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Abstract
Given a bounded constructible complex of sheavesF on a complex Abelian variety, we prove
an equality relating the cohomology jump loci ofF and its singular support. As an application,
we identify two subsets of the set of holomorphic 1-forms with zeros on a complex smooth
projective irregular variety X ; one from Green-Lazarsfeld’s cohomology jump loci and one
from the Kashiwara’s estimates for singular supports. This result is related to Kotschick’s
conjecture about the equivalence between the existence of nowhere vanishing global holo-
morphic 1-forms and the existence of a fibre bundle structure over the circle. Our results give a
conjecturally equivalent formulation using singular support, which is equivalent to a criterion
involving cohomology jump loci proposed by Schreieder. As another application, we reprove
a recent result proved by Schreieder and Yang; namely if X has simple Albanese variety and
admits a fibre bundle structure over the circle, then the Albanese morphism cohomologically
behaves like a smooth morphism with respect to integer coefficients. In a related direction,
we address the question whether the set of 1-forms that vanish somewhere is a finite union
of linear subspaces of H0(X ,�1

X ). We show that this is indeed the case for forms admitting
zero locus of codimension 1.
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1 Introduction

We study the topology of the Albanese map via constructible complexes on Abelian varieties.
The latter has been recently explored extensively by Schnell [33] using generalised Fourier–
Mukai tranforms and the language of holonomic D-modules. His results vastly extended
the foundational results in [1, 13, 14, 36] about cohomology jump loci of rank one local
systems, as well as their incarnations in the moduli of line bundles with connections or
rank 1 higgs bundles on smooth irregular projective varieties. In particular, Schnell proved
a structure theorem for cohomology jump loci for any bounded constructible complex of
sheaves on complex Abelian varieties. To state Schnell’s results, we first recall the definition
of cohomology jump loci.

Let Db
c (A) denote the category of bounded constructible complex of C-sheaves on a

complex Abelian variety A. Set Char0(A) := Hom(H1(A, Z), C
∗), which is the moduli

space of rank one C-local systems on A.

Definition 1.1 The i-th cohomology jump loci of F ∈ Db
c (A) is defined to be the set

V i (A,F) := {ρ ∈ Char0(A)|Hi (A,F ⊗ Cρ) �= 0},
where Cρ denotes the rank 1 local system associated to ρ ∈ Char0(A). Furthermore, we

write V(A,F) :=
⋃

i
V i (A,F).

Schnell’s structure theorem states that V i (A,F) is finite union of translated subtori of
Char0(A) [33]. In this paper,we prove an equality relating the cohomology jump lociV(A,F)

and the singular support of F on complex Abelian varieties. Moreover, we show that the
projection of the singular support ofF is linear, which is compatible with Schnell’s structure
theorem on cohomology jump loci, see Remark 1.3.

The (1, 0)-piece of the tangent space TCρ(Char0(A)) at a character ρ ∈ Char0(A) is
H0(A,�1

A). Let T (A,F) denote the union of the (1, 0)-part of the tangent space to the
irreducible components of the subvariety V(A,F).

Theorem 1.2 Let A be a complex Abelian variety. For anyF ∈ Db
c (A), we have the equality

π(SS(F)) = T (A,F), (1)

where SS(·) denotes the singular support (see Definition 2.7) of constructible complexes in
the cotangent space T ∗A � A × H0(A,�1

A) and π : T ∗A → H0(A,�1
A) is the natural

projection. In particular, π(SS(F)) is a finite union of linear subspaces of the vector space
H0(A,�1

A).

Remark 1.3 The linearity part of the theorem could also follow from the structure theorem
for V(A,F) proved by Schnell [33, Theorem 7.3], once the equality (1) is provided. Here
we give a direct proof of the linearity property of π(SS(F)) without using Schnell’s results
(see Proposition 3.2).

Remark 1.4 Due to Riemann-Hilbert correspondence, Theorem 1.2 also holds for regular
holonomic D-module complexes.

The key technique we use is to relate the two sides of the equality in Theorem 1.2 via the
Euler characteristic formula given by the Kashiwara index theorem (see Theorem 2.6). In
fact, Theorem 1.2 should be viewed as a modified version of Kashiwara index theorem on
complex Abelian varieties, since SS(F) records a piece of information about characteristic

123



Generic vanishing, 1-forms, and topology of Albanese maps Page 3 of 21 56

cycles ofF andV(A,F) records a piece of information about the Euler characteristic number
of F .

As an application of Theorem 1.2, we have the following result proved recently by
Schreieder and Yang [35, Corollary 3.4]. This prompted us to prove Theorem 1.2 in arbitrary
characteristics for simple abelian varieties (see Proposition 3.7) and obtain their result as a
corollary. We thank the referee for encouraging us to generalize our main theorem in this
direction.

Corollary 1.5 Let f : X → A be a morphism from a smooth complex projective variety to a
simple Abelian variety. If there exists a C∞-fibre bundle structure pX : X → S1 such that
p∗
X (dθ) ∈ f ∗H1(A, R), where θ is a coordinate of the circle, then f is a Z-homology fiber

bundle. Moreover, for any algebraically closed field coefficient K, π(SS(R f∗KX )) = {0}.
Remark 1.6 When the assumption on the simplicity of A is dropped in the Corollary above,
our theorem more generally gives information on the topological structure of SS(R f∗CX ).
See Corollary 3.8 for more details.

As another application of Theorem 1.2, we have the following

Theorem 1.7 Let X be a smooth projective variety with a : X → AX its Albanese morphism.
Under the linear isomorphism H0(X ,�1

X ) ∼= H0(AX ,�1
AX

) one can identify
⋃

τ

π(SS(R(a ◦ τ)∗CX ′)) =
⋃

τ

{ω ∈ H0(X ,�1
X )|(H•(X ′, C),∧τ ∗ω) is not exact}, (2)

where both unions are running over all possible finite étale cover τ : X ′ → X.

The study of the above theorem ismotivated by the following conjecture, which was posed
by Kotschick [23, Question 15] and Schreieder [34].

Conjecture 1.8 Let X be a smooth complex projective variety. Then the following three state-
ments are equivalent:

(1) X admits a global holomorphic 1-form without zeros.
(2) X admits a C∞ real closed 1-form which has no zeros, or equivalently X admits a

C∞-fibre bundle structure over the circle [38, Theorem 1].
(3) There exists ω ∈ H0(X ,�1

X ) such that for all finite étale morphism τ : X ′ → X, the
complex (H•(X ′, C),∧τ ∗ω) is exact.

Theorem 1.7 then gives the fourth criterion, which is equivalent to (3) in Conjecture 1.8:

(4) There exists ω ∈ H0(X ,�1
X )\⋃

τ π(SS(R(a ◦ τ)∗CX ′)).

Remark 1.9 All the 1-forms involved in Theorem 1.7 are contained in W (X), the collection
of holomorphic one forms on X with zeros. By a result of Green and Lazarsfeld [14] we
know that the set on the right side of (2) is contained in W (X). On the other hand, it follows
from Kashiwara’s estimate (see Theorem 2.8) that the left side is also contained in W (X).
Hence we pose the following question: Is it true that

⋃

τ

π(SS(R(a ◦ τ)∗CX ′)) =
⋃

L

π(SS(Ra∗L)) = W (X)? (3)

Here · denotes the Zariski closure and the second union is running over all possible local
systems L on X .
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The answer is yes for varieties of dimension less than or equal to 3. In this situation, in
fact, using Theorem 1.7, [34, Corollary 3.1] and [16, Theorem 1.4] we have

⋃

ν

π(SS(R(a ◦ ν)∗CX ′)) = W (X),

with the union running over all possible finite Abelian étale covers ν : X ′ → X .

1.1 linearity of 1-forms admitting zeros

By Theorem 1.2, π(SS(R(a ◦ τ)∗CX ′)) is a linear subspace of the vector space H0(X ,�1
X ).

From the point of view of Theorem 1.7 and Remark 1.9, one may wonder whether the set
W (X) is also a finite union of vector subspaces of H0(X ,�1

X ). Such a statement is true for
the set of global holomorphic tangent vector fields with zeros due to the work of Carrell and
Lieberman [5].

More specifically, consider

Wi (X) = {ω ∈ H0(X ,�1
X ) | codimX Z(ω) ≤ i},

where Z(ω) is the zero set of ω. Green and Lazarsfeld showed [13] that Wi (X) contains the
(1, 0)-piece of the tangent cone of the cohomology jump loci of X up to degree i . Note that
the cohomology jump loci of X are finite union of torsion translated sub-tori. We ask the
following

Question 1.10 Are Wi (X) linear for every degree i , i.e. a finite union of vector subspaces of
the vector space H0(X ,�1

X )?

We answer the question positively for W 1(X).

Theorem 1.11 (see Theorem 4.4) Let X be a smooth projective variety of dimension n. Then
W 1(X) is linear.

This follows from a result of Spurr [37, Theorem 2]; whenever a 1-form ω vanish along a
divisor E , one has either E is rigid in the sense that E2 · Hn−2 < 0 with respect to some
polarisation H on X , or ω comes from a curve. We generalise this statement in the setting of
a pair (see Theorem 5.1) and prove the linearity statement for logarithmic 1-forms admitting
codimension one zeros.

Theorem 1.12 (see Theorem 4.7) Let (X , D) be a pair with X a smooth projective variety
and D a simple normal crossing divisor of X. Then the following set is linear

W 1(X , D) := {ω ∈ H0(X ,�1
X (log D)) | codimX Z(ω) ≤ 1}.

Convention

In this paper, all complex of sheaves and perverse sheaves are defined with complex coeffi-
cients except in Sects. 2.2 and 3.2. All the varieties are complex quasi-projective varieties.
Unless specified otherwise by 1-forms on a smooth projective variety, we mean global holo-
morphic 1-forms.
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2 Preliminaries

2.1 1-forms and associated local systems

The results in this subsection should be well known to the experts and we include it here due
to the lack of references.

Let X be a smooth projective variety. Consider the identity component of the character
variety Char(X) := Hom(H1(X , Z), C

∗) given by

Char0(X) := Hom(H1(X , Z)/ torsion, C
∗).

The i-th cohomology jump loci V i (X ,F) ⊂ Char0(X) for F ∈ Db
c (X) is defined in a

similar way as in Definition 1.1. As in the introduction V(X ,F) = ⋃
i V i (X ,F). The

corresponding tangent cone T (X ,F) ⊂ H0(X ,�1
X ) is also defined similarly as was done

before Theorem 1.2. More precisely,

T (X ,F) := H0(X ,�1
X ) ∩ ( ⋃

ρ

TCρV(X ,F)
)
,

where the union is running over representative points from irreducible components of
V(X ,F) and TCρV(X ,F) ⊆ H1(X , C) denotes the tangent cone at ρ. When F = CX ,
we simply write T (X) := T (X , CX ).

Given a 1-formω ∈ H0(X ,�1
X ), the kernel L(ω) ofOX

d+∧ω−→ �1
X is a rank 1 local system

resolved by the de Rham complex (see the proof of [34, Lemma 2.2])

K•(ω) := [OX
d+∧ω−→ �1

X −→ · · · d+∧ω−→ �n−1
X

d+∧ω−→ �n
X ], (4)

and hence Hk(X , L(ω)) = H
k(X , (�•

X , d + ∧ω)). What’s more, the corresponding line
bundle Lω := L(ω) ⊗C OX is isomorphic to OX . Hence we have the following short exact
sequence

0 → H0(X ,�1
X ) → Char0(X) → Pic0(X) → 0, (5)

ω �→ L(ω); L �→ L ⊗C OX ,

In order to obtain a Kodaira–Nakano-type vanishing theorem for degree zero line bundles
Green–Lazarsfeld [13] considered the following spectral sequence associated to the complex
(4)

E p,q
1 (ω) := H p(X ,�

q
X ) ⇒ H

p+q(X , (�•
X , d + ∧ω)),

with differential d1 = ∧ω : E p,q
1 (ω) → E p,q+1

1 (ω) induced by d + ∧ω in complex (4).
Using this spectral sequence, [13, Proposition 3.4] shows that if there is a holomorphic 1-form
ω whose zero locus Z(ω) has codimension ≥ k, then the sequence

· · · −→ H p(X ,�q−1)
∧ω−→ H p(X ,�

q
X )

∧ω−→ H p(X ,�
q+1
X ) −→ · · ·

is exact for all p + q < k. Putting these together by the Hodge decomposition for Hi (X , C)

we get

(H•(X , C),∧ω) := [. . . → Hi−1(X , C)
∧ω−→ Hi (X , C)

∧ω−→ Hi+1(X , C) → . . .] (6)

is exact for all i < k. This prompts the following
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Definition 2.1 (Holomorphic resonant varieties) The k-th holomorphic resonant variety of
X is defined as

Rk(X) := {ω ∈ H0(X ,�1
X ) | Hk(H•(X , C),∧ω) �= 0}

and we setR(X) = ⋃
k Rk(X). We will refer to the sequence (H•(X , C),∧ω) above as the

resonance sequence.

More generally, both K•(ω) and Rk(X) can be twisted by unitary local systems. Recall
that the space of unitary local systems is defined to be

Char0(X)u := Hom(H1(X , Z)/ torsion,U (1)).

For any unitary character η ∈ Char0(X)u , the corresponding local system Cη corresponds
to a degree 0 line bundle Lη := Cη ⊗C OX . In fact, this gives a one-to-one correspondence
between Char0(X)u and Pic0(X).

Definition 2.2 (Generalised holomorphic resonant variety) Given a local system Cη associ-
ated to a unitary character η, the k-th generalised holomorphic resonant variety associated to
η is defined as

Rk(X , Cη) := {ω ∈ H0(X ,�1
X )|Hk(H•(X , Cη),∧ω) �= 0}

Also, we set1

Rdol(X) :=
⋃

k,η unitary

Rk(X , Cη).

As noted in the introduction, another way to understandRdol(X) is via the tangent cone of
the cohomology jump loci V(X). We have the following lemma due to [13, Proposition 3.7,
Remark on p. 404], which directly generalises the so-called tangent-cone equality

H0(X ,�1
X ) ∩ TC1V(X , CX ) = R(X). (7)

Lemma 2.3 With the notation as above, we have

H0(X ,�1
X ) ∩ TCη(Vk(X , CX )) = Rk(X , Cη).

Remark 2.4 A more precise version of the above lemma for anti-holomorphic 1-forms can
be found in [3, Theorem 1.3] due to Budur-Wang.

The following corollary follows directly from Lemma 2.3.

Corollary 2.5 Let X be a smooth projective variety. Then we have T (X) = Rdol(X).

2.2 Constructible complexes of sheaves and perverse sheaves

Let Db
c (X) denote the derived category of bounded constructible complex of sheaves on X

with coefficients in a field K. Perverse sheaves on X are, roughly speaking, a generalisation
of local systems, i.e. locally constant sheaves. We refer the readers to [17, Chapter 8] and [6,
Sect. 5] for definitions and a comprehensive background on this topic.

1 Here we only write ∧ω in (H•(X , Cη), ∧ω), since d acts trivially on H•(X , Cη).
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Given F ∈ Db
c (X), its characteristic cycle CC(F) is a finite Z-linear combination of

irreducible conic Lagrangian cycles T ∗
Z X : = T ∗

Z reg
i
X in T ∗X over certain irreducible closed

subvarieties Zi ⊆ X

CC(F) =
∑

i

nZi T
∗
Zi X .

Here T ∗
Z reg
i
X is the conormal bundle of the regular locus Z reg

i of Zi in X . For the definition

when F ∈ Db
c (X , K), for a field K in any characteristic, see e.g. [29, Definition 3.34].

The Euler characteristic of F satisfy the following Kashiwara’s index theorem, see [19]
for complex coefficients and also [29, Theorem 3.38, Example 3.39, 3.40] for any field
coefficients.

Theorem 2.6 For F ∈ Db
c (X) on a smooth projective variety X, we have

χ(X ,F) = CC(F) · T ∗
X X =

∑

i

nZi (T
∗
Zi X · T ∗

X X)

where the dot denotes intersections of cycles in the complex manifold T ∗X.
When F happens to be a perverse sheaf P on X , nZi ≥ 0 (see [6, Corollary 5.2.24] or

[29, Definition 3.34] for any characteristic) and its singular support of P is defined as

SS(P) :=
⋃

nZi >0

T ∗
Zi X .

Then we define the singular support of the bounded complex of constructible sheaves as
follows.

Definition 2.7 For a constructible complexF ∈ Db
c (X) and any integer i , the singular support

of F is defined as

SS(F) :=
⋃

i

SS(pHi (F)),

where pHi (F) is the i-th perverse cohomogy of F .

Similar definition has also been used in [21, Exercise X.6] and [17, p. 373].
Given f : X → A a morphism from s smooth projective variety X to an Abelian variety

A, Kashiwara’s estimate for the behaviour of the singular support produces a breeding ground
for 1-forms with zeros. This estimate was exploited in [30] to show that all 1-forms admit
zeros on smooth projective varieties of general type. We recall it in our current framework.
Up to our knowledge, Kashiwara’s estimate are only proved for complex coefficients.

Theorem 2.8 (Kashiwara’s estimate [20, Theorem 4.2]) Given f : X → A, consider the
following commutative diagram

T ∗X f ∗T ∗A T ∗A H0(A,�1
A)

X A

f ×idd f π

f

(8)

Then for any complex local system L on X

SS(R f∗L) ⊆ ( f × id)(d f −1(0X )),

where 0X denotes the zero section T ∗
X X of T ∗X.
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Note that π( f × id)(d f −1(0X )) = W (X) ∩ H0(A,�1
A) under a suitable identification.

We use this result frequently as follows:

π(SS(R f∗L)) ⊆ W (X) ∩ H0(A,�1
A) (9)

Finally we recall some special properties exhibited by the cohomology jump loci of
perverse sheaves on Abelian varieties.

Theorem 2.9 ([27, Theorem 4.3, Corollary 1.3, Corollary 4.8], [11, Corollary 1.4]) Let P be
a perverse sheaf with coefficients in fields of any characteristic on a complex Abelian variety
A with dim A = g. The cohomology jump loci of P satisfy the following

(1) Propagation property:

V−g(A,P) ⊆ · · · ⊆ V−1(A,P) ⊆ V0(A,P) ⊇ V1(A,P) ⊇ · · · ⊇ Vg(A,P).

Furthermore, V i (A,P) = ∅, if i /∈ [−g, g].
(2) Signed Euler characteristic property: χ(A,P) ≥ 0. Moreover, the equality holds if and

only if V0(A,P) �= Char(A).
(3) For a general ρ ∈ Char0(A), Hi (A,P ⊗ Lρ) = 0 for all i �= 0, where Lρ is the rank 1

local system associated to ρ.

The Statement (3) in positive characteristic above is originally due to [2, Theorem 1.1].

3 Constructible complex of sheaves on Abelian varieties

3.1 Linearity and comparison

In this subsection, we prove that the set of 1-forms supported on the conormal sheaf of a
subvariety of an Abelian variety is linear. As a consequence we obtain that the set of 1-forms
associated to the singular support of any constructible complex F is linear. All constructible
sheaves and complexes considered in this subsection are over the complex number.

Proposition 3.1 Let A be an Abelian variety. For any F ∈ Db
c (A), π(SS(F)) is linear in

H0(A,�1
A).

This proposition directly follows from the following

Proposition 3.2 Let A be an Abelian variety and Z be a proper irreducible subvariety of A.
Then the following are equivalent

(1) Z is not fibred by tori and dim Z > 0.
(2) General holomorphic 1-form ω ∈ H0(A,�1

A) restricted to Z reg, i.e. ω|Z reg admits iso-
lated zeros on the smooth locus Z reg.

In particular, let B ⊆ A be the largest (in dimensional sense) Abelian subvariety such that Z
is fibred by B, we have π(T ∗

Z A) = H0(C,�1
C ) identified as a vector subspace of the vector

space H0(A,�1
A). Here C denotes the quotient Abelian variety A/B.

Remark 3.3 When Z is smooth, this result is well-known (see e.g. [25, Proposition 6.3.10.]
when A is simple; it follows from [30] when A is not simple). Hacon and Kovács showed
this under the additional assumption that A is simple [15, Proposition 3.1]. In fact, our proof
follows from a close inspection of Hacon and Kovács’ argument. After this draft was written
we also noticed that the result is stated in the preprint [40, Theorem 1] with a different
argument.
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Proof of Proposition 3.2 (2)⇒ (1): Suppose Z is fibred by a Abelian subvariety B and
dim Z > 0. Let C := A/B and Y = ϕ(Z) under the projection ϕ : A → C . Consider-
ing the isogeny τ : B × C → A, we obtain τ−1(Z) = B × Y . Then the non-trivial 1-forms
coming from B do not vanish on the smooth locus of τ−1(Z), hence general 1-forms on A
do not vanish on the smooth locus of Z , which contradicts the assumption (2).

(1)⇒(2): Denote d = dim Z and g = dim A. If d = 0 it is trivial, so we assume d > 0.
Let N be the normal bundle of Z reg in A. Associated to the surjection

TA|Z reg →→ N ,

there is the following chain of maps

ϕ := (P(N ) → Z reg × P(T0A) → P(T0A) = P
g−1).

It suffices to show that ϕ is dominant. Denote by p : P(N ) → Z reg the projective bundle
map. Given a point s ∈ S := ϕ(P(N )), we can associate a hyperplane Hs ⊂ T0A. Then p
induces an isomorphism

p : ϕ−1(s)
∼→ {z ∈ Z reg|Tz Z reg ⊂ Hs}. (10)

If dim S < g − 1, for general s ∈ S, Zs := p(ϕ−1(s)) has dimension g − 1 − dim S. Let B
denote the Abelian subvariety generated by Zs in A. Note that B does not depend on general
s, since A only contains countably many Abelian subvarieties. Also, dim B > g−1−dim S.
Indeed, (1) implies that Zs cannot itself be an Abelian variety. By (10), Hs ⊃ T0B for general
s ∈ S. Thus dim T0B ≤ g−1−dim S, which gives the contradiction. Hence ϕ is quasi-finite
dominant morphism.

For the second part, if Z is not fibred by tori, π(T ∗
Z A) = H0(A,�1

A). When Z is fibred by
some tori B, letC and ϕ : A → C be as in the beginning of the proof. Let ϕ∗ : H0(C,�1

C ) →
H0(A,�1

A) be the induced injective morphism. We have

π(T ∗
Z A) = ϕ∗(H0(C,�1

C )).

Hence π(T ∗
Z A) is linear.

Proof of Proposition 3.1 The claim follows from Proposition 3.2 since SS(F) is a finite union
of conormal sheaves along various subvarieties of A.

A consequence of the proposition above is the following

Corollary 3.4 If X admits a finitemorphism f : X → A to its image, thenW (X)∩H0(A,�1
A)

(under suitable identification induced by f ) is linear. In particular, if the Albanese morphism
is finite to its image, then W (X) is linear.

Proof By [26, Proposition 3.9 (2)] and [32, Proposition 3.3], ( f × id)(d f −1(0X )) in the dia-
gram (8) is Lagrangian, i.e. it is a finite union of conormal sheaves along various subvarieties
of A. Then the corollary follows from Proposition 3.2.

Proof of Theorem 1.2 The proof is divided into 2 steps.
Step 1:We first prove the case where F = P is a perverse sheaf on A.
Note that for a short exact sequences of perverse sheaves on A

0 → P ′ → P → P ′′ → 0,

we have V(A,P) = V(A,P ′) ∪ V(A,P ′′) and SS(P) = SS(P ′) ∪ SS(P ′′). Since perverse
sheaves admit Jordan–Holder type filtration with simple perverse sheaves as quotients, it is
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enough to deal with the case of simple perverse sheaves. From now on let us assume that P
is a simple perverse sheaf on A. First note that by the propagation property in Theorem 2.9
(1), we have V(A,P) = V0(A,P). According to Theorem 2.9 (2), the argument can be split
in two cases:

Case I: χ(A,P) > 0. In this case Theorem 2.9 (2) shows that V0(A,P) = Char(A),
hence T (A,P) = H0(A,�1

A). On the other hand by the Kashiwara index Theorem 2.6 we
have

χ(A,P) = CC(P) · T ∗
A A.

Note that if Z ⊂ A is fibred by an Abelian subvariety, (T ∗
Z A · T ∗

A A) = 0. Therefore, SS(P)

must contain a subvariety Z ⊂ A such that Z is not fibred by tori. By Proposition 3.2, we
conclude that π(T ∗

Z A) = H0(A,�1
A) and the desired equality follows.

Case II: χ(A,P) = 0. As in [41, Main Theorem and Lemma 6] we have

P ⊗ Cρ � ϕ∗PC [dim A − dimC]
with notations from before. Since χ(C,PC ) > 0, by Kashiwara’s index theorem (see also
Lemma 3.6 in v3 of this article on arXiv) there exists a component T ∗

Z A ⊂ SS(P) such that
ϕ(Z) ⊂ C is not fibred by tori. Since P and P ⊗ Cρ have the same singular support, by
Proposition 3.2 we conclude that

π(SS(P)) = ϕ∗H0(C,�1
C ). (11)

From Case I above we have

T (C,PC ) = H0(C,�1
C ).

On the other hand, it follows from [27, Theorem 5.5] that

V0(A,P) = ρ−1 · ϕ∗(V0(C,PC )) (12)

where ϕ∗ : Char(C) → Char(A) is given by the induced representation. Putting (11) and
(12) together, the desired equality follows.

Step 2: In general for any F ∈ Db
c (A), [27, Proposition 6.11] shows that

V(A,F) =
⋃

i

V0(A, pHi (F)),

where pHi (F) is the i-th perverse cohomology of F . On the other hand, SS(F) =⋃
i SS(pHi (F)) by Definition 2.7. Then the claim follows.

We are now ready to prove Theorem 1.7. Let us first introduce a general version for any
morphism f : X → A from a smooth projective variety X to an Abelian variety A. Let

Rdol(X , f ) :=
⋃

η∈Char(A)u

{ω ∈ H0(A,�1
A)|(H•(X , f ∗

Cη),∧ f ∗ω) not exact},

Theorem 3.5 With the above hypothesis and notations, we have

π(SS(R f∗CX )) = T (A, R f∗CX ) = Rdol(X , f ),

which is a finite union of vector subspaces of H0(A,�1
A).

Proof The first equality follows from Theorem 1.2. The second equality follows from Propo-
sition 2.3. Finally the statement about linearity follows from Proposition 3.1.
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Proof of Theorem 1.7 Given any finite étale cover τ : X ′ → X , by Theorem 1.2 we have

π(SS(R(a ◦ τ)∗CX )) = T (AX , R(a ◦ τ)∗CX ).

Given any such finite étale cover τ : X ′ → X , by the lemma below there exists a finite
étale cover σ : X̃ ′ → X ′ such that

T (AX , R(a ◦ τ)∗CX ) = {ω ∈ V |(H•(X̃ ′, C),∧(σ ◦ τ)∗ω) is not exact} (13)

Then the claim follows by taking unions over all possible finite étale covers on both sides.

Lemma 3.6 Consider f : X → A to be a morphism from a smooth projective variety X to
an Abelian variety A. Then there exists a finite étale Abelian cover σ : X̃ → X such that

T (AX , R f∗CX ) = {ω ∈ H0(A,�1
A)|(H•(X̃ , C),∧( f ◦ σ)∗ω) is not exact}

Proof Recall that V(A, R f∗CX ) has finitely many irreducible components, say {S1, · · · , Sk}
and every irreducible component Si is a torsion translated subtori ofChar0(A) [33]. Then there
exists a finite Abelian cover σ : X̃ → X such that

⊕
i, j f ∗

C
ρ
j
i

= Rσ∗CX̃ for i = 1, · · · , k

and finitely many powers j for each ρi .
Now, for any ρ ∈ Char0(X), by the projection formula we have

H∗(X̃ , σ ∗
Cρ) ∼= H∗(A, Rσ∗CX̃ ⊗ Cρ). (14)

In particular, every component ρ−1
i · Si contains the constant sheaf CA. Furthermore, for any

j we have V(R f∗CX ⊗ Cρ) = ρ1− j · V(R f∗CX ⊗ Cρ j ). Hence

T (A, R f∗CX ) = TC1V(A, R( f ◦ σ)∗CX̃ )).

Then the claim follows by the tangent-cone equality (7).

3.2 Proof of Corollary 1.5

So far all the results in this section are about bounded constructible complexes of sheaves
with complex coefficients. In this subsection, we prove when A is a simple Abelian variety
Theorem 1.2 holds for any algebraic closed field coefficients. As most of the definitions and
tools used in the proof of Theorem 1.2 works over K (see Sect. 2.2), the main difference
here is in how we reduce the argument (see Step 2) from bounded complexes of constructible
sheaves to perverse sheaves. In characteristic 0, we resorted to [28] for this.

Proposition 3.7 Fix any algebraically closed field K. Let F be a bounded constructible
complex of sheaves with field coefficients K on a complex simple Abelian variety A. Then we
have

• either V(A,F) = Char0(A, K) and π(SS(F)) = H0(A,�1
A) = T (A,F)

• or V(A,F) �= Char0(A, K) and π(SS(F)) = {0} = T (A,F).

Here Char0(A, K) = Hom(H1(A, Z), K
∗) is the moduli space of rank one K-local system

on A.

Proof The proof is divided into 2 steps.
Step 1:Wefirst prove the casewhereF = P is a perverse sheaf on A. Note thatV(A,P) =

V0(A,P) due to the propagation property, see e.g. [27, Theorem 4.7]. Since A is simple,
then there are two possibilities as follows
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• Either V0(A,P) = Char0(A, K) and T (A,P) = H0(A,�1
A).

In this case, by Theorem 2.9(3) we know that χ(A,P) �= 0. Hence, by the Kashiwara
index Theorem 2.6 we have

χ(A,P) = CC(P) · T ∗
A A �= 0.

Therefore, SS(P) must contain a subvariety Z ⊂ A such that Z is not fibred by tori. By
Proposition 3.2, we conclude that π(T ∗

Z A) = H0(A,�1
A) and the claim follows.

• Or, V0(A,P) �= Char0(A, K) and hence χ(A,P) = 0. By [24, Proposition 10.1] (the
proof for simple abelian varieties works over any characteristic; alternatively see the
arxiv version 1 of [28]), P is a shifted local system. Since K is algebraically closed, any
K-local system on A is a extensions of rank one local systems. Hence V(A,P) are just
finitely many points in this case and T (A,P) = {0}.
On the other hand, since P is a shifted local system we have that SS(P) = T ∗

A A, hence
π(T ∗

A A) = {0}.
Step 2: More generally for any bounded complex of constructible sheaves F and any

rank one K-local system L ∈ Char0(A, K), we consider the perverse cohomology spectral
sequence

Ei, j
2 = Hi (A, pH j (F) ⊗K L) ⇒ Hi+ j (A,F ⊗K L).

Observe that
⋃

j V0(A,p H j (F)) ⊇ V(A,F).

Since pH j (F) are perverse sheaves, with Step 1 at our disposal we proceed as follows:

• Either V(A,F) = Char0(A, K). In this case, V0(A,p H j (F)) = Char0(A, K) for some
j . Then π(SS(pH j (F))) = H0(A,�1

A), and hence π(SS(F)) = H0(A,�1
A) by defini-

tion.
• Or V(A,F) �= Char0(A, K). In this case, we claim that V0(A,p H j (F)) �= Char0(A, K)

for all j . Indeed, by choosing L ∈ Char0(A, K) generically, by Theorem 2.9 (3) we have
Hi (A, pH j (F) ⊗K L) = 0 for any i �= 0. So the spectral sequence degenerates at the
second page. It shows that H j (A,F ⊗K L) �= 0 for generic L ∈ Char0(A, K), giving
V(A,F) = Char0(A, K), a contradiction.
Then by Step 1,π(SS(pH j (F))) = {0}, and henceπ(SS(F)) = {0} by definition. On the
other hand, we claim that in this case, in fact, one has V(A,F) = ⋃

j V0(A,p H j (F)).

To see this, for any L ∈ ⋃
j V0(A,p H j (F)), let j ′ be the lowest degree such that

L ∈ V0(A,p H j ′(F)). Set dimC A = d . Since pH j (F) is a local system, it must be that
pH j ′(F) ⊗K L[−d] contains the constant sheaf as a sub-local system. In particular,

E−d, j ′
2 = H−d(A,p H j ′(F) ⊗K L) �= 0.

Meanwhile, for any i < −d , because of [27, Theorem 4.7(i)], or for any j < j ′, because
of the choice of j ′ and the propagation property in Theorem 2.9 (1), we have Ei, j

2 = 0.
Therefore, the above spectral sequence satisfies

E−d, j ′∞ = E−d, j ′
2 �= 0.

Hence H−d+ j ′(A,F ⊗K L) �= 0 and L ∈ V(A,F). Now F being non-zero implies that
V(A,F) are just finitely many points. The claim follows.

Now we are ready to prove Corollary 1.5.

123



Generic vanishing, 1-forms, and topology of Albanese maps Page 13 of 21 56

Proof of Corollary 1.5 Following the proof of [35, Proposition 3.1], up to perturbing p∗
X (dθ)

slightly and multiplying by a suitable integer, we reduce to the case where p∗
X (dθ) ∈

f ∗H1(A, Z).
As observed in the proof of [35, Lemma 3.3], we only need to prove thatR f∗KX is locally

constant for any algebraically closed field K. Then it follows from Qin–Wang’s result [31,
Proposition 5.4] (see also [35, Proposition 3.1]) that χ(A, pH j

R f∗KX ) = 0 or equivalently
V0(A, pH j

R f∗KX ) �= Char0(A,L) for any j . Their proof is based on the observation that the
eigenvalues on the cohomology of the fibers induced by the monodromy action of the circle
bundle is a finite set. Since A is simple, Proposition 3.7 implies that π(SS(R f∗KX )) = {0}
and hence pH j

R f∗KX [− j] = R j f∗KX are local systems for all j .

When A is not necessarily simple, assuming K = C we prove a slightly stronger version.

Corollary 3.8 With the same assumptions and notations as in Corollary 1.5, without the
simplicity of A, one has for every irreducible component T ∗

Z A of SS(R f∗CX ) the sub-variety
Z is not of general type.

Proof Assume that there exists an irreducible component T ∗
Z A of SS(R f∗CX ), where Z is

of general type. By [39, Theorem 3.10], Z is not fibred by any sub-Abelian variety of A.
Hence π(T ∗

Z A) = H0(A,�1
A) by Proposition 3.2. In particular, Theorem 1.7 implies that

V(A, R f∗CX ) = Char0(A, C). On the other hand, the same proof as in Corollary 1.5 shows
that one can find rank one C-local system Cρ on A such that

H∗(A, R f∗CX ⊗ Cρ) = 0

for all degrees. Hence V(A, R f∗CX ) �= Char0(A, C), which gives a contradiction.

4 (Logarithmic) 1-forms with codimension one zeros

4.1 Arapura’s result about cohomology jump loci

Let X be a smooth projective varietywith a simple normal crossing divisor D. SetU = X−D.
Note that the space of logarithmic 1-forms H0(X ,�1

X (log D)) does not depend on the choice
of the good compactification of U . Similar to the projective case, one can define [4]

Wi (X , D) := {ω ∈ H0(X ,�1
X (log D)) | codimX Z(ω) ≤ i}.

where Z(ω) is the zero locus of ω. By Chevalley’s upper-semicontinuity theorem,Wi (X , D)

are all algebraic sets.
Define2

1(U ) := {ρ ∈ Char(U ) | H1(U , Cρ) �= 0}.
Arapura’s work gives a geometric interpretation of the set 1(U ). We briefly outline it here.
An algebraic morphism f : U → C from U to a smooth curve C is called an orbifold map,
if f is surjective, has connected generic fibre, and one of the following condition holds:

• χ(C) < 0
• χ(C) = 0 and f has at least one multiple fibre.

2 Compare this notion to V i (U , CU ). In this section we will use Char(U ) instead of Char0(U ). Note that
when H1(U , Z) has no torsion, i (U ) = V i (U , CU ).
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Roughly speaking, Arapura [1] (also see [7, Corollary 5.4, Corollary 5.8]) showed that every
positive dimensional component of 1(U ) arises from some orbifold map. More precisely,
an orbifold map induces an injection: f ∗ : H1(C, C) → H1(U , C). Arapura’s work implies
that

⋃

ρ

TCρ1(U ) =
⋃

f

Im f ∗,

where the first union is running over representative points from irreducible components of
1(U ), TCρ1(U ) ⊆ H1(U , C) denotes the tangent cone at ρ, and the second union runs
over all possible orbifold maps forU . In particular, there are at most finitely many equivalent
orbifold maps for a fixed U [1, Theorem 1.6]. So the second union is indeed a finite union.
We define

T 1
(U ) := H0(X ,�1

X (log D)) ∩ ( ⋃

ρ

TCρ1(U )
) = H0(X ,�1

X (log D)) ∩ ( ⋃

f

Im f ∗).

In particular, T 1
(U ) is a finite union of vector subspaces.

Remark 4.1 (1) Consider the following construction given in [9, Example 1.11], which shows
that T 1

(X) indeed captures more information than T 1(X) in general.
Let C1 be a higher genus curve that admits a degree 2 finite morphism to an elliptic curve

E , and letC2 be an elliptic curve. Consider σ1 to be the involution action such thatC1/σ1 � E
and σ2 induces an isogeny C2 → C2/σ2. Then their example is given by X := C1 ×C2/ ∼,
where the ∼ is a diagonal action induced by σ1 and σ2. In this case, one can compute that

T 1(X) = Rdol(X) = {0}
but one can check that W (X) = f ∗H0(E,�1

E ) for the natural map f : X → E and

T 1
(X) = T 1(AX , (a ◦ τ)∗CX ′) = H0(E,�1

E ),

where τ is the étale covering X ′ := C1 × C2 → X .
(2) In general, one should not expect T 1

(X) = W 1(X). For instance, let X be a complex
Abelian surface and Y be the blowup of X along a point. Then we take Z to be the blowup
of Y along a point in the exceptional divisor. Then T 1

(X) = T 1
(Z), but W 1(X) � W 1(Z).

4.2 Projective case

The observation of Arapura discussed above allows us to turn the piece of W 1(X) that
traditionally arised from cohomology jump loci into a set arising out of orbifold maps. In
fact we will see in Theorem 4.4 that holomorphic 1-form in W 1(X)\T 1

(X) vanishes along
some negative divisors. See Theorem 4.7 for its quasi-projective incarnation.

Definition 4.2 Let X be a smooth projective variety of dimension n with a fixed ample line
bundle H and an integral divisor E on X . We say that E is H -negative if E2 · Hn−2 < 0,
where

E2 · Hn−2 =
∫

X
c21(E) ∧ cn−2

1 (H).

Similarly, E is called H -trivial if E2 · Hn−2 = 0.

We need the following a more precise version of [37, Theorem 2].
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Lemma 4.3 Let E be an integral divisor in X. Suppose there exists a holomorphic 1-form ω

such that E ⊆ Z(ω). Then the following statements are true:
(1) When E is H-trivial, there exists an orbifold map f : X → C such that ω = f ∗η for

some η ∈ H0(C,�1
C ) and E is the only component of the fibre of f containing E.

(2) the sign of the intersection number E2 · Hn−2does not depend on the choice H.

Proof For (1), by [37, Theorem 2], we only need to show that E is the unique component
in the fibre containing it. To this end, let E ′ be the union of components not supported on E
in the scheme-theoretic fibre containing E and let aE + E ′ denote the fibre class for some
positive integer a. Since f has connected fibres, E ·E ′ ·Hn−2 > 0. On the other hand since E ′
is contained in a fibre, we have (aE+E ′) ·E ′ ·Hn−2 = 0. Then from (aE+E ′)2 ·Hn−2 = 0,
we get E2 · Hn−2 < 0, which is a contradiction.

To see (2), note that if for any ample class H , E is H -nonnegative, i.e., E2 · Hn−2 ≥ 0,
by [37, Theorem 2] it must be H -trivial and then by (1), we know that E is the unique
component of the fibre of f . Therefore for any other ample class H ′, E must be H ′-trivial.
As a consequence, if E is H -negative, it is H ′-negative for any other ample class H ′.
We denote

Wneg(X) := {ω ∈ H0(X ,�1
X ) |∃ some negative integral divisor E such that E ⊂ Z(ω)}.

Then we have the following result.

Theorem 4.4 Let X be a smooth projective variety of dimenison n. With the above notations,
we have

W 1(X) = T 1
(X) ∪ Wneg(X).

In particular, W 1(X) is linear.

Remark 4.5 (1) Theorem 4.4 complements the result of Green–Lazarsfeld [13] which ensures
the linearity of T 1

(X) ⊂ W 1(X). As noted in Remark 4.1 (2) this is often a proper subset.
(2) The two pieces T 1

(X) and Wneg(X) may overlap. For example let f : S → C be a
morphism from a smooth projective surface S to a smooth projective curve C with genus
g(C) ≥ 2. Take a 1-formω ∈ H0(C,�1

C )which has a zero at p ∈ C . Let X be the blow-up of
S along a point in f −1(p). The exceptional curve E has negative self-intersection. Consider
the natural morphism f ′ : X → C , then ( f ′)∗ω ∈ T 1

(X) ∩ Wneg(X).

Lemma 4.6 Let X be a smooth projective variety of dimension n with an ample divisor H.
Then there are at most countably many H-negative divisors in X.

Proof Let E be any H -negative divisor. Let S be a general complete intersection surface by
the hyperplanes in |mH | for m � 0. Then E ∩ S is a negative curve. Since there are at most
countably many negative curves on S, the claim follows.

Proof of Theorem 4.4 We assume n > 1. For any 1-form ω ∈ W 1(X), there is an integral
divisor E ⊂ X such that E ⊆ Z(ω). By [37, Theorem 2] we have either ω ∈ Wneg, or
there exists an orbifold map f : X → C with genus g(C) > 0 and ω = f ∗η for some
η ∈ H0(C,�1

C ). In the latter case by Lemma 4.3 we know that E is the only component
of a fibre. Since E ⊆ Z( f ∗η) and E is the whole fibre, either f has a multiple fibre and
g(C) = 1, or g(C) > 1 and η( f (E)) = 0. Hence ω ∈ T 1

(X). Notice that T 1
(X) ⊆ W 1(X)

and hence the first part of the theorem follows.
For the second part, note that W 1(X) is an algebraic set. Since T 1

(X) is linear and Wneg

is a union of at most countably many linear subspaces in H0(X ,�1
X ) by Lemmas 4.6 and

4.3, W 1(X) is also linear.
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4.3 Quasi-projective case

Let X be a smooth projective variety with a simple normal crossing divisor D = ∑r
j=1 Dj .

Set U = X − D. Similar to the projective case, we denote

Wneg(X , D) := {ω ∈ H0(X ,�1
X (log D)) | E ⊆ Z(ω) for some negative integral divisor E}.

Theorem 4.7 With the above notations, we have

W 1(X , D) = T 1
(U ) ∪ Wneg(X , D).

In particular W 1(X , D) is linear in H0(X ,�1
X (log D)).

The proof of Theorem 4.7 follows that of Theorem 4.4 closely with Theorem 5.1 in
appendix, which is a generalisation of Spurr [37, Theorem 2] for pairs.

Remark 4.8 In [4], Budur, Wang and Yoon identified a linear piece of W 1(X , D); namely

(
R1 ∪ R2n−1

) ∩ H0(X ,�1
X (log D)) ⊆ W 1(X , D).

Here we use the same notations as in their paper. Note thatR1∩H0(X ,�1
X (log D))coincides

with T 1
(U ). But it is not clear to us how R2n−1 ∩ H0(X ,�1

X (log D)) is connected to
Wneg(X , D).

Dimca in [8] define the first logarithmic resonance variety

LR1(U ) := {ω ∈ H0(X ,�1
X (log D)) | H1(H0(X ,�•

X (log D)),∧ω) �= 0}
In particular, [8, Proposition 4.5] implies that LR1(U ) = ⋃

f Im f ∗, where the union runs
over all possible orbifoldmaps f : U → C withχ(C) < 0 andC not being a once-punctured
elliptic curve. Hence LR1(U ) ⊆ T 1

(U ).
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Appendix A. Logarithmic generalization of A Theorem of Spurr

We show the following generalization of Spurr [37, Theorem 2] for pairs.

Theorem 5.1 Let (X , D) be a pair with X a smooth projective variety of dimension n and D
a simple normal crossing divisor on X. Let H be an ample divisor on X. If (X , D) carries
a nonzero logarithmic 1-form ω ∈ H0(X ,�1

X (log D)) such that there exists an integral
divisor E with E2 · Hn−2 ≥ 0, E ⊆ Z(ω), and E � D, then there is a surjective morphism
f : X − D → C to a smooth quasi-projective curve C = C̄ − B (where C̄ is a smooth
completion of C and B can be empty) with

(1) χ(C) ≤ 0 and ω = f ∗η for some η ∈ H0(C̄,�1
C̄
(log B)).

(2) f has connected generic fibres.
(3) E2 · Hn−2 = 0.
(4) If χ(C) = 0, then f has at least one multiple fibre.

To prepare for the proof, recall the following construction of Albanese varieties, which
can be found in [18] (see also [12] for a survey).

Let X be a smooth projective variety of dimension with a simple normal crossing divisor
D. Pick a basis {θ1, . . . θq} for H0(X ,�1

X ) and {ω1, . . . , ωr } ∈ H0(X ,�1
X (log D)) such that

{θ1, . . . , θq , ω1, . . . , ωr } is a basis of H0(X ,�1
X (log D)). Pick a basis {γ1, . . . , γ2q} for the

free part of H1(X , Z) and a basis {δ1, . . . , δr } for the free part of ker{H1(U , Z) → H1(X , Z)}.
Then we have the following periods as a semi-lattice for H0(X ,�1

X (log D))∨

� =
2q∑

i=1

Z

(∫

γi

θ1, . . . ,

∫

γi

ωr

)
+

r∑

j=1

Z

(∫

δ j

θ1, . . . ,

∫

δ j

ωr

)
.

TheAlbanese variety is then defined as the semi-Abelian variety AU = H0(X ,�1
X (log D))∨

�
and the Albanese map aU : U → AU is given by

aU (x) =
⎡

⎣
q∑

i=1

(∫ x

p
θi

)
θ∗
i +

r∑

j=1

(∫ x

p
ω j

)
ω∗

j

⎤

⎦ /�,

where p ∈ U is a chosen base-point and θ∗
i , ω∗

j are the dual bases in H0(X ,�1
X (log D))∨.

Proof of Theorem 5.1 First we claim that if E ∩ Di �= ∅ for some component Di of D, then
ω has no pole along Di . In other words, ω ∈ H0(X ,�1

X (log D − Di )). To see the claim
consider the following diagram

H0(X , �1
X (log D − Di ) ⊗ OX (−E)) H0(X , �1

X (log D − Di )) H0(�1
X (log D − Di )|E )

H0(X , �1
X (log D) ⊗ OX (−E)) H0(X , �1

X (log D)) H0(X , �1
X (log D)|E )

(15)

The left vertical arrow is an isomorphism. Indeed, it is injective and the cokernel is con-
tained in H0(Di ,ODi (−E)) [10, 2.3 properties] which is zero since E |Di is an effective
divisor. Therefore any ω ∈ H0(X ,�1

X (log D)) such that E ⊆ Z(ω) must come from
H0(X ,�1

X (log D − Di )). Hence the claim.
Now it suffices to deal with the case when D∩ E = ∅. Indeed, let D = D′ + D′′ such that

E intersects each component of D′ and E ∩ D′′ = ∅, by the reduction step we can construct
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an orbifold map from f : X \ D′′ → C satisfying the desired properties. Then the restriction
f |U : U → C is also an orbifold map and satisfies the same properties. In what follows we
assume D ∩ E = ∅.

We may assume that ω is not everywhere holomorphic, otherwise we are done by [37,
Theorem 1]. Let φ : N → E be the normalisation map and ϕ : N → U be the composition
map (this makes sense since E ∩ D = ∅). Consider the following commutative diagram

N
ϕ

aN

U

aU

AN
ψ

AU ,

where aN and aU are Albanese maps and the base points are chosen in an appropriate way
such that ψ is a group homomorphism.

Now we consider the transpose of the pullback map

ϕ∨ : H0(N ,�1
N )∨ → H0(X ,�1

X (log D))∨,

which induces the morphism ψ . Without any loss of generality we assume ω1 = ω with
the notations introduced shortly before the proof. Hence by hypothesis ϕ∗(ω1) = 0. Let
z1 be the coefficient coordinate of ω∗

1 ∈ H0(X ,�1
X (log D))∨. We get ψ(AN ) is contained

in {z1 = 0}/�. We define β : U → T := AU/ψ(AN ) as the composition of aU and the
quotient AU → T . Since αU (E) ⊂ ψ(AN ), E is contracted by β.

Notice that β is not the constant map. We claim that dim β(U ) = 1. Otherwise, replacing
U by an intersection of general hyperplane sections coming from the very ample linear system
|mH | for somem � 0 we may assume dimU = dim β(U ) = 2. In this case β : U → β(U )

is a generically finite surjective morphism. Projectivising and resolving indeterminacy we
get a generically finite morphism β : U → β(U ) where U is smooth and projective. Note
that E ∩ D = ∅. Hence E2 < 0 in U (See e.g., [22, Theorem 10.1]), which contradicts the
assumption E2 ≥ 0.

Taking the Stein factorisation of β̄, we get the following commutative diagram:

U

β

f
C

β(U ),

where C is the smooth curve defined by the Stein factorization and C := f (U ). Then we
have the following commutative diagram:

U
f |U

C β(U )

AU
ψ f

AC T

Note that the holomorphic 1-form dz1 on T pulls back to logarithmic 1-form ω. Therefore
to see (1), it suffices to show that T is isogenous to AC . First all the horizontal maps in the
diagram are surjective. In fact we only need to show ψ f is surjective. Since f |U : U → C is
surjective and has connected generic fibres, the induced map on the first homology groups
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H1(U , Z) → H1(C, Z) is surjective and the surjectivity of ψ f follows. Since f comes from
the Stein factorisation and β contracts E , so does f . By choosing appropriate base points,
we get that ψ(AN ) is contained in the kernel of ψ f . Hence AC is isogenous to T . To see
(3), notice that E is contained in a fibre of f and E2 · Hn−2 ≥ 0. Hence E2 · Hn−2 = 0.
Finally for (4), when χ(C) = 0, notice that for any non-zero η ∈ H0(C,�1

C
(log B)), it has

no zeros. Then E has to be a multiple fibre.

Proof of Theorem 4.7 We assume n > 1. For any 1-form ω ∈ W 1(X , D), pick an integral
divisor E ⊂ X such that E ⊆ Z(ω). We may assume that ω /∈ Wneg(X , D) so that E2 ·
Hn−2 ≥ 0. If E is not a component of D, then ω ∈ T 1

(U ) by Theorem 5.1. Otherwise, say
E = D1 a component of D. Then we have an injective map [10, 2.3 Properties (c)]

H0(X ,�1
X (log D)(−D1)) ↪→ H0(X ,�1

X (log D − D1)).

In particular, ω ∈ H0(X ,�1
X (log D − D1)). Set U1 = X − ⋃

j �=1 Dj . By Theorem 5.1, we

have an orbifold map f1 : U1 → C1 such that ω ∈ f ∗
1 H

0(C1,�
1
C1

(log B1)), where B1 =
C1 −C1. Note that f := f1|U : U → C is also an orbifold map, where C is the image ofU .
Furthermore we know that f ∗

1 H
0(C1,�

1
C1

(log B1)) is contained in f ∗H0(C,�1
C
(log B)),

where C = C1 and B = C − C . It implies that ω ∈ f ∗H0(C,�1
C
(log B)), i.e. ω ∈ T 1

(U ).
The first part follows.

To see the linearity, we notice that there are at most countably many negative divisors.
Indeed, similar to the projective case the sign of the intersection of E2 ·Hn−2 does not depend
on the choice of H when E ⊂ Z(ω) for some ω ∈ H0(X ,�1

X (log D)). This can be seen
using the same argument as in the proof of Lemma 4.3. Then the proof follows the arguments
in Theorem 4.4 verbatim.
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