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We prove that projective hyperkähler manifolds of K3[n]-type admitting a non-trivial symplectic
birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves
on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli
spaces of sheaves and determine when they come from a birational involution.

1 Introduction
A hyperkähler manifold (HK manifold for short) is a simply connected compact Kähler manifold X
admitting an everywhere (unique up-to scalar) non-degenerate holomorphic 2-form σ that generates
H0(X, �2

X). We say that a HK manifold is of K3[n]-type if it is a smooth deformation of the Hilbert scheme
of n ≥ 2 points on a K3 surface. The goal of this paper is to study (symplectic) birational self-maps
of finite order on such HK manifolds. Our first result identifies HK manifolds of K3[n]-type admitting
such maps.

Theorem 1.1. Let X be a projective HK manifold of K3[n]-type admitting a non-trivial finite order
symplectic birational self-map. Then X is isomorphic to a moduli space of (twisted) sheaves on
a K3 surface.

In particular, X has Picard rank at least 2. In other words, a very general projective HK manifold of
K3[n]-type cannot admit symplectic finite order birational self-maps. This follows also from [10, Prop.
4.3], which in addition confirms that our result is optimal in the sense that certain very general HK
manifolds of K3[n]-type do indeed admit finite order automorphisms; however, these are always anti-
symplectic.

In fact, the proof of Theorem 1.1 (in §2) reveals that if the finite order birational map is biregular (i.e.,
an automorphism) or if the order is larger than 2, then the rank of the Picard group of X must be at least 8.

When the Picard rank is 2, it turns out that all such maps are automatically involutions.
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Theorem 1.2. Let X be a HK manifold of K3[n]-type. Assume that X has Picard rank 2. Then
any non-trivial finite-order birational self-map has order 2. Furthermore, if such a map is an
automorphism, it must be anti-symplectic.

It is known that whenever the group Bir(X) of birational self-maps is finite, Bir(X) � (Z/2Z)⊕m with
m = 1 or 2 [10, Thm. 4.9]. Moreover, for any K3 surface S of Picard rank 1, the group Bir(S[n]) is finite [32,
Cor. 5.2].

In the next part of the paper, using Bridgeland stability on K3 surfaces, we study the existence of
finite order symplectic birational self-maps on moduli spaces of stable pure sheaves X = M(S, v) (and
their generalizations) on K3 surfaces for v a primitive Mukai vector.

Mongardi in [28, Thm. 26] shows that any symplectic (biregular) automorphism of finite order acts as
Id on the discriminant group AX (introduced in §1.1 below). We deduce in Corollary 4.2 that if a birational
self-map g induces a reflection in O(H2(X,Z), qX), then it follows that g∗|AX = − Id. Hence, g cannot be
regular everywhere. Birational self-maps that are not biregular are hard to come across (for instance,
on K3 surfaces there are none). On the Hilbert scheme of points on K3 surfaces of Picard rank one, such
maps have been classified in [6]. Typical examples of such symplectic birational maps are described
by Markman in [27, §11.1, 11.2] (see §2.1 for one of the examples). In our next main result, we provide
a list of Mukai vectors on K3 surfaces that satisfy specific numerical conditions. This list corresponds
to cases where symplectic birational (non-biregular) self-maps exist on the associated moduli space of
(complexes of) sheaves.

Theorem 1.3. Let S be a K3 surface and v = (r, cD, s), D ∈ NS(S), be a primitive Mukai vector, r �= 0.
Consider a moduli space M := Mσ (S, v) of stable objects with respect to a v-generic stability
condition σ . For e = (r, cD, (cD)2/r − s), the reflection Re ∈ O(H2(M,Z)) is induced by a birational
involution if and only if v satisfies r | 2c, gcd(r, s) = 1 or 2, r �= 1 or 2 and v is not one of the
following series of Mukai vectors

1) (r, krD, k2D2r
2 − m) for some k ∈ Z and m = 1 or 2.

2) D2 ≡ 0 (mod 4), v = (2a, maD,
D2

4
m2a − 1) for some integers a ≥ 2, m odd.

3) D2 ≡ 2 (mod 4), v = (2a, maD,
D2m2a − 2

4
) for some integers a ≥ 2 odd, m odd.

The vector e is orthogonal to the so-called vertical wall in NS(M)R; see Definition 4.12. In fact, we note
in Corollary 4.16 that if v falls into the last three cases, M � M(S′, v′) (up to a twist by a Brauer class) for a
derived equivalent K3 surface S′ and a Mukai vector v′ = (r′, c′D′, s′) such that r′ = 1 or 2, and Re induces
a reflection Re′ with e′ = (r′, c′D′, c′2D′2

r′ − s′). So in a sense, ranks 1 and 2 are the only problematic cases.
A complete classification of Mukai vectors for which the associated moduli spaces admit symplectic

involutions that are birational but not biregular will entail studying other relevant reflections in NS(S)R.
To this end, we show in Corollary 4.17 that whenever such a reflection R exists, after changing S and v to
S′ and v′ under a Fourier–Mukai transform, we can assume that M = M(S′, v′) and R is as in Theorem 1.3
with respect to v′.

1.1 Preliminaries
The purpose of this section is to provide a review of the key properties and constructions of HK
manifolds, with a particular focus on those of K3[n]-type. This overview will serve as a fundamental
framework for the subsequent parts of the paper.

A crucial tool in the study of HK manifolds is the second cohomology group H2(X,Z) endowed
with the Beauville–Bogomolov–Fujiki form qX. In the case where X is a HK manifold of K3[n]-type, the
pair (H2(X,Z), qX) is an indefinite lattice of signature (3, 20). We denote by O(H2(X,Z), qX) the group
of isometries of H2(X,Z) and by O(AX, q̄X) the group of isometries of the discriminant group AX :=
H2(X,Z)∨/H2(X,Z).

Birational self-maps on HK manifolds naturally induce automorphisms on H2(X,Z). In [17, Lem. 2.6],
Huybrechts shows that the quadratic form qX behaves well under birational maps. As a consequence,
a well-defined group homomorphism exists:

Bir(X) → O(H2(X,Z), qX).
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11066 | Y. Dutta et al.

For HK manifolds of K3[n]-type, this homomorphism is not only well defined but also injective [5, 16]. We
denote by Mon2

Bir(X) its image. The group Mon2(X) of monodromy operators, corresponding to parallel
transport isometries of H2(X,Z), is of great importance due to the birational Torelli theorem ([34], [35],
[27, Thm. 1.3]). According to [25, Lem. 4.2], under the assumption that X is of K3[n]-type, the group
Mon2(X) can be identified as the preimage of {Id, − Id} through the natural surjective map [30, Prop.
1.14.2]:

O(H2(X,Z), qX) → O(AX, q̄X).

The subgroup Mon2
Hdg(X) < Mon2(X) preserving the Hodge structure splits as the semidirect product

Mon2
Hdg(X) = WExc � Mon2

Bir(X), where WExc is the Weyl subgroup generated by reflections of the form

RE : α �→ α − 2(α, [E])
([E], [E])

[E],

where E∈Pic(X) is a prime exceptional divisor (i.e., reduced and irreducible effective divisors with qX(E)<0).
While RE is a priori only defined over Q, Markman proved that it is in fact an integral monodromy
operator [27].

A key input in this paper is Markman’s detailed analysis of various isometries and domains in the
Néron–Severi lattice NS(M)R in [26, 27]. The positive cone CX ⊂ NS(X)R of classes α with qX(α) ≥ 0
contains the (non-necessarily closed) movable cone Mov(X), generated by divisors whose base locus
has codimension at least 2. The nef cone Nef(X) is contained in Mov(X) ⊂ CX.

The closure Mov(X) is a fundamental domain for the action of the Weil group WExc on CX, while
Mon2

Bir(X) preserves Mov(X) (see [10, Prop. 3.15]). In fact, the numerical conditions in Theorem 1.3
ensures that Re is a monodromy operator. The three cases appearing in Theorem 1.3 are exactly the
cases for which e is the class of a prime exceptional divisor, that is Re ∈ WExc.

Particularly significant examples within K3[n]-type HK manifolds are moduli space of sheaves on K3
surfaces. Given a K3 surface S, one considers the lattice H̃(S,Z) � H0(S,Z) ⊕ H2(S,Z) ⊕ H4(S,Z) together
with an intersection form defined by (r, c, s) · (r′, c′, s′) = c · c′ − rs′ − sr′. Given a primitive algebraic Mukai
vector v ∈ H̃(S,Z) and H ∈ Pic(S) an ample line bundle, MH(S, v) denotes the Mumford-Gieseker moduli
space of stable pure sheaves on S with Mukai vector v (we drop S from the notation when the context
is clear). For H generic this is a HK manifold of K3[n]-type when v2 ≥ −2, thanks to the work of many
authors, notably Mukai, Göttsche, Huybrechts, O’Grady, and ultimately Yoshioka [36, Thm. 8.1].
Notation: Throughout this text, the pairing of a lattice � is denoted by (−, −) defined over the integers.
We often conveniently denote (w, w) by simply w2. The saturation of a sublattice �1 ⊂ � is denoted by
�1. Given an element w ∈ �, the divisibility, denoted div(w), is defined to be the integer n such that the
image of the map (_, w) : � → Z is given by the ideal nZ.

K3 surfaces and HK manifolds considered here are projective. For a HK manifold X of K3[n]-type, the
lattice (H2(X,Z), qX) is isomorphic to �K3[n] := U⊕3⊕E8(−1)⊕2⊕〈−2(n−1)〉, where U is the hyperbolic plane
and E8 is the unique even, unimodular, positive definite lattice of rank 8. The Mukai Lattice, denoted by
�̃, is the abstract lattice U⊕4 ⊕ E8(−1)⊕2 that is isomorphic to H̃(S,Z) for any K3 surface S.

Given a Hodge structure of weight 2 on a lattice L (e.g., H̃(S,Z) or H2(X,Z)), we define the algebraic part
of L as L1,1

Z := L1,1
C ∩ L. For instance, H̃(S,C) comes with a polarized weight 2 Hodge structure, where the

algebraic part is given by the extended Néron–Severi lattice

H̃1,1(S,Z) := H0(S,Z) ⊕ H1,1(S,Z) ⊕ H4(S,Z)

and the polarization is induced by the intersection form described above.
Finally, we define NS(X) as the Néron–Severi lattice and T(X) as the transcendental lattice of X, where

T(X) � NS(X)⊥.

2 Cohomological Action of Symplectic Birational Maps
The goal of this section is to prove Theorem 1.1. The proof, that we give at the end of the section, is a
combination of several results. First, we need a characterization of the birational models of X via the
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lattice H2(X,Z). In [26, §9], Markman describes �̃ as an overlattice of H2(X,Z) and an extension of the
Hodge structure on H2(X,Z) by setting v ∈ �̃

1,1
Z . Furthermore, he shows the following properties:

Theorem 2.1 ((see [1, Thm. 3])). Let X be a HK of K3[n]-type, n ≥ 2.

1) The orthogonal H2(X,Z)⊥ ⊂ �̃ is generated by a primitive vector v of square 2n − 2.
2) If X is a moduli space of sheaves on a K3 surface S with Mukai vector v ∈ H̃(S,Z), then the extension

H2(X,Z) ⊂ �̃ is naturally identified with v⊥ ⊂ H̃(S,Z) (see also (3) in §4.1).
3) A HK manifold Y is birational to X if and only if there is a Hodge isometry �̃ −→ �̃ sending H2(X,Z)

isomorphically to H2(Y,Z).

The action of a map g ∈ Bir(X) extends to a Hodge isometry on �̃. The following result is well known.
For the sake of completeness, we include it here.

Lemma 2.2. Let g ∈ Bir(X). If g∗
|AX

= ε Id (ε = 1 or −1), there exists a unique extension of g∗ on �̃

satisfying g∗v = εv.

Proof. Define an extension g∗ on H2(X,Z)⊕〈v〉 by setting v �→ εv. Since H2(X,Z)Q⊕〈v〉Q = �̃Q, it suffices to
prove that the extension g∗

Q ∈ O(�̃Q) preserves �̃. Any element x ∈ �̃ = �̃∨ ⊂ H2(X,Z)∨⊕〈v〉∨ decomposes
as x = x1 + x2, with x1 ∈ H2(X,Z)∨ and x2 ∈ 〈v〉∨. Note that g∗

Q(x1) = εx1 + y with y ∈ H2(X,Z), therefore
g∗
Q(x) = ε(x1 + x2) + y ∈ �̃. �

Let �̃
1,1
Z be the algebraic part of �̃ (see §1.1). The next lemma demonstrates that the property of being

birational to a moduli space of (twisted) sheaves on a K3 may be understood lattice-theoretically from
the Hodge structure of �̃.

The non-twisted case was proved by Addington in [1, Prop. 4] and later generalized for twisted K3
surfaces by Huybrechts in [21, Lem. 2.6].

Theorem 2.3. Let X be a HK manifold of K3[n]-type, n ≥ 2. Then the following are equivalent:

1) �̃
1,1
Z contains a copy of U (resp. U(k)).

2) X is birational to a moduli space of stable sheaves (resp. twisted sheaves) on a K3 surface S.

Now let g ∈ Bir(X) be a non-trivial symplectic finite order map. Denote by H2(X,Z)g∗
(resp. �̃g∗

) the
invariant sublattice of H2(X,Z) (resp. �̃). Similarly let Sg∗ (X) = (H2(X,Z)g∗

)⊥ ⊂ H2(X,Z) (resp. Sg∗ (�̃) =
(�̃g∗

)⊥ ⊂ �̃) be the co-invariant sublattice of H2(X,Z) (resp. �̃ ). The following is well known.

Lemma 2.4. Sg∗ (X) is a negative definite sublattice of NS(X).

Proof. Pick x ∈ Sg∗ (X). Let σ ∈ H2,0(X) denote a generator. Since H2(X,Z)g∗
is non-degenerate, x′ =∑ord(g)−1

i=0 (gi)∗x is g∗-invariant and co-invariant; therefore, x′ = 0. Since (gi(x), σ) = (x, σ) for all i, we
obtain that 0 = (x′, σ) = ord(g)(x, σ), therefore (x, σ) = 0 and hence Sg∗ (X) ⊂ NS(X). Recall that
sign(NS(X)) = (1, �).

Let α ∈ H1,1(X,Z) be a Kähler class of X. The class α′ = ∑ord(g)−1
i=0 (gi)∗α is in H2(X,Z)g∗ ∩ NS(X). As

(α′)2 > 0, we obtain sign(Sg∗ (X)) = (0, 23 − rank H2(X,Z)g∗
). �

More explicitly, the complex vector space H2(X,C)g∗
admits a 3-dimensional positive subspace

spanned by α′, σ and σ . As an upshot, we obtain that when g∗|AX = − Id, the lattice Sg∗ (�̃) has signature
(1, 23 − rank H2(X,Z)g∗

), that is, it is a hyperbolic lattice. On the other hand, when g∗|AX = Id, we obtain
Sg∗ (�̃) � Sg∗ (X) and hence is again negative definite.

Remark 2.5. For a finite order group G ⊂ O(L) of isometries of a lattice L, the quotient group
L/(SG(L) ⊕ LG) is |G|-torsion. Indeed, for any element x ∈ L, we can write |G| · x = ∑

g∈G g(x) +∑
g∈G(x − g(x)). If L is unimodular, we know moreover that L/(SG(L) ⊕ LG) � ASG(L) � ALG . As a

consequence, when the birational map g ∈ Bir(X) has order 2, we obtain that

ASg∗ (�̃) � (Z/2Z)⊕�
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for some positive integer �. A lattice with such a discriminant group is 2-elementary, and 2-
elementary lattices were classified by Nikulin in [31, Thm. 4.3.2].

Lemma 2.6. An even lattice L contains a non-trivial isotropic class e ∈ L with div(e) = m if and
only if U(m2) ⊂ L.

Proof. Pick an element f ′ in L such that (e, f ′) = m and f ′2 = 2k for some k ∈ Z. Set f = −ke + mf ′. It is
straightforward to check that 〈e, f 〉 = U(m2) ⊂ L. Conversely, if U(m2) = 〈e, f 〉 ⊂ L, then e is isotropic and
one of its multiples has divisibility m. �

Remark 2.7. A consequence of a result by Hasse and Minkowski is that any indefinite lattice L of
rank at least 5 must contain an isotropic class (see [33, Cor. IV.3.2]) and hence by the lemma
mentioned above L contains a copy of U(m2) for some integer m.

Let N24 be the Leech lattice, that is, the unique unimodular negative definite lattice of rank 24 without
(−2)-classes. The final ingredient we need is the following result that allows us to see certain finite
order maps in Bir(X) as elements of the so-called Conway group Co0 := O(N24). The advantage of doing
so is that one can use the classification of SG(N24) for any finite group action G ⊂ Co0 as in [14]. The
original idea of using N24 in this way is due to Gaberdiel, Hohenegger, and Volpato [12, B2]. We use the
following more convenient form, which appears in [11, Prop. 2.4]; see [20, §2.2].

Lemma 2.8. Let L be a lattice and let G ⊂ O(L) be a subgroup of isometries that acts trivially on
the discriminant group AL. Assume that SG(L) is negative definite and does not contain (−2)-
classes. If there exists a primitive embedding SG(L) ⊂ �1,25 into the unique unimodular lattice
of signature (1, 25), then G is isomorphic to a subgroup of the Conway group Co0 such that

SG(L) = SG(N24).

In order to use this, we need to prove the next property.

Lemma 2.9. Let g ∈ Bir(X) be a non-trivial symplectic birational self-map of finite order. Then
there are no (−2)-classes in Sg∗ (X).

Proof. Let δ ∈ NS(X) be a (−2)-class in Sg∗ (X). By [26, Thm. 9.17], ±δ or ±2δ is the class of an effective
divisor D. Since g is an isomorphism in codimension one, D′ = ∑ord(g)−1

i=0 gi(D) is also an effective divisor.

Its cohomology class
∑ord(g)−1

i=0 ±(g∗)iδ or
∑ord(g)−1

i=0 ±2(g∗)iδ is both invariant and co-invariant, therefore
D′ is homologous to 0. Since linear and numerical equivalences coincide on HK manifolds, we obtain
that D′ is linearly trivial, which is impossible. �

Remark 2.10. In fact, the result is a consequence of a more general phenomenon. Namely, for a
HK manifold X, the group Mon2

Bir(X) preserves the (interior of the) movable cone, which consists
of the classes β for which (β, [E]) > 0 for every stably prime exceptional class [E] [26, Prop. 1.8].
For α ∈ Amp(X), the invariant class α′ := ∑ord(g)

i=1 (gi)∗α lies in the interior of Mov(M). Given a
(−2)-class δ, either ±δ of ±2δ is stably prime exceptional by [26, Thm. 9.17], so (δ, α′) �= 0. In
particular, δ cannot lie in Sg∗ (X).

We can now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. The crux of the proof lies in showing that X is birational to a moduli of (twisted)
sheaves on a K3 surface. The isomorphism follows from [4, Section 7] (see also §4.3).

To do it, by Theorem 2.3 and Lemma 2.6, it is enough to prove that �̃
1,1
Z admits an isotropic class. If

g is of order 2, and acts non-trivially on AX, according to Remark 2.5, the co-invariant lattice Sg∗ (�̃) is a
hyperbolic 2-elementary lattice, and so the existence of such class follows by [31, Thm. 4.3.3]. Otherwise,
we show that �̃

1,1
Z contains an indefinite lattice L of rank at least five and use Remark 2.7.
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If g∗|AX = − Id and g has order bigger than 2, let L = Sg∗ (�̃). If g∗|AX = Id, we let L be the lattice
generated by Sg∗ (X) and the vector v as in Theorem 2.1. Then by Lemma 2.2 L is an indefinite sublattice
of �̃ and we just need to show that it has rank at least 5.

Set f = g2 if g∗|AX = − Id, or f = g if g∗|AX = Id, and G = 〈f ∗〉 the finite group generated by f ∗. Note
that Sf ∗ (X) is negative-definite by Lemma 2.4. Now, we will prove that Sf ∗ (X) primitively embeds into the
unique unimodular lattice �1,25 of signature (1, 25). Since Sf ∗ (X) embeds in the Mukai Lattice �̃, from
Remark 2.5 we have

�(ASf∗ (X)) = �(ASf∗ (�̃)) = �(A�̃f∗ )

≤ 24 − rank Sf ∗ (�̃).

We get �(ASf∗ (X)) < rank �1,25 − rank Sf ∗ (�̃). This shows that Sf ∗ (X) ⊂ �1,25 primitively by [30, Cor. 1.12.3].
Finally, note that f ∗ acts as Id on the discriminant group AX and by Lemma 2.9, the lattice Sf ∗ (X) does

not contain any (−2)-class. Therefore, we can apply Lemma 2.8 to lift the action of f ∗ to the Leech lattice
N24 and identify Sf ∗ (X) = Sf ∗ (N24). Using this identification, along with the classification of fixed lattices
for such groups in the Leech lattice N24 as presented in [14], we can conclude that Sf ∗ (X) has rank at
least 24 − 16 = 8. In particular, Sf ∗ (X) � SG(N24) has order at least 24 − 16 = 8. Since Sf ∗ (X) ⊂ Sg∗ (X) ⊂ L,
the bound of the rank applies to L. �

Corollary 2.11. Let g ∈ Bir(X) be a non-trivial symplectic birational self-map of finite order such
that ord(g) > 2 or g∗|AX = Id. Then NS(X) has rank at least 8.

Proof. Since g acts symplectically on X, we have Sg∗ (X) ⊂ NS(X) by Lemma 2.4. As shown in the proof
of Theorem 1.1, for g as in the statement we have rank Sg∗ (X) ≥ 8. Consequently, the Picard number of
X is also at least 8. �

2.1 Markman’s example MH(r, 0, −s)
In this section we recall an explicit geometric example given by Markman [27, Sections 2.2, 11.1] of a
symplectic birational involution on moduli spaces of sheaves on K3 surfaces with a non-trivial action
on the discriminant group. In the final part of the paper, where we study certain reflections coming
from the so-called “vertical wall” (see Definition 4.12) of the stability manifold of the K3 surface, we
revisit this example as it serves as one such reflection (see §5.1).

Let S be a projective K3 surface with Pic(S) = ZH. Suppose that r, s are two integers satisfying
s ≥ r ≥ 1 and gcd(r, s) = 1. Set M := MH(r, 0, −s) the moduli space of stable sheaves on S with
Mukai vector v = (r, 0, −s). The Mukai isometry (3) identifies H2(M,Z) with H2(S,Z) ⊕ Z · e, where
e = (r, 0, s).

• r = 1: In this case, MH(1, 0, −s) = S[1+s] and e = [E]/2 where E ⊂ S[1+s] is the diagonal, that is, E is the
exceptional divisor of the Hilbert–Chow morphism ε : S[1+s] −→ S(1+s).

• r = 2: In this case, e = [E] where E ⊂ MH(2, 0, −s) is the locus of stable sheaves which are not locally
free. By [27, Lem. 10.16], E is the exceptional divisor of Li’s morphism [22] from MH(2, 0, −s) onto the
Uhlenbeck–Yau compactification of the moduli space of H-slope stable vector bundles.

• r ≥ 3: In this case, e is not a Q-effective class. Let Z ⊂ MH(r, 0, −s) be the locus of stable sheaves
which are not locally free or not H-slope stable. Denote by U = M\Z the locus of locally free H-slope
stable sheaves and ι : U −→ U the map that sends F to its dual sheaf F∨. By [27, Lem. 9.5], Z is a
closed subset of codimension ≥ 2 in M and so ι : M −→ M is a birational involution. By [27, Prop.
11.1], the induced map ι∗ in cohomology corresponds to the reflection map Re. Since e ∈ NS(X), the
involution ι is in particular symplectic.

3 Picard Rank 2 Case
Assume X is a HK manifold of K3[n]-type with Picard rank 2. We know by Oguiso’s result (c.f. [10, Thm.
4.9]) that, while Aut(X) and Bir(X) can be infinite, whenever they are finite they are of the form (Z/2Z)r

with r ≤ 2. In this section, we prove Theorem 1.2 that states that any finite order birational self-map of
X is in fact of order 2.
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Proof of Theorem 1.2. Since X has Picard rank 2, its real Néron-Severi group NSR(X) is a 2-plane. By a
result of Markman [26, Thm. 6.25], there exist a polyhedral rational convex cone � ⊂ Mov(X) such that

Mov(X) =
⋃

s∈Bir(X)

s∗(�).

Let Id �= g ∈ Bir(X) be an element of finite order. We can define

�0
g :=

⋃
n∈Z

(gn)∗�,

which is a finite union of convex polyhedral rational cones in Mov(X). Define �g as the convex hull
of �0

g. Denote by l1, l2 the extremal rays of �g (which lie already in �0
g). Then g∗(�g) lies in the cone

generated by g∗(l1) and g∗(l2), which lies in �g. By bijectivity of g, we get g∗(�g) = �g.
Since the extremal rays of �g are rational, we can choose integral generators x1 of l1 and x2 of l2. Then

g∗ must either preserve or flip l1 and l2. In particular, (g2)∗(xi) = αixi for some αi > 0, i = 1, 2. Since g∗ is
an integral isometry, we get α1, α2 ∈ Z and α1α2 = 1. We get α1 = α2 = 1 and hence (g2)∗ = Id |NS(X).

Since rank T(X) is odd, the only integral Hodge isometries of T(X) are ± Id (see [19, §3.3]). Therefore,
(g2)∗|T(X) = (g∗|T(X))

2 = Id, so in particular g∗ is an involution on H2(X,Z). Since the map Bir(X) →
O(H2(X,Z)) is injective, we obtain that g is an involution.

The second assertion follows from Corollary 2.11. Indeed, if g is a symplectic automorphism, then
g∗|AX = Id [28, Thm. 26] and hence rank NS(X) ≥ 8, which contradicts the hypothesis of the theorem. �

Remark 3.1. Another way to see the second part of Theorem 1.2 is as follows: any involution ι

(different from − Id) on a rank 2 lattice L is a reflection. More precisely, pick any x ∈ L with
x �= ±ι(x) and consider y := x + ι(x) and z := x − ι(x). We have ι(y) = y and ι(z) = −z, so ιQ

and the reflection Rz coincide on the basis {y, z} of LQ, hence coincide. Therefore, in the case of
Picard rank 2, a symplectic involution has to act as a reflection on H2(X,Z). In Corollary 4.2, we
deduce that this involution cannot be biregular.

Remark 3.2. In [10, Prop. 4.19], Debarre describes a family of polarized fourfolds whose birational
groups are isomorphic to the infinite dihedral group. In particular, order 2 elements exist
despite the birational groups being infinite.

4 Involutions for Arbitrary Picard Ranks
The goal of this section is to show the existence of symplectic finite order birational self-maps on certain
HK manifold X of K3[n]-type as described in Theorem 1.3. According to the Torelli theorem, a way to
proceed is to find monodromy operators of H2(X,Z). In §3 we proved that when Pic(X) has rank 2, any
such finite order operator is a reflection (see Remark 3.1). Therefore, one candidate in higher Picard
rank are reflections Re ∈ O(H2(X,Z)) in the hyperplane orthogonal to some class e ∈ NS(X). We will use
the following result of Markman.

Proposition 4.1 ([27, Prop. 1.5]). Let e ∈ H2(X,Z) be a primitive class with e2 < 0. Then the
reflection Re belongs to Mon2(X) if and only if e satisfies one of the following:

1) e2 = −2; or
2) e2 = 2 − 2n and n − 1 divides (e, −) ∈ H2(X,Z)∨.

Moreover, Re acts on AX as Id in (1) and − Id in (2).

Corollary 4.2. If a symplectic birational involution g ∈ Bir(X) acts as a reflection g∗ = Re on
H2(X,Z), then necessarily e2 = 2 − 2n. In particular, g∗|AX = − Id.

Proof. Note that e ∈ SRe (X) since for any w ∈ H2(X,Z)Re we have (e, w) = (−e, w). Moreover, e2 < 0 by
Lemma 2.4. Then e2 �= −2 by Lemma 2.9. �
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Furthermore, we will focus on the moduli space of sheaves M on K3 surfaces and use certain walls
in the stability manifold of the K3 surface to find these reflection hyperplanes in Mov(M).

4.1 Reminders on stability conditions
Let S be a K3 surface and α ∈ Br(S) be a Brauer class (see [19, Section 10.2.2, 16.4] for details), and fix
B ∈ H2(S,Q) a B-field lift of α. Let Db(S, α) denote the derived category of α-twisted sheaves on S. We
will not give the general definition of stability conditions (we redirect the interested reader to [29] for the
general theory, and we refer to [8] for the case of K3 surfaces), but only recall how to construct the ones
we will use in the present paper and some of their properties.

Pick a pair of R-divisors ω, β ∈ NS(S)R, with ω ∈ Amp(S), the ample cone inside NS(S)R. For E ∈ Db(S, α),
define

Zω,β(E) = (exp(iω + β + B), v(E)) ∈ C (1)

In particular, writing v(E) = (r, θ , s), we can write the imaginary part �Zω,β(E) = ω · (θ − r(β + B)). Define a
pair of additive subcategories (called a torsion pair) T ω,β ,Fω,β ⊂ Db(S, α) as follows: the non-trivial objects
of T ω,β (resp. Fω,β ) are the twisted sheaves (resp. torsion free twisted sheaves) F ∈ Coh(S, α) such that
every non-trivial torsion free quotient F � G (resp. non-zero subsheaf E ↪→ F) satisfy �Zω,β(G) > 0 (resp.
�Zω,β(E) ≤ 0). Then define the abelian subcategory of Db(S, α):

Aω,β := {F ∈ Db(S, α) | H−1(F) ∈ Fω,β ,H0(F) ∈ T ω,β ,Hi(F) = 0 for i �= −1, 0} (2)

The following result is due to Bridgeland [8] in the untwisted case, and it was later generalized to the
twisted case by Huybrechts, Macrì, and Stellari [15, Prop. 3.6].

Theorem 4.3. The pair σω,β = (Aω,β , Zω,β) is a stability condition on Db(S, α) provided that Zω,β(E) /∈
R≤0 for all spherical twisted sheaf E ∈ Coh(S, α). This condition is satisfied whenever ω2 > 2.
Moreover, the stability condition σω,β depends continuously on (ω, β) ∈ Amp(S) × NS(S)R.

We denote by Stab†
(S) the component of the space of stability condition Stab(S) containing all

stability conditions of the form σω,β . We drop the ω, β when the context is clear. Define the generalized
rank as rankZ = �Z : A → R≥0 and generalized degree as degZ = −�Z : A → R. These maps satisfy the
usual properties of rank and degree of sheaves, such as rank(E) = 0 ⇒ deg(E) > 0 and additivity with
respect to exact sequences. Therefore, one can define the generalized slope as

μZ(E) := degZ(E)/ rankZ(E),

where μZ(E) = ∞ when rankZ(E) = 0. Objects E ∈ Db(S, α) such that E[k] ∈ A for some k ∈ Z and E[k] is
slope-(semi)stable with respect to μZ are called Z-(semi)stable (or σ -(semi)stable).

4.1.1 Walls and moduli spaces
Fix a Mukai vector v ∈ H̃(S, α,Z).

Theorem 4.4 ([2, Prop. 3.3]). There exists a locally finite set of walls (real codimension one
submanifolds with boundary) in Stab(S), depending on v, such that the sets of σ -stable and
σ -semistable objects of class v do not change when σ varies in a chamber (i.e., in a component
of the complement of the walls).

A stability condition is called generic with respect to v if it does not lie on a wall. When v is primitive,
then σ lies on a wall if and only if there exists a strictly σ -semistable object of class v.

In [4], the authors prove that for a generic σ ∈ Stab†
(S) there exists a coarse moduli space Mσ (v) of

σ -semistable objects with Mukai vector v. It is a normal projective irreducible variety with Q-factorial
singularities. When v is primitive, then Mσ (v) = Mst

σ (v), that is, it consists only of σ -stable objects and
hence is a smooth projective HK manifold of K3[n]-type.
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Theorem 4.5 ([3, Thm. 2.15]). Let v = mv0 ∈ H̃(S, α,Z) be a vector with v0 primitive and m > 0,
and let σ ∈ Stab†

(S, α) be a generic stability condition with respect to v.

1) The coarse moduli space Mσ (v) is non-empty if and only if v2
0 ≥ −2,

2) Either dim Mσ (v) = v2 + 2 and Mst
σ �= ∅, or m > 1 and v2

0 ≤ 0.

Remark 4.6. Given a polarization H ∈ Pic(S) which is generic with respect to v, there is always a
Gieseker chamber in Stab†

(S): the moduli space Mσ (v) for any σ in this chamber is isomorphic to
the moduli space of H-Gieseker stable sheaves; see [8, Prop. 14.2].

The Hodge structure on the second cohomology of Mσ (v) is closely related to the one of S by the
so-called Mukai Hodge isometry

θ : H2(Mσ (v),Z) →
⎧⎨
⎩v⊥ ⊂ H̃(S, α,Z) if v2 �= 0

v⊥/v ⊂ H̃(S, α,Z) if v2 = 0.
(3)

The latter has been shown by Yoshioka [36, Sections 7 & 8] for moduli of Gieseker stable sheaves, and
generalized by Bayer and Macrì [4, Thm. 7.10] to Bridgeland stability conditions. This way, one can
identify the groups NS(Mσ (v)) with NS(Mτ (v)), for any two v-generic stability conditions σ and τ .

4.1.2 Wall-crossing
Bayer and Macrì proved in [3] that the MMP for a moduli space of Gieseker stable sheaves MH(v) can be
performed by wall-crossing in the space of stability conditions; namely, they proved the following.

Theorem 4.7 ([3, Thm. 1.1, 1.2]). Let v be a primitive Mukai vector.

1) Given σ , τ ∈ Stab†
(S) generic, then the two moduli spaces Mσ (v) and Mτ (v) of Bridgeland-stable

objects are birational to each other.
2) Fix a (generic) base point σ ∈ Stab†

(S). Every smooth K-trivial birational model of Mσ (v) appears as
a moduli space Mτ (v) for some τ ∈ Stab†

(S).

To be more precise, the authors construct a map

l : Stab†
(S) → NS(Mσ (v)), (4)

such that for any chamber C ⊂ Stab†
(S) and τ ∈ C we have l(C) = Amp(Mτ (v)). Given a wall W for v and

σ0 a generic stability condition on the wall (namely, which does not belong to any other wall), let σ+, σ−
be two v-generic stability conditions nearby W in opposite chambers.

Theorem 4.8 ([4, Thm. 1.4]). There exist birational contractions

π± : Mσ± (v) → M±,

where M± are normal irreducible projective varieties. The curves contracted by π± are precisely
the curves of objects that are S-equivalent to each other with respect to σ0.

The type of birational transformation is described as follows.

Definition 4.9. We call a wall W :

1) a fake wall if there are no curves in Mσ± (v) of objects that are S-equivalent to each other with respect
to σ0;

2) a f lopping wall if we can identify M+ = M− and the induced map Mσ+ ��� Mσ− induces a flopping
contraction; and

3) a divisorial wall if the morphisms π± : Mσ± (v) → M± are both divisorial contractions.
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The type of wall can be studied purely lattice-theoretically. Given a wall W , one can associate the
hyperbolic rank 2 primitive sublattice HW ⊂ H̃(S, α,Z) given by

HW = {w ∈ H̃(S, α,Z) | � Z(w)

Z(v)
= 0for allσ = (A, Z) ∈ W}.

Conversely, given a primitive rank 2 hyperbolic sublattice H containing v, one can define a potential wall
W associated to H as a connected component of the real codimension one submanifold of stability
conditions σ = (A, Z) which satisfy that Z(H) is contained in a line.

Theorem 4.10 ([3, Thm. 5.7]). Let H ⊂ H̃(S, α,Z) be a primitive hyperbolic rank 2 lattice containing
v and W ⊂ Stab†

(S) a potential wall associated to it.

(1) The set W is a divisorial wall if there exists a class s ∈ H such that (s, v) = 0 and s2 = −2, or an
isotropic class w ∈ H such that (w, v) = 1 or 2.

(2) The set W is a flopping wall if the conditions in (1) are not satisfied and either v can be written as
v = a1 + a2 with ai ∈ H, a2

i ≥ 0 and (ai, v) > 0, i = 1, 2, or there exists a class s ∈ H with s2 = −2 and
0 < (s, v) ≤ v2/2.

(3) In all other cases, W is either a fake wall or it is not a wall.

Remark 4.11. Following [3, Lem. 10.1], the type of a wall is directly related to the position of its
image by (4) in Mov(Mσ (v)): the image l(W) lies on the boundary of Mov(Mσ (v)) if and only if it is
divisorial. On the other hand, W is either a flopping or fake wall if its image lies in the interior
of Mov(Mσ (v)) (it is fake if and only if its image lies in the interior of a chamber corresponding
to a birational model of Mσ (v)).

4.2 Reflection in the vertical wall
Set M := Mσ (S, v) for some K3 surface S with arbitrary Picard rank and σ ∈ Stab†

(S) be a v-generic
condition. We assume v2 ≥ 2. Denote

v = (r, θ , s)

with r, s ∈ Z and θ ∈ NS(S). For convenience, we denote θ = cD with c ∈ Z and D primitive. We will freely
use the Mukai isometry (3) to identify H2(M,Z) with v⊥ ⊂ H̃(S,Z).

If � : Db(S)
∼−→ Db(S) is an autoequivalence, the induced isometry ϕ ∈ O(H̃(S,Z)) on the extended

Mukai lattice gives an isomorphism

Mσ (v)
∼−→ M�(σ)(ϕ(v)).

Under the assumption that �(σ) ∈ Stab†
(S), an additional useful observation is that by Theorem 4.7, for

any τ ∈ Stab†
(S) we have a birational map

M � M�(σ)(ϕ(v))
∼��� Mτ (ϕ(v)).

In particular, it holds for τ in the Gieseker chamber.
We will use freely the following three types of autoequivalences:

• The shift [−1], which acts as − Id on H̃(S,Z).
• The tensor product − ⊗ L for L ∈ Pic(S), which acts as cup product with exp(L) = (1, L, L2/2) on

H̃(S,Z).
• The spherical twist TOX , which acts as the reflection R(1,0,1) in the hyperplane orthogonal to the

spherical class (1, 0, 1) ∈ H̃(S,Z).
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From [13, Lem. 7.2, Prop. 7.6], these autoequivalences preserve the distinguished component Stab†
(S) ⊂

Stab(S). In particular, applying some of these equivalences we assume r > 0 from now on.
Consider the geometric stability conditions of the form σ = σω,β with ω ∈ Amp(S), β ∈ NS(S)R defined

by (1) with α = B = 0.

Definition 4.12. We call the potential wall W ⊂ Amp(S)× NS(S)R (seen as a subspace of Stab†(S))
defined by the equation �Zω,β(v) = 0 the vertical wall of S associated to v.

In other words, W is spanned by the set of (ω, β) satisfying the equation ω · θ = rω · β. Consider the
corresponding hyperbolic rank 2 lattice

HW = {w = (λ, (λ/r)θ , μ), λ, μ ∈ Z, r | cλ}, (5)

that is, the saturation of the sublattice spanned by v and (0, 0, 1), and note that Zω,β(w) ∈ R for all
(ω, β) ∈ W and w ∈ HW .

Using [4, Lem. 9.2], it is easy to see that the map l as in (4) sends any stability condition σω,β ∈ W ,
up to a positive constant, to the vector aω,β = (0, ω, β · ω) = (0, ω, ω · θ/r). These vectors form a cone
CW of codimension one (i.e., a wall) in the positive cone CM ⊂ NS(M)R � v⊥

R ⊂ H̃1,1(S)R. In fact, one of
the chambers adjacent to CW is the Gieseker chamber, which is a consequence of the large volume limit.
More precisely, as proven in [8, Prop. 14.1], objects that become σnω,β-semistable for σnω,β close enough to
(one side of) the vertical wall and for all n big enough are exactly (shifts of) Gieseker-semistable sheaves.
Moreover, computations in [24, Thm. 3.11] show that there is no wall-crossing for n � 0, so that we can
choose an uniform n for all objects.

We consider the reflection in this wall. To do so, consider the vector e := (r, θ , (θ2/r)−s). It is orthogonal
both to v and aω,β for all (ω, β) ∈ W . In particular, e is a generator of the line orthogonal to the wall
CW ⊂ Mov(M). Finally, note that e2 = −v2 = 2 − 2n. We now use Markman’s criterion in Proposition 4.1
to check when the reflection Re is a monodromy operator.

Lemma 4.13. The reflection Re belongs to Mon2(M) with Re |AM = − Id if and only if

r | 2c and gcd(r, s) = 1 or 2. (∗)

Proof. Note that if Re ∈ Mon2(M) and Re|AM = − Id, then e is an integral primitive class. Indeed, write
e = ke0 for some k ∈ Q and e0 integral primitive. Then, Re = Re0 and Proposition 4.1 gives e2

0 = 2−2n = e2 =
k2e2

0, hence k = ±1. Thus, in fact, Re ∈ Mon2(M) and Re|AM = − Id if and only if e is an integral primitive
class and n − 1|divH2(M,Z)(e). Integrality of e is equivalent to r | c2D2 and primitivity is equivalent to
gcd(r, c, c2D2/r− s) = 1. Therefore, it is enough to show that (∗) is equivalent to the numerical conditions
r | c2D2, gcd(r, c, c2D2/r − s) = 1 and n − 1 | divH2(M,Z)(e).

First, since D2 is even, we have (∗) implies r | cD2 (i.e., e integral), and since gcd(r, c, s) = gcd(r, c, cm−s)
for m = cD2

r and v is primitive, we also have that e is primitive.
We claim that once e is integral and primitive, Condition (∗) is equivalent to the condition n − 1 |

divH2(M,Z)(e). To see the claim, recall that integrality of e implies r | c2D2 and for what follows, we set
c2D2 = kr for some k ∈ Z. Pick some w = (a, δ, f ) ∈ v⊥ ⊂ H̃(S,Z) for a, f ∈ Z and δ ∈ H2(S,Z). Recall that
there is an inclusion H2(S,Z) ↪→ NS(S)∨ ⊕ T(S)∨. Therefore, we can assume that w has the shape

w = (a, b
L

div(L)
+ T, f ).

for some integers a, b and classes L ∈ NS(S)∨ and T ∈ T(S)∨. Here and in the following div(L) := divNS(S)(L).
The condition w ∈ v⊥ becomes

bc
L · D

div(L)
= as + rf (6)
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and a direct computation gives (w, e) = 2a
r

(1 − n). Therefore, the condition (n − 1)|(w, e) is equivalent to

r|2a. We will first assume this holds for all w and prove that it implies (∗).
Choose a basis {L1, . . . , Lm} of NS(S), where m = rank NS(S). Write D = ∑

ajLj. For each k = 1, . . . , m,
consider

Kk :=
⋂
j �=k

(Lj)
⊥
Q ⊂ NS(S)Q,

which is a non-trivial vector subspace. Let Ak ∈ Kk non-trivial. Taking some multiple of Ak, we can
assume Ak ∈ NS(S). Then for each E = ∑

bjLj ∈ NS(S), we have E · Ak = bkLk · Ak. In particular, div(Ak) =
Ak · Lk. Moreover, D · Ak = akLk · Ak. We obtain

D · Ak

div(Ak)
= akLk · Ak

Lk · Ak
= ak.

To show r | 2c, we pick Tk ∈ T∨(S) such that s
Ak

div(Ak)
+ Tk ∈ H2(S,Z), which is possible because H2(S,Z) =

H2(S,Z)∨ maps surjectively onto N(S)∨. Set wk = (cak − r, s
Ak

div(Ak)
+ Tk, s) ∈ v⊥. By the assumption r | 2a,

for each k, we get r | 2(cak − r). Since D is primitive, gcd(a1, . . . , am) = 1 and hence we get r | 2c.
Now, write g = gcd(r, s) and pick w = (r/g, 2D, (2c/r)D2 − s/g). We get w ∈ v⊥ and the condition r | 2a

becomes 2r = grm for some m ∈ Z. Therefore, g | 2 and we have (∗).
Conversely, assume (∗) holds and take w = (a, b L

div(L)
+ T, f ) as before. From (6) we have

2as = r
(

2c
r

bD · L
div(L)

− 2f
)

. (7)

Now if g = 1, then r | 2a. If g = 2, primitivity of v implies c odd, and r | 2c implies r/2 odd. Dividing both
sides of equation (7) by 2 yields r/2 | 2a(s/2), so r/2 | 2a so r/2 | a and therefore r | 2a. �

From now on, we assume that v satisfies (∗). Since Re ∈ Mon2
Hdg(M), by [26, Thm. 1.6], it decomposes

uniquely (uniqueness is a consequence of the injectivity of Bir(M) → O(H2(M,Z))) as Re = ψ ◦ g∗, with
g ∈ Bir(M) a symplectic birational self-map and ψ ∈ WExc.

Proposition 4.14. The potential wall W is either a divisorial or a flopping wall.

Proof. All we have to prove is that W is an actual non-fake wall. If W is a fake wall, or not an actual wall,
its image CW would lie inside of the interior of a chamber corresponding to the image of the nef cone
of a birational model f : M ��� M′. In particular, CW lies in the interior of Mov(M) and therefore ψ = Id:
indeed, one can find D ∈ Mov(M) such that (g−1)∗(D) lies close to CW . Then we have Re ◦ (g−1)∗(D) =
ψ(D) ∈ Mov(M). This is only possible when ψ = Id since Mov(M) is a fundamental domain for the action
of WExc and WExc acts faithfully [26, Lem. 6.22]. We get that Re = g∗ preserves f ∗ Nef(M′). The Torelli
theorem then implies that the map f ◦ g ◦ f−1 extends to an isomorphism on M′ (see [10, Prop. 3.15]),
which renders g∗|AM = Id [28, Thm. 26] contradicting our assumption. �

Using Theorem 4.10 we can also deduce under condition (∗) when Re does not come from a birational
involution. In other words, we give a necessary and sufficient numerical criterion for when W is a
divisorial wall.

Proposition 4.15. Under the condition (∗), the vertical wall as in Definition 4.12 is a divisorial wall
if and only if one of the following cases occurs:

• r = 1, r = 2 or v = (r, krD,
D2k2r

2
− m) for some k ∈ Z and m = 1 or 2.

• r > 2, r � c, and one of the two possibilities occurs.

1) D2 ≡ 0 (mod 4), v = (2a, maD,
D2m2a

4
− 1) for some integers a ≥ 2, m odd.
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2) D2 ≡ 2 (mod 4), v = (2a, m′aD,
D2m′2a − 2

4
) for some integers a ≥ 3 odd, m′ odd.

Proof of Proposition 4.15. Note that any Mukai vector w = (λ, (λc/r)D, μ) ∈ HW satisfies the following
formulas, which we use in the proof:

w2 = λ2 D2c2

r2
− 2λμ (8)

(w, v) = λ
D2c2

r
− rμ − sλ. (9)

By Theorem 4.10 it is enough to give a complete classification of Mukai vectors v, for which there
exists an isotropic w ∈ HW satisfying (w, v) = 1 or 2 or a class w ∈ HW with w2 = −2 satisfying
(w, v) = 0. To this end, we first prove that if such a w exists, then it imposes restrictions on v, leaving us
with the above list in the statement. In the process, we also obtain necessary values of λ and μ for each
instance of v, proving the existence of such w’s in the converse direction.
Step 1: Assume r = 1 or 2.

Then w = (0, 0, −1) satisfies w2 = 0 and (w, v) = 1 or 2, so the vertical wall is divisorial.
Step 2: Assume c = kr for some k ∈ Z.

Let w = (λ, λ
c
r
D, μ) as above. If λ = 0, then w2 = 0 and (w, v) = μr = 1 or 2 if and only if r = 1, 2. Hence,

we assume λ �= 0.
Equations (8) and (9) become

w2 = λ2D2k2 − 2λμ

(w, v) = λD2k2r − rμ − sλ

As discussed above there are two ways, W could be a divisorial wall for v:
• either such a w satisfies w2 = 0 and (w, v) = 1, 2. Then λD2k2 = 2μ. Hence,

(w, v) = λD2k2r − rμ − sλ

= λD2k2r − rλk2(D2/2) − sλ

= λ((D2/2)k2r − s).

Now (w, v) = 1 implies λ = ±1 and (w, v) = 2 implies λ = ±1, ±2. It is direct to see that λ < 0 leads
to v2 < 0, which is absurd (recall we assumed v2 ≥ 2). Hence, we obtain s = (D2/2)k2r − m with m = 1

or 2. Hence v is forced to be of the form (r, krD,
D2k2r

2
− m) in this case. Conversely, for any such v, the

isotropic vector w = (1, kD, D2k2

2 ) satisfies (w, v) = m.
• Or, such a w satisfies w2 = −2 and (w, v) = 0, that is, λ2D2k2 = 2λμ − 2, so we obtain again λ = ±1

or ±2. In fact, λ = ±2 is impossible because we would obtain 4D2k2 = ±2(2μ − 1). Hence, λ = ±1 and

(w, v) = 0 ⇐⇒ ±D2k2r = rμ ± s,

so r|s which implies that r = 1 since v = (r, krD, s) is primitive. So we are back to Step 1.
Step 3: General case.

By Condition (∗), we have r | 2c, and if r is odd, we get r | c, and we are done by Step 2. Since w ∈ HW

we also have r | λc. Therefore, we assume

cD2 = kr, cλ = mr, r even (10)

for some k, m. Note that as in Step 2, when λ = 0 the wall is divisorial only when r = 1 or 2, and λ = ±1
gives r | c, hence these cases are already treated in Step 1 and 2. Therefore, we assume |λ| ≥ 2. Equalities
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(8) and (9) give:

w2 = λmk − 2λμ (11)

(w, v) = rmk − rμ − sλ (12)

First, assume w2 = −2. Then from (11) we have λ = ±2. The wall is divisorial in this case, if and only if
(w, v) = 0. Hence, the second equality (12) implies r | 2s. Since Condition (∗) also implies r | 2c, primitivity
of v gives r = 2 and we are back to Step 1.

Now assume w2 = 0, that is mk = 2μ and hence (w, v) = rμ − sλ. Since 2μr = mrk = λck, we obtain

2(w, v) = λ(ck − 2s).

Assume (w, v) = 1, so λ = ±2. Then ck − 2s = ±1, in particular c, k are odd. Since r is even, ck = ±μr is
even, which leads to a contradiction.

The last case is (w, v) = 2, which gives λ = ±2 or ±4. Note that λ < 0 is impossible, since it would give
ck − 2s < 0, but v2 = r(ck − 2s) ≥ 0.

First, let λ = 2. We obtain ck − 2s = 2. By (10), we can assume r = 2a for some a ≥ 2, c = ma for some
m and k = mD2/2. We assume m is odd, otherwise r | c and we are done by Step 2. We obtain

s = ck
2

− 1 = D2

4
m2a − 1.

Note that μ = mk/2 = m2D2/4, in particular D2 ≡ 0 (mod 4). For any such choice of a and m, the integral
vector w = (2, mD, m2D2/4) gives (w, v) = 2 and w2 = 0.

The situation with λ = 4 is similar: we get ck − 2s = 1, in particular c, k are odd. As before we can
assume r = 2a for some a, but moreover, if a is even, we get 2μ | ck, which is impossible. Therefore, a ≥ 3
is odd, m = 2m′ is even (with m′ odd), c = m′a, k = m′D2/2 and

s = m′2a(D2/2) − 1
2

,

which in particular implies that D2 ≡ 2 (mod 4). For any such choice of a and m′, the integral vector

w = (4, 2m′D,
D2

2
m′2) gives (w, v) = 2 and w2 = 0. �

We conclude that whenever v does not satisfy the condition of the previous proposition, W is a
flopping wall and Re ∈ Mon2

Bir(M). Proposition 4.15 together with Proposition 4.14 gives a proof of
Theorem 1.3.

Proof of Theorem 1.3. The reflection Re decomposes as Re = ψ ◦ g∗ with g ∈ Bir(M) is a symplectic
birational self-map and ψ ∈ WExc. In view of Proposition 4.14, all we have to show is that ψ = Id exactly
when W is a flopping wall. We use Remark 4.11. If W is divisorial, then it lies on the boundary of Mov(M).
From [26, Thm. 6.17 and Lem. 6.22], W = E⊥ for some prime exceptional divisor E, in particular Re = ψ

lies in WExc and g = Id. On the other hand, when W is a flopping wall, it lies in the interior of Mov(M).
The same argument as in Proposition 4.14 shows that in this case ψ = Id, that is, Re = g∗. The equality
g∗|AM = − Id is a consequence of Proposition 4.1. �

Given a Mukai vector v as in Theorem 1.3, it would be interesting to know an explicit geometric
description of the birational involution g. We discuss in §5.1 one such explicit case.

4.3 Reflection along any wall
In this subsection, W is any wall in Stab(M) that induces a monodromy operator with non-trivial action
on the discriminant group AM. The goal is to show that reflection along the image of W under l may be
seen as reflection along the image of the vertical wall on an isomorphic model of M, as considered in
the previous subsection. We need the following key construction.
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4.3.1 Construction
Consider a wall W as above, and let v = (r, θ , s) as in §4.2. Assume that the associated hyperbolic lattice
HW contains a non-zero isotropic class w, which implies that HW = 〈v, w〉. For such an isotropic class,
we let S′ := MH(S, w). We let � : Db(S) → Db(S′, α), for some Brauer class α on S′, be the induced Fourier–
Mukai transform with �(w) = (0, 0, 1), and set v′ = �(v). Define W ′ ⊂ Stab(S′) to be the induced wall for
�(w), that is, defined by the hyperbolic plane HW ′ = 〈�(w), v′〉. Let v′ = (r′, θ ′, s′). Pick σ0 ∈ W and set
τ0 := �(σ0). Note that τ0 has the shape τ0 = σω′ ,β ′ for some ω′, β ′ ∈ NS(S′)R (see [13, Prop. 7.5] for α trivial,
or [18, Prop. 5.2]). Since �(w) = (0, 0, 1) we get �Zω′ ,β ′ (�(w)) = 0. Therefore �Zω′ ,β ′ (v′) = 0, that is, W ′ is
the vertical wall of S′.

Moreover, −r′ = (v′, (0, 0, 1)) = (v, w). Composing the equivalence � with the shift [1] we get for any
σ ∈ Stab†(S) an isomorphism

M = Mσ (S, v)
∼−→ M′ = Mτ (S′, −v′, α)

for τ := �(σ)[1] and the image of W is the vertical wall of S′ with respect to −v′. Note that if −r′ = 1
then necessarily α is trivial: this is because for any α ∈ Br(S′) and torsion-free α-twisted sheaf F, the
endomorphism algebra End(F) (seen as an Azumaya algebra) represents the class α (see for instance [9,
Thm. 1.3.5]). When F has rank 1, End(F) is the trivial bundle, and so α is trivial.

An easy upshot of this construction is that it simplifies the Mukai vectors in Proposition 4.15
significantly when we allow ourselves to choose a possibly different K3 surface S.

Corollary 4.16. Up to replacing S by a twisted Fourier–Mukai partner (S′, α), under the condition
(∗) the only cases for which the vertical wall W is divisorial are the cases r = 1, 2.

Proof. Consider the cases in Proposition 4.15. First, when c = kr and s = (D2/2)k2r − m for m = 1 or 2,
replacing v with its image v′ under the composition of (−) · exp(−kD) and R(1,0,1) gives v′ = (m, 0, −r).
It is straightforward to check that these isometries send the vertical wall associated to v to the one
associated to v′. For the case v = (2a, maD, D2

4 m2a − 1), resp. v = (2a, maD, D2m2a−2
4 ), the vector w =

(2, mD, D2

4 m2), resp. (4, 2mD, D2

2 m2) is an isotropic class in HW and satisfies (w, v) = 2. Therefore, the
construction in §4.3.1 above applies. The rank of the new Mukai vector is −r′ = (v, w) = 2. �

Another implication of the construction above is the following.

Corollary 4.17. Assume that the reflection Re in the wall l(W) orthogonal to the vector e ∈ NS(M)

lies in Mon2
Hdg(M) and acts non-trivially on AM. Then, up to replacing S by a twisted Fourier–

Mukai partner (S′, α), Re is the reflection in the vertical wall. In particular, for a birational
involution g ∈ Bir(M) with g∗ = Re ∈ O(H2(M,Z)), up to a derived equivalence g∗ is the reflection
in the vertical wall.

Proof. As we have seen in the proof of Theorem 1.3, an element Re ∈ Mon2
Hdg(M) lies either in Mon2

Bir(M)

or WExc. In the former case, e2 < 0 by Lemma 2.4. In the latter case, e2 < 0 by [26, Thm. 6.18]. By
Proposition 4.1, we have e2 = 2 − 2n, where dim M = v2 + 2 = 2n, in particular, v + e ∈ HW is an isotropic
class. Therefore, the construction applies and we can assume that W is the vertical wall. �

Remark 4.18. The contraction map π : M → M of Theorem 4.8 induced by the vertical wall is the
map to the Uhlenbeck compactification constructed by Li [23]; see [3, Section 8]. When r = 1, an
isometry given by applying a combination of exp (−kD) for some k ∈ Z and the reflection R(1,0,1)

reduces v to the case when v = (1, 0, 1−n), that is, M is birational to a Hilbert scheme of points.
In this case, the map π is nothing but the Hilbert–Chow morphism; see [4, Example 10.1].

5 Some Examples
5.1 Markman’s example redux
In this section, we revisit in the light of stability conditions the reflection maps discussed in §2.1. We
show that the reflection map Re associated to some particular e can be obtained as a reflection on the
vertical (flopping) wall in the halfplane of stability conditions.
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Let S be a K3 surface with Pic(S) = Z · H, H ample. Pick v = (r, 0, −s) with s ≥ r ≥ 1 and gcd(r, s) = 1.
Set M := MH(v). The image of the vertical wall in Stab†

(S) in H2(M,Z) = v⊥ is generated by e = (r, 0, s).
We see that v satisfies the conditions (∗), in particular, the reflection Re lies in Mon2(M). We consider
the same trichotomy as in §2.1.

• r = 1: In this case, M � S[1+s]. The wall is easily seen to be divisorial (of type Hilbert-Chow). Indeed,
the vector w = (1, 0, 0) is an isotropic vector satisfying (w, v) = 1. In particular, by Remark 4.18 the
contraction morphism induced on the wall is the Hilbert-Chow morphism S[1+s] → S(1+s).

• r = 2: In this case, the vector w = (0, 0, −1) gives (w, v) = 2. Hence by Theorem 4.10 the vertical
wall is divisorial (of type Li–Gieseker–Uhlenbeck), and by Remark 4.18 the contraction morphism
induced on the wall is the morphism onto the Uhlenbeck–Yau compactification of the moduli space
of H-slope stable vector bundles.

• r > 2: Since s > r, according to Proposition 4.15, the vertical wall is not divisorial. However, the class
w = (1, 0, 1) satisfies w2 = −2 and 0 < (w, v) ≤ (v, v)/2, hence W is a flopping wall. The birational
map M ��� M,F �→ F∨ (for F that is H-slope stable and locally free sheaf) induces the reflection Re

in cohomology.

5.2 Hilbert schemes
Let S be a K3 surface with Pic(S) = ZH, H2 = 2d, d > 1, and let M = S[n]. In this set-up, the authors in
[6] have given a precise description of Bir(M) for all values of n, d. In some cases, M admits a symplectic
birational involution σ acting non-trivially on AM. In these cases, σ ∗ acts as a reflection on H2(M,Z),
and hence by Corollary 4.17, up to replacing S by a Fourier-Mukai partner, this reflection is in fact the
reflection in the vertical wall. In what follows, we can construct in some cases an explicit isometry to
relate birationally the involution σ on M with Markman’s example described in §2.1 and in §5.1.

Pick any r > 3, set n = r2d − r + 1, so that M = S[n] = MH(v) with v = (1, 0, r(1 − rd)). Interestingly, in
this case, the vertical wall is divisorial. Nonetheless, by [6, Thm. 1.1] M admits a symplectic birational
involution σ and the line � ⊂ NS(M) generated by 2rdHM − 2dδ is fixed by σ , where HM = (0, H, 0) (a
polarization of M) and δ = (−1, 0, r(1 − rd)) (half the class of the big diagonal) generate NS(M). Consider
the isometry of H̃(S,Z) given by the composition

ϕ = exp(−H) ◦ −R(1,0,1) ◦ exp(−rH).

By direct computations, one can check that ϕ(v) = (r, 0, 1 − rd), so we obtain a birational map ϕ̃ : M ���
M′ := MH(r, 0, 1 − rd) by Theorem 2.1. Note that the image of the fixed line � in NS(M′) is generated by
(0, H, 0), so the action of the composition

ψ := ϕ̃ ◦ σ ◦ ϕ̃−1 (13)

induces an action on NS(M′) just as in Markman’s example described §2.1 and §5.1. By injectivity of the
map Bir(M′) → O(H2(M′,Z)), the birational map ψ is precisely given by M′ ��� M′, F �→ F∨.

Explicit geometric descriptions of the involutions classified in [6] are not easy to give (see [7]). It would
be interesting to give a geometric interpretation of σ ∈ Bir(S[n]) from Markman’s example using (13).

Remark 5.1. We should point out that this example is somewhat special: in view of [26, Rmk.
9.21], two moduli spaces MH(ri, 0, −si), i = 1, 2 with r1s1 = r2s2 are not birational in general.

As a matter of course, the example leads to the following
Question 5.2. Is S[n] birational to MH(r, 0, −s) with s > r > 2 whenever it admits a symplectic birational

involution?
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