subsets covering 
229 targets with an average common subset of  35 ± 121 unique compounds and 5 ± 
6 variants. This was a clear improvement in terms of  subset size from the original 114 
fully dense common subsets, which had an average of  10 ± 33 unique compounds and 
4 ± 7 variants. Additional measures were taken in very sparse targets by allowing the 
previous filters to be computed based on pairwise molecular similarity. This allowed 
us to include compounds only tested in one variant if  a highly similar compound (e.g. 
Tanimoto similarity ≥ 0.80) had been tested in a different variant. The similarity option 
with the previously defined parameters allowed rescuing an additional four targets but 
did not improve the existing subset sizes, given the stringent 80% similarity threshold. 
The obtained similarity-expanded common subsets maintained the bioactivity distribu-
tion per variant of  the VEBD, and all reached a higher balance and reduced sparsity as 
intended (Supplementary Table 4.11). 

The generation of  common subsets with varying parameters made it possible to ana-
lyze complete panels of  compounds across variants. The versatility of  such analysis on 
different protein families was exemplified for targets previously highlighted based on 
bioactivity data density and variant bioactivity percentage, namely EGFR (Figure 4.6, 
Supplementary Figures 4.5,4.6), HIV-1 RNaseH-RT, IDHC, and bromodomain-con-
taining protein BRD4 - O60885 (Supplementary Figures 4.7-4.9, respectively). For 
EGFR, this analysis allows the user to follow some of  the most biologically relevant ac-
tivating – L858R, G719C/S, A750P, P753S, L861Q – and resistance – T790M – substi-
tutions and the different generations of  EGFR inhibitors (EGFRi) developed to achieve 
selective bioactivity profiles (as a reference commonly used in drug discovery we will 
consider a potency difference over 30-fold against specific variants of  interest, which 
translates to a pchembl value difference over 1.5). The bioactivity analysis set for EGFR 
was generated from a common subset with compounds tested on at least three EGFR 
variants and variants covering at least 10% of  the compounds. The analysis subset con-
tained 22 compounds tested on nine out of  the 14 annotated EGFR variants with clear 
differences in bioactivity (Figure 4.6, see Supplementary Figure 4.5 for compound 
ID mapping). Out of  these 22 compounds, 10 were approved drugs – EGFRi but also 
pan-kinase and other inhibitors – and the rest were either preclinical or clinical candi-
dates (Supplementary Figure 4.5,4.6). The first two generations of  EGFRi were rep-
resented in this analysis. First-generation EGFRi are reversible compounds developed to 
target activating mutations, in particular substitution L858R. Second-generation EGFRi 
are irreversible compounds aiming at a similar selectivity profile. Three compounds 
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Figure 4.6. Full-panel bioactivity analysis of the effect of EGFR (P00533) variants. Bioactivity is repre-
sented in the heatmap as the pchembl value of different compounds, on the x-axis, tested on several 
variants, on the y-axis. See Supplementary Figure 4.5 for the mapping of compound numbers to their 
connectivity ID, preferred name, and approval status. Compounds and variants were clustered by their 
overall bioactivity profile. Compounds are further represented by their corresponding Butina clusters 
upon clustering of the subset with a cutoff of 0.7. Compounds that are representatives of particular 
clusters or bioactivity profiles are highlighted and their 2D structures are displayed with the preferred 
molecule name (ChEMBL). The rest of the molecules can be found in Supplementary Figure 4.6. The big-
gest ring system in each molecule is highlighted in red for reference as a less stringent proxy for the max-
imum common substructure to visually distinguish molecules with similar scaffolds. Variants are further 
represented by the distance from the substituted residue to the centroid of the ligand in the structure 
of the protein and by the Epstein coefficient of difference calculated for the amino acid substitution. In 
variants with multiple substitutions, average distance and coefficient of difference are reported.
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(15-17), including second-generation EGFRi afatinib, showed consistently high pchembl 
values over 8.07, while seven (8-14) showed consistently low activity across variants with 
maximum pchembl value of  6.66. Moreover, four compounds (1-4) showed very high 
activity – pchembl value between 7.80 and 8.99 – against the two variants containing 
the resistance substitution T790M compared to the rest of  the variants, including WT 
– where the maximum pchembl value was 7.34. These two variants, single substituted 
T790M and double substituted T790M/L858R, also exhibited the most different overall 
bioactivity patterns, as expected given their biological relevance. Indeed, five first-gener-
ation EGFRi (18-22) exhibited lower activity against the two T790M-containing variants 
(pchembl values between 6.09-7.00, compared to 7.01-9.33), as this resistance substitu-
tion is known to appear as a response to treatment with first- and second-generation 
EGFRi. Despite high activity overall, afatinib exclusively showed a decrease in bioactiv-
ity for the double mutant L858R/T790M. In terms of  the location with respect to the 
ligand binding site, T790 is one of  the closest substituted residues, below 10 Å from the 
ligand centroid, and effectively in the binding site of  EGFR. Additionally, the threonine 
to methionine amino acid change is highly disruptive with an Epstein coefficient of  
difference over 0.80. The rest of  the variants behaved more similarly to the WT, with 
two major compound clusters with low (pchembl values between 5.00 and 7.34) and 
high activity (between 7.01 and 10.00), respectively. From these, WT was the odd one 
with the least marked differences between the two groups of  compounds, as seen in the 
hierarchical clustering per variant (Figure 4.6). This was expected, as most EGFRi were 
developed to be variant-selective and reduce the side effects of  anticancer therapies. The 
single substituted variant L858R behaved very differently from the double substituted 
T790M/L858R variant, in line with the different biological roles of  these substitutions. 
Although the substitution to arginine is highly disruptive, L858 is further away from 
the ligand than T790. The Butina clustering performed on the 22 compounds showed 
that similar compounds exhibit similar effects across variants, as observed for clusters 
2-6, and in line with the sequential development of  EGFRi generations. Clusters 2-6 
were populated by compounds with clear similarities, resulting in a diverse cluster 1 
(Supplementary Figure 4.6) showing multiple patterns across variants but mostly con-
taining first- and second-generation EGFRi. An interesting example was compound 4, 
which is structurally very different from the compounds in cluster 3 (compounds 1-3) 
yet exhibited the same bioactivity pattern. As such, this analysis can aid in the explora-
tion of  compounds with variant-selective profiles beyond the most well-known chemical 
groups. For other proteins, it can be a tool to rationalize the chemical modifications 
needed to develop drugs targeting specific resistance substitutions (Supplementary 
Figure 4.7); an instrument for extracting starting scaffolds with specific selectivity pro-
files (Supplementary Figure 4.8); or to distinguish between compounds with different 
binding modes (Supplementary Figure 4.9).

The different effects observed for different chemical clusters in common subsets could 
also be expanded to bigger yet sparser subsets. This allowed us to analyze the overall 
effect of  variants on different subsets of  the chemical space tested for one protein. 
While this analysis is possible for the whole protein subset, in targets with a clear bias 
towards WT testing, selecting subsets of  compounds tested on at least two variants was 
still preferred to increase the significance of  comparisons across variants. Particularly for​ 
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Figure 4.7. EGFR (P00533) bioactivity variability across variants compared to WT for compounds in the 
10 most populated Butina Clusters upon clustering compounds tested on at least two variants with a 
clustering threshold of 0.5. a) Differences between mean pchembl_value in WT, displayed at the first row 
as calculated for the compounds in each cluster, and the mean pchembl_value in each of the variants 
for the compounds in the same clusters. The left bubbles represent the result of subtracting the vari-
ant mean from the WT mean. The bubble size represents the absolute value of this difference (error). 
Opaque left bubbles represent a positive error (i.e. the mean calculated for the variant is higher than for 
WT), and translucent left bubbles represent a negative error (i.e. the mean calculated for the variant is 
lower than for WT). Right bubble sizes represent the variant coverage, in other words, the percentage 
of compounds in each cluster that was tested on a specific variant. b) Distribution density of pchembl 
values across compounds in each cluster. Different colors represent the different variants where com-
pounds of the cluster were tested, according to the color code of panel a. Dashed lines represent the 
mean pchembl_value, which was used to calculate the differences in panel a. c) Two compound exam-
ples per cluster with the atoms corresponding to the maximum common substructure of all the com-
pounds in the cluster highlighted in red. When available, approved compounds or preclinical candidates 
are displayed.

EGFR, the set of  1,219 compounds tested on at least two variants was clustered using 
the Butina algorithm36 with a threshold of  0.5 resulting in 118 clusters. Clear differences 
in bioactivity across variants were observed among the top 10 biggest clusters (Figure 
4.7). Chemistry-related changes in bioactivity distribution were already somewhat 

https://www.zotero.org/google-docs/?qRUSVe
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apparent on the WT level (Figure 4.7a,b), with mean pchembl values between 6.43 and 
7.66 from slightly divergent distributions. The compounds in the two most populated 
clusters (n=253 and n=236, respectively) were tested across 11 and 10 out of  the 12 vari-
ants, respectively, with various rates of  variant coverage (Figure 4.7a). These two clus-
ters included approved first (cluster 2), second (cluster 2), and third generation (cluster 
1) EGFRis, as well as pan-kinase inhibitors (cluster 2). Third-generation EGFRis were 
not present in Figure 4.6 and were developed to selectively target the L858R/T790M 
double substitution. Furthermore, the average differences in bioactivity compared to 
WT across variants were virtually the opposite between the two clusters, in line with the 
known selectivity profiles of  different generations of  EGFRi. For example, compounds 
tested on rare variants G719C, G719S, A750P, and P753S all showed lower activity than 
compounds tested on the WT in cluster 1 (0.54, 0.85, and 0.88 points below WT – 6.74) 
but higher in cluster 2 (1.21, 1.11, and 1.06 points above WT – 7.66).

The opposite effect was observed for compounds tested on the double substitut-
ed T790M/L858R variant, which had a mean pchembl value 0.85 points higher than 
compounds tested on the WT in cluster 1 (7.59 vs. 6.74) and 0.27 points lower than 
compounds tested on the WT in cluster 2 (7.39 vs. 7.66). Of  note, the bioactivity dis-
tributions across compounds tested in each variant were highly diverse (Figure 4.7b), 
thus relevant in addition to the point mean differences. Together, this type of  analysis 
pinpoints chemical patterns (as highlighted in Figure 4.7c for the maximum common 
substructures of  compounds in each cluster) driving differences in bioactivity across 
variants. Similarly to EGFR, this analysis can help expand the results observed in the 
full-panel bioactivity analysis for other proteins as exemplified for HIV-1 RNaseH-RT, 
IDHC, and BRD4 (Supplementary Figures 4.10-4.12, respectively). In an explorative 
fashion, results derived from this analysis can be the starting point of  drug design cam-
paigns satisfying certain activity characteristics. Alternatively, in virtual screening cam-
paigns, they can be relevant for decision-making to reduce noise in models or increase 
the modeling performance by constructing variant-aware models, as explored in the 
following section. 

Variant awareness improves modeling performance

The effects of  variant bioactivity data on the performance of  machine learning mod-
eling were investigated by comparing results obtained from three scenarios. The first 
scenario corresponds to modeling in a variant-agnostic situation, wherein all bioactivity 
data measurements are (mistakenly) assumed to derive from assays carried out on WT 
proteins only (QSAR-All). The two other scenarios correspond to modeling in a vari-
ant-aware situation, wherein data points assayed on variant targets are either kept in 
(PCM-All) or filtered out of  the training set (QSAR-WT). 

First, modeling performance was evaluated based on random split cross-validation on 
the VEBD in its entirety, splitting out each protein in turn, to assess the overall effect of  
introducing variant-aware strategies. As expected, on average the performance of  models 
decreased with a scarcer number of  bioactivity data points (Table 4.1, Supplementary 
Figure 4.8a and 4.8c, and Supplementary Table 4.12), characterized by the average 
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Table 4.1. Modeling performance of variant-annotated proteins following three modeling strategies: 
PCM explicitly modeling variants (PCM-All), QSAR with all protein data without considering variants 
(QSAR-All), and QSAR removing variant data (QSAR-WT). The performance of PCM and QSAR models 
depends on the number of data points and the variant bioactivity percentage. Performance is reported 
for the entire training set, focused protein families, and data-rich proteins (more than 1,000 data points 
with at least 10% variant bioactivity percentage) for a random split 5-fold cross-validation strategy as 
the average Pearson correlation coefficient for each group or protein and, between brackets, as the 
average per group or protein of the standard deviation of Pearson r between cross-validation folds 
for each protein. The best average Pearson r is reported in bold for each row. Pearson r of PCM and/or 
QSAR-WT models significantly differing from QSAR-All models are starred. Pearson r of PCM or QSAR-
WT models significantly differing from all other models (i.e. QSAR-WT and QSAR-All, and QSAR-All and 
PCM-All respectively) are underlined. Statistical results are detailed in Supplementary Table 4.17.

Average Pearson correlation coefficient 
(average standard deviations) Number 

data points

Variant 
bioactivity 

(%)PCM-All QSAR-All QSAR-WT

All 0.653 (0.117)* 0.634 (0.116) 0.654 (0.121)* 453,660 5.5

5 to 100 data 0.396 (0.322) 0.352 (0.323) 0.363 (0.378) 3,257 29.1

100 to 500 data 0.704 (0.085) 0.690 (0.083) 0.691 (0.094) 19,694 10.0

500 to 2,000 data 0.746 (0.038) 0.737 (0.039) 0.747 (0.041)* 84,426 4.5

2,000 to 20,000 data 0.769 (0.018)* 0.763 (0.017) 0.764 (0.017) 346,283 5.2

Family A GPCRs 0.731 (0.046) 0.735 (0.035) 0.752 (0.037) 93,454 1.8

Ion Channels 0.620 (0.142) 0.613 (0.134) 0.646 (0.168) 16,635 1.5

Nuclear Receptors 0.704 (0.047) 0.690 (0.036) 0.714 (0.034) 14,344 2.5

Protein Kinases 0.716 (0.068)* 0.701 (0.068) 0.700 (0.080)* 133,396 9.1

P00533 (EGFR) 0.822 (0.009)* 0.802 (0.008) 0.809 (0.004) 13,601 18.4
Q72547 (HIV-1 
RNaseH- RT) 0.809 (0.013)* 0.764 (0.005) 0.776 (0.012) 6,953 34.0

P00519 (ABL1) 0.867 (0.008) 0.850 (0.019) 0.857 (0.012) 4,985 22.3

P15056 (BRAF) 0.847 (0.012) 0.834 (0.013) 0.858 (0.014) 4,740 60.3

P36888 (FLT3) 0.813 (0.022) 0.812 (0.016) 0.798 (0.018) 4,390 11.8

O60885 (BRD4) 0.856 (0.007)* 0.714 (0.038) 0.858 (0.013) 4,106 17.1

P10721 (KIT) 0.748 (0.028)* 0.708 (0.010) 0.716 (0.015) 2,897 19.4

Q5S007 (LRRK2) 0.853 (0.017) 0.851 (0.013) 0.827 (0.009) 2,760 34.0

Q9UM73 (ALK) 0.854 (0.017) 0.829 (0.011) 0.837 (0.021) 2,598 24.9

P23443 (RPKS6B1) 0.854 (0.005) 0.853 (0.012) 0.682 (0.042)* 2,286 55.2

O75874 (IDHC) 0.804 (0.014) 0.759 (0.031) 0.775 (0.045) 2,203 86.3

P07949 (RET) 0.778 (0.027)* 0.752 (0.033) 0.718 (0.020) 2,123 13.2

P30968 (GNRHR) 0.758 (0.047) 0.724 (0.030) 0.720 (0.045) 1,921 23.7
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cross-validated Pearson correlation coefficient (Pearson’s r) below 0.40 when modeling 
proteins with 5 to 100 data points, around 0.70 with 100 to 500 data points, around 
0.75 with 500 to 200 data points, and above 0.76 with more than 2000 data points, 
respectively. In any case, variant-aware models showed increased performance, with all 
QSAR-WT models showing an increased correlation with experimental values com-
pared to QSAR-All models. Data balance between the data points obtained on WT and 
the ones on variant targets had an impact on the significance of  the differences in per-
formance observed (Table 4.1 and Supplementary Figure 4.13b and 4.13d). This was 
demonstrated in protein families with substantial experimental data by the significantly 
increased performance of  the PCM-All model (0.716) for protein kinases (p-value=4.1 
x10-5), with 9.1% of  variant bioactivity percentage, compared to that of  QSAR-All and 
QSAR-WT models (0.700 and 0.701, respectively). In contrast, no significant difference 
was observed for family A GPCRs, ion channels, and nuclear receptors, which all had a 
lower data balance (between 1.5 and 2.5% variant bioactivity percentage), and for which 
PCM was not the best strategy. Indeed, all points relating to protein kinases in Figure 
4.8a zoom-in were very close to or below the identity line, and most data-rich kinases 
showed a significant performance increase when using PCM. These included EGFR 
(P00533), ABL1 (P00519), LRKK2 (Q5S007), ALK (Q9UM73), RPKS6B1 (P23443) 
and proto-oncogene RET (P07949) kinases, all having more than 2,000 associated data 
points with at least 10% variant bioactivity percentage, with correlation coefficients be-
tween 0.75 and 0.85 (Table 4.1, Figure 4.8a). Interestingly, of  data-rich proteins, only 
BRAF (P15056) showed a decreased performance when including data points of  vari-
ants, with a Pearson’s r of  0.847 for PCM-All and 0.858 for QSAR-WT. This could be 
the result of  the very large amount of  data points associated with variants (60.3%) and 
due to the distinctively divergent but overlapping trends in the distributions of  bioac-
tivities between WT and variants (Supplementary Figure 4.4). These results highlight 
the importance of  variant awareness in bioactivity modeling but do not provide a solid 
basis for general recommendations on the variant-aware strategy that should be used. 

Next, the capacity of  models to predict the bioactivity of  compounds on unseen vari-
ants was investigated. To this end, Leave-One-Variant-Out (LOVO) cross-validation 
was carried out. This confirmed the trend previously observed of  the ability of  PCM 
models to interpolate in the protein feature space, especially for richer sets of  proteins 
(more than 2000 data points) with an average Pearson’s r of  0.325 compared to 0.311 
for other proteins (Supplementary Table 4.13). To decrease the sparsity of  datasets, 
similarity-expanded common subsets were derived to focus on a subset of  molecules 
and their analogs tested across a subset of  variants. The latter drastically decreased the 
applicability domains of  models (Supplementary Table 4.14) and affected the perfor-
mance of  most models (Figure 4.8b and Supplementary Table 4.15) but improved 
the performance of  models when used in combination with LOVO cross-validation 
(Figure 4.8c and Supplementary Table 4.16) for most proteins. Nonetheless, the gen-
eral trend showed no clear difference between QSAR-All and PCM-All models derived 
from LOVO cross-validation from the common subsets (Figure 4.8d), suggesting that 
the extrapolation to new variants using PCM is similar to random prediction. These 
results show the complexity of  accurately predicting bioactivity for individual variants. 
Moreover, they highlight the impact of  data sparsity on model performance and how the 
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limited size of  current datasets restricts extrapolation in the protein feature space when 
focusing on analog molecules.

a
b

c

d

Figure 4.8. a) Comparison of the performance (random split cross-validated Pearson correlation coef-
ficient average) of models in a variant-aware (PCM-All) and variant-agnostic (QSAR-All) setting consid-
ering the newly annotated VEBD. Zoom-in coloured by of protein families. b,c) Comparison of perfor-
mances between the PCM models obtained from the entire VEBD set and the similarity-based common 
subset using random split cross-validation (b), or using Leave-One-Variant-Out (LOVO) cross-validation 
(c). d) Comparison between PCM and QSAR models derived from the similarity-based common subset. 
Labelled points correspond to data-rich proteins (see Table 4.1).

The general trends highlighted above were consistent across the data-rich proteins, 
although few of  them had a significant performance improvement when using vari-
ant-aware models (Table 4.1, Figure 4.8). On a protein-specific level, this effect can be 
traced back to data sparsity and imbalance across variants and subsets of  the chemical 
space (Figure 4.7 and Supplementary Figure 4.10 for EGFR and HIV-1 RNaseH-
RT, respectively). In fact, tackling these issues by reducing the applicability domain 
with a similarity-expanded common subset resulted in equivalent or improved PCM 
performance in random split cross-validation compared to complete sets for these pro-
teins, with a clear advantage over the variant-agnostic model (Supplementary Table 
4.13, Figure 4.8b). Moreover, the analysis of  the bioactivity patterns can help explain 
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discrepancies from the general modeling trend. For example, among data-rich proteins, 
BRD4 (O60885) displayed the biggest increase in performance when using variant-aware 
models in random split cross-validation (Figure 4.8a). Following the general trend, we 
expected a good extrapolation to novel variants for this protein, which was not the case 
(Figure 4.8c). The examination of  the substituted residue distance to the ligand’s cen-
troid on the bioactivity cluster map for BRD4 (Supplementary Figure 4.9) highlighted 
that the two most represented variants, Y97A and Y390A respectively, are each part 
of  different protein domains, bromodomains 1 and 2 respectively, corresponding to 
different binding sites, and had therefore opposite effects on bioactivity for the subset 
of  compounds examined. This was confirmed in the protein’s structure and explained 
the lack of  generalization power of  the model, which might be improved by splitting 
the chemical space into domain-specific binders. Still looking at the data-rich proteins, 
IDHC (O75874) showed poor extrapolation, which could be traced back to the very 
similar bioactivity profiles across the tested variants, all of  them occurring in the clinical-
ly relevant R132 residue (Supplementary Figures 4.8,4.11). Based on this information, 
model performance could be improved by pooling all variant data or designing protein 
descriptors able to capture the subtle differences in one residue. These results stress the 
importance of  informed decision-making via the analysis of  bioactivity trends to design 
relevant training sets and strategies for variant-aware modeling.

Discussion

Bioactivity modeling is one of  the cornerstones of  computational drug discovery. 
Despite the most recent advances in modeling techniques and capacities, data quality 
and quantity remain a major bottleneck, particularly for those working in the public sec-
tor without access to large proprietary or commercial datasets. As a consequence, large, 
curated, and open bioactivity databases such as the ChEMBL database or the Papyrus 
dataset constitute key resources for the community. Despite the many benefits that the 
expert extraction and curation processes for these databases provide, the user still needs 
to navigate the often-complex database structures and make informed decisions to se-
lect and curate data for the modeling task at hand. This does of  course also reflect the 
fact that developing, running, and processing the data from bioactivity assays is a com-
plex scientific endeavor. Careful selection of  several fields in these databases, such as 
activity comments and assay types can have a big impact on the quality of  the modeling 
data. Here, the effect of  a commonly overlooked field in bioactivity databases, amino 
acid substitutions constituting protein variants, was extensively analyzed. The genetic 
variability landscape in the ChEMBL database has been explored in detail here for the 
first time, including the annotation strategy, the extent of  variant data at different levels, 
the effect on bioactivity distributions, and finally the effect on bioactivity modeling. The 
dataset and results from this are made available to facilitate modeling with consideration 
of  genetic variants. Moreover, a full analysis Python package is made available to pro-
mote variant analysis in proteins of  interest to the user and thus help make informed 
decisions about data selection and curation for modeling. 

A variant annotation strategy parallel to that of  ChEMBL was developed that extracted 
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82.65% of  the original variant annotations from the assay descriptions, which reinforced 
the confidence in the original ChEMBL variant annotation pipeline (which delivers these 
annotations by manual extraction of  protein variant information from original papers). 
A clear advantage in the ChEMBL pipeline was the access to expert knowledge to rescue 
variants otherwise missed by a regular expression match. For example, sequence number 
shifts and non-canonical amino acid substitution definitions were identified among these 
expert rescues. However, mis-annotations reported by ChEMBL were also identified, 
for example, derived from mistakenly linking assays to protein families rather than single 
proteins. The current annotation strategy also retrieved several substitutions that had 
not been previously reported in ChEMBL 31. Nevertheless, these results need to be 
considered cautiously since they are based on fields previously extracted by ChEMBL 
rather than the original source in the literature and might miss important aspects of  the 
experimental set-up. Importantly, this approach also relies on accurate reporting of  test-
ed variants in the scientific literature in order for their subsequent capture in bioactivity 
databases. Collaborative work such as reported here is key to improving the ChEMBL 
database37,38 for the wider community; for future releases of  ChEMBL, we will aim 
to improve and enhance our reporting of  variant data based upon the findings in this 
paper. Although several drug and protein databases contain variant data, the effect of  
drugs on specific variants is very sparse and conflicting39,40. An expert-curated dataset 
derived from our analysis could therefore serve as a user-friendly central repository for 
variant bioactivity data regularly retrieved from ChEMBL and additional sources. As a 
result of  this collaboration, a revised version of  this work will be released, integrating 
the alterations recommended through the feedback loop (see ChEMBL comments in 
Supplementary Table 4.1 and 4.2, revision ongoing).

The variant landscape in ChEMBL 31 and additional Papyrus sources is, as expected, a 
reflection of  the clinical relevance and interest of  the community in particular organ-
isms, protein families, targets, and individual variants. Unsurprisingly, human proteins 
concentrated the bulk of  the variant data, but several mammalian orthologs and human 
pathogens were also identified. Of  note, curated drug resistance databases for signifi-
cant pathogens such as HIV41, tuberculosis42, and other antibiotic-resistant bacteria43 are 
available independently of  bioactivity databases and should be queried separately. Apart 
from being more complete, these databases have a more domain-focused curation pro-
cess e.g. strain annotation in microorganisms. Although different organisms show sig-
nificant differences in the amounts of  data available, the amino acid substitution trends 
align with nature-observed patterns. Indeed, organisms with smaller genome sizes and 
higher mutation rates, such as viruses and to a lesser extent bacteria, accumulated larger 
amounts of  non-disrupting substitutions compared to human proteins44,45. 

Among human protein families, enzymes, in particular kinases, amassed the most variant 
data, though not always proportionate to the overall data volume. While these numbers 
do not correspond to evolutionary mutation rates46, they are certainly correlated to the 
high interest in protein kinase variants in cancer research47. Indeed, the targets that si-
multaneously displayed high variant bioactivity percentages and large amounts of  data 
overall were predominantly cancer-related kinases with clinically relevant somatic sub-
stitutions such as EGFR48, ABL149, BRAF50, and ALK51. Nonetheless, in this category 
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were also cancer-related kinases with no reported disease-related somatic substitutions 
like RPKS6B152, where experimental mutations are common, or kinases responsible for 
other pathologies, such as LRRK2 in Parkinson’s53. Of  note, the individual variants re-
ported for specific targets also reflect the interest within the scientific community and 
do not necessarily include all reported and clinically relevant variants54. Other than clin-
ically relevant variants, experimentally important variants were found, such as activating 
substitutions in downstream cascades55, or alanine scanning panels for functional56 or 
thermostabilizing assessment57 in GPCRs. Far from negligible, such panels can be re-
purposed for model training, consequently reducing the need for experimental assays58.

The Python package and notebooks that accompany this work have been carefully de-
signed to allow complete reproducibility of  the annotation and variant landscape analy-
sis. However, their primary purpose is to empower readers to self-assess variant effects 
on protein bioactivity. As shown here for the clinically relevant kinase EGFR, among 
other data-rich targets, these analyses can identify clusters of  chemical space with vary-
ing effects on bioactivity, specific protein structural traits causing differing bioactivity 
patterns, and compounds with desirable selectivity profiles. These results not only are 
in line with the literature and enabled the analysis of  activating and resistance-induc-
ing substitutions, but also extended beyond the most widely-recognized variants and 
chemical classes59. In turn, they can be used as hypothesis generators in drug design60 
as well as recommendation systems to include or remove certain chemical clusters61 or 
variants from a prospective modeling or virtual screening task62. Indeed, for a target 
like EGFR with a high variant bioactivity percentage and differential bioactivity profiles 
across variants and chemical groups, our bioactivity modeling results indicated a de-
crease in predictive performance when variants were not accounted for, generalizing the 
effects previously observed when modeling cyclooxygenases 1 and 263. Both removing 
variant data from the QSAR model and explicitly modeling each variant in a PCM model 
increased performance in random split cross-validation, likely by reducing the negative 
effect of  noise64,65. Similar results were observed for other proteins with a high variant 
bioactivity percentage despite large inter-target variability. Nevertheless, non-optimized 
protein sequence descriptors were used in this work. Furthermore, the average length of  
protein sequences varies greatly - for instance considering the 566 amino acids of  HIV-1 
RNaseH-RT and the 2549 amino acids of  the human mammalian target of  rapamycin 
(MTOR) - and could influence the sensitivity significantly and hence the ability of  PCM 
to detect signal from the averaged representation used herein. To remedy these challeng-
es, the use of  alignment-dependent or autocorrelation descriptors could be explored8,66. 
Moreover, as previously mentioned, some mutants are disease-causing and are often the 
drug target. For these cases, in which molecules are optimized away from the WT, the 
baseline for the QSAR-WT could be substituted with the disease-causing mutant. The 
modeling results presented here for all proteins containing variant data can be used for 
decision-making regarding additional data curation or the selection of  modeling tasks 
for individual proteins. As a rule of  thumb, targets with small datasets and/or high vari-
ant bioactivity percentages are the most susceptible to the presence of  variants. These 
should be thoroughly examined before modeling and, if  needed, additional measures 
should be implemented to tackle the drawbacks in the dataset67. 
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Beyond bioactivity modeling with a focus on the WT protein, the dataset and results 
presented here can be exploited in variant bioactivity prediction with some precautions. 
First, variant data is still too sparse for large-scale modeling of  new variants, as repre-
sented by the low performance of  PCM models with LOVO validation. However, small-
scale campaigns following data balancing strategies showed promising results and should 
be considered in light of  each particular project’s scope68. Second, in this work only 
amino acid substitutions were considered, however, other aberrations such as deletions, 
insertions, amplifications, or copy number variations are known to be clinically relevant 
and affect both protein function and pharmacology48,69. A protocol should therefore be 
devised to also map these variations in bioactivity databases accurately. Third, the bio-
logical context of  the variants studied – activating vs. resistance substitutions, as an ex-
ample – is correlated with the effect in bioactivity, and should be considered in database 
annotation and extrapolated to modeling. Fourth, new clinical variants are constantly 
identified and have limited data in bioactivity databases compared to established vari-
ants70. This does not mean that these variants are less important, and thus more appro-
priate channels for variant tracking should be consulted simultaneously to assess clinical 
relevance. Finally, the data and results presented here should not be restricted to bioac-
tivity modeling for virtual screening, and thus the exploration of  other modeling tasks 
considering protein variants is highly encouraged including (and not restricted to) se-
lectivity modeling71, drug design by fragment merging72, or pharmacophore modeling62.

Conclusions

The genetic variability landscape of  ChEMBL, the most widely used public bioactivity 
database in computational drug discovery, was comprehensively analyzed for the first 
time. Key advantages resulting from years of  expert knowledge gathering in ChEMBL’s 
variant annotation pipeline were identified through parallel annotation. Additionally, 
mis-annotations requiring future correction were found. Recommendations for pipeline 
enhancement were provided, alongside a proposal for simplified annotation of  target 
variants for bioactivity modeling, which are made available in a modeling dataset. The 
amount and distribution of  variant data across protein organisms, families, individu-
al proteins, and variants were extensively described. Furthermore, a Python package 
and notebooks were developed to assess variant effects on bioactivity distributions and 
modeling performance. The potential of  these analysis tools to extract variants and 
promising chemical candidates was demonstrated, particularly for data-rich proteins. 
Particularly, informed decisions for noise reduction in bioactivity models and modeling 
variant bioactivity can be facilitated using our approach. 

Materials and Methods 

Bioactivity data sources 

Bioactivity data was collected from ChEMBL (version 31) and the Papyrus dataset (ver-
sion 5.5). The Papyrus dataset contains highly curated data from ChEMBL version 31, 
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ExCAPE-DB, and other individual datasets. Protein targets in the Papyrus dataset are 
identified either by accession (i.e. UniProt accession code) or target_id. The latter is con-
structed from the accession and the amino acid substitutions present in the variant ana-
lyzed, with accession_WT for wild-type (WT) proteins. In its current version, the Papyrus 
dataset does not reflect variants described in ChEMBL. 

ChEMBL data was collected using the ChEMBL Python client (Supplementary Figure 
4.14a, full query available on the associated GitHub repository, see Appendix B). The 
data queried included activities (i.e. pchembl_value and activity_comment), assay descriptions, 
molecular structures (i.e. SMILES – canonical_smiles), protein identifiers and sequences, 
and ChEMBL-annotated variants (i.e. mutation in the variant_sequences table). 

After assay-based amino acid substitution annotation (see Amino acid substitution annota-
tion section and Figure 4.1), ChEMBL assay-target pairs were given Papyrus-like identi-
fiers based on the validated substitutions. Target variants were henceforward identified 
by target_id. Subsequently, individual ChEMBL activity points were mapped to annotated 
variant targets (target_id) based on their assay_id and accession. Duplicated activity data 
(target_id-compound chembl_id pairs) from several assays were joined into one single point 
by dropping low-quality data and calculating the mean pchembl value or most common 
activity label (Supplementary Figure 4.14b). The data_validity field was used to drop 
low-quality data (author confirmed error), as done in the Papyrus dataset.34 The activity_
comment field was also used to define active and inactive binary labels when pchembl_value 
was not available. 

Before variant bioactivity analysis, the Papyrus and ChEMBL datasets were integrated. 
Firstly, only the Papyrus entries originating from the Christmann subset were consid-
ered, filtering out de facto any Papyrus data point with ChEMBL as a source, avoid-
ing duplicates. ChEMBL compounds were given Papyrus-like identifiers (connectivity). 
Then, the average pchembl_value was calculated for unique target_id-connectivity pairs. For 
data points with no pchembl_value, the most common activity label was kept. Finally, the 
VEBD for analysis was constrained to only targets with at least one variant annotated 
other than the WT. 

Amino acid substitution annotation

ChEMBL amino acid substitutions were extracted from assay descriptions for unique as-
say-target (i.e. assay_id-accession) pairs following a three-step approach (Figure 4.1). 

i)	 First, regular expressions were used to extract from the assay description amino 
acid substitution patterns. This is, either a one-letter amino acid code followed 
by an unlimited number of  digits and another one-letter code, or a three-letter 
amino acid code followed by digits and another three-letter code. Subsequently, 
three-letter codes were transformed into one-letter codes. 

ii)	 Second, exceptions were defined from assay-associated metadata and filtered 
out. These exceptions included assay cell types, target names, and target gene 
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names and synonyms. At this level, an option was included to manually define 
exceptions from a JSON file for specific assays. Here, most “M1” and “D2” 
instances were filtered out as they could easily get a false positive validation 
status in step iii. The complete JSON file used for manual exception definition 
is included in the associated GitHub repository (see Appendix B). 

iii)	 Third, the remaining substitutions were validated by mapping the first amino 
acid of  the substitution pattern to the WT sequence. If  the mapping was suc-
cessful, the substitutions were included for further analysis. 

The resulting annotated assay-target pairs from the first round of  annotation were in-
troduced in an annotation feedback loop where they were compared to the original 
ChEMBL-annotated variants (Supplementary Figure 4.1). Annotations missed by 
ChEMBL were manually checked to assess their validity and classified accordingly into 
different categories of  true and false positives. True positives included likely correct 
new annotations and likely correct rescue instances of  “UNDEFINED MUTATION” 
labels in ChEMBL. New annotations and rescues with deletions were also categorized as 
true positives given the scope of  this work. ChEMBL-only annotations were parsed and 
categorized into different categories of  true and false negatives. True negatives included 
misclassified annotations due to the mis-linking of  single protein assays to protein fami-
lies. Missed deletions were also categorized as true negatives in light of  this work’s scope. 
False negatives included instances where expert knowledge was required. These were, 
for example, variants for which the amino acid substitution extracted matched but the 
sequence position was different due to sequence number shifts. Another example was 
constituted by completely missed substitutions because they did not correspond to the 
canonical regular expression. On the verge between true and false negatives were other 
ambiguous sequence number and amino acid substitution mismatches that did not cor-
respond to the categories defined before. Without further manual curation, these could 
correspond either to potential ChEMBL miss-annotations or missed correct annotations 
requiring expert knowledge. In a second round of  annotation following the annotation 
feedback loop, the defined false positives were excluded from the annotated variants and 
reverted to WT. Similarly, false negatives were rescued by using the ChEMBL-annotated 
variants. The ambiguous cases were annotated as undefined variants given the lower 
confidence. The assay-target annotations from the second round were further linked 
to ChEMBL activity data to annotate variant targets (see section Bioactivity data sources).

Family and taxonomic distribution analysis

Protein family annotations were retrieved from ChEMBL version 31 by querying levels 
L1-L5 from the SQL table protein_family_classification for all unique UniProt accession 
codes. Proteins in the VEBD were mapped to their corresponding family levels based 
on their accession code. Non-defined levels were labeled as “Other”. On levels L1 and 
L2, small-sized families were grouped into larger families as follows. L1 tags “Auxiliary”, 
“Unclassified”, “Structural”, and “Surface” were grouped into “Other”. L2 tags “Primary 
active”, “Ligase”, “Isomerase”, and “Writer” were grouped into “Other”. Additionally, 
all G protein-coupled receptor L2 tags were grouped into a single L2 family, “GPCR”. 
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Subsequently, the total number of  bioactivity data points as well as the number of  vari-
ant bioactivity data points in the VEBD were calculated across families for each level. 
From these, the variant bioactivity percentage per family was calculated by dividing the 
amount of  variant data by the amount of  total data and multiplying the result by 100. 
Similarly, the novel variant bioactivity annotation percentage was calculated exclusively 
in ChEMBL data by dividing the number of  bioactivity data points in potentially novel 
annotated variants (i.e. not previously defined in the ChEMBL “mutation” variable) by 
the total number of  variant bioactivity data and multiplying the result by 100. 

Organism names and HGNC gene symbols were mapped on accession codes from 
the Papyrus version 05.5 protein table. Moreover, the proteins’ taxonomy was retrieved 
and mapped for all unique UniProt accession codes using the UniProt API via the 
UniProtMapper package. The two Escherichia coli strains present in the dataset were ag-
gregated under one single Escherichia coli organism. The number of  variants and bioactiv-
ity data points were subsequently calculated at different taxonomy levels.

Statistical analysis per protein and variant

The amount and distribution of  variant bioactivity data across individual proteins and 
variants were analyzed in detail. For each protein, the number of  variants and bioactivity 
data points were calculated, as well as the variant bioactivity percentage compared to the 
totality of  the protein’s data. Within proteins, variants were ordered from most to least 
populated in terms of  bioactivity data. The relative amount of  data in the most populat-
ed compared to each of  the following variants was calculated by dividing the amount of  
data in the first variant by the amount of  data in the variant of  interest.

Amino acid substitution type analysis 

Amino acid substitution types were extracted from the variants. For variants with mul-
tiple substitutions, all the substitutions were considered individually. Three substitu-
tion-type definitions were implemented:

i)	 Categorical: Six substitution-type categories were defined based on the type of  
amino acid substitution regarding side chain size and polarity. “Conservative” 
for amino acid substitutions where the size and polarity remained similar. “Size” 
when size changed but polarity remained the same. “Polar” and “Charge” when 
the size remained similar but either the polarity or the actual charge, respective-
ly, changed. And “Polar size” and “Charge size” as a combination of  the afore-
mentioned size and polarity changes. To define the changes, amino acids were 
grouped into four polarity groups and three size groups. Polarity groups includ-
ed non-polar (alanine, glycine, isoleucine, leucine, proline, valine, methionine, 
phenylalanine), polar neutral (asparagine, glutamine, serine, threonine, tyrosine, 
cysteine, tryptophan), polar acidic (glutamic acid, aspartic acid), and polar basic 
(arginine, histidine, lysine). Size groups were defined based on the relative side 
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chain size previously defined by Epstein35 and included bulky (tryptophan, tyro-
sine, arginine, phenylalanine), intermediate (histidine, glutamic acid, glutamine, 
lysine, methionine, asparagine, leucine, isoleucine, proline), and small (cysteine, 
threonine, valine, alanine, glycine). 

ii)	 Continuous and non-directional (Grantham’s distance): A value from 5 (most 
similar, leucine-isoleucine) to 215 (most dissimilar, cysteine-tryptophan) was 
assigned to each amino acid substitution mapping it to Grantham’s distance 
matrix. This distance depends on three properties: composition, polarity, and 
molecular volume; and is independent of  the directionality of  the change (e.g. 
leucine > isoleucine is the same as isoleucine > leucine).

iii)	 Continuous and directional (Epstein’s coefficient of  difference): A value from 
0 (most similar) to 1 (most different) was assigned to each amino acid substi-
tution mapping it to Epstein’s coefficient of  difference matrix. This coefficient 
depends on the polarity and size of  the replaced amino acids and takes into 
account directionality (e.g. leucine > tyrosine is 0.28 and tyrosine > leucine is 
0.22). 

The number of  variants and bioactivity data was subsequently calculated per substitu-
tion type for different subsets of  proteins. For variants with multiple substitutions, each 
substitution was considered, and therefore accounted for, separately. 

Amino acid substitution location analysis 

Amino acid substitutions in a protein were defined by their location within the protein 
with respect to its binding pocket. To this end, each protein was mapped by its UniProt 
accession code to the available PDB structures with a co-crystalized ligand, which were 
downloaded as PDB files. Next, for each structure, the structure’s first chain with the 
crystalized ligand was extracted and, for that chain, the ligand’s coordinates in the PDB 
file were retrieved. Based on these coordinates, the ligand’s center of  geometry (cen-
troid) was calculated. Similarly, the centroid of  each residue in the chain was also cal-
culated. Finally, the distance between the ligand’s centroid and each residue’s centroid 
was computed, and the average distance was calculated for each residue across all PDB 
structures available for a protein. The average distance between the substituted residues’ 
centroid and the ligand’s centroid was subsequently used as a metric to differentiate vari-
ants based on the location of  the substituted residue in the protein. Of  note, the average 
distance between centroids will by definition be larger than the shortest distance to the 
ligand, which is generally considered when using distances of  5 Å to define the binding 
pocket. This metric was constructed to be as ligand-agnostic as possible, which in turn 
leads to non-generalizable distance ranges and should therefore be considered carefully 
(as an example two ligands with different sizes and binding modes leading to different 
distances to key residues in EGFR are presented in Supplementary Figure 4.15). In 
variants with multiple substitutions, each substitution was considered separately. For the 
analysis of  HIV-1 RNaseH-RT (Q72547), only the first of  two retrieved PDB codes 
(2JLE and 3HYF) was used to annotate substitutions located in the reverse transcriptase 
domain (Supplementary Figure 4.16). 
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Common subset design

The analysis of  variant bioactivity data was done on common subsets of  small molecules 
to ensure fair and accurate comparisons between distributions (Supplementary Figure 
4.17). When possible, fully dense common subsets were computed, where all com-
pounds of  the subset had been tested on all annotated variants. More typically, non-fully 
dense common subsets - referred to as common subsets - were defined for each accession 
by first keeping molecules that meet a threshold of  being tested on a minimum number 
of  variants. For further analysis, this minimum variant threshold was set to at least two 
variants. Secondly, variant coverage was calculated as the percentage of  molecules in 
the subset that were tested on a specific variant. Subsequently, variants above a certain 
coverage threshold were kept for analysis. Ideally, variant coverage would be set to 100% 
but, due to high data sparsity, it was set to 20% for analysis.

To increase the density of  the common subset, a strategy was introduced where similar-
ity-based filters were used for calculating the minimum variant and the variant coverage 
thresholds. To obtain these similarity-expanded common subsets, we first computed 
pair-wise Tanimoto similarities for all molecules in our dataset. Then, we assigned to 
each molecule a similarity group containing all molecules with a Tanimoto similarity 
above a certain threshold (0.80). Next, we computed common subset thresholds consid-
ering not only true activity points but also activity points in the similarity groups. This 
is, for threshold calculation a non-existing activity point of  molecule X in variant A was 
counted as existing if  compound Y, similar to X, was tested in variant A.

Common subsets were also computed to enable full-panel bioactivity analysis of  pro-
teins without a true fully dense common subset. For example, for EGFR (P00533), a 
bioactivity analysis subset was derived from a common subset computed with a mini-
mum variant threshold of  three and a variant coverage of  10%. For HIV-1 RNaseH-RT 
(Q72574), from a common subset for variants with a compound coverage greater than 
3%. For IDHC (O75874), from a common subset for compounds tested on at least two 
variants and variants with a compound coverage greater than 20%. Finally, for epigen-
etic regulator BRD4 (O60885), from a common subset for variants with a compound 
coverage greater than 2%. 

The differences between the bioactivity distributions across different types of  com-
mon subsets were analyzed by calculating the Wasserstein distance between distribu-
tions of  the pchembl_value_Mean variable separately for the WT and all variants 
combined.

Molecular clustering and visualization

Small molecules in a subset of  compounds were clustered using the Butina algorithm to 
represent their structural similarity across the subset. Starting from compounds represent-
ed by canonical SMILES, molecular objects were generated using RDKit. Subsequently, 
RDKit Daylight-like topological fingerprints were generated and the Tanimoto distance 
matrix was calculated based on these. Finally, the Butina cluster algorithm was applied 
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to the similarity matrix with a varying cutoff  for each subset to minimize the number of  
single-element clusters. Clusters generated to analyze variant bioactivity distributions in 
Figure 4.7 were computed for subsets including all compounds tested on at least two 
variants and a Butina cluster cutoff  of  0.5. Clusters generated to analyze the full-pan-
el bioactivity differences of  compounds in the EGFR (P00533; Figure 4.6), BRD4 
(O60885), and IDHC (O75874) bioactivity analysis subsets were computed for said bio-
activity analysis subsets with a Butina cluster cutoff  of  0.7. For HIV-1 RNaseH-RT 
(Q72574), the cluster cutoff  was set to 0.5. 

To visualize the molecules in a subset of  compounds, 2D molecular representations 
were computed with RDKit. Molecular substructures of  interest were matched and 
highlighted in red. These included either the largest ring system in the molecule or the 
atoms corresponding to the maximum common substructure of  all the compounds in 
a given cluster.

Variant bioactivity distribution analysis

The distribution of  bioactivity values across variants per protein was analyzed for three 
different types of  subsets: i) modeling, ii) common, and iii) Butina clusters. These sub-
sets were computed to capture differences in bioactivity across variants covering, respec-
tively, i) all compounds tested on a given protein, ii) a common subset of  compounds 
tested across variants, and iii) different areas of  the chemical space tested on a given 
protein. Common subsets were computed as defined in the section Common subset design. 
In all cases, univariate pchembl value distributions were plotted using kernel density 
estimations in Seaborn for each variant present in the protein subset. 

To give an idea of  the data sparsity across variants in the different subsets, variant cover-
age was calculated and reported as defined in the section Common subset design. To summa-
rize the bioactivity distribution information, the mean and standard deviation pchembl 
value for each variant was calculated. Moreover, the difference in mean pchembl value 
with respect to the WT was calculated for each variant by subtracting the variant’s mean 
pchembl value from the WT’s mean pchembl value. 

Modeling of bioactivities

Three sets were considered for modeling with machine learning. The first set consisted 
of  the original set of  bioactivity values obtained for both WT and variant proteins. The 
second set consisted of  data points relating to the WT protein sequences only. Finally, 
the third set consisted of  the similarity-derived common subsets.

All three sets were independently modeled with a quantitative structure-activity rela-
tionship (QSAR) model for each accession without any protein sequence-derived fea-
ture and with a proteochemometrics (PCM) model for all accessions altogether with 
sequence features. Protein sequences containing other than the 20 natural amino acids 
were not considered for modeling with PCM. The collected negative logarithmically 
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scaled bioactivities values were modeled using the XGBoost (version 1.7.5) implemen-
tation of  gradient-boosted regression trees73. Molecules were represented with the 777 
physicochemical and topological Mold2 molecular descriptors74. Unaligned protein se-
quences were described with ProDEC75 by splitting them into 50 equal parts and averag-
ing the first three principal components (PCs) of  Sandberg et al.’s amino acid descriptors 
over each part and over the entire sequence for each of  the three PCs, resulting in 153 
features (50 parts x 3 PCs + 3 averages PCs)11,76,77. Models were 5-fold cross-validated us-
ing a random split with a random seed set to 1234 and using a leave-one-out strategy ap-
plied for each sequence variant (LOVO). Accessions with less than five data points were 
disregarded for QSAR modeling and data points related to only one variant were not 
considered for PCM modeling. Applicability domains were derived using MLChemAD 
(version 1.2.0) with isolation forests by fitting the training subsets and evaluating them 
on the Enamine Hit Locator Library (downloaded on 24/01/2024), emulating a typ-
ical real-world virtual screening. Finally, the performances of  cross-validated models 
were statistically evaluated between PCM-All, QSAR-WT, and QSAR-All models using 
Friedman’s test for repeated samples using Scipy (version 1.11.2). Significant differences 
(p-value<0.05) were further investigated using pairwise uncorrected post-hoc Conover-
Friedman tests (p-value<0.05) using scikit_posthocs (version 0.8.0).

https://www.zotero.org/google-docs/?0l1nXB
https://www.zotero.org/google-docs/?9hcMjg
https://www.zotero.org/google-docs/?Mb70Vb
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Supplementary Information 

Supplementary Tables 4.1, 4.2, 4.7, 4.8, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, and 4.17 
are not included in this thesis due to spatial constraints. Please, check the Supplementary 
Information available in the data repository for this chapter linked in Appendix B. 

Supplementary Table 4.1. Analysis of ChEMBL-missed substitutions. ChEMBL Assay ID - target (ac-
cession) pairs for which a novel annotation was derived from our amino acid substitution extraction and 
validation pipeline based on the assay description. This list was further manually classified into True 
Positive and False Positive labels. False Positives are additionally given a reason for their labeling to help 
explain the caveats of the extraction and validation pipeline. These reasons are further grouped into a 
“reason group” that is represented in Supplementary Figure 4.1. ChEMBL collaborators further analyzed 
these annotations and provided a comment that will be used in the future to improve the variant anno-
tation pipeline.

Supplementary Table 4.2. Analysis of ChEMBL-only annotations. ChEMBL Assay ID - target (acces-
sion) pairs with annotated variants in ChEMBL that did not match the annotation that was derived - or 
was missing altogether - from our amino acid substitution extraction and validation pipeline based on 
the assay description. This list was further automatically classified based on rejection flags into True 
Negative and False Negative labels. Rejection flags are mapped to sub-labels that explain the reason for 
the mismatch and that are represented in Supplementary Figure 4.1. ChEMBL collaborators further an-
alyzed these annotations and provided a comment that will be used in the future to improve the variant 
annotation pipeline.

Supplementary Table 4.3. Distribution of variant bioactivity data across protein families in targets with 
at least one annotated variant. ChEMBL family classification level L1.

L1 classification Variant activity data All data Variant bioactivity %
Enzyme 20,759 266,328 7.80
Membrane receptor 1,730 96,037 1.80
Epigenetic regulator 1,105 21,244 5.20
Other 590 11,432 5.20
Transcription factor 458 23,975 1.90
Ion channel 245 17,036 1.40
Transporter 176 19,575 0.90
Secreted protein 23 212 10.80

Total 25,086 455,839 5.50
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Supplementary Table 4.4. Comparison of novel and originally annotated variant data in ChEMBL for all 
protein families (L1 classification).

L1 classification Novel variant data All variant data
Novel annotated 

variant bioactivity %
Enzyme 3,631 20,779 17.50
Membrane receptor 218 1,758 12.40
Epigenetic regulator 70 1,174 6.00
Other 75 626 12.00
Transcription factor 42 472 8.90
Ion channel 6 250 2.40
Transporter 3 177 1.70
Secreted protein - 23 0.00

Total 4,045 25,259 16.00

Supplementary Table 4.5. Distribution of variant bioactivity data across protein kinase subfamilies in 
targets with at least one annotated variant. ChEMBL family classification level L4, with L2=Kinase.

L4 classification Variant data All data Variant bioactivity %
TK protein kinase group 5,925 76,095 7.80
CMGC protein kinase group 24 18,749 0.10
TKL protein kinase group 4,644 13,284 35.00
AGC protein kinase group 1,385 10,570 13.10
Other protein kinase group 146 9,161 1.60
Atypical protein kinase group 80 4,888 1.60
STE protein kinase group 28 1,073 2.60
CAMK protein kinase group 3 186 1.60
CK1 protein kinase group 8 42 19.00

Total 12,243 134,048 9.10
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Supplementary Table 4.6. Comparison of novel and originally annotated data in ChEMBL for subfami-
lies of the Kinase enzymes family (L4 classification for L2 = Kinase).

L4 classification Novel variant data
All variant 

data
Novel annotated 

variant bioactivity %
TK protein kinase group 280 5,473 5.10
TKL protein kinase group 825 4,695 17.60
AGC protein kinase group 1,302 1,452 89.70
Other protein kinase group 4 116 3.40
Atypical protein kinase group - 80 0.00
STE protein kinase group - 28 0.00
CMGC protein kinase group 4 24 16.70
CK1 protein kinase group - 8 0.00
CAMK protein kinase group - 3 0.00

Total 2,415 11,879 20.30

Supplementary Table 4.7. Annotated data statistics per UniProt accession code. Proteins are sorted in 
descending order of bioactivity data points in the dataset. L1-L5 ChEMBL classification reported.

Supplementary Table 4.8. Statistics of variant-annotated targets with respect to the number of vari-
ants and amino acid substitutions per variant. Proteins are sorted from largest to smallest number of 
variants. This value includes WT. The number of single amino acid substitutions per variant equals “-1” 
for variants with undefined substitutions and “0” for the WT.

Supplementary Table 4.9. Distribution of organisms, variants, and variant bioactivity data across 
taxonomic domains in targets with at least one annotated variant. In grey, are the statistics for the 
most highly represented organism in each domain. *Three proteins were not annotated taxonomically. 
**Percentage of total bioactivity data was calculated with respect to the total number of bioactivity data 
points, including the three proteins without taxonomic annotation (455,839).

Domain Organisms Proteins
Variants  

(incl. WT)
Bioactivity 

data
% of  total  

bioactivity data **
Virus 14 28 217 21,972 4.82
  Human immunodeficiency 

virus 1 5 119 15,512 3.40
Archaea 1 1 2 2 0.00
Bacteria 16 28 115 3,203 0.70
  Escherichia coli 8 24 1,345 0.30
Eukaryota 14 275 1,410 429,998 94.33
  Homo sapiens 235 1,225 412,797 90.56
Total 45 332* 1,744 455,175* 99.85
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Supplementary Table 4.10. Distribution of data across the top three most populated variants for pro-
teins with over 10% variant bioactivity percentage and over 1,000 data.

Supplementary Table 4.11. Comparison between the bioactivity distributions of the variant-enhanced 
bioactivity dataset (VEBD) set and common subset (at least two variants, variant coverage 20% and sim-
ilarity 80%) of each protein with a common subset, in decreasing size of the common subset. Dataset 
size represents the number of bioactivity data points in the dataset. The variant data percentage was 
calculated by dividing non-WT bioactivity data by the total dataset size multiplied by 100. Dataset spar-
sity was calculated as the dataset size divided by the potential full matrix size, calculated as the number 
of unique variants multiplied by the number of unique compounds. Wasserstein distance equal to or 
greater than 1.5 is highlighted in red to represent changes in the distribution. A variant data percentage 
equal to or greater than 50% is highlighted in green to represent a higher data balance. Dataset sparsity 
equal to or smaller than 0.5 is highlighted in green to represent lower data sparsity.

Supplementary Table 4.12. The performance of PCM and QSAR models depends on the number of 
data points and the variant bioactivity percentage. Performance is reported as the average Pearson 
correlation coefficient for protein and, between brackets, as the average of the standard deviation of 
Pearson r per protein between cross-validation folds. The best average Pearson r is reported in bold for 
each row. Pearson r of PCM and/or QSAR-WT models significantly differing from QSAR-All models are 
starred. Pearson r of PCM or QSAR-WT models significantly differing from all other models (i.e. QSAR-
WT and QSAR-All, and QSAR-All and PCM-All respectively) are underlined.

Supplementary Table 4.13. Performance of PCM and QSAR models obtained through Leave-One-
Variant-Out (LOVO) cross-validation on the entire training set, proteins with specific numbers of data 
points, focused protein families, and data-rich proteins (more than 1,000 data points with at least 10% 
measured on variants). Performance is reported as the average Pearson correlation coefficient for each 
group or protein and, between brackets, as the average per group or protein of the standard deviation of 
Pearson r between cross-validation folds for each protein.

Supplementary Table 4.14. Molecular applicability domains of models evaluated through the Enamine 
Hit Locator Library as the fraction of the library’s molecules close to molecules of the training set, using 
an isolation forest algorithm.

Supplementary Table 4.15. Performance of PCM and QSAR models obtained through cross-valida-
tion on the entire similarity-based common subset, on focused protein families, and data-rich proteins 
(more than 1,000 data points with at least 10% variant bioactivity percentage). Performance is reported 
as the average Pearson correlation coefficient for each group or protein and, between brackets, as the 
average per group or protein of the standard deviation of Pearson r between cross-validation folds for 
each protein.

Supplementary Table 4.16. Performance of PCM and QSAR models obtained through LOVO cross-val-
idation on the entire similarity-based common subset, on focused protein families, and data-rich pro-
teins (more than 1,000 data points with at least 10% variant bioactivity percentage). Performance is re-
ported as the average Pearson correlation coefficient for each group or protein and, between brackets, 
as the average per group or protein of the standard deviation of Pearson r between cross-validation 
folds for each protein.

Supplementary Table 4.17. Statistical analysis of the difference in performance between PCM models 
and QSAR models both considering all data points as WT or only WT.
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Supplementary Figure 4.1. Annotation feedback loop for unique ChEMBL assay-target pairs. Amino 
acid substitutions annotated and validated following step 2 of the pipeline shown in Figure 4.1 were 
compared to the original ChEMBL-annotated variants. ChEMBL-missed substitutions were manually 
checked to assess their validity, and classified accordingly into different categories of true and false 
positives. ChEMBL-only annotations were parsed and categorized into different categories of true and 
false negatives based on the nature of the mismatch. A third group of ambiguous ChEMBL-only variants 
was also flagged. The flags derived from the annotation feedback loop were used to rescue false nega-
tives from the ChEMBL-only annotations and to revert false positive ChEMBL-missed annotations. This 
resulted in the final annotations used to construct the VEBD.
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Supplementary Figure 4.2. Number of annotated proteins according to one variable: a) amount of 
bioactivity data (log scaled), b) variant bioactivity percentage, c) number of annotated variants, includ-
ing wild-type (WT); or according to two variables: d) amount of bioactivity data and variant bioactivity 
percentage, e) amount of bioactivity data and number of annotated variants, f) number of annotated 
variants and variant bioactivity percentage.
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Supplementary Figure 4.3. Bioactivity data density across variants for data-rich proteins with a vari-
ant bioactivity percentage equal to or higher than 10%. a) Correlation between the number of annotated 
variants and the relative amount of data in the most populated variant compared to the second most 
populated variant. Bubble size represents either the variant bioactivity percentage or the total amount 
of bioactivity data for the protein. The two bottom panels are subsets of the two top panels, where only 
proteins with more than 1,000 bioactivity data are plotted. b) Number of bioactivity data per variant in 
order of decreasing amount of data for the 13 proteins with a variant bioactivity percentage equal to or 
higher than 10 and an amount of bioactivity data bigger than 1,000. The bottom panel is a zoom into the 
first panel. The dashed grey line represents 500 bioactivity data points, for reference.
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e f g h

Supplementary Figure 4.4. Bioactivity distribution across variants on VEBD and fully dense com-
mon subsets. Displayed are a selection of four proteins with the biggest fully dense common subsets, 
i.e. BRAF - P15056 (a,e), BCR - P11274 (b,f), JAK2 - O60674 (c,g), and STING - Q86WV6 (d,h). The 
“MUTANT” variant label in (b,f) corresponds to undefined variants in the ambiguous ChEMBL-only group 
defined in the annotation feedback loop. The top row (a-d) is the distribution of the VEBD of compounds 
tested on the protein. The bottom row (e-h) is the distribution in the fully dense common subset of 
compounds tested on all annotated variants. Dashed vertical lines represent the average of the pchembl 
value variant distribution. This average and its corresponding standard deviation are also collected in the 
legend for each variant between brackets, followed by the size of the subset on which it was calculated 
and the percentage that this subset represents among the totality of the compounds tested on the 
protein. 
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Supplementary Figure 4.5. Full-panel bioactivity analysis of the effect of EGFR (P00533) variants. The 
bioactivity analysis subset was computed from a common subset for compounds tested on at least 
three variants and variants with a compound coverage greater than 10%. Bioactivity is represented in 
the heatmap as the pchembl value of different compounds, on the x-axis, tested on several variants, on 
the y-axis. Compounds are annotated by their connectivity and preferred name, which is linked to their 
approval status. Compounds and variants were clustered by their overall bioactivity profile. Compounds 
are further represented by their corresponding Butina clusters upon clustering of the subset with a cut-
off of 0.7. Variants are further represented by the distance from the substituted residue to the centroid 
of the ligand in the structure of the protein and by the Epstein coefficient of difference calculated for 
the amino acid substitution. In variants with multiple substitutions reported, the average distance and 
Epstein coefficient of difference are reported.
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Supplementary Figure 4.6. EGFR (P00533) bioactivity analysis subset used to compute the bioactiv-
ity cluster map. Compounds identified by connectivity with their biggest ring systems are highlighted in 
red. Color coding represents the Butina cluster each compound was assigned to, using a cutoff of 0.7.
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Supplementary Figure 4.7. Full-panel bioactivity analysis of the effect of HIV-1 RNaseH-RT (Q72574) 
variants. The bioactivity analysis subset was computed from a common subset for variants with a com-
pound coverage greater than 3%. Bioactivity is represented in the heatmap as the pchembl value of 
different compounds, on the x-axis, tested on several variants, on the y-axis. Compounds are annotated 
by their connectivity and preferred name for approved drugs. Compounds are also divided between 
nucleoside (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI), which are orthosteric 
and allosteric inhibitors, respectively. Compounds and variants were clustered by their overall bioactiv-
ity profile. Compounds are further represented by their corresponding Butina clusters upon clustering 
of the subset with a cutoff of 0.5. Variants are further represented by the distance from the substituted 
residue to the centroid of the ligand in the structure of the protein and by the Epstein coefficient of 
difference calculated for the amino acid substitution. The distance to known NRTI and NNRTI resistance 
variants was calculated for co-crystalized ligands in the corresponding binding site. The structures of 
the four compounds in cluster 1 are displayed to exemplify the utility of this analysis to follow resistance 
variant selectivity in compounds with the same scaffold. In variants with multiple substitutions report-
ed, the average distance and Epstein coefficient of difference are reported.
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Olutasidenib

Supplementary Figure 4.8. Full-panel bioactivity analysis of the effect of oxidoreductase IDHC 
(O75874) variants. The bioactivity analysis subset was computed from a common subset for com-
pounds tested on at least two variants and variants with a compound coverage greater than 20%. 
Bioactivity is represented in the heatmap as the pchembl value of different compounds, on the x-axis, 
tested on several variants, on the y-axis. Compounds are annotated by their connectivity. Compounds 
and variants were clustered by their overall bioactivity profile. Compounds are further represented by 
their corresponding Butina clusters upon clustering of the subset with a cutoff of 0.7. Variants are fur-
ther represented by the distance from the substituted residue to the centroid of the ligand in the struc-
ture of the protein and by the Epstein coefficient of difference calculated for the amino acid substitu-
tion. The structures of three compounds from different clusters with similar bioactivity profiles across 
variants are highlighted to exemplify the applicability of this analysis to explore different scaffolds with 
similar selectivity profiles. Olutasidenib (cluster 1) is a clinical candidate IDHC inhibitor for patients with 
IDHC susceptible variants (R132X).
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Supplementary Figure 4.9. Full-panel bioactivity analysis of the effect of epigenetic regulator BRD4 
(O60885) variants. The bioactivity analysis subset was computed from a common subset for variants 
with a compound coverage greater than 2%. Bioactivity is represented in the heatmap as the pchembl 
value of different compounds, on the x-axis, tested on several variants, on the y-axis. Compounds are 
annotated by their connectivity. Compounds and variants were clustered by their overall bioactivity pro-
file. Compounds are further represented by their corresponding Butina clusters upon clustering of the 
subset with a cutoff of 0.7. Variants are further represented by the distance from the substituted residue 
to the center of geometry (centroid) of the ligand in the structure of the protein and by the Epstein co-
efficient of difference calculated for the amino acid substitution. The variants displayed have no clinical 
significance in ClinVar and were likely tested in the context of alanine scanning strategies to elucidate 
the binding site of BRD4. Y97 is part of the bromodomain (BD) 1 domain, while Y390 is part of the BD2 
domain. This analysis enables the identification of compounds with differential binding modes.
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Supplementary Figure 4.10. HIV-1 RNaseH-RT (Q72574) bioactivity variability across variants com-
pared to WT for compounds in the 10 most populated Butina Clusters upon clustering compounds test-
ed on at least two variants with a clustering threshold of 0.5. Differences between the mean pchem-
bl_value in WT, displayed in the first row as calculated for the compounds in each cluster, and the mean 
pchembl_value in each of the variants for the compounds in the same clusters. The left bubbles represent 
the result of subtracting the variant mean from the WT mean. The bubble size represents the absolute 
value of this difference (error). Opaque left bubbles represent a positive error (i.e. the mean calculated 
for the variant is higher than for WT), and translucent left bubbles represent a negative error (i.e. the 
mean calculated for the variant is lower than for WT). Right bubble sizes represent the variant coverage, 
in other words, the percentage of compounds in each cluster that was tested on a specific variant. All 
variants in this analysis are NNRTI resistance variants and the top 10 clusters also contain NNRTIs, some 
including approved drugs. This analysis facilitates the monitoring of NNRTI resistance variants across 
NNRTI scaffolds, represented by the different Butina clusters.
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Approved 
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O75874

Supplementary Figure 4.11. Oxidoreductase IDHC (O75874) bioactivity variability across variants 
compared to WT for compounds in the 10 most populated Butina Clusters upon clustering compounds 
tested on at least two variants with a clustering threshold of 0.5. Differences between the mean pchem-
bl_value in WT, displayed in the first row as calculated for the compounds in each cluster, and the mean 
pchembl_value in each of the variants for the compounds in the same clusters. The left bubbles represent 
the result of subtracting the variant mean from the WT mean. The bubble size represents the absolute 
value of this difference (error). Opaque left bubbles represent a positive error (i.e. the mean calculated 
for the variant is higher than for WT), and - if available - translucent left bubbles represent a negative 
error (i.e. the mean calculated for the variant is lower than for WT). Right bubble sizes represent the 
variant coverage, in other words, the percentage of compounds in each cluster that was tested on a 
specific variant. Ivosidenib (cluster 4) is an approved IDHC inhibitor for patients with IDHC susceptible 
variants (R132X).
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Compounds
17 clusters
314 (total)75 48 44 41 37 24 19 14 2 2

Approved 
drugs - - - - -- - - - -

O60885

Supplementary Figure 4.12. Epigenetic regulator BRD4 (O60885) bioactivity variability across vari-
ants compared to WT for compounds in the 10 most populated Butina Clusters upon clustering com-
pounds tested on at least two variants with a clustering threshold of 0.5. Differences between the mean 
pchembl_value in WT, displayed in the first row as calculated for the compounds in each cluster, and the 
mean pchembl_value in each of the variants for the compounds in the same clusters. The left bubbles 
represent the result of subtracting the variant mean from the WT mean. The bubble size represents the 
absolute value of this difference (error). Opaque left bubbles represent a positive error (i.e. the mean 
calculated for the variant is higher than for WT), and translucent left bubbles represent a negative error 
(i.e. the mean calculated for the variant is lower than for WT). Right bubble sizes represent the variant 
coverage, in other words, the percentage of compounds in each cluster that was tested on a specific 
variant. The variants displayed have no clinical significance in ClinVar and were likely tested in the context 
of alanine scanning strategies to elucidate the binding site of BRD4. Y97 and N40 are part of the BD1 
domain, while Y390 and N433 are part of the BD2 domain. This analysis enables the identification of 
clusters of compounds with differential binding modes.
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Supplementary Figure 4.13. Comparison of the Pearson correlation coefficients between PCM mod-
els built on the complete VEBD and QSAR models built either considering all bioactivity data points as 
having been obtained on WT proteins (a, b) or QSAR models built from bioactivity data points experi-
mentally obtained on WT proteins only (c, d). Highlighted is the importance of the number of data points 
(a and c) and data balance of data points measured on variants and WTs (b and d) on the measured 
performance.

a b

c d
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Supplementary Figure 4.14. ChEMBL query and activity variant annotation strategy. a) Bioactivity 
data is queried from ChEMBL via a SQL query that links six tables via primary and foreign keys. b) Upon 
variant annotation and validation, assay-target pairs are linked to bioactivity data for all available com-
pounds as noted in Figure 4.1 step (5). Bioactivity data with negative activity comments is filtered out. 
Binary activity comments are then defined at threshold pchembl_value 6.5. Continuous data is however 
prioritized over binary labels. Unique bioactivity data is defined for each unique annotated variant-com-
pound pair by computing the average pchembl_vaue or the most common binary label in the absence of 
continuous data.
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3W2Q : EGFR kinase domain T790M/L858R mutant with HKI-272

5ZWJ : Crystal structure of EGFR 675-1022 T790M/C797S/V948R in complex with EAI045

A750

L858

R858

M790

N816

17.6 Å
6.1 Å

7.5 Å

7.8 Å

Supplementary Figure 4.15. Structural differences between two PDB structures of EGFR crystallized 
with ligands with distinct sizes and binding modes lead to different calculated distances to residues of 
interest. In green, PDB 3W2Q. The distance from the ligand’s centroid to the centroid of M790 is 7.5 Å 
and to the centroid of R858 17.6 Å. In blue, PDB 5ZWJ. The distance from the ligand’s centroid to the 
centroid of M790 is 7.8 Å and to the centroid of L858 6.1 Å. 
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2JLE : Novel indazole NNRTIs created using molecular template hybridization based on crystallographic overlays

3HYF : Crystal structure of HIV-1 RNase H p15 with engineered E. coli loop and active site inhibitor

L100

K103

Y188

Y181

NNRTI

RNaseHi

N100

Reverse transcriptase (RT) domain

RNase H domain

NRTI binding site

Supplementary Figure 4.16. Structural differences of the two PDB structures with co-crystalized 
ligands linked to UniProt code Q72547 (HIV-1 RNaseH-RT). PDB 2JLE (green) contains both the re-
verse transcriptase (RT) domain – with a non-nucleoside RT inhibitor (NNRTI) bound – and the RNase H  
domain. PDB 3HYF contains only the RNase H domain – with an RNase H inhibitor (RNaseHi) bound.
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Supplementary Figure 4.17. Common subset design strategy. When possible, fully dense common 
subsets were computed from the VEBD by keeping the compounds tested on all variants for the ac-
cession of interest (X in the data matrix represents that there is bioactivity data for a particular mole-
cule-variant pair). Otherwise, non-fully dense common subsets (simply referred to as common subsets) 
were computed in two steps. Firstly, by keeping compounds tested on at least a threshold number of 
variants (by default two). Secondly, by keeping variants that cover at least a certain percentage (by de-
fault 20%) of the pre-selected compounds for the common subset. Similarity-expanded common sub-
sets were computed similarly to common subsets but starting from a similarity-annotated VEBD, where 
each molecule was linked to other molecules in the dataset with Tanimoto similarity above a certain 
threshold (by default 80%). Steps 1 and 2 to generate the similarity-expanded common subset were 
the same as for the normal common subset but considering to calculate the statistics similar molecules 
tested on a different variant. For example, molecule B has only been tested on variant 3. However, B is 
similar to molecule A, which has been tested in all variants. Therefore, for steps 1 and 2 B is considered to 
have been tested in all variants, as represented by the green X in the data matrix. 
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