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Introduction 

In recent years, the scientific community has seen an increased usage of  computational 
approaches to accelerate the discovery of  relevant targets and prioritize small mole-
cules in all disease areas.  These include data-driven artificial intelligence (AI) / machine 
learning (ML)1,2, as well as structure-based (SB) methods, such as docking and molec-
ular dynamics (MD)3. Moreover, the advances in computing power and experimental 
structure elucidation have made it possible to integrate these two types of  methods for 
example to use ML-based scoring functions to rank the accuracy of  docking results4 or 
use structure-derived data (e.g. interaction fingerprints or MD trajectories) as input for 
bioactivity prediction models5,6. These advances have emerged as a joint effort of  the 
computational drug discovery community and are generally applicable to the subfield 
of  oncological drug discovery, which shares most of  the challenges and characteris-
tics of  drug discovery in broader terms. However, it also entails its own unique traits, as 
represented by the complexity and diversity of  neoplastic diseases summarized in the 
hallmarks of  cancer (Box 2.1)7,8. Understanding this diversity is an additional key aspect 
for the development of  personalized anticancer treatments, which are increasingly being 
deployed in the clinical practice9,10. Combined, the (computational) drug discovery field 
is gradually moving towards cancer-specific applications and/or demonstrating applica-
bility in cancer-related targets.

Here, we review the efforts made to integrate AI/ML and SB methods in computational 
drug discovery that are specifically being applied or can potentially impact the field of  
cancer research (Table 2.1). The articles reviewed cover different parts of  the oncology 
drug discovery pipeline, where we focus on six computational use case scenarios and 
four integration methods (Figure 2.1). In the following sections, we approach each 
of  these use scenarios, namely driver prediction, computational mutagenesis, (off)-tar-
get prediction, binding site prediction, virtual screening (VS), and allosteric modulation 
analysis. ML-SB integration methods are classified to cover (A) the use of  structural data 
as input for ML models, (B) ML-based scoring functions for SB applications, (C) ML 
as a tool to analyze MD simulations, and (D) sequential or parallel pipelines where SB 
and ML methods are used independently but complementarily. The biological impact 
in cancer research is exemplified by the link of  the targets addressed in the reviewed 
publications to each of  the ten defined hallmarks of  cancer, as well as an additional elev-
enth “hallmark” of  high relevance in oncological drug discovery, namely chemotherapy 
escaping capabilities (Box 2.1). The heterogeneity of  use cases and methods (Table 
2.1) goes hand in hand with that of  molecular targets covered and illustrates the diverse 
potential of  the combined use of  AI and SB methods in oncological drug discovery.

Driver prediction 

One of  the main use case scenarios of  computational cancer research, most frequently 
ML-based, is the prediction of  gene and mutation drivers to prioritize in anticancer 
therapies. These approaches are by definition pan-target and usually pan-cancer, i.e. not 
focused on specific targets or cancer types. They often start from multi-omics data from 
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cancer patients, such as the TCGA’s somatic mutations11,12, copy number variations12, 
epigenetic12, or RNAseq13 data, and their applicability depends on the availability of  such 
data types. The work of  Bailey et al.11 provides an extensive overview of  the wide array 
of  tools available for driver prediction and, more importantly, the importance of  com-
bining different tools to maximize predictive performance. While the approach from 
Bailey et al. joined SB and ML methods in parallel, they are more frequently incorporat-
ed sequentially12,13. Knijnenburg et al.12 and Liñares-Blanco et al.13 created classification 
models (logistic regression and random forest - RF, respectively) trained on omics data 
to predict cancer-related outcomes such as homologous recombination deficiency and 
tumorigenic phenotype. In both cases, feature importance was used to prioritize genes 
for further SB analysis. In the case of  Knijnenburg et al.12, in silico mutagenesis studies 
were performed for each detected variant with a potential effect on protein stability. 

Box 2.1. Targeting the hallmarks of cancer

In their description of the hallmarks of cancer, Hanahan and Weinberg (2000)7 defined six un-
derlying traits that are common to tumorigenesis. In the light of new evidence, these were later 
complemented by two additional emerging hallmarks and two enabling characteristics8. These 
hallmarks paved the way to understanding the complexity and diversity of neoplastic diseases. 
Understanding this diversity is a key aspect of the development of personalized anticancer treat-
ments. A combination of artificial intelligence (AI) and structure-based methods can be used to 
address cancer drug discovery research in a more holistic way, tackling all the hallmarks of cancer. 
In this review, we provide an overview of the biological relevance of the drug discovery targets in 
cancer and their relevance to the hallmarks and characteristics of cancer (numbered 1 to 10 in the 
box figure). An eleventh “hallmark”, the ability of cancer cells to escape chemotherapy effects, is 
added here and is a key aspect to consider in oncology drug discovery strategies.

❶

❷

❸

❺

❹

❻

❼

❽

❾

❿ p53-ERα17, MDM221,
p53-ASPP2-CagA51

⓫
Escaping 

chemotherapy 
effects  

BRAF18, AR44,69

CathepsinS34,65

Tankyrase35-37

IRAK133,64, RET47,71

RIOK122,63, CD4428, KIF1140,68,
SETD859, MOR60,74MMP1348,72, Neurolysin58,73

Pan-target11-13,16,56, BRCA115,
Alk20, STAT325,49

AChE38,66, Pim39,67, AKT43,8,
Tubulin46,50,70, SIRT625

FABP613, DHODH23,
LXRβ42

Hyperactivation paradox18, mutant-driven resistance19, CYP1B141, P-gp45

Supporting references are cited for the target of each hallmark; references cited in italic text pro-
vide additional support on the connection of a certain target to a hallmark. Figure adapted from 
Hanahan and Weinberg8.
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Some of  the substitutions found were also analyzed with MD and appeared to alter 
protein dynamics even if  they were not predicted to alter protein stability. Conversely, 
Liñares-Blanco et al.13 used the ML-derived information to perform a drug repurpos-
ing VS approach where FDA-approved anticancer drugs were docked into the available 
crystal structures of  the computationally prioritized genes, such as FABP6. 

It is important to note that the selection of  input data, features, and outcome variables 
for cancer driver prediction is not homogeneous. In any case, key aspects such as the tu-
mor microenvironment or metastasis are often neglected. Regarding cancer patient data, 
most of  the publications use TCGA, which provides high-quality and standardized data. 
However, the TCGA data has been frozen since 2016, highlighting the need for updated 
cancer patient databases, such as the Genomic Data Commons14. Overall, the use of  
sequential pipelines – sometimes including experimental assays – could help account for 
the differential effect on tumorigenesis of  the different available types of  data.   

Computational mutagenesis 

Knowing the effect of  specific point mutations on protein function and “druggability” 
is a key aspect for the development of  personalized anticancer therapies as well as for 
decision-making in the clinic. In vitro mutagenesis studies are time- and cost-expensive, 
thus in silico computational studies are a good starting point to prioritize mutants for 
experimental analysis. 

Most of  the computational mutagenesis approaches reviewed here use structural data 
to train ML classifiers15–18. Said structural data might originate directly from a crystal 
structure15,16, combined with docking studies17, or MD18. The approaches developed by 
Masso et al.15 and Pandurangan et al.16 extract features from a geometrical representa-
tion derived from wild-type (WT) and mutant crystal structures and homology models. 
Those features are used in classification models to predict variant clinical significance 
and protein stability, respectively. Protein-protein interaction stability can also be pre-
dicted from protein-protein docking-derived features, as was done by Chitrala et al.17 for 
the p53-ERα interaction for WT and three breast cancer-related p53 polymorphisms. 
Moreover, computational mutagenesis studies are used to predict the effect of  muta-
tions in ligand binding dynamics. Babbitt et al.18 have studied the hyperactivating effect 
of  BRAF V600E-targeting inhibitors in WT cells using MD. Here, differences in rapid 
dynamics in bound and unbound functional states for each amino acid were modeled in 
stacked classification models to detect conserved dynamic functions. They showed that 
the V600E mutation greatly alters dynamics, leading to lower predictive performance.

The performance of  the classification models used for mutagenesis prediction varies 
highly depending on the amount of  experimental mutagenesis data available for train-
ing and validation15–18. Hence, some authors have evaluated the performance of  SB 
methods alone compared to ML models for these tasks19,20. For example, Aldeghi et 
al.19 benchmarked the performance of  free energy perturbation (FEP), ML, and Monte 
Carlo methods to predict the change in affinity of  inhibitors in Abl kinase variants. The 
classifier trained on a pan-target dataset was not able to generalize on the test set, but 
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when trained on a reduced Abl-specific dataset the performance was comparable to 
those of  FEP and Monte Carlo methods. However, computational time was drastically 
reduced when using ML. Similarly, Patil et al.20 created an MD protocol to determine the 
activation status of  any kinase variant. This is critical information to prioritize kinase 
inhibitors that target the active or the inactive conformation hence preventing unwanted 
side effects. For that purpose, Alk kinase was selected as a case study. Here, long-term 
dynamics between the active and the inactive conformations were explored with metady-
namics. Using results from RMSD changes and hydrogen bond occupation, a score was 
given for the WT and the mutant, and a final score was compared to a defined threshold. 
This approach outperformed a kinome-wide ML model and other common impact pre-
diction tools, such as SIFT and Polyphen. 

The here reviewed approaches in computational mutagenesis are able to capture dif-
ferences in protein stability and conformation16,20, protein-protein interactions17, ligand 
binding affinity and dynamics18,19, and clinical significance15. Their applicability, however, 
is often limited to a particular target or mutant of  interest for which there is enough 
data. In order to increase the impact of  methods developed for members of  fami-
lies with highly conserved binding pockets and activation mechanisms, such as kinases 
(Babbitt et al.18, Aldeghi et al.19, Patil et al.20) or G protein-coupled receptors, the training 
sets could be enriched with data from other members of  the family. The efforts made 
in computational mutagenesis, therefore, could in general benefit from more extensive 
experimentally validated mutagenesis datasets, which should be deposited in publicly 
available databases following FAIR principles to favor the creation of  relevant training 
and validation datasets.   

(Off)-target prediction 

Defining the (off)-target space of  drugs in development is important to achieve a se-
lective profile, but also to rationally design polypharmacological candidates, i.e. with a 
multi-target profile. Moreover, re-analyzing the target space of  approved drugs is key to 
better understanding their mode of  action, or to start re-purposing efforts. These end-
points are of  high relevance in oncological drug discovery, where off-target effects are 
often responsible for grave adverse reactions. Integrated ML-SB methods have proven 
useful in these tasks. 

The search of  the target space usually starts from known information, such as li-
gand-protein21,22 or protein-protein interactions23. Pande et al.21 set up an SB-ML inte-
grated pipeline to identify the most likely target of  natural compound resveratrol, for 
which the mode of  action is still unknown. This study was possible due to the (recent) 
resolution of  nine proteins in complex with the ligand. A set of  forty anti-breast cancer 
resveratrol derivatives from the literature was used for docking, and a 3D quantitative 
activity-structure relationship (QSAR) CoMFA/CoMSIA PLS model was created for 
target-derived results from docking. Based on the performance of  the models, MDM2 
and QR2 were suggested as potential targets for resveratrol derivatives. 

As suggested before, computational methods can also be used to rationally propose 
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polypharmacological approaches for novel drugs23 or repurposing22. The implementa-
tion by Lim et al.22 used the original crystal structure of  an approved drug as a template 
for a ligand binding space search in the genome. Subsequently, docking was performed 
and used, together with bioactivity data, as input for an ML algorithm to predict ge-
nome-wide ligand-protein interactions in a fully integrated fashion. RIOK1 was predict-
ed, among other kinases, to be the off-target of  PDE3 inhibitors such as levosimendan 
and proposed for drug repurposing in anticancer therapies. Conversely, Zhi et al.23 used 
a sequential SBML pipeline to identify novel targets related to dihydroorotate dehy-
drogenase (DHODH) and to screen drug candidates for multiple targets in small-cell 
lung cancer. Firstly, protein-protein interaction information was leveraged for network 
pharmacology analysis. This allowed the selection of  related proteins in which drugs 
may have a combined effect, such as UMPS, which like DHODH is involved in py-
rimidine biosynthesis. Docking in both DHODH and UMPS showed eight potential 
multi-target compounds. These were prioritized based on predicted binding affinity to-
wards DHODH using three multi-GNN (Graph Neural Network) regression models. 
The top three candidates were subjected to MD validation, where it was confirmed that 
they showed stable interactions with both targets.

Integrated approaches used to predict (off)-targets can have a direct impact on lead 
prioritization in oncological drug discovery. The application of  the methodologies, how-
ever, mostly depends on the available data. Approaches such as those of  Pande et al.21 
and Lim et al.22 are relevant when true binding modes have been identified. In the case 
of  Zhi et al.23, rich interactome databases are needed as well as bioactivity data for the 
identified targets of  interest.

Binding site prediction

Once the relevant targets have been defined, the binding sites need to be characterized 
for drug discovery purposes. Notably in oncological drug discovery, this task can be 
made more complicated with mutated binding sites or transformed protein-protein in-
teractions. There is an extensive array of  tools available for small molecule binding site 
prediction, as recently reviewed by Krivák and Hoksza24. In their independent bench-
mark, they showed how some methods where SB and ML techniques were integrat-
ed showed equal or higher performance to other SB-exclusive methods. However, in 
their analysis, they also urged caution over the calculation of  too complex features from 
structural data for ML analysis when using relatively small training datasets. Of  partic-
ular interest in anticancer drug development is the discovery of  allosteric binding sites 
that can be targeted selectively in cancer cells to reduce off-site adverse effects triggered 
by events in the orthosteric binding sites. While most of  the binding site prediction 
methods summarized by Krivák and Hoksza24 can be used to predict allosteric binding 
sites, these share a number of  differential characteristics that have triggered the develop-
ment of  allosteric-specific binding site prediction tools25. Some of  these methods build 
on top of  general binding site predictors with e.g. an added layer of  ML classification26. 
The application of  these methods and the analysis of  the effects caused by allosteric 
modulators will be discussed in more detail in the section Allosteric modulation analysis. 
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While the information and software needed for binding site prediction are extensive-
ly available for small molecules, the prediction of  binding regions in protein-protein 
binding modeling is still challenging27. Protein-protein interactions have been shown 
to be crucial in certain aspects of  cancer pathogenicity8. In that area, integrated SB-
ML approaches have proven beneficial28,29. Kawaguchi et al.28 used a Bayesian active 
learning-based protein-protein docking approach to predict the conformation of  the 
dimerization interface of  CD44 and the residues involved. Similarly, the approach de-
veloped by Taherzadeh et al.29 uses ML to predict protein-peptide binding residues from 
protein sequence and structural data-derived features. The predicted residues from the 
RF classifier are used as input for a density-based clustering algorithm to define the 
binding region on the protein surface. The authors showed that the performance is 
better compared to other non-ML methods on the same dataset. In general, however, 
the exploratory nature of  the applications in this use case scenario makes it challenging 
to assess the performance of  the methods reviewed. To counterbalance this problem 
and reduce the effect of  false positives, an option would be to use a consensus approach 
where several tools are employed and sites predicted by more than one of  them are 
further investigated. 

Largely, the feasibility of  the approaches reviewed here depends on the availability of  
structural data. The use of  homology models can be useful here, with some authors 
showing how their integrated ML-SB methods perform equally well in experimental 
structures as in homology models29,30. Moreover, the recent release of  AlphaFold31 to 
predict protein structures with high accuracy opens doors for the implementation of  
many of  these methods on a genome-wide scale. The distribution of  AlphaFold as 
open-source code has facilitated the development of  related tools that will improve its 
biological relevance. An example is AlphaFill32, a tool that enriches AlphaFold models 
with ligands and co-factors. Of  very high relevance in oncological drug discovery, these 
tools could enable the prediction of  binding sites in mutants that have not been exper-
imentally determined. 

Virtual screening 

The most common scenario in computational drug discovery is virtual screening (VS). 
Similarly to the case of  computational mutagenesis, VS can be seen as a tool to prioritize 
compounds for experimental analysis. While VS has been extensively explored using SB 
and ML methods independently, their combination – both in a fully integrated or in a 
sequential way – allows for the use of  as much data available as possible and, expectedly, 
more accurate results. Certainly, this use case scenario is not unique for oncological drug 
discovery, but the advances made in computational drug discovery in this area can very 
well power successful anticancer drug discovery stories. 

A classic way to integrate SB and ML learning methods in VS is the use of  ML-based 
scoring functions in docking33–38. These can be directly integrated into the docking 
software or, more commonly, used a posteriori for re-scoring. Moreover, ML scoring 
functions are often target-specific33–35 but not necessarily so38. One of  the simplest ap-
proaches is to include docking scores as features for an ML classifier33. Slightly more 
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complex, the approach developed by Yang et al.34 starts from a similarity-based dock-
ing method to reduce the challenges presented by the large conformational space of  
Cathepsin S inhibitors. Subsequently, a fragmentation method is applied to the predicted 
poses. Furthermore, Berishvili et al. demonstrated the added value of  including not only 
docking-derived features for the ML scoring function35 but also MD-derived features36. 
However, in retrospective, they showed that ML-based target-specific scoring functions 
were not accurate in identifying active tankyrase compounds. More complex methods, 
such as FEP, were needed in order to properly correlate the predicted binding affinity to 
the pIC50 values determined experimentally. Similar to other ML applications, the devel-
opment of  accurate ML scoring functions highly depends on the quality of  the datasets 
available for training and validation. Adeshina et al.38 focused on the development of  
a high-quality dataset (D-COID, publicly available) to train ML re-scoring functions. 
Importantly, they included challenging decoy complexes from the DUD-E dataset and 
tried to keep the dataset balanced. Also, they refrained from using docked poses in the 
training set. 

Similar approaches might not necessarily be coined ML scoring functions, even though 
they also use ligand-protein interaction data as input for ML models39,40. Kalali and 
Asadollahi-Baboli39 used an approach where docking was performed as a first step to 
discern relevant interactions and derive ML descriptors. Using a slightly different ap-
proach, Li et al.40 constructed a pharmacological space accounting for ligand, protein, 
and ligand-protein interaction descriptors. The latter were generated from a combined 
average fingerprint per protein from known binders. 

In general, however, the most typical approach in VS is still the use of  SB and ML 
methods in a sequential or parallel way41–50. These often include the development of  a 
ligand-based QSAR classification41–47 or regression48,49 model from experimental bioac-
tivity data to prioritize compounds from a chemical database based on their predicted 
binding affinity. The wide array of  models and databases reviewed here is collected 
in Table 2.1. Subsequently, the selected hits are filtered based on different criteria de-
pending on the scope of  the project (e.g. reverse pharmacophore mapping43, ΔG cal-
culation with MM-GBSA44), and finally, an SB method such as docking41,42,44–46,49,50 and/
or MD41–43,46,48–51 is deployed to rationalize the results of  the ML model and propose 
compounds for in vitro validation. Sometimes, the SB phase is a filter on its own, with a 
docking-based VS41,46, and occasionally it is used before the ML phase44,49. Moreover, the 
ML model is not always built to predict binding affinity, but sometimes also anticancer 
activity50, or mode of  action45. When focused on multiple on- and off-targets, sequential 
pipelines can also be used to prioritize polypharmacological compounds, as done for 
kinase inhibitors by Burggraaff  et al.47 Even though these VS strategies are more com-
mon in the screening of  small molecules, there are also some examples from peptide VS 
campaigns, such as that of  Junaid et al.51.

One of  the main limitations found in VS approaches lies in the definition of  relevant 
training and validation sets for ML. Even though databases such as ChEMBL and 
PubChem contain a very large amount of  bioactivity data, target-specific applications 
still end up usually having too small datasets where generalization is difficult to achieve. 
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Reference Target / Ligand dataset
Hallmark 
of  cancer *

AI method(s) SB method(s)
Integration 
approach **

Driver prediction

Bailey et al. 11 Pan-target / TCGA-MC3 set ❼ 11 Various Various Ⓓ

Knijnenburg et al. 12 Pan-target / TCGA-MC3 set ❼ 12 Logistic regression classifier FoldX, MD Ⓓ

Liñares-Blanco et al. 13 Pan-target (FABP6) / TCGA ❼❾ 13
RF and generalized linear 
classifiers

Docking Ⓓ

Computational mutagenesis

Masso et al. 15 BRCA1 / ClinVar ❼ 15 RF classifier Structure-derived features Ⓐ

Pandurangan and 
Blundell 16

Pan-target / ProTherm 
benchmark ❼ 16 ML ensemble classifier Structure-derived features Ⓐ

Chitrala et al. 17 P53-ERα / NA ❶ 17 One-layer NN Protein-protein docking Ⓐ

Babbitt et al. 18 BRAF / FDA ❿⓫ 8,18 Seven stacked classifiers MD Ⓒ

Aldeghi et al. 19 Abl / Platinum database, in-
house set ⓫ 19

Extremely randomized regres-
sion trees

FEP Ⓓ

Patil et al. 20 Kinome (Alk) / UniProt, 
literature ❼ SVM, RF, NeuralNet, LR MD (metadynamics) Ⓓ

(Off)-target prediction

Pande et al. 21 Pan-target (MDM2) / 
Literature ❶ 21

CoMFA/CoMSIA PLS re-
gressor, DT, RF, KNN, MLP, 
SVM classifiers

Docking, MD Ⓐ

Table 2.1. Overview of reviewed literature categorized by use case scenario. 
* See Box 2.1. Hallmarks of cancer to which the targets are related, as defined by Hanahan and Weinberg (Cell, 2011). Supporting references to the connection of 
the targets to each hallmark. 
** See Figure 2.1. Integration approach of AI and SB methods: A) Structural data as input for ML, B) ML-based scoring function, C) ML analysis of MD, and D) 
Sequential or parallel pipelines. 
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Lim et al. 22

Pan-target (RIOK1, PDE3) / 
ChEMBL, DrugBank, litera-
ture datasets, TCGA-CCLE

❺ 63 ElasticNet, SVR regressors
Ligand binding space search 
in genome, docking Ⓐ

Zhi et al. 23 DHODH / STRING, KEGG, 
ChEMBL, ZINC ❾ 23 Multi-GNN Docking, MD Ⓓ

Binding site prediction

Kawaguchi et al. 28 CD44 / NA (pre-trained) ❺ 28 Bayesian active learning Protein-protein docking Ⓑ

Taherzadeh et al 29 Pan-target / BioLip
❶ (pro-
tein-protein 
binding) 

RF classifier, DBSCAN Structure-derived features Ⓐ

Virtual screening

Che et al. 33 IRAK1 / ChEMBL, DUD-E ❹ 64 SVM classifier Docking Ⓑ

Yang et al. 34 Cathepsin S / PDBbind, 
CSAR, GC3/4, ChEMBL ❷ 65 XGBoost regressor Similarity-based docking Ⓑ

Berishvili et al. 35–37 Pan-target, Tankyrase / ZINC ❸ 37 DNN Docking, MD, FEP Ⓑ

Adeshina et al. 38 Pan-target (AChE) / 
ChEMBL, DUD-E ❽ 66 XGBoost classifier Docking Ⓑ

Kalaki and Asadollahi-
Baboli 39 Pim / In-house dataset ❽ 67 PCA, PLS classifier Docking Ⓐ

Li et al. 40 KIF11 / KEGG BRITE, 
DrugBank, STITCH ❺ 68

Bayesian Additive Regression 
Trees 

Bow-pharmacological space 
(protein-ligand interactions) Ⓐ

Raju et al. 41

CYP1B1 / ChEMBL, 
PubChem, literature, DUD-E,  
Maybridge, ChemBridge, 
Natural compound library

⓫ 41 SVM, RF, ANN classifiers Docking, MD Ⓓ

Table 2.1 (continues)
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Chen et al. 42 LXRβ / ChEMBL, Binding 
DB, in-house library, GSMTL ❾  42 SVM, Naïve Bayes classifiers Docking, MD Ⓓ

Halder and Cordeiro 43 AKT / ChEMBL, Asinex 
library ❽ 8

LDA, XGBoost and other 
classifiers 

MD Ⓓ

Azhagiya Singam et al. 44 AR / Tox21, CompTox ❿ 69 SVM classifiers Docking Ⓓ

Kadioglu and Efferth 45 P-gp / ChEMBL ⓫ 45 RF classifier Docking Ⓓ

Guo et al. 46 Tubulin / ChEMBL ❽ 70 Naïve Bayes classifiers Docking, MD Ⓓ

Burggraaff  et al. 47 RET / ChEMBL, ZINC ❹ 71 RF classifiers
(Induced-fit) docking, 
metadynamics Ⓓ

Chen et al. 48 MMP13 / Traditional Chinese 
medicine database ❻ 72 

RF, gradient boosting, 
AdaBoost, deep learning 

MD Ⓓ

Chen et al. 49 STAT3 / Literature set, ZINC ❼ 49 Nine regressors, 3D QSAR Docking, MD Ⓓ

Guo et al. 50 Tubulin / ChemDiv ❽ 70
Discovery studio prediction 
models

Docking, MD Ⓓ

Junaid et al. 51 p53-ASPP2-CagA / Rationally 
designed ❶ 51 ML module in MOE MD Ⓓ

Allosteric modulation analysis

Lu et al. 25 SIRT6, STAT3 / PDB, 
commercial ❽, ❼ 25 SVM

Geometric binding site 
predictor Ⓐ

Song et al.56 Pan-target / PDB ❼ 56 RF, neural networks Structure-derived features Ⓐ

Uyar et al.  58 Neurolysin / PDB ❻ 73 ElasticNet, PCA, LDA MD Ⓒ

Chen et al. 59 SETD8 / cBioPortal ❺ 59
Markov state model, tICA, 
clustering 

MD Ⓒ

Hu et al. 60 MOR / Rationally designed ❺ 74 Markov state model, tICA MD Ⓒ

Table 2.1 (continues)
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This is an even more relevant bottleneck when considering cancer-related mutants, for 
which VS campaigns would be extremely beneficial to prioritize personalized medicine 
drugs. Moreover, target-specific applications present an important challenge to avoid 
learned biases and overfitting52. The inclusion of  decoys in the sets (e.g. from the DUD-E 
dataset) is a good way to balance the presence of  active and inactive compounds53. 
In that sense, the D-COID dataset38 is a good starting point for the development of  
re-scoring functions, but it might require experimental expansion via collaborative work 
for target-specific applications.

Allosteric modulation analysis 

Previously, we have mostly referred to orthosteric ligand binding when describing ligand 
binding, i.e. the site where the endogenous ligand or substrate binds. However, allosteric 
modulation has been described as a powerful tool to increase the selectivity of  targeted 
compounds and overcome drug-resistant mutations, and it is therefore worth exploring 
in cancer research. Indeed, unraveling the mechanisms underlying allosteric effects can 
be a key step in proposing new therapeutic routes. Moreover, allosteric binding sites and 
modulators have been shown to exhibit differential characteristics to orthosteric coun-
terparts54, which calls for the development of  allosteric-specific tools for most of  the 
use case scenarios described in the sections above, as anticipated in the section Binding 
site prediction. 

The work from Lu et al.25 comprises a very complete review of  the currently available SB 
methods for allosteric modulator discovery. Some of  these methods integrate SB and 
ML techniques for allosteric binding site prediction26, allosteric interaction scoring55, 
and allosteric effect analysis of  mutations56. The authors demonstrated the applicability 
of  these tools in oncological drug discovery with the prioritization of  allosteric activa-
tors and inhibitors for anticancer (potential) targets SIRT6 and STAT3, respectively25. 
In both cases, allosteric binding pockets were predicted and subjected to VS of  com-
mercial libraries. These computational efforts were confirmed either by experimental 
assays or crystallographic studies. Of  direct application in oncological drug discovery is 
AlloDriver56, a driver prediction tool that maps mutations from clinical cancer samples 
to their 3D structures, labels them as orthosteric or (potentially) allosteric, and classifies 
targets as driver or passenger using a combination of  random forest and multi-layer 
neural networks. Even though periodically updated, this tool relies on the availability of  
annotated allosteric sites (and driver mutations), which is a common bottleneck in ML-
based allostery prediction methods.  

Specific to allosteric modulation analyses is the exploration of  the allosteric pathways 
that drive the effects observed. These aspects are often better explored in a dynamic 
setting, given the complex conformational landscape of  proteins that often is responsi-
ble for allosteric pathways25,57. Hence, the efforts reviewed below use ML techniques to 
analyze MD trajectories and find patterns that help explain the observed effects58–60. For 
example, the work of  Uyar et al.58 made possible the identification of  differential dynam-
ic patterns in apo and allosteric inhibitor-bound neurolysin structures, as well as the key 
residues involved. Moreover, the analysis of  MD trajectories with Markov state models 
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using time-structure-based independent component analysis (tICA) allowed Chen et al.59 
and Hu et al.60 to identify conformational microstates. These were then related to muta-
tion-driven allosteric effects in catalytic activity of  SEDT8, and energetic differences in 
Na+ translocation and metastable states in active and inactive MOR, respectively, which 
were further validated experimentally. 

Even though the concept of  allostery has been known for 50 years, it has only recently 
gained more attention in drug discovery with an exponential increase in known allosteric 
modulators in the last two decades25. Of  the 19 currently FDA-approved allosteric mod-
ulators, three are indicated as anticancer drugs61. The use of  computational tools, and 
more specifically ML-based methods, still suffers from the lack of  experimentally de-
termined allosteric interactions and mechanisms.  In the near future, we expect this area 
of  research to play a more important role in oncological drug discovery in combination 
with experimental validation as it holds promise to bring more selective anticancer drugs 
to the market.

4) Binding site 
prediction

Molecular dynamics

3) Off-target prediction

Structure-based methods

Bioactivity
prediction

Structure-based methods applied to mutant(s)

Cancer patient data

Bioactivity data

1) Driver
prediction

2) Computational 
mutagenesis 

5) Virtual screening

6) Allosteric modulation 
analysis

Integration methods

Ⓐ Structural data as input for ML

Ⓑ ML-based scoring function
Ⓒ
Ⓓ

ML analysis of MD

Sequential/parallel pipelines

Ⓒ

Ⓒ

Ⓐ
Ⓒ

Ⓓ
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ⒷⒶ

ⒶⒷⒹ

Ⓐ

Figure 2.1. Use case scenarios of integrated structure-based (SB) and machine learning (ML) methods 
in oncological drug discovery and the integration methods employed.  In this review we address six use 
case scenarios, namely 1) driver prediction, 2) computational mutagenesis, 3) (off)-target prediction, 4) 
binding site prediction, 5) virtual screening, and 6) allosteric modulation analysis. Integration approach-
es that achieve a full integration include those where (A) structural data derived from SB methods is 
used as input for ML models, with emphasis on the predicted output; (B) docking poses are analyzed 
with ML-based scoring functions; and (C) output trajectories from molecular dynamics (MD) simulations 
are analyzed with ML. However, it is still more common to combine SB and ML methods without full inte-
gration, with the implementation done in a sequential or parallel way (D) where ML acts as a pre-filter for 
the SB phase, or vice versa. 
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Conclusions 

Integrated ML-SB methods are useful to investigate different aspects of  oncological 
drug discovery. These methods apply to a variety of  use case scenarios that can be can-
cer-specific or general for computational drug discovery with potential application in 
oncological research. There is no rule of  thumb for the selection of  approaches because 
these largely depend on the scope of  the study. However, some ML-SB integration 
methods are primarily leveraged in specific use case scenarios, for example, ML-based 
scoring functions in VS or the use of  ML to analyze MD simulations in allosteric mod-
ulation analyses. VS use cases are still the most common ones, but integrated methods 
are also gaining relevance in fields such as driver prediction and computational muta-
genesis, where the use of  structural data has proven to be a significant complement to 
omics data. Despite their broad domain of  applicability, the approaches reviewed here 
still present certain limitations worth discussing. In general, data availability and compu-
tational requirements present common bottlenecks that need to be assessed on a proj-
ect-specific basis. Moreover, it has been shown that sometimes less expensive approach-
es outperform more complex ones in the same tasks. Future research will probably 
extend more into the use of  more complex algorithms currently underrepresented, such 
as DNNs, to be able to capture all relevant information from structural data. Finally, a 
common drawback in computational drug discovery that can be observed in the articles 
reviewed here is the lack of  experimental validation. These aspects trigger some open 
questions on the use of  integrated computational methods in oncological drug research, 
which we address in Box 2.2. However, the approaches presented here are considered 
a good way to prioritize targets and small molecules in the field, and their combination 
with experimental validation will likely be a key factor in bringing drugs for oncological 
personalized therapies faster to the market. During the revision of  our manuscript, a 
proposal for a further conceptual extension of  the hallmarks of  cancer was published62. 
This exemplifies the fast pace at which oncological research advances and the need to 
constantly revisit the biological relevance of  the methods applied in oncological drug 
discovery. 
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Box 2.2. Open questions on present and future directions

The articles reviewed here exemplify the added value of integrated AI-SB methods in oncological 
drug discovery. However, some questions worth exploring in the future arise from their interpreta-
tion, which we outline below.

• Structural data availability is a common bottleneck. How beneficial is its inclusion in pan-target 
analyses when it results in a reduced target space? Will approaches like AlphaFold31 be able to 
solve this issue?

• Currently, the analysis of trajectories from MD with ML is rather restricted to cases with small 
datasets (i.e. allosteric modulation analyses). However, we expect that with increasing amounts of 
data and computing power this approach will become more relevant in big-scale virtual screening.

• Is it pertinent to continue expanding the research into integrated approaches without conducting 
exhaustive benchmarking against classical individual methods?

• Are there enough resources devoted to enlarging and standardize publicly available datasets for 
computational oncological drug discovery? Will these expand into aspects often neglected, such 
as tumor microenvironment?

• We hypothesize the rise of allosteric modulation analyses to bring more selective drugs to the 
market. Will we also see a boom in publicly available allosteric structural and experimental data for 
machine learning applications?

• Is the potential added value of more complex approaches worth the likely resulting increase in 
computing power/time and data storage needs? Will this aspect limit the use of deep learning ap-
proaches in the near future?

• A common drawback in computational drug discovery is the lack of experimental validation. We 
strongly advise an increase of collaborative work leading both to validated tools and larger data-
sets available for ML training.
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