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Personalized oncology. Promises and challenges

Cancer research has advanced immensely in the last decades, which has materialized in 
novel diagnosis and treatment opportunities1,2. In turn, this has translated into a decrease 
in cancer mortality rate despite a sustained increase in cancer incidence worldwide3,4. 
Unfortunately, the burden of  a cancer diagnosis extends beyond morbidity. Several 
studies have shown the high psychosocial impact of  cancer on patients, caretakers, and 
medical professionals5,6. The harshness of  the treatments received, which lead to very 
serious acute and chronic side effects, constitutes a big factor weighting in6. Personalized 
therapies that exploit the heterogeneity of  the disease have emerged as a solution, not 
only to improve efficacy to eradicate the tumor, but also to optimize treatment regimes, 
reduce side effects, and decrease the risk of  relapse7–9.
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Figure 1.1. FDA-approved small molecule anticancer targeted agents from 2001 to 2023. The 104 ap-
proved drugs are distributed per target family according to the ChEMBL L1/L2 classification. 

Personalized oncology comprises several therapeutical strategies that can be used when 
the patient meets certain specific profiling criteria7. This is in contrast to the “one size 
fits all” traditional model where general chemotherapy, radiation, or surgery treatment 
plans are drafted upon diagnosis of  a tissue-specific tumor in a certain development 
stage8. In the personalized model, different biomarkers are used to stratify subpopula-
tions that can benefit from specific therapies or combinations of  therapies. While the 
location of  the primary tumor and its metastases is still considered in the stratification, 
other biomarkers obtained via multiple “omics” analyses tend to define the therapeutic 
plan. These include DNA alterations such as point mutations and amplifications/dele-
tions (genomics), but also divergences from the norm in gene and protein expression 
(transcriptomics, proteomics) or metabolite concentration (metabolomics)7,8.
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General introduction 

Most commonly, and throughout this thesis, I refer to targeted therapy when talking 
about personalized oncology, although other modalities exist such as immunotherapy, 
CAR-T cell therapies, or cancer vaccines8. Targeted therapies exploit cancer-specific 
traits to attack preferentially tumor tissue while avoiding healthy cells thus reducing side 
effects10–12. This effect can be triggered by biological agents, such as monoclonal anti-
bodies, or by small molecules, which will be the focus of  this thesis11. Since the approval 
in 2001 of  the first anticancer-targeted small molecule, imatinib, 104 small molecules 
have been approved for anticancer treatment10. However, while the eligibility of  patients 
for targeted therapies is increasing, it was still estimated to be less than 15% in 202013. 

Although substantial effort is sustained to develop new targeted therapies, the currently 
approved small molecules target a very limited range of  proteins, of  which the vast ma-
jority are kinases (Figure 1.1)10,14–16. The associated costs to develop a new targeted drug 
are very elevated, and their success rate in clinical trials can be limited17. Several factors 
contribute to these failures, including the high incidence of  therapy resistance and the 
use of  targeted therapies only after other approaches have failed. However, the common 
underlying cause is still the very incomplete knowledge of  cancer biology and how it is 
affected by inter-patient heterogeneity7,12,18. 

Smart prioritization of targets and small molecules via 
computational approaches 

Computational drug discovery has emerged as a time- and cost-efficient way to priori-
tize targets and small molecules to pursue in therapeutics19. These methods have been 
integrated with molecular biology and medicinal chemistry in the early stages of  the 
drug discovery pipeline to highlight the most promising candidates. In particular, in 
oncological research, these approaches can be highly beneficial in addressing the diver-
sity of  neoplastic diseases20. In fact, many authors agree that the future of  personalized 
oncology goes hand in hand with advances in the computationally driven exploration of  
the vast amounts of  data generated9,12,21. 

The computational analysis of  multi-omics data has proven invaluable in helping pin-
point the differences between patient subpopulations and highlight potential anticancer 
targets22–25. Building on top of  this preselection, there are three main levels where com-
putational tools can be used to accelerate the early drug discovery pipeline in personal-
ized oncology (Figure 1.2). Firstly, computational methods can further prioritize targets 
and alterations with predicted functional relevance26,27. Secondly, further down the line 
towards drug discovery, the druggability of  particular genetic alterations can be assessed 
by analyzing the structural differences that are triggered in the target of  interest upon 
mutation28. Finally, candidate drugs can be screened in silico to prioritize the most prom-
ising lead compounds targeting a specific target or genetic alteration with high potency 
and selectivity29. Importantly, this multi-level prioritization can be linked to additional se-
lection criteria to improve the success of  candidate therapies by, for example, increasing 
the threshold to develop therapy resistance. This can be achieved by prioritizing targets 
in central pathways that can be targeted on key structural motifs with highly flexible 
molecules30. 
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Figure 1.2. Three levels of computationally driven prioritization to accelerate personalized small mole-
cule hit identification. 

The methods used in computational drug discovery can broadly be divided into da-
ta-driven and structure-based (SB) approaches. The former class includes artificial intel-
ligence (AI) and machine learning (ML), together with other statistical analyses. When 
applied to multi-omics data, data-driven tools allow us to predict cancer drivers, as well 
as to identify biomarkers responsible for phenotypical differences in patient subpopula-
tions31. Applied to medicinal chemistry data, data-driven tools – then commonly termed 
ligand-based approaches – can be used to predict the characteristics of  small molecules 
with high affinity and/or selectivity towards a target of  interest. Such knowledge enables 
virtual screening or de novo generation of  candidate drugs32,33. 

SB drug discovery, on the other hand, englobes applications dependent on the 3D struc-
ture of  the target of  interest and the underlying forces driving interactions between 
biological systems and small molecules. From the structure of  a protein – experimentally 
determined by X-ray crystallography or Cryo-electron microscopy, modeled, or predict-
ed with AI models such as AlphaFold34, methods such as docking can be used to predict 
the binding mode of  candidate drugs in a target of  interest. Moreover, one can perform 
molecular dynamics (MD) simulations to explore the protein’s dynamic profile. More 
computationally expensive methods, such as free energy perturbation (FEP), even sup-
port the calculation of  binding affinities from protein-ligand complexes33. 

Standalone computational methods have been able to provide very relevant information 
leading to target and hit identification. However, one of  the most promising outlooks 
following the increase in data availability and computational power is the integration of  
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data-driven and structural-based approaches. Particularly in oncological drug discovery, 
this combination can be key to tackling the complexity of  the disease and provide the 
necessary insights to prioritize the right targets and candidate small molecules. Current 
methods on this front, as well as challenges and future opportunities, are explored in 
more detail in Chapter 2.

Membrane proteins as targets in personalized oncology

One of  the most exciting applications of  the use of  computational tools in the oncolog-
ical drug discovery pipeline is the possibility of  expanding beyond the current clinically 
validated anticancer targets21. This opens opportunities to target novel pathways and 
increase patient eligibility for personalized treatments. More importantly, it facilitates the 
exploration of  protein families that are particularly challenging to study experimentally, 
such as membrane proteins35. 

The location of  membrane proteins at the cellular membrane makes them key players 
in the initiation of  signaling cascades. In tumor cells, the aberrant initiation and prop-
agation of  signals to the cytoplasm and nucleus are directly linked to alterations in key 
hallmarks of  cancer such as sustained cellular proliferation, evading growth suppressors, 
and resisting cell death36–38. Moreover, thanks to their privileged location on the cellu-
lar surface, they constitute excellent biomarker and drug target candidates39. The role 
of  certain protein membrane families in cancer, particularly receptor tyrosine kinases 
(RTKs) has been extensively highlighted40. In fact, almost 50% of  the FDA-approved 
targeted anticancer small molecules target RTKs such as EGFR, ALK, or FLT3 (Figure 
1.1). This is with good reason since these membrane receptors initiate the MAPK, JAK/
STAT, and P13K/AKT/mTOR kinase cascades, which are at the center of  the cancer 
development pathways, and are highly dysregulated in cancer patients40. 

Aside from RTKs, other membrane protein families are largely underexplored in 
the context of  cancer, which I reviewed in Chapter 3. Only three non-RTK mem-
brane proteins are the targets of  anticancer drugs, namely class F G protein-coupled 
receptor Smoothened (SMO), ion channel B-cell lymphoma 2 (BCL-2), and enzyme 
γ-secretase10,14–16. This disparity is also exemplified by the imbalance in the literature 
linking cancer to RTKs compared to the two largest membrane protein families, G 
protein-coupled receptors (GPCRs) and solute carriers (SLCs) (Figure 1.3). For ref-
erence, human receptor kinases comprise 58 genes while GPCRs and SLCs comprise 
around 800 and over 400 genes, respectively41–43. However, new proteins are constantly 
annotated and these numbers could be higher as predicted based on functional and 
evolutionary conservation44. GPCRs are the major signal-transducing receptors of  the 
cell and the targets of  approximately 35% of  all approved drugs45,46. The involvement 
of  GPCRs in cancer has been increasingly highlighted, with patients showing hyperac-
tivation or abnormal expression of  certain receptors in the tumor tissue and the tumor 
microenvironment alike47. Subsequently, GPCRs are gaining interest as anticancer tar-
gets, with some inhibitors in clinical trials particularly as immunotherapy48. However, the 
underlying mechanisms of  their role in cancer development need to be studied in fur-
ther detail to lead to successful therapeutic strategies47,48. SLCs, on the other hand, have 
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been historically neglected as therapeutical targets and only recently have attracted more 
attention from the scientific community49. Among other substrates, SLCs transport me-
tabolites, neurotransmitters, amino acids and ions, and their expression is dysregulated 
in several cancer types50. 

Figure 1.3. Number of publications retrieved from PubMed with the combination of keywords “cancer” 
and three membrane protein families: RTKs, GPCRs, and SLCs. Data was retrieved in November 2023, 
therefore the number of publications related to years 2020-2023 shows a drop corresponding to publi-
cation embargoes and delayed publication dates.  

While the use of  computational analysis of  membrane proteins in the context of  cancer 
is very promising it is, however, not exempt from challenges. The experimental difficul-
ties linked to the study of  membrane proteins result in reduced data availability, which is 
highly detrimental in the application of  data-driven methods such as ML. Similarly, 3D 
structures of  membrane proteins are more difficult to obtain and their conditions are 
more difficult to simulate, which hinders SB approaches. In Chapter 3 I explore in detail 
the challenges associated with the computational analysis of  membrane proteins and, 
in particular, GPCRs and SLCs as novel anticancer targets and the strategies available 
to circumvent these. Moreover, I highlight the computationally driven opportunities to 
improve therapeutical strategies in already established anticancer targets, namely RTKs. 
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Aim and outline of this thesis 

This thesis aims to combine data-driven and SB computational approaches to prioritize 
membrane proteins as novel or improved personalized anticancer targets.

In Chapter 2, a selection of  applications is reviewed where the integration of  AI and SB 
methods is used to shed light on six case scenarios relevant to the oncological drug dis-
covery pipeline. These include driver prediction, computational mutagenesis, (off)-target 
prediction, binding site prediction, virtual screening, and allosteric modulation analysis. 

Then, in Chapter 3, the inherent challenges for the study of  membrane proteins with 
computational tools as opposed to their soluble counterparts are addressed. In particu-
lar, the importance of  data availability and publication bias in the context of  anticancer 
target research is addressed. To this end, three membrane protein families with different 
levels of  representation in the literature are exemplified: RTKs, GPCRs, and SLCs. 

The topic of  data availability is a constant throughout the thesis, but it is explored in 
detail in Chapter 4. Here, the available data for mutant proteins is analyzed in the most 
widely used public bioactivity database in computational drug discovery, ChEMBL. 
Subsequently, the effect this data has on bioactivity modeling is explored, thus uncov-
ering the potential for mutant bioactivity prediction as well as the existing risk of  intro-
ducing noise in wild-type modeling. 

In Chapters 5-7, computational applications were developed aimed to accelerate the 
oncological drug discovery pipeline at the three levels summarized in Figure 1.2: target, 
mutant, and candidate drug prioritization. The applications in these chapters are exem-
plified in the three previously highlighted membrane protein families.

Chapter 5 focuses on the prioritization of  GPCRs as anticancer targets based on the 
pan-cancer analysis of  receptor somatic mutation data. This data-driven approach al-
lowed us to identify functionally relevant highly conserved motifs as mutational hotspots 
in GPCRs and subsequently underline receptors with high mutation frequency in these 
hotspots as potential anticancer targets with functional relevance. Additionally, to sup-
port the multi-omics analyses performed in this and the following chapters, a compre-
hensive SQL image of  the Genomic Data Commons51 data was developed to support 
computational analysis. 

In Chapter 6, an SB approach was developed to analyze the effect of  cancer patient-de-
rived point mutations in SLC glutamate transporter EAAT1. A combination of  docking 
and MD was used to analyze the impact of  six cancer-related mutations on the trans-
porter structure, function, and druggability. The results from this analysis, together with 
in vitro characterization of  the mutants, provided the necessary insights to prioritize 
somatic mutations as potential druggable alterations. 

The integration of  data-driven and SB approaches was exemplified in Chapter 7 for 
the prioritization of  candidate drugs as (mutant) GPCR inhibitors. This approach was 
based on the development of  MD-based protein descriptors for proteochemometric 
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bioactivity modeling: 3DDPDs. This combination resulted in improved predictive per-
formance of  the models while retaining high interpretability. Although the bioactivity 
predictive performance could not be tested on mutant GPCRs due to the lack of  data 
availability, the 3DDPDs showed a potential to distinguish between mutants based on 
their dynamic profile. 

Chapter 8 explores the application of  holistic approaches to suggest mutated proteins 
as anticancer targets. This was possible to do for the membrane protein family with the 
most amount of  data available, RTKs. A patient-centric knowledge graph was used to 
integrate a vast amount of  kinome data, including cancer-related omics, pathways, bioac-
tivity, and structural data. The graph enabled the analysis of  the characteristics of  RTK 
cancer mutations with the potential to be targeted selectively while suffering from the 
smallest therapy resistance. 

Finally, in Chapter 9, general conclusions from the previous chapters are drawn in light 
of  the thesis aim previously presented. The major challenges remaining are delineated, 
together with the future perspectives for successfully applying computational approach-
es to accelerate the discovery of  novel personalized anticancer treatments targeting 
membrane proteins. 
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