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Chapter 3

Reading your emotions in my 
physiology? Reliable emotion 

interpretations in absence of a 
robust physiological resonance
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Abstract

Affective states are expressed in an individual’s physical appearance, ranging from 
facial expressions and body postures, to indicators of physiological arousal (e.g. a 
blush). Confirming the claimed communicative function of these markers, humans 
are capable of distinguishing between a variety of discrete emotion displays. In an 
attempt to explain the underlying mechanism, characteristic bodily changes within 
the observer including physiological arousal and mimicry have been suggested 
to facilitate the interpretation of an expression. The current study aims to create 
a holistic picture of emotion perception by (1) using three different sources of 
emotional information (prototypical facial expressions, bodily expressions and 
subtle facial cues) and (2) measuring changes in multiple physiological signals 
(facial electromyography, skin conductance level, skin temperature and pupil size). 
While participants clearly discriminated between perceived emotional expressions, 
there was no overall 1-1 correspondence with their physiological responses. 
Some specific but robust effects were observed. Angry facial expressions were 
consistently responded to with a peak in skin conductance level. Further, sad body 
expressions were associated with a drop in skin temperature. In addition to being 
the best recognized expression, viewing happy faces elicited congruent facial 
muscle responses, which supports the potential role of embodied simulation in 
emotion recognition. Lastly, tears were not only rated as highly emotional intense 
but also evoked a peak in skin conductance in the observer.  The absence of 
distinct physiological responses to other expressions could be explained by the 
lacking functionality of affect sharing in a non-interactive experimental context. 
Consequentially, emotional alignment in body and mind might especially take 
place in real social situations, which should be considered in future research.
Based on: Folz, J., Fiacchino, D., Nikolić, M., Van Steenbergen, H., & Kret, M. E. (2022). Reading Your Emotions 
in My Physiology? Reliable Emotion Interpretations in Absence of a Robust Physiological Resonance. 
Affective Science, 3, 480–497. https://doi.org/10.1007/s42761-021-00083-5

Data availability statement:
The datasets and materials generated and/or analysed during the current study 
are available on Dataverse NL: https://doi.org/10.34894/3GLSJH

Supplementary material:

Online Resource 1 Online Resource 2 Online Resource 3 Online Resource 4
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Humans are highly responsive to others’ displays of emotions. While these can 
differ in form, content and context, they share the potential to resonate in the 
observer’s body: For example, one’s heart starts beating faster when seeing a 
person blush during a talk, one’s eyes get wet when watching a grieving person 
in the movies and even a smiling face in an ad can make the observer mirror the 
expression. From a functional perspective, physiological changes in the context 
of emotion perception have been suggested to assist the identification of the 
observed person’s affective state (Niedenthal, 2007; Prochazkova & Kret, 2017). In 
the current study, we aim to shed light on the perception of discrete emotional 
expressions from the face and body, subtle emotion cues, and their corresponding 
physiological dynamics.

Non-verbal communication of emotion with conspecifics is a shared mechanism 
among social animals to sustain life in groups (Y. Kim & Kret, 2022; Kret et al., 2020). 
Communicating emotional states can have direct survival benefits: For example, 
signalling disgust when faced with rotten food or displaying fear when a predator 
is approaching can inform conspecifics to adjust their behaviour (Curtis et al., 
2011; Marsh et al., 2005; Seidel et al., 2010). In the long run, understanding and 
responding to emotions of group members can strengthen social bonds (A. H. 
Fischer & Manstead, 2016; Keltner & Haidt, 1999; Palagi et al., 2020). While leading 
research on emotion displays in humans has focused on prototypical facial 
expressions (Ekman, 1992, 1993; Ekman et al., 1980), the repertoire of nonverbal 
emotion signals is a lot broader in real life: Not only the face but the entire body 
is critically involved in communicating affect, via posture, movements, or gestures 
(Dael et al., 2012; de Gelder, 2009; Witkower & Tracy, 2019). On top of that, changes 
in physiological arousal can be reflected on an individual’s face such as a blush 
or dilated pupils. These ‘emotional byproducts’ can provide additional cues to the 
observer (Kret, 2015; Levenson, 2003; Shariff & Tracy, 2011). To date, we are still 
limited in our knowledge about how different types of expressions are processed 
and perceived (e.g., Crivelli et al., 2016; Kret & Straffon, 2018). 

Concertedly with central nervous system processes, physiological responses, i.e. 
(de-) activations of the peripheral nervous system, accompany and might even 
inform the emotional experience elicited in observers. For example, changes in 
facial muscle activity associated with distinct affective states (S. L. Brown & Schwartz, 
1980; Ekman & Rosenberg, 2005) have frequently been described during viewing 
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of images with prototypical emotional facial expressions (Bornemann et al., 2012; 
Rymarczyk et al., 2011; Varcin et al., 2019). Further, increases in sympathetic arousal 
as indexed by changes in electrodermal activity (e.g., Banks et al., 2012; Tsunoda 
et al., 2008; Vrana & Gross, 2004) or pupil dilation (Burley et al., 2017; Jessen et 
al., 2016; Kret, Stekelenburg, et al., 2013) have been observed when participants 
were shown different prototypical facial emotion displays. In contrast to specific 
facial muscle activations, however, changes in these markers of sympathetic 
activity have been suggested to arise from perceiving highly emotionally arousing 
stimuli in general, independent of the affective content (M. M. Bradley et al., 
2008, 2017). Activation of the parasympathetic branch of the autonomic nervous 
system (ANS), resulting in an initial decrease in heart rate (reflecting a freezing 
response), has specifically been described when being exposed to expressions of 
anger (Dimberg, 1982; Noordewier et al., 2020; Roelofs et al., 2010). While these 
findings support the general idea that perceived emotional expressions resonate 
within the observer’s body, only little is known about the generalizability of 
effects over expression modalities and over physiological channels since those 
are rarely directly compared (however see Alpers et al., 2011; Kret et al., 2013). 
Using multiple physiological measures, the current study explores the specificity 
of bodily responses when perceiving prototypical facial expressions of emotion, 
bodily expressions of emotion, and subtle emotion cues.

In line with influential emotion theories that highlight bodily states as constitutive 
parts of affect, such as the James-Lange Theory of Emotion (James, 1884; Lange, 
1912) or the Somatic marker hypothesis (Damasio, 1996), researchers have tried 
to identify patterns in ANS activity for the experience of distinct emotional states 
(Friedman, 2010). Although physiological information might not be sufficient for 
a precise classification (Siegel et al., 2018), integrated signals from multiple bodily 
systems as well as predictions about one’s affective state have been proposed to 
inform subjective emotional experience (Garfinkel & Critchley, 2013; Pace-Schott 
et al., 2019). But how does this relate to cases in which our own body becomes 
a platform to reflect other individuals’ emotions on? Spontaneous mimicry of 
emotional expressions has not only been suggested to influence the emotional 
experience of the mimicker (E. Hatfield et al., 1993; Prochazkova & Kret, 2017), but 
also to facilitate recognition of the mimicked individual’s emotions (Niedenthal, 
2007; Palagi et al., 2020). The role of mimicry in emotion recognition is, to date, 
mostly investigated in facial muscle activity and evidence for a supporting role is 
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mixed (against: Blairy et al., 1999; Hess & Blairy, 2001; for: Sato et al., 2013; meta-
analysis: Holland et al., 2020). Importantly, physiological responses to another 
person’s emotional expression can go beyond facial mimicry (Prochazkova & Kret, 
2017) and access to a variety of signals and their integration might be crucial to 
facilitate emotion recognition. 

The current study investigates how perceiving emotional expressions, varying in 
display modality and content, affects the observer’s interpretation and physiology: 
we (1) measured multiple bodily signals while participants were presented with 
prototypical facial and bodily expressions of emotion as well as with subtle facial 
emotion cues and (2) asked participants to report how they interpreted the 
emotion and how intensely they perceived it. Without having a priori hypotheses 
about the interplay between the different variables, this approach allowed us 
to explore the possibility of distinct bodily responses to different emotional 
expressions and to evaluate their subjective interpretations, thus gaining insight 
in emotion processing on multiple levels.

Method

Participants
In total, 71 students from Leiden University, the Netherlands, participated in the 
experiment (42 female, Mage = 23.36, SD = 3.22, Range: 19 – 34 years-old). Inclusion 
criteria were normal or corrected-to-normal vision, no regular use of medication 
or other substances and no prior psychiatric or neuropsychological disorders. 
Informed consent was provided prior to participation and participants were 
reimbursed with either 3 course credits or 10.5€. The experimental procedures 
were in accordance with the Declaration of Helsinki and the study was reviewed 
and approved by the Psychology Ethics Committee of Leiden University (CEP18-
1029/406; November 2018). Out of the 71 subjects we tested, there were 
technical problems for three subjects with regard to facial electromyography, skin 
conductance and skin temperature recordings and, for three different subjects, 
pupil size was not measured during the experiment (both N = 68).

Julia Folz.indd   63Julia Folz.indd   63 29-11-2024   11:5729-11-2024   11:57



Chapter 3

64

Stimuli
Pictures for the three different expression modalities, namely face, body and 
subtle cues, were taken from existing stimulus databases and edited in Adobe 
Photoshop (version CC). For the prototypical facial expressions, we selected 
pictures of 8 identities from the NimStim set of Facial Expressions (Tottenham et 
al., 2009), displaying happy, angry, sad, fearful and neutral expressions respectively 
(40 stimuli in total; overall recognition rate in validation studies: M = 82.14% 
and SD = 5.42%). The bodily expressions were taken from the bodily expressive 
action stimulus test (BEAST; de Gelder & Van den Stock, 2011) and, similarly, our 
set encompassed 8 identities displaying happy, angry, sad, fearful and neutral 
postures each (40 stimuli in total; overall recognition rate in validation studies: M = 
94.93% and SD = 2.29%). The backgrounds of the facial and bodily stimuli were cut 
out and replaced with a uniform grey background (RGB: 145, 145, 145). In addition, 
grey-scale versions of all body stimuli were created in order to control for effects of 
clothing colour, and a Gaussian blur was applied to their faces to control for facial 
expressions. In addition, three subtle facial cue stimuli (blush, dilated pupils and 
tears) were created by manipulating the neutral expression of each of the eight 
identities resulting in 24 subtle cue stimuli (for an example, see Fig. 1A). For the 
stimuli with dilated pupils , the original pupil size in each picture was increased 
to be clearly visible, on average by 23%. The ‘tears’ stimuli were made by artificially 
adding a tear on the actor’s left cheek, increasing the redness of the sclera by 
making the veins more visible, and adding a reflection and watery blur to the eyes. 
Lastly, ‘blush’ stimuli were created by increasing the redness of the cheek region. In 
total, there were 104 stimuli.

Procedure
After participants provided informed consent, physiological data acquisition 
tools were applied, starting with electrodes for skin conductance level (SCL), then 
electrodes for facial electromyography (EMG) and lastly a skin temperature (SKT) 
sensor (for more details, see measurements section). In order to allow the signals 
to reach a stable baseline, a rest period of approximately 10 minutes passed 
before starting the data collection. In total, participants had to perform three tasks: 
a passive viewing task (PVT), an emotion labelling task (ELT) and an emotional 
dot-probe task, of which only the first two will be discussed in the scope of this 
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paper. During both the PVT and the ELT, eye-tracking data was recorded (see 
measurements section) and a chin rest was used to ensure a stable head position. 

The tasks were presented using Eprime 2.0 on a Dell S2240Tb 21.5 inches touch 
screen (1920x1080 resolution, 60 Hz refresh rate). The background colour of all 
screens (fixation, stimulus, blank) was set to grey (145,145,145). All participants 
first completed the PVT, thus allowing us to measure the initial response to 
the emotional expressions without a secondary task. Each trial started with the 
presentation of a fixation cross for 500ms, which was followed by a 4000ms 
presentation of one of the above described stimuli (460x510 pixels). The stimulus 
presentations were separated by a 3500ms, 4000ms or 4500ms blank screen to 
the next trial (inter-trial interval duration varied between participants). Due to 
a coding error, a fearful face instead of a face with added tears was presented 
for one of the 8 stimulus identities and had to be excluded from data analysis 
(7 instead of 8 trials for this stimulus category). Apart from that, each of the 
remaining 102 stimuli was presented once, in a randomized order. After taking a 
short break, participants continued the experiment with the ELT. Each trial started 
with a fixation cross lasting 500ms and followed by one of the expressions for 
1s. Afterwards, a question appeared next to the stimulus, asking participants to 
indicate which of the 5 expression categories, namely angry, happy, scared (in 
the following referred to as ‘fearful’), sad or neutral was displayed in the picture. 
In a second step, they had to rate how emotionally intense they perceived the 
stimulus, using a slider from neutral to very emotional (on a scale 0-100). There 
were not time constraints on the ratings and each expression was rated twice 
(208 trials; see Fig. 2b for a visualization of the tasks). The eyetracking recording 
was stopped and all electrodes were de-attached for the subsequent emotional 
dotprobe task. Upon completion of all three tasks, participant filled in the self-
report version of the Liebowitz Social Anxiety Scale (LSAS-SR; Fresco et al., 2001; 
Liebowitz, 1987), the Autism Spectrum Quotient (AQ; Baron-Cohen et al., 2001) 
and the short version of the Empathy Quotient (EQ; Baron-Cohen & Wheelwright, 
2004) in the respective order. As the questionnaire scores were not included into 
the main analyses, descriptive statistics of these measures can be found in Table 
1 in Online Resource 2. The total duration of the study was approximately 90min.
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Figure 1. (a) Visualization of the subtle cue stimuli for one stimulus identity. The respective neutral facial 
expression from the NimStim set of Facial Expressions (first; Tottenham et al., 2009) was manipulated by 
adding a blush (second), tears (third) or dilated pupils (last). (b) Trial structure of the Passive Viewing task (left) 
and the Emotion Labelling task (right).

Measurements
Pupil size. Eyetracking data was recorded using a Tobii X2-60 eyetracker (sampling 
rate 60 Hz) to which event markers were sent via the presentation software. 
Filtering of the data as well as artifact identification and rejection were undertaken 
in the PhysioData Toolbox (Sjak-Shie, 2019) according to the guidelines described 
in Kret and Sjak-Shie (2019). 

EMG. Facial muscle activity related to the observation of emotional expression 
was measured over Corrugator supercilii and Zygomaticus major regions (in the 
following referred to as “corrugator” and “zygomaticus”). In total, five 4mm reusable 
AG/AgCl surface electrodes were attached on the participant’s face: two over 
each region of interest in the left side of the face and one ground electrode on 
the centre of the forehead, just below the hairline, according to the guidelines 
by Fridlund and Cacioppo (1986). Data was recorded with the Dual Wireless EMG 
BioNomadix System (Biopac, 2000 Hz sampling rate). The initial preprocessing of 
the raw EMG data was performed in the PhysioData Toolbox (Sjak-Shie, 2019). 
Before rectification of the signal, a 28Hz high-pass FIR, a 200Hz low-pass FIR and a 
50Hz (Notch) filter were applied to the EMG data. 
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Skin conductance. The electrodes measuring changes in SCL were attached to the 
index finger and the ring finger of the participant’s non-dominant hand. Data was 
recorded with the EDA 100C Biopac Systems module from (2000 Hz sampling rate, 
Gain: 5µV, 10Hz low-pass filter) and event triggers were sent from the presentation 
software via parallel port. Within the PhysioData Toolbox (Sjak-Shie, 2019), the 
recorded data was filtered with a 2Hz low-pass filter (Chênes et al., 2013). 

Skin temperature. A fast response thermistor (TSD202A, Biopac) was placed below 
the participants’ right cheekbone to record changes in cheek temperature. Data 
was acquired with the SKT100C Biopac Systems module (2000 Hz sampling rate,: 
Gain 2°F/V, 10Hz low-pass filter). Similar to the other measures, the PhysioData 
Toolbox (Sjak-Shie, 2019) was used for further filtering (1Hz low-pass; Chênes et 
al., 2013). 

Data analysis
In order to shed light on different aspects of the processing of emotional 
expressions, we defined three different analyses aiming at the investigation of 
(1) subjective interpretation, (2) physiological signal changes and (3) the linkage 
between the two levels, see Fig. 2 for a visualization and further explanation. Since 
the study was not specifically designed to perform the third analysis, it should 
be considered as a pilot test and further information can only be found in Online 
Resource 4. Prior to the analysis of the data, we looked for irregularities in each 
dependent variable. Importantly, for the physiological measures, we integrated 
information from a repeated visual inspection with statistical and literature-
based thresholds. An overview of the outlier criteria can be found in the Online 
Resource 1. In addition, missing trials in the EMG, SKT and SCL recordings were 
replaced with missing values (subject 8: 3 trials and subject 21: 2 trials). The data 
for all physiological channels within the windows of interest was downsampled 
by exporting average values within five 100ms time bins prior to stimulus onset 
for the baseline window and 75 100ms time bins after stimulus onset for the 
response window. Lastly, a baseline correction was performed by subtracting 
the baseline from all data points of the corresponding response window for each 
trial. While the entire response window (4 seconds stimulus presentation and 3.5 
seconds blank screen) was used in the analysis of the relatively slowly changing 
SCL and SKT signals (M. E. Dawson et al., 2016; Shearn et al., 1990), EMG activity 
was only examined during stimulus presentation (Kret, Roelofs, et al., 2013; Kret, 
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Stekelenburg, et al., 2013). In order to avoid distortions by the initial light reflex 
following stimulus onset (M. M. Bradley et al., 2008), the analysis on pupil size 
changes was restricted to the last two seconds of stimulus presentation. 

Figure 2. Visualization of the three analysis approaches. In Analysis 1, the subjective interpretation (emotion 
recognition and intensity judgments) of the different emotional expressions was examined. In Analysis 2, the 
effect of perceiving different emotional expressions belonging to the same modality on the shape of five 
different physiological signals was explored. In Analysis 3, trial-wise summary measures of expression-
specific signal changes in all physiological channels were taken to fit a model on self-reported emotion 
labels and the generalizability of these observed patterns was evaluated using different data sets (test 
sample, inaccurate trials and subtle emotional cues; see Online Resource 4 for a more detailed description).

 Analysis 1 (Behavioural analysis)
In the behavioural analysis, we investigated whether the specific content of the 
emotional expressions (categories: happy, angry, sad or fearful versus neutral) 
as well as the modality with which it was displayed (face versus body) had an 
influence on recognition performance as well as on the perceived intensity in the 
ELT. Thus, in the first step, we looked at differences in the accuracy of recognizing 
specific emotional expressions from different expression modalities. Investigating 
the data on a trial level, we fitted a binomial generalized linear mixed-effects 
model on accuracy (0 or 1) with emotion category, expression modality, and 
an interaction between the two of them as predictors. In order to account for 
individual differences in overall emotion recognition abilities, we included a 
random intercept for the subject variable.3 

3   An addition of random slopes for emotion category and/or expression modality resulted in convergence 
issues. To keep the behavioral models consistent, we refrained from defining random slopes in any of the 
models.
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In order to examine whether the perceived intensity of an emotional expression 
systematically varied depending on expressed emotion and/or the expression 
modality, we fitted a linear mixed-effects model on the intensity ratings of each 
participant with regard to the facial and bodily expressions. As in the analysis 
above, emotion category, expression modality and an interaction between the 
two of them were defined as fixed effects and we added a random intercept for 
each subject. 

Finally, we examined the ratings of subtle facial cues. Given that their nature 
was largely different from the other stimuli (i.e. artificially created and exclusively 
added to neutral facial expressions), we kept the analysis for this modality separate. 
Further, we focused on their perceived intensity since there is no past evidence to 
indicate that a specific emotion is associated with these cues, hence, they cannot 
be accurately labelled (see Table 2 in Online Resource 2 for an overview of the 
provided emotion labels). Thus, we used cue type (tear, blush, dilated pupils versus 
no cue/neutral) as the sole predictor in the LMM on the intensity scores and added 
a random intercept for the subject variable. 

All three models were fitted using the lme4 package (v1.1-23; Bates et al., 2015) in 
R 3.6.3 (R Core Team, 2020). After fitting a model, post-hoc pairwise comparisons 
between factor levels and their interactions were calculated by contrasting 
estimated mariginal means with the emmeans package (v1.4.8; Lenth, 2023). 
Reporting the test results of all pairwise comparisons would exceed the scope 
of this paper which is why they are listed in the Tables 3-8 in Online Resource 2. 
Online Resource 2 also contains the description and results of analyses in which 
we explored the effect of demographic and personality variables on emotion 
recognition performance and perceived intensity of emotional expressions. 

 Analysis 2 (Physiological analysis)
In the analysis of physiological data, we were specifically interested in identifying 
expression-specific changes in the shape of each physiological signal related 
to passive viewing of emotional expressions. Thus, we aimed to describe the 
entire time course in the response window of interest which differed in duration 
depending on the signals’ temporal dynamics (see Data preprocessing). For 
modeling changes in pupil size, SKT and SCL, we extended the approach from 
studies looking at factors affecting pupil dilatation (Quesque et al., 2019; Wehebrink 
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et al., 2018) and employed higher-order polynomials in Linear Mixed Models 
(LMMs). Given the fast changes in EMG activity related to affective states (Van 
Boxtel, 2010) as well as variations in response shapes (Cacioppo et al., 1988), we 
did not expect higher-order polynomials to reliable capture signal changes in the 
two EMG channels within the 4 seconds response window. In previous research 
on perception of static emotional expressions, EMG data was mostly analyzed over 
time periods of 1.5 – 2.5 seconds (Bornemann et al., 2012; Hermans et al., 2009; 
Rymarczyk et al., 2011, 2016; Sato et al., 2008) and, even if longer time windows 
were looked at, the EMG signal was averaged over time (Kret, Stekelenburg, et 
al., 2013; Vrana & Gross, 2004). To keep the temporal resolution similar across 
measures and still allow for a fine-grained description of the EMG time courses, 
we therefore chose to identify time bins in which the stimulus content affected 
the signal rather than describing the signal as a whole, similar to the approach of 
Achaibou and colleagues (Achaibou et al., 2008). The two analysis approaches will 
be outlined in more detail below.

Pupillometry, skin conductance & skin temperature. The time courses of the pupil 
size data, SCL data and the SKT data were modeled using growth curve analysis 
(Mirman, 2014) with the nlme package (Pinheiro et al., 2022) in R statistic (R Core 
Team, 2020). Three separate analyses were done for the three emotional expression 
modalities (prototypical facial expressions, bodily expressions and subtle facial 
cues). LMMs were fitted as follows: In order to capture the shape of the signal, first- 
and second-order orthogonal polynomials were used to model changes in pupil 
size, and first-, second- and third-order polynomials were chosen for the SCL and 
SKT models based on visual inspection of the overall shape of the time courses 
per subject. Within each expression’s modality, emotion category (subtle: cue 
type) of the stimulus was included as categorical predictor (prototypical facial/
bodily: angry, happy, sad, fearful and neutral; subtle: blush, dilated pupils, tears and 
neutral). Since these predictors of interest were assumed to influence the shape 
of the signal, interactions with the polynomials were added as fixed-effects to the 
models. Given the observed individual differences in the overall shape of the time 
series, a random intercept and random slopes of the polynomials were defined on 
a subject level. In order to account for autocorrelation between subsequent data 
points, an autoregressive structure with trials nested in subject as grouping factor 
was included. The Nelder-Mead technique was chosen as optimization method. 
Given the complex model structure, we increased the maximum number of 
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iterations as well as the maximum number of iterations for the optimization step 
inside optimization (msMaxIter) up to 5000, and the number of iterations for the 
EM algorithm (niterEM) as well as the maximum number of evaluations up to 1000. 
Since the model residuals were not normally distributed, we additionally applied 
clustered bootstrapping to estimate the confidence intervals of the coefficients. 
Thus, in addition to the parametric approach of determining statistical significance 
of fixed effects with conditional F-Tests and marginal significance of fixed-effect 
coefficients conditional t-tests, their respective non-parametric confidence 
intervals were calculated. Given the large number of statistical parameters, only 
the results of the F-tests and the interpretation of the analysis will be reported in 
the text whereas the t-statistics and the nonparametric confidence intervals can 
be found in Tables 1-6 in Online Resource 3. Based on previous findings (M. M. 
Bradley et al., 2008, 2017; Kosonogov et al., 2017; Lang et al., 1993), we additionally 
explored the possibility whether overall emotional intensity, instead of specific 
emotion expression categories, could explain a large amount of variation in the 
physiological signal changes (see Online Resource 3, Tables 10-12 and Fig. 2). 
Given that our stimuli were not controlled for global and local brightness and 
contrast, pupil size changes related to emotional content might have been altered 
in our analyses. For conciseness, these results are only reported in Online Resource 
3 (Tables 7-9 and Fig. 1).

Facial EMG. Since there was no empirical evidence to expect any exact shape of the 
two EMG signals throughout our stimulus presentation window (4 seconds), our 
analysis aimed to determine the parts of the signal in which a specific emotional 
expression differed significantly from the respective neutral expression. Here, we 
extended on an approach by Achaibou and colleagues (2008) who tested for 
significant differences in EMG activity during stimulus presentation by calculating 
t-tests between activations related to angry versus happy facial expressions 
in 100ms time bins. In contrast to their analysis, however, we (1) ran multilevel 
models instead of t-tests (including random variation and using the nlme package 
(Pinheiro et al., 2020), in consistence with the other here reported analyses), (2) 
compared each emotion category (happy, angry, fearful and sad) against neutral 
as a control condition and (3) used a split-half approach (i.e. first tested for effects 
in half of the sample [training set] and then validated the significant results in the 
other half [test set]). The two sets were matched by gender but, apart from that, 
randomly generated. This third adjustment was taken to allow for hypothesis-
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free exploration in one half of the data and confirmatory tests in the other half 
(Wagenmakers et al., 2012). As for the pupil size data, the SCL data and the SKT 
data, separate analyses were performed for the different expression modalities. 
Further, data from the corrugator region and the zygomaticus region were 
analysed separately and, similarly to Achaibou et al. (2008), only two conditions 
were contrasted in one test (i.e. one emotion category against neutral). Thus, for 
each of the 40 100ms time bins and for each presented emotional expression, 
we fitted separate LMMs on the mean EMG activity (filtered + rectified, see 
preprocessing) of the corrugator and the zygomaticus with emotion category as 
fixed effect and ID as random effect on the test sample. If one emotion category 
was significantly different from neutral in a time bin (p < .05), the same model was 
tested using the data from the test sample. Only if the difference between the 
signal related to the emotional versus the neutral expression was significant in 
both the training and the test sample, the EMG signal was regarded to be affected 
by the presentation of the respective emotional expression within this time bin.

Results

Behavioural results (Analysis 1)
Descriptive statistics of the behavioural responses can be found in Table 1 in Online 
Resource 2. Contrasting expectations based on the stimulus validation studies 
(de Gelder & Van den Stock, 2011; Tottenham et al., 2009), recognition rates were 
lower for bodily expressions (M = 0.776, SD = 0.098) compared to the prototypical 
facial expressions (M = 0.885, SD = 0.081). The recognition rates of the same bodily 
expressions in the original validation study are higher but our results are in line 
with the means that were obtained in Kret, Stekelenburg et al. (2013).

Prototypical facial and bodily expressions of emotion. The model on accuracy in 
emotion recognition yielded significant main effects of emotion category, χ2(4) 
= 185.788, p < .001, and modality (body versus face), χ2(1) = 39.921, p < .001. 
Importantly, the significant interaction between emotion category and expression 
modality, χ2(4) = 203.438, p < .001, sheds more light on the interplay between 
the two variables affecting accuracy in emotion recognition (see Fig. 3a below 
and Table 3 in Online Resource 2). Overall, while emotions were better recognized 
compared to a neutral expression when expressed by the face, the opposite 
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was observed for the body. Specifically, within the bodily expressions, the 
neutral expression was significantly better recognized than all emotional bodily 
expressions, except for fear. Fearful body expressions were better recognized than 
angry and happy bodily expressions. Finally, both angry and sad bodily expressions 
were more likely to be labeled correctly than their happy counterparts. In contrast, 
when emotions were presented on the face, happy facial expressions were best 
recognized, followed by angry facial expressions, and thirdly faces expressing 
fear, which received higher accuracy rates than sad facial expressions (all p-values 
≤ 0.029). Lastly, neutral facial expressions were least well recognized. When 
comparing between modalities, there was no difference in the Odds for labeling 
sad facial and bodily expressions accurately. However, while angry, happy and 
fearful expressions were more likely to be accurately recognized when they were 
displayed on the face, neutral expressions were more easily recognized from the 
body (see Table 4 in Online Resource 2).

Both emotion category and modality were significant predictors in the model on 
perceived emotional intensity, category: F(4, 5521) = 420.987, p < 0.001; modality: 
F(1, 5521) = 3.865, p = 0.049. The significant interaction between the two predictor 
variables highlighted their interdependency, F(4, 5521) = 37.339, p < 0.001 (see 
Fig. 3b and Table 5 in Online Resource 2). Within the facial expression modality, 
intensity ratings were lower for sad expressions compared to the three other 
emotions and both happy and fearful expressions received lower intensity scores 
than angry expressions but did not significantly differ from each other. In contrast, 
happy expressions received the second lowest intensity scores for the bodily 
expressions and were rated significantly lower in intensity than angry, sad and 
fearful expressions while these three did not significantly differ from each other. 
When comparing the two expression modalities, angry, happy, neutral and fearful 
expressions were all perceived as more intense when they were displayed on the 
face whereas there was no difference for sad expressions (see Table 6 in Online 
Resource 2).
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Figure 3. (a) Predicted accuracies of labeling stimuli belonging to the four emotion categories (angry, 
happy, sad, fearful) and neutral within the body (red) and face (blue) modality and (b) their respective 
predicted intensity ratings. Predicted intensity ratings for the subtle facial expressions by cue type are 
illustrated in (c). Whiskers represent confidence intervals. Significant differences between factor levels are 
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indicated by adding a bracket (red = between categories within bodily expressions, blue = between 
categories within facial expressions, grey = within category across modalities OR between subtle cue types). 
Straight line = p < .001, dashed line = p < .01, dotted line = p < .05

Subtle facial cues. A separate model on the perceived intensity of the subtle facial 
cues revealed that the presence of a cue was a significant predictor of the intensity 
rating, F(3, 2097) = 669.31, p < 0.001. Crucially, faces with dilated pupils were rated 
equally intense as the same expressions with average pupil sizes (neutral). In 
contrast, stimuli with a blush received higher ratings than both neutral faces and 
faces with dilated pupils. Faces with tears were rated as significantly more intense 
than faces with the two other cue types and compared to neutral (see Fig. 3c and 
Tables 7 and 8 in Online Resource 2).

Physiological results (Analysis 2)
Skin conductance
Prototypical facial expressions. In the LMM, the linear polynomial was a significant 
predictor of the changes in SCL, Flinear (1,181345) = 9.457, p = 0.002. Further, 
all interactions between emotion category and the three polynomials were 
significant, Flinear*category (4,181345) = 5.596, p < 0.001; Fquadratic*category(4,181345) = 
12.274, p < 0.001; Fcubic*category (4,181345) = 15.145, p < 0.001, indicating that the shape 
of the signal differed for emotional as compared to neutral expressions. Looking at 
the t-statistics (Table 1 in Online Resource 3) as well as the predicted value graphs 
(Fig. 4a) for distinct emotion categories, the presentation of angry, happy and sad 
facial expressions were more strongly associated with an initial peak at around 
2s and a decline over time which was strongest for happy expressions. A cubic 
component in the signal was observed following fearful faces, which however 
was not as strong as the other categories and without the pronounced peak at the 
beginning. Notably, only the interaction between angry facial expressions and the 
cubic trend did not include 0 in the bootstrap confidence intervals for the model 
coefficients, indicating that exclusively this effect was robust. 

Bodily expressions. As for the model on facial expressions, the linear polynomial 
significantly predicted SCL measurements, Flinear (1,181420) = 9.981, p = 0.002. In 
addition, the linear and cubic polynomials were involved in significant interaction 
terms with emotion category ,Flinear*category (4, 181420) = 22.935, p < .001; Fcubic*category 

(4, 181420) = 5.541, p < .001, suggesting that the expression of emotion via the 
body also had an effect on the shape of SCL measurements. In this modality, 
however, only happy and, to lesser degree, fearful expressions were related with 
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an increase in SCL magnitude whereas angry expressions rather yielded a stronger 
decline compared to neutral expressions (see Fig. 4B). While, in general, SCLs also 
decreased over time for sad bodily expressions, this decrease followed a cubic 
shape compared to neutral expressions. The bootstrap analysis could not confirm 
the robustness of directionalities of effects in this model (see Table 2 in Online 
Resource 3 for all statistics).

Figure 4. Predicted time course of the baseline-corrected skin conductance level signal (SCL) related to 
passive viewing of (a) prototypical facial expressions and (b) bodily expressions by emotion category as well 
as (c) subtle facial cues by cue type. The shaded areas indicate standard errors of the predicted means. 
Coloured arrows indicate robust results in the clustered bootstrap analysis. 
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Subtle facial cues. In the last SCL model, the linear polynomial was again identified 
as significant predictor, Flinear (1,140024) = 8.855, p = .003, as were the interactions 
between all three polynomials and emotion category, Flinear*category (3, 140024) = 
16.339, p < 0.001; Fquadratic*category(3, 140024) = 45.746, p < 0.001; Fcubic*category (3, 140024) 
= 11.745, p < 0.001. Thus, the presence of facial signs of emotional involvement, 
without the context of prototypical emotion displays, also affected SCL properties: 
based on the statistics (Table 3 in Online Resource 3) and predicted time courses 
(Fig. 4c) for the three cue types versus neutral (no cue), the SCL signal decreased to a 
lesser degree for faces with an added blush and faces with dilated pupils, with even 
a slight late increase for the latter. Moreover, when observing faces with added tears, 
SCLs of participants increased steeply, with a peak around 2.5s and a fast decline. 
Importantly, the coefficient for the interaction between the quadratic trend and 
tears cue category was the only coefficient which was consistently below 0 in the 
bootstrap samples, pointing out the stability of the observed peak in SCL for tears. 

Skin temperature
Prototypical facial expressions. While only the linear polynomial and the cubic 
polynomial were significant predictors of the SKT signal in the response window, 
Flinear (1,182620) = 5.622, p = .018; Fcubic (1, 182620) = 4.909, p = 0.027, all interactions 
between the three polynomials and emotion category became significant model 
terms, Flinear*category (4, 182620) = 8.518, p < .001; Fquadratic*category(4, 182620) = 6.948, 
p < .001; Fcubic*category (4, 182620) = 4.757, p = .001. Emotional versus neutral facial 
expressions therefore also seemed to affect changes in SKT differently. Looking at 
the model statistics (Table 4 in Online Resource 3) and predicted value plots (Fig. 
5a), there was a stronger increase in SKT following happy and fearful expressions 
and a diminished late increase following angry expressions compared to neutral 
ones. In addition, after an initial increase, cheek temperature already declined after 
approximately 6s for sad and fearful expressions while this was not the case for 
the other facial expression categories. Importantly, no coefficient for any predictor 
was consistently larger or smaller than 0 in the bootstrap analysis. 

Bodily expressions. In the model describing SKT changes associated with viewing 
bodily expressions of emotions, the linear polynomial as well as the three 
interactions between each polynomial and emotion category were significant, Flinear 

(1, 182845) = 4.220, p = .040; Flinear*category (4, 182845) = 9.937, p < .001; Fquadratic*category(4, 
182845) = 20.160, p < .001; Fcubic*category (4, 182845) = 6.151, p < .001. Examining the 
effect of emotion in a body posture on the shape of the signal more closely, SKT 
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rose for all emotions compared to neutral (Fig. 5b). However, while this increase 
was roughly linear for angry expressions, both happy and fearful expressions 
were related to a more cubic-like signal shape with stronger increases at the very 
beginning and end of the response window. On top of that, SKT first decreased 
after viewing sad expressions and only started to increase after approx. 2.5s. The 
coefficient describing this initial dip was also the only coefficient for which the 
confidence interval of the bootstrap analysis did not include zero, indicating its 
stability (see Table 15 in Online Resource 3 for an overview).

Figure 5. Predicted time course of the baseline-corrected skin temperature signal (SKT) related to passive 
viewing of (a) prototypical facial expressions and (b) bodily expressions by emotion category as well as (c) 
subtle facial cues by cue type. The shaded areas indicate standard errors of the predicted means. Coloured 
arrows indicate robust results in the clustered bootstrap analysis.
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Subtle facial cues. Both linear and cubic polynomials significantly predicted 
changes in SKT in the subtle facial cue model, Flinear (1, 141599) = 7.225, p = .007; 
Fcubic (1, 141599) = 5.227, p = .022. Additionally, all interactions between the emotion 
category and the three polynomials were significant , Flinear*category (3, 141599) = 
5.543, p = 0.001; Fquadratic*category(3, 141599) = 24.200, p < .001; Fcubic*category (3, 141599) 
= 5.095, p = 0.002. Thus, adding subtle emotional cues to a neutral picture might 
already make a difference in the characteristics of SKT changes in the observer. 
Consulting the model statistics (Table 6 in Online Resource 3) and the predicted 
value graph (Fig. 5c), both faces with added tears and faces with added dilated 
pupils were associated with an initial dip. While this dip turned into an increase 
after approximately 2s for the first (reaching a similar temperature level as the faces 
without cue), it did not for the latter. Faces with a blush yielded a strong increase 
in cheek temperature which attenuated over time. The subsequent bootstrap 
analysis did not support the directionality of any of the effects.

Facial EMG 
Corrugator supercilii. The split-half tests on differences in facial muscle activity 
between emotional and neutral expressions within distinct time bins yielded 
emotion- as well as time-specific findings. When viewing happy compared 
to neutral facial expressions, activity over the corrugator supercilii region was 
significantly reduced in both our training and test sample 500ms, 600ms, 1600ms 
and 3800ms after stimulus onset (all ps < 0.05). Further, while 200ms and 600ms 
after stimulus onset, angry facial expressions yielded lower EMG activity compared 
to neutral expressions, the same observation was made for fearful facial expressions 
3600ms after stimulus onset. Lastly, we did not find a replicable effect of sad facial 
expressions on the EMG signal (see Fig. 6a below and Table 13 in Online Resource 
3). The analyses on the other expression modalities revealed that neither any of the 
emotional bodily expression nor any of the emotional facial cues had a consistent 
effect on the Corrugator signal in the training and the test sample.

Zygomaticus major. EMG activity over the zygomaticus major region was 
consistently elevated for happy versus neutral facial expressions starting 700ms 
after stimulus onset and almost throughout the entire stimulus presentation 
(700ms – 2600ms, 2800 - 2900ms, 3200 - 3900ms; all ps < .05). Moreover, seeing 
a fearful facial expressions was related to an enhanced EMG signal 1800-2200ms 
after stimulus onset in both training and test sample. Activations during the 
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presentation of both angry and sad facial expressions did not differ significantly 
from neutral expressions (see Fig. 6b and Table 14 in Online Resource 3). On top of 
that, activity over the Zygomaticus major region was not observed to be altered 
if any of the emotional bodily expressions or facial cues compared to their neutral 
counterparts were shown.

Figure 6. Time course of the filtered, baseline-corrected and z-scored facial electromyography (EMG) signal 
over (a) the corrugator supercilii region and (b) the zygomaticus major region related to passive viewing of 
prototypical facial expressions by emotion category. The coloured shaded areas around the values indicate 
standard errors of the predicted means. Signals were plotted and analyzed in time bins of 100ms each. 
Coloured vertical lines (and grey-shaded background areas between them) highlight time bins in which the 
EMG signal when viewing an emotional expression is significantly different from neutral in both samples 
(training and test), with the colour indicating the corresponding emotion category.
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Discussion

The aim of our study was to explore how expressions of emotion resonate in an 
observer’s body and mind. There are three main findings: First, the results show that, 
while participants distinguished between different emotional expressions in self-
reports, physiological changes were not strictly corresponding to distinct emotion 
categories. Even though there was no 1-1 relationship between perception and 
physiological response, some robust physiological responses could be linked to 
the perception of certain emotional expressions, i.e. a peak in SCL for angry facial 
expressions and a decrease in SKT for sad bodily expression. Second, specific facial 
muscle (de-)activations were reproducibly observed following facial but not bodily 
expressions of emotion. Third, faces with tears were not only perceived as emotionally 
intense, but also elicited a robust peak in observers’ skin conductance levels. In the 
remainder of the discussion, we will discuss these findings in more details. 

Overall, participants were well able to recognize all emotional expressions. 
However, they did show variation across expression modalities as well as emotion 
categories: Apart from displays of sadness, emotional facial expressions were 
better recognized than emotional bodily expression, with happy faces being 
most easily identified (Kret, Stekelenburg, et al., 2013; Martinez et al., 2016). One 
driving factor of this finding might be the intensity of the expression which has 
been suggested to play a crucial role in recognizing both emotions from the 
body (Aviezer et al., 2012) and the face (Hess et al., 1997). Happy facial expressions, 
together with fearful facial expressions, received the second-highest intensity 
ratings in our study which might have facilitated their recognition. While bodily 
expressions were shown to be especially informative for the recognition of high-
intensity emotions (Aviezer et al., 2012), the presented emotional body stimuli in 
our study were predominantly rated as less intense than their facial counterparts. 
Only facial and bodily expressions, which were also similarly well recognized, did 
not differ in their intensity ratings. Our study thus confirms that intensity might 
be a relevant factor in the recognition of emotional expression. Given the overall 
high accuracy rates, our results further support that humans are highly capable of 
identifying and discriminating a variety of emotional expressions (A. S. Cowen & 
Keltner, 2019; Witkower & Tracy, 2019). 
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The clear distinction between emotions in self-reports was not reflected in 
participants’ physiology. Nevertheless, a few consistent relationships between 
discrete emotion categories and physiological markers were observed. 
Specifically, in the SCL signal, a cubic trend with an early peak appeared when 
participants observed angry facial expressions. This result is in line with previous 
studies, showing that observing negative facial expressions (Banks et al., 2012), 
and anger in particular (Kreibig, 2010), tend to increase SCL (but see Vrana & Gross, 
2004 for different results). As signals of direct threat, angry faces take a special 
role in emotion perception. Compared to other emotional expressions, their 
detection and processing occurs in a privileged, speedy and automatic manner 
(Feldmann-Wüstefeld et al., 2011), a phenomenon called the “anger-superiority 
effect” (Hansen & Hansen, 1988). Perceiving threat immediately sets the body in a 
fight-or-flight mode (Cannon, 1914), which is typically characterized by autonomic 
arousal and, among others, with an increased SCL (Darrow, 1936). This may explain 
the observed increase in SCL in our study, with the early peak highlighting the fast 
processing of facial displays of anger as a potential threat. 

The current study also yielded some novel findings related to the processing of 
sad expressions. Sadness is characterized by a low-arousal physiological state  
(Huron, 2018) and a conservation-withdrawal tendency which, however, is not 
consistently reflected across physiological channels (Kreibig et al., 2007). When 
observing sad body expressions, the participants in the current study showed an 
initial drop in their cheek temperature (see Salazar-López et al., 2015 for similar 
findings on negative images with low arousal). As previous research has shown 
that watching sad body movements can induce sadness in observers (Shafir et 
al., 2013), the cheek temperature drop in our study might be the result of induced 
sadness. Compared to other facial regions, cheek temperature variations have 
however not been extensively studied in the context of emotional responses 
yet (Clay-Warner & Robinson, 2015; Ioannou et al., 2014). Further research should 
therefore substantiate this suggestion. Apart from these two observations, we did 
not find evidence for a robust linkage between the perception of basic emotion 
displays and distinct ANS responses. Our findings, thus, challenge the idea that 
their own signals from the ANS could serve observers as a reliable indication of the 
observed individual’s state. 
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One characteristic of facial emotional expressions is that they tend to be mimicked 
(e.g., Bornemann et al., 2012; Rymarczyk et al., 2011; Varcin et al., 2019), which 
is believed to help their recognition (Niedenthal, 2007; Palagi et al., 2020). Our 
examination of facial muscle responses revealed that happy facial expressions 
were not only best recognized in the current study, but also elicited the most 
prominent and prolonged changes: an increase in zygomaticus activity and a 
decrease in corrugator activity, replicating previous findings(e.g., Rymarczyk et 
al., 2011; Vrana & Gross, 2004). The question arises why smiles, compared to the 
other expressions, yielded such strong effects. In daily life, humans are constantly 
exposed to smiling faces, making it the most frequently observed expression 
(Somerville & Whalen, 2006). These smiles can have different meanings and 
may signal reward, dominance or affiliation (Martin et al., 2017). In line with 
their assumed function to create and maintain social bonds (Keltner, 1995), past 
research has shown that smiles are frequently reciprocated in social interactions 
(Hess & Bourgeois, 2010). The relevance of smiles in interpersonal bonding might 
therefore be one explanation for the pronounced mimicry of smiles in our study. In 
addition, smiles have also been found to be mimicked without the observer being 
directly addressed (e.g., see Mojzisch et al., 2006) These congruent facial responses 
have further been linked to specific neural activations in areas associated with 
embodiment and self-other distinction (Schilbach et al., 2008, see also Schilbach, 
2015a). According to the Simulation of Smiles model (SIMS; Niedenthal et al., 
2010), congruent facial responses to smiles in a non-communicative context can 
also be based on knowledge–based simulations of the other’s emotional state 
instead of ‘real’ emotional contagion. Given that only expressions from the same 
modality, i.e. the face, and with high social signaling value, i.e. a smile, elicited facial 
muscle responses in the current study, embodied simulation might be a plausible 
explanation for our EMG findings. Without necessarily evoking the experience of 
happiness, the simulation of smiles could potentially even have facilitated emotion 
recognition (however, see Holland et al., 2020).

Crying is claimed to be a uniquely human behavior and linked to a complex pattern 
in ANS responses, with sympathetic activation being most consistently found 
(Bylsma et al., 2019). Another key finding of the current study is that faces with 
tears were perceived as emotionally intense and increased sympathetic arousal in 
the participants when observing these stimuli. More specifically, the addition of 
tears to a neutral expression resulted in a steady peak in the observers’ SCL. Other 
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research has demonstrated that tears increase the perceived sadness in others 
and, thereby also the wish to help them (Küster, 2018). Perceiving tears thus seems 
to elicit approach behaviour and, induces sympathetic arousal. Despite the scarce 
research on physiological responses to the observation of crying individuals, our 
findings substantiate the suggested function of tears as an effective call for social 
support (Balsters et al., 2013; Gračanin et al., 2018) by highlighting their strong 
resonance in the observer.

The above-described results include all robust findings of our study. Apart from 
these results, various other, non-robust emotion-specific effects on the physiological 
measures require further examination. At this moment, these effects should be 
considered specific to our sample and not be generalized. Most remarkably, these 
physiological effects show a great divergence across the different expression 
modalities and emotion categories in our stimulus materials. The most prominent 
example of this is the emotion of anger which, compared to the respective neutral 
expressions, was responded to with an increase in SCL if shown in the face and a 
decrease in SCL if expressed by the body. In contrast, the exact opposite pattern 
became apparent in the SKT responses to angry faces (SKT decrease) and angry 
bodies (SKT increase). This lack of coherence between physiological channels is 
in line with our first key finding and complements evidence against an ‘all-or-
none’ activation of the sympathetic nervous system and for a more differentiated 
view of ANS targets (Ax, 1953; Kreibig, 2010). Moreover, while bodily expressions 
of emotion were described to be automatically integrated in the processing of 
facial emotional expressions and facilitate their recognition (de Gelder, 2006; Kret, 
Stekelenburg, et al., 2013; Poyo Solanas et al., 2018), isolated expressions from the 
two modalities might not automatically resonate similarly in an observer’s body.

From a functional standpoint, the limited extent of a consistent autonomic tuning 
to prototypical emotional expressions does make sense: Instead of requiring affect 
sharing for informative or affiliative purposes, our passive viewing task provided 
subjects with a stream of static and posed displays of emotion without a relevant 
social context (Fridlund, 1991; Hess & Fischer, 2013). The use of static images posed a 
limitation concerning ecological validity as compared to real dynamic expressions 
(Krumhuber et al., 2013). Further, our participants were automatically put in the 
role of a passive observer, knowing that a displayed individual was not receiving 
any information about their own expressions. Importantly, the opportunity to 
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interact with a social stimulus has been described to be highly influential in social 
attention (Laidlaw et al., 2011). Similarly, knowing that the counterpart has access 
to one’s own expressions can alter observational tendencies, enhance social 
signalling and promote prosocial choices(Cañigueral & Hamilton, 2019; Frith, 2009; 
Gobel et al., 2015). The degree of interactivity with a stimulus may thus determine 
the quality and strength of responses on multiple levels, including physiological 
signals (Schilbach et al., 2013). Based on experimental evidence looking at different 
aspects of social cognition and behaviour, Schilbach and colleagues (2013) 
called for a turn to a ‘second-person neuroscience’: Social phenomena should be 
investigated in real social settings with two (or more) actively-involved individuals, 
allowing to examine dynamics between, rather than only within, individuals. In the 
past years, this approach yielded promising insights in the behavioural and neural 
mechanisms underlying social interactions (Redcay & Schilbach, 2019). Recent 
findings successfully expanded an interactive viewpoint to the physiological level: 
Cooperation as a facet of prosocial behaviour was found to be positively associated 
with two interactants’ synchronisation in SCLs (Behrens et al., 2020). Synchrony in 
SCLs, as well as in heart rate, was further shown to be predictive of interpersonal 
attraction (Prochazkova et al., 2021). Consequently, while facial mimicry of discrete 
emotions might inform the automatic categorization of emotional expressions 
in passive observers, the ANS might only be strongly activated by social signals 
in real social settings, with the dynamics between interactants reflecting their 
(emotional) alignment.

In the future, researchers should try to keep experimental paradigms as close to 
real life situations as possible. In cases in which passive observation of stimuli is 
required, it can already be beneficial to use dynamic and naturalistic, non-posed 
expressions (Kret et al., 2020). Compared to static and posed emotional expressions, 
these types of stimuli elicit stronger facial mimicry (Rymarczyk et al., 2011; Sato et 
al., 2008). In attempts to link physiological changes with subjective experiences 
of others’ emotions, it would, additionally, be interesting to include measures of 
interoceptive abilities. As understanding one’s own body has already successfully 
been linked to understanding one’s own emotions (Critchley & Garfinkel, 2017; 
Kanbara & Fukunaga, 2016), accurate interoceptive inferences might also be 
important prerequisites to connect to others’ emotions (Arnold et al., 2019). 
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To sum up, we confirmed existing evidence that the interpretation of emotional 
expressions depends on both the modality of the expression as well as the 
affective content. However, even if only information from the face or the body 
was available, emotion signals were still accurately perceived. Given that these 
situations become more frequent due to digitalization or safety measures during 
the COVID-19 pandemic, it is reassuring to know that emotion recognition as an 
essential process is not severely affected. Using static and posed expressions, we 
found limited evidence for a physiological signature of discrete emotions in the 
observer. The robust effects which we found might occur as a result of social cues 
eliciting strong motivational tendencies (e.g. SCL peaks in response to tears or 
angry faces) or embodied simulation of frequently observed expressions (e.g. EMG 
responses to happy faces). Based on recent perspectives on social cognition, an 
actual alignment in emotional states, which goes beyond emotion recognition, 
might however only happen in a ‘real’ social context. As a consequence, in order to 
describe a link between the sharing of emotions on different levels of observation 
(experiential and physiological), future studies should involve interactive 
paradigms and examine the role of variables indexing an individual’s access 
to internal signals. A mechanistic understanding could eventually inform the 
development of interventions which target the identification of other’s emotions 
and, thus, facilitate building social connections. 

Julia Folz.indd   86Julia Folz.indd   86 29-11-2024   11:5829-11-2024   11:58




