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ABSTRACT
Few-Shot Class-Incremental Learning (FSCIL) aims to keep recog-
nizing novel classes from a limited number of samples after training
on abundant data from base classes while maintaining the perfor-
mance of the old classes. The challenge, however, is that limited
data from new classes not only leads to the issue of overfitting
but also catastrophic forgetting. To address these two issues, we
propose a causal inference strategy in the mainstream FSCIL frame-
work, which encourages the model to learn significant knowledge
in the base training session and enhance the model’s ability to ex-
tract features to cope with the emergence of unseen classes in the
incremental session, by improving the learning of causal relation-
ships between features and predictions for perturbed samples. In
addition, to improve the effectiveness of learning new tasks in the
incremental sessions while preventing the model from overfitting
to the novel class data, we freeze the feature extractor while adding
a Fourier transform after the feature extractor in the incremental
session. It can denoise the features, strengthen the features of the
novel classes, and suppress the error in extracting the features of
the limited number of samples directly from the feature extrac-
tor. Extensive experiments on CIFAR100, Caltech-USCD Birds-200-
2011, and miniImageNet datasets show that our proposed frame-
work achieves state-of-the-art performance on FSCIL. The source
code of our designed framework is at https://github.com/SWU-CS-
MediaLab/CIFSCIL.

CCS CONCEPTS
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1 INTRODUCTION
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Figure 1: Class-Incremental Learning. At each phase, the
model receives sufficient training data for the new task and
uses them for training.

With the rapid development of deep learning [20], current learn-
ing systems have performed very well in many tasks [24, 43, 45].
However, real-world applications are often confronted with stream-
ing data [10] and novel classes that keep arriving [56], in which
case the ideal neural network model should not only recognize
the novel classes, but also remain distinguishable from the old
ones [1, 52]. This learning paradigm which continuously learns in
the face of successive tasks and overcomes the forgetting of old
knowledge, known as Class-Incremental Learning (CIL). And the
situation of forgetting old tasks after learning new tasks, known
as catastrophic forgetting [11], is a primary challenge in CIL. As
shown in Figure 1, CIL [28] usually makes only the novel classes of
the current task visible in each round of incremental training, and
cannot reread data from the old task. In CIL, there is often a trade-off
between learning novel classes and keeping the old classes, which
is the stability-plasticity dilemma [29]. Few-Shot Class-Incremental
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Learning (FSCIL) [41] further imposes a constraint on data avail-
ability. In FSCIL, only a few data samples, i.e., few-shot, are allowed
for each novel class to be trained in incremental sessions, leading
to an even more challenging incremental learning problem. In FS-
CIL, after the model learns a new task, the performance of the old
(base) task decreases significantly. This is due to the lack of training
data for the old task, which causes the model to focus only on the
new task and become oblivious to the old task. While learning new
tasks directly is somewhat beneficial for predicting newly learned
tasks, model training is prone to overfitting as training samples for
new tasks become scarce, and the issue of catastrophic forgetting in
FSCIL thus becomes apparent faster than in traditional CIL settings.

To address the catastrophic forgetting, many traditional and out-
standing incremental learning methods [21, 21, 33, 33, 52, 52] have
been proposed. However, due to the limitation of sparse training
samples in FSCIL, the traditional incremental learning methods can
no longer be fully adapted to the context in FSCIL. Some recent
studies [37, 39, 41] have proposed freezing the base class training
model and only fine-tuning or learning only the classifiers of the
novel classes when learning the new task, and these approaches
can undoubtedly maximize the retention of the memory of the old
task and mitigate the issue of catastrophic forgetting. However,
due to the stability-plasticity dilemma in incremental learning, the
model’s learning of novel classes will be more limited.

Starting from the above problem, to improve the model’s ability
to recognize novel classes during subsequent incremental sessions,
we should emphasize the generalization of the model training for
base classes. This enables the model can pay attention to some "ex-
tracurricular knowledge" while learning the base class task, prevent-
ing confusion when encountering the novel classes in incremental
sessions. However, we observe that many existing deep learning
methods essentially seek correlations, which harms model training
and generalization. Because correlation does not mean causality, it
is crucial to prioritize the exploration of causal relationships over
mere correlations between features and outcomes.

In this paper, we propose to use the causal inference strategy
[48] of counterfactual intervention [19] on the base classes data
after adding perturbations to learn diversified features and explore
the causal relationship between features and predictions, aiming
to enhance the model’s ability to learn features under challenging
situations and improve the model’s generalization ability to few-
shot novel classes. In addition, in order to obtain more significant
feature information from novel classes in incremental sessions, the
Fourier transform is introduced in incremental sessions to improve
the model’s feature representation ability for novel classes.

The main contributions are summarized as follows:

• We propose to improve the model’s ability to learn diverse
discriminative features and facilitate the model’s identifi-
cation of few-shot novel classes in the incremental session
by using causal inference to explore the causal relationship
between perturbed sample features and predictions.
• In order to facilitate the classifier to better capture the fea-
tures of the few-shot data, the extracted feature representa-
tions of few-shot data are further optimized by the Fourier
transform to enhance the discriminative information in the
features.

• We validate the effectiveness of our method on three bench-
mark datasets, and the experimental results show that our
method significantly outperforms the baseline and yields
better performance compared with several state-of-the-art
FSCIL algorithms.

2 RELATEDWORK
2.1 Class-Incremental Learning
Class-Incremental Learning (CIL) [4, 13, 21, 35] aims to recognize
novel classes without forgetting the knowledge of old classes. There
are three main approaches to solving the catastrophic forgetting
problem in CIL: regularization-based approaches [6], such as EWC
[16] uses the Fisher information matrix to estimate parameter im-
portance, expecting that the important parameters change slightly
with the regularization term. parameter-isolation-based approaches
[26, 27], for example, LwF [21] proposes that each network is re-
sponsible for different tasks, and reduces forgetting by sharing a
portion of the parameters. Replay-based approaches [33, 52], such
as iCaRL [35] replays and performs knowledge distillation to main-
tain old knowledge. However, CIL typically requires a large number
of novel class training samples, which makes it unsuitable for many
practical applications such as incremental anomaly detection [2].

2.2 Few-Shot Learning
Few-Shot Learning (FSL) [25, 38] is a machine learning task in
which only scarce training are available for learning and training
the model during the training process. Current FSL methods can be
broadly classified into two categories: optimization-based methods
[8, 14, 22] and metric-based methods [9, 49, 50]. Optimization-based
approaches aim to quickly adapt to new few-shot tasks by learn-
ing an optimization algorithm. Metric-based approaches consider
learning a suitable distance metric between support instances and
query instances. However, FSL aims to adapt to novel classes with
limited samples, ignoring the ability to handle previously learned
classes.

2.3 Causal Inference
Causal Inference (CI) [32] differs from traditional correlation analy-
sis, which studies causal relationships between variables to explain
the causal relationships behind the data and improve feature learn-
ing about attention by analyzing the causal relationships. It shows
promising results in a variety of computer vision tasks, including
few-shot image classification [7], long-tailed distributions [23], in-
cremental learning, augmented learning [17], and natural language
processing [30]. The counterfactual learning strategy we use is
causal inference-based attentional learning that encourages the
network to learn more effective attention and improves network
generalization.

2.4 Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) [41] considers both
the FSL and CIL challenges described above. Specifically, FSCIL
aims to learn incrementally from limited novel class samples while
retaining what has already been learned [54]. In this case, it is
difficult to improve the performance of FSCIL using traditional
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Figure 2: An overview of our proposed CIFSCIL. The lock symbol indicates that the model parameters are frozen. The feature
extractor is first trained with base class data (original and perturbed data) and then the perturbed features are learned by
counterfactual learning. For incremental training, few-shot data are passed through the feature extractor to get the base
features, and then the features are enhanced by the Fourier transform.

incremental learning frameworks because none of these methods
consider incremental few-shot overfitting, which can easily exacer-
bate catastrophic forgetting. The TOPIC [41] framework mitigates
the forgetting problem by stabilizing the neural gas network topol-
ogy. CEC [51] separates each class with independent classifiers
and employs a graph model to propagate contextual information
among the classifiers. F2M [37] overcomes catastrophic forgetting
by finding a flat minimum. It does this by injecting noise during
base training and argues that the focus of FSCIL should be on the
basic training session. Our Causal Inference-based Few-shot Class-
Incremental Learning (CIFSCIL) considers incorporating causal
inference in the learning of the base classes to improve the gen-
eralization ability of the feature extractor, and to compensate for
the poorer performance of the few-shot novel class in the incre-
mental session of learning, we propose to perform further Fourier
transform learning on the few-shot features.

3 PRELIMINARY
FSCIL [38, 41] aims to design a machine learning algorithm that
learns a series of tasks continuously to obtain a model that does
not forget the knowledge of the old classes; meanwhile, it also per-
forms well for learning novel classes [54]. Specifically, the model
is usually initially trained by first providing enough base class
data in a basic session, which is denoted by D𝑡𝑟𝑎𝑖𝑛 =

{
D𝑡

𝑡𝑟𝑎𝑖𝑛

}𝑇
𝑡=0.

Subsequent incremental sessions provide only a few samples, i.e.,
D𝑡

𝑡𝑟𝑎𝑖𝑛
= {(x𝑖 , 𝑦𝑖 )}𝑁𝑡

𝑖=0, which represents the training samples from

session 𝑡 , with x𝑖 and𝑦𝑖 being the 𝑖-th image and the corresponding
labels, respectively, assuming that the labeling configuration for the
𝑡-th task is C𝑡 and that there is no overlap in labeling space from
different tasks. Once the model training moves to the next session,
the training dataset from the previous learning session is no longer
available. The evaluation of the FSCIL task in each session involves
all classes from previous sessions and the current session. That is,
the model trained on D𝑡

𝑡𝑟𝑎𝑖𝑛
should be evaluated on D𝑡

𝑡𝑒𝑠𝑡 , which
contains all encountered classes C0∪C1 · · ·∪C𝑡 in the 𝑡-th session.
In particular, the incremental data is always involved in the train-
ing in the form of an 𝑁 -way 𝐾-shot, i.e., there are 𝑁 classes, and
each class contains 𝐾 training data. For example, in the commonly
used benchmark dataset CIFAR100, there are 60 classes in the base
session with 500 training images for each class. In contrast, in the
incremental session, there are only 5 classes available for training
and only 5 images for each class. FSCIL defines a harsh problem set-
ting, where severe data scarcity and data imbalance issues further
exacerbate knowledge forgetting in incremental learning.

4 METHODOLOGY
This section provides the algorithmic details of our proposed Causal
Inference-based Few-Shot Class-Incremental Learning (CIFSCIL).
Firstly, CIFSCIL uses causal learning during the base class task
training, which allows the model to be better generalized by base
classes learning. Subsequently, the Fourier transform is used on the
novel class data in the incremental sessions to enhance and filter
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the features to improve the model’s ability to effectively classify the
novel classes. The overview of our CIFSCIL framework is shown in
Figure 2.

F P

M

ത𝐹 P( ത𝐹)

M

(a) Confounded (b) Deconfounded

Figure 3: The counterfactual intervention 𝑃 (𝑑𝑜 (𝐹 )). The back-
door path is 𝐹 ← 𝑀 → 𝑃 . And 𝐹 → 𝑃 is the frontdoor path.
The causal relationship between 𝐹 and 𝑃 is obtained by cut-
ting off𝑀 → 𝐹 in the backdoor path.

4.1 Causal learning
In general FSCIL algorithms, it is common to use the strategy of
incremental-frozen framework, and many methods [39, 41] have
demonstrated the superiority of this operation over other incremen-
tal training operations based on fine-tuning, etc., so this strategy
is also utilized in our framework. The use of incremental-frozen
framework strategy prompts us to focus more on the subsequent
generalization of the novel classes: i.e., how can we better achieve
future generalization for Few-Shot Learning in this case?

In recent years, many studies [34, 53] proposed to apply causal in-
ference to deep-learning methods based on causal inference. These
methods actually solve a series of problems by exploring causal re-
lationships to overcome the limitations of the current deep-learning
methods that only consider correlations. Causal inference usually
illustrates the effect of features on the predictions by inferring the
difference between counterfactual logic and factual logic, i.e., the
backdoor adjustment, as illustrated by the causal graph in Figure 3,
which is structured as a directed acyclic graph 𝐺 = {𝑁, 𝐸}, where
each variable in the model has a corresponding node in 𝑁 , and the
causal relation 𝐸 describes how these variables interact with each
other, and the causal relationship between a variable and an out-
come is obtained by cutting the connection between two variables
(e.g., M and F). This analysis of the causal relationship between
features and outcomes is beneficial for the robustness of the learned
feature and the optimization of the model training. Inspired by these
successful studies [34, 40], we propose to embed causal inference
in the training of the base classes to facilitate the model’s learning
capability of the base classes and to enhance the generalization of
the feature extractor to novel classes.

Our CIFSCIL framework is first trained on the base tasks; here,
we generally use the common CNN structure as a feature extractor,
followed by a fully connected layer as a classifier.W𝑁𝐸𝑇 andW𝐹𝐶

are used as weights for the feature extractor and the fully connected
layer, respectively. Given an input X ∈ D0

𝑡𝑟𝑎𝑖𝑛
∼ {X0

𝑡𝑟𝑎𝑖𝑛
,Y0

𝑡𝑟𝑎𝑖𝑛
},

D0
𝑡𝑟𝑎𝑖𝑛

= {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1, where 𝑥𝑖 ∈ X
0
𝑡𝑟𝑎𝑖𝑛

is the instance and 𝑦𝑖 ∈
Y0
𝑡𝑟𝑎𝑖𝑛

is the corresponding label, and the output of the network is:

P = 𝑓𝐹𝐶 (𝑓𝑓 𝑙𝑎𝑡 (𝑓𝑁𝐸𝑇 (X,W𝑁𝐸𝑇 )),W𝐹𝐶 ), (1)
Where 𝑓𝑁𝐸𝑇 (X,W𝑁𝐸𝑇 ) indicates the output of the feature extractor
after feeding the input X; 𝑓𝐹𝐶 (·,W𝐹𝐶 ) is the output of the classifier;
𝑓𝑓 𝑙𝑎𝑡 is the flattening operator, which flattens anm−D tensor into a
1-D vector. Then, the model training by optimizing the per-sample
loss is:

L𝑐𝑒 (𝑦,P) = −
1

|X𝑡𝑟𝑎𝑖𝑛 |

|X𝑡𝑟𝑎𝑖𝑛 |∑︁
𝑚=1

log
exp

(
𝜂P (𝑚)

)
∑
𝑖≠𝑚

exp
(
𝜂P (𝑖 )

) , (2)

Where L𝑐𝑒 is the cross entropy loss function, 𝑃 indicates the
predictions obtained from the model. Aiming to enable causal in-
ference to increase the generalization of the model as we train the
base classes, we further learn causality from the features extracted
by backbone (feature extractor) from the base classes data after
adding perturbations (e.g., rotations, translations, adding noise, and
other operations). Thus, we denote the perturbed training sample as
X̃ ∈ D̃0

𝑡𝑟𝑎𝑖𝑛
∼ {X̃𝑡𝑟𝑎𝑖𝑛, Ỹ𝑡𝑟𝑎𝑖𝑛}, and similarly, the perturbed sample

is characterized by the feature extractor to obtain the feature F (X̃):

F (X̃) = 𝑓𝑁𝐸𝑇 (X̃,W𝑁𝐸𝑇 ), (3)
Subsequently, we perform a counterfactual intervention onF (X̃).

As shown in Figure 3, we establish a causal relationship for the
variables of the visual feature F (X̃), the visual confounder 𝑀 of
the image, and the prediction 𝑃 , where the direct edges denote the
causality between the two variables. By cutting the𝑀 → 𝐹 connec-
tion in the backdoor path, a counterfactual feature F (X̃)𝑐𝑜𝑢𝑛 can
be obtained (in practice, we implement this using randomized atten-
tion). In other words, we intervene counterfactually by imagining
nonexistent features instead of learned ones.

As shown in Figure 2, in order to enhance the learning for atten-
tion, the features of attention factual attentionW(X̃) and random
attentionW(X̃)𝑐𝑜𝑢𝑛 are enhanced to participate in the computa-
tion of the corresponding features, respectively.

F𝑎 (X̃) =W(X̃) ⊗ F (X̃), (4)

F𝑎 (X̃)𝑐𝑜𝑢𝑛 =W(X̃)𝑐𝑜𝑢𝑛 ⊗ F (X̃)𝑐𝑜𝑢𝑛, (5)
WhereW(X̃) andW(X̃)𝑐𝑜𝑢𝑛 are obtained by putting F (X̃) and

F (X̃)𝑐𝑜𝑢𝑛 through a convolution operation, respectively. ⊗ denotes
matrix multiplication. In order to effectively analyze the causal
relationship between features and predictions, we also need to
obtain the corresponding factual predictions P̃ and counterfactual
predictions P̃𝑐𝑜𝑢𝑛 .

P̃ = 𝑓𝐹𝐶 (F𝑎 (X̃),W𝐹𝐶 ), (6)

P̃𝑐𝑜𝑢𝑛 = 𝑓𝐹𝐶 (F𝑎 (X̃)𝑐𝑜𝑢𝑛,W𝐹𝐶 ), (7)
To further eliminate "pseudo-correlation" and find the true causal

relationship between factual features and factual predictions, we
calculate the difference between factual predictions and counter-
factual predictions to account for the effect of the features on the
predictions, which is a common tool in causal inference.

481



Causal Inference-based Few-Shot Class-Incremental Learning ICMR ’24, June 10–14, 2024, Phuket, Thailand.

P̃𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 = P̃ − P̃𝑐𝑜𝑢𝑛, (8)

The obtained P̃𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦 is fed into the cross-entropy loss and the
process is supervised using corresponding labels.

L𝑐𝑒
(
𝑦, P̃𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦

)
= − 1���X̃𝑡𝑟𝑎𝑖𝑛 ���

���X̃𝑡𝑟𝑎𝑖𝑛 ���∑︁
𝑚=1

log
exp

(
𝜉 P̃ (𝑚)

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦

)
∑
𝑖≠𝑚

exp
(
𝜉 P̃ (𝑖 )

𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦

) , (9)

It is worth noting that the predictions for the perturbed training
samples X̃ are also optimized using the cross-entropy loss.

L𝑐𝑒
(
𝑦, P̃

)
= − 1���X̃𝑡𝑟𝑎𝑖𝑛 ���

���X̃𝑡𝑟𝑎𝑖𝑛 ���∑︁
𝑚=1

log
exp

(
𝛿 P̃ (𝑚)

)
∑
𝑖≠𝑚

exp
(
𝛿 P̃ (𝑖 )

) , (10)

Thus, the total loss during base training can be expressed as:

L𝑏𝑎𝑠𝑒
𝑡𝑜𝑡𝑎𝑙

= 𝛼L𝑐𝑒 (𝑦,P) + 𝛽L𝑐𝑒
(
𝑦, P̃

)
+ 𝛾L𝑐𝑒

(
𝑦, P̃𝑠𝑎𝑙𝑖𝑒𝑛𝑐𝑦

)
, (11)

Where 𝛼 , 𝛽 , and𝛾 are hyperparameters. Our causal learning strat-
egy can determine the impact of learned features on classification
by subtracting counterfactual predictions from factual predictions,
thus encouraging the model to learn more influential features. Ad-
ditionally, we continuously interfere with the model’s learning of
discriminative features by causally learning from perturbed sample
features, prompting the model to learn robust features from more
difficult environments as a way to improve the model’s generaliza-
tion ability and the model’s capability to recognize novel classes in
incremental sessions.

4.2 Fourier transform
To further overcome catastrophic forgetting in FSCIL, similar to
many methods, we choose to freeze the obtained feature extractor
W𝑁𝐸𝑇 after training from the base training data, and do not update
it again in the subsequent incremental sessions. However, since
the feature extractor has not learned the novel classes, a feature
extractor that performs well in base tasks may be overwhelmed
when facing data from the novel classes. In other words, the features
extracted by the feature extractor directly from the novel classes
will inevitably be biased and deformed. When faced with limited
data from the novel classes, the frozen feature extractor cannot
update the parameters to optimize the learning of the features from
the novel classes. Therefore, it becomes more challenging to learn
the new tasks. Thus, we believe that additional re-learning of the
features of the limited novel class data is particularly important for
recognizing novel classes.

In recent years, the Fourier transform [46, 47] has been widely
used in image processing. At its core, the Fourier transform de-
composes a time function (signal) into its constituent frequencies.
This is critical in many practical scenarios; analyzing the frequency
components of a signal provides more insight than examining the
signal in the original time domain. If a convolution calculation is

performed on a signal, it is equivalent to performing a multipli-
cation calculation in the spectrum. A time domain convolution
calculation is a frequency domain multiplication calculation, which
is why convolution is referred to as filtering in many neural net-
works. When processing images, the presence of noise is inevitable.
The Fourier transform can help to separate the noise component
from the image (signal), thus making it easier to reduce or eliminate
noise and improve the quality of features. Therefore, it is benefi-
cial in image processing for edge detection and image filtering.
Therefore, to further improve the model’s ability to recognize novel
classes, we introduce the Fast Fourier Transform [3, 31] into our
CIFSCIL framework to enhance the features ignored by the feature
extractor in the previous part of the module.

First, we get the features F (X𝑛) extracted by the feature extrac-
tor W𝑁𝐸𝑇 :

F (X𝑛) = 𝑓𝑁𝐸𝑇 (X𝑛,W𝑁𝐸𝑇 ), (12)
Where X𝑛 ∈ D𝑡

𝑡𝑟𝑎𝑖𝑛
∼ {X𝑡

𝑡𝑟𝑎𝑖𝑛
,Y𝑡

𝑡𝑟𝑎𝑖𝑛
}, D𝑡

𝑡𝑟𝑎𝑖𝑛
= {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1,

and 𝑥𝑖 ∈ X𝑡𝑡𝑟𝑎𝑖𝑛 is the instance and 𝑦𝑖 ∈ Y𝑡
𝑡𝑟𝑎𝑖𝑛

is the corresponding
label, and 𝑡 > 0.

Then, the Fourier transform is utilized to obtain the frequency
domain features and further go through the residual block.

F𝑓 𝑟𝑖 (X𝑛) = 𝐹𝑜𝑢 (F (X𝑛)), (13)

F𝑟𝑒𝑠 (X𝑛) = 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑐𝑜𝑛𝑣 (F (X𝑛))), (14)
Where 𝐹𝑜𝑢 is the Fourier transform, 𝑐𝑜𝑛𝑣 is a convolution oper-

ation, and 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 is a feature mapping layer for further extraction
of detailed information in the features. In the residual block, the
learned residuals can effectively harmonize the frequency domain
features, e.g., to recover lost or damaged textures in the foreground
region in the frequency domain, and to compensate for feature
information ignored by the feature extractor.

F𝑎𝑢𝑔 (X𝑛) = F𝑟𝑒𝑠 (X𝑛) + F𝑓 𝑟𝑖 (X𝑛), (15)
After passing through the residual block, the output F𝑎𝑢𝑔 (X𝑛)

is then transformed back to the spatial domain by Fourier inverse
transform to obtain the enhanced features.

F𝑐𝑙𝑠 (X𝑛) = 𝑖𝑛𝑣 (F𝑎𝑢𝑔 (X𝑛)), (16)
Where 𝑖𝑛𝑣 is the Fourier inverse transform operation. After the

final feature F𝑐𝑙𝑠 (X𝑛) is obtained, it is fed directly into the novel
classifier, which is optimized by using the cross-entropy loss.

P𝑛 = 𝑓 𝑛𝐹𝐶 (F𝑐𝑙𝑠 (X𝑛),W𝑛
𝐹𝐶 ), (17)

Where W𝑛
𝐹𝐶

indicates the weights of the novel classifier.

L𝑐𝑒
(
𝑦𝑛,P𝑛

)
= − 1��X𝑡

𝑡𝑟𝑎𝑖𝑛

�� |X
𝑡
𝑡𝑟𝑎𝑖𝑛 |∑︁
𝑚=1

log
exp

(
𝜆P (𝑚)

)
∑
𝑖≠𝑚

exp
(
𝜆P (𝑖 )

) , (18)

After the Fourier transformation process, the significant features
in the model can be found more efficiently, and the edge part can
be strengthened to some extent, which is more conducive for our
classifier to recognize the features of the novel classes. In addition,
since the feature extractor has not actually been trained with the
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Table 1: Comparison with SOTA methods on CUB200 dataset for FSCIL. The ∗ denotes the result report in the corresponding
paper.

Method Venue/Year Acc. in each session (%) ↑ PD ↓0 1 2 3 4 5 6 7 8 9 10
Finetune∗ CVPR2020 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 60.21
CEC∗ [51] CVPR2021 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57
F2M∗ [37] NIPS2021 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26 20.81
CLOM∗ [58] CVPR2022 79.57 76.07 72.94 69.82 67.80 65.56 63.94 62.59 60.62 60.34 59.58 19.99
MetaFSCIL [5] CVPR2022 75.90 72.41 68.78 64.78 62.96 59.99 58.30 56.85 54.78 53.82 52.64 23.26
FACT [55] CVPR2022 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 18.96
LIMIT [56] TPAMI2023 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41 18.48
GKEAL[57] CVPR2023 78.88 75.62 72.32 68.62 67.23 64.26 62.98 61.89 60.20 59.21 58.67 20.21
MCNet[15] TIP2023 77.57 73.96 70.47 65.81 66.16 63.81 62.09 61.82 60.41 60.09 59.08 18.49
SAVC[39] CVPR2023 81.85 77.92 74.95 70.21 69.96 67.02 66.16 65.30 63.84 63.15 62.50 19.35

CIFSCIL (Ours) − 82.23 79.70 76.92 71.89 71.90 68.99 68.89 67.54 65.78 65.31 64.41 17.82

(a) SAVC (b) Ours

Figure 4: The t-SNE visualization on the CIFAR100 dataset
of the embeddings learned by various methods. Dots with
different colors represent data points from different classes.

data of the new class, the features of the new class data extracted
directly by it will tend to be biased toward the features of the
base class data, i.e., there will be biases and distortions to a certain
extent. After passing the Fourier transform, we can alleviate this
deformation to some extent, and also help to separate the noise
component in features, remove the features belonging to the base
classes information in the feature extractor, and improve the quality
of the features.

5 EXPERIMENTS
In this section, extensive experiments are conducted on three com-
monly used CIL datasets, and we compared our proposed CIFSCIL
with state-of-the-art FSCIL approaches. In addition, ablation stud-
ies were also performed to demonstrate the impact of the causal
inference learning strategy and the Fourier transform process in
our CIFSCIL on the final performance of FSCIL.

5.1 Datasets
Following the benchmark setting [41], the CIFAR100 [18], miniIm-
ageNet [36], and CUB200 [44] are used.
• CIFAR100: It contains a total of 100 different classes, and
each class contains 600 32×32 RGB images, of which 500 are
used as training images and 100 as test images. We follow
the division in [41] where 60 classes and 40 classes are used

as base and novel classes, respectively. The 40 novel classes
are further divided into 8 incremental sessions, and each
new session is a 5-way 5-shot classification task.
• miniImageNet: This is a subset of the ImageNet dataset. It
contains 100 classes, each with 600 color images of 84×84
size. We divide the 100 classes into 60 base classes and 40
incremental classes according to [41]. The 40 novel classes
are further divided into 8 sessions of 5 classes each, and each
class has 5 training images in the incremental session.
• Caltech-UCSD Birds-200-2011 (CUB200): CUB200 contains
200 bird categories with about 60 images per category, total-
ing 11,788 images, each with a size of 224×224. We divide
the 200 categories into 100 base categories and 100 new
categories according to the division in [41]. The 100 new cat-
egories are further ambiented into 10 incremental sessions,
each of which is a 10-way 5-shot task.

5.2 Experiments details and evaluation metric
Following the setting in [41], we adopt ResNet18 [12] backbone for
miniImageNet and CUB200, and ResNet20 [16] for experiments on
CIFAR100. We use SGD with 0.9 momentum to optimize the model.
The initial learning rate is 0.1 for CIFAR100 and miniImageNet, and
0.002 for CUB200 in the base session. We evaluate the proposed
method in terms of performance dropping rate (PD) and Top 1
accuracy (Acc) [41] obtained in each session, and PD is used to
measure the absolute accuracy in the last session, i.e., PD = 𝐴0-𝐴𝑁 ,
where 𝐴0 is the classification accuracy in the base session and 𝐴𝑁

is the accuracy in the last session. Reporting the performance drop
is meaningful as some methods may give good results mainly due
to a well-trained network on the base dataset.

5.3 Comparison with state-of-the-art methods
We compared the performance of our CIFSCIL with the state-of-the-
art methods at each session on the miniImageNet, CIFAR100, and
CUB200 datasets. The accuracy of all the methods decreases with
incremental sessions for two reasons. Firstly, the model takes in
new class data in each phase, giving it more choices to distinguish
from, naturally leading to decreased accuracy. The second reason
is caused by the main dilemma of FSCIL, which is catastrophic
forgetting, where the constant forgetting of knowledge about old
tasks leads to a constant decrease in accuracy as well [57]. The
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Table 2: Comparison with SOTA methods on CIFAR100 dataset for FSCIL. The ∗ denotes the result report in the corresponding
paper.

Method Venue/Year Acc. in each session (%) ↑ PD ↓0 1 2 3 4 5 6 7 8
Finetune∗ CVPR2020 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 61.45
CEC∗ [51] CVPR2021 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93
F2M∗ [37] NIPS2021 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.28 44.67 20.04
CLOM∗ [58] CVPR2022 74.20 69.83 66.17 62.39 59.26 56.48 54.36 52.16 50.25 23.95
MetaFSCIL [5] CVPR2022 74.50 70.10 66.84 62.77 59.48 56.52 54.36 52.56 49.97 24.53
FACT [55] CVPR2022 74.60 72.09 67.56 63.52 61.38 58.36 58.26 54.24 52.10 23.5
LIMIT [56] TPAMI2023 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 22.58
GKEAL[57] CVPR2023 74.01 70.45 67.01 63.08 60.01 57.30 55.50 53.39 51.40 22.61
MCNet[15] TIP2023 73.30 69.34 65.72 61.70 58.75 56.44 54.59 53.01 50.72 22.58
SAVC [39] CVPR2023 78.77 73.31 69.31 64.93 61.70 59.25 57.13 55.19 53.12 25.65

CIFSCIL (Ours) − 78.47 77.05 74.49 70.88 67.94 65.80 64.30 62.08 61.02 17.45

Table 3: Comparison with SOTA methods on miniImageNet dataset for FSCIL. The ∗ denotes the result report in the corre-
sponding paper.

Method Venue/Year Acc. in each session (%) ↑ PD ↓0 1 2 3 4 5 6 7 8
Finetune∗ CVPR2020 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 59.91
CEC∗ [51] CVPR2021 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37
F2M∗ [37] NIPS2021 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 22.63
CLOM∗ [58] CVPR2022 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 25.08
MetaFSCIL [5] CVPR2022 72.04 67.94 63.77 60.29 57.58 55.16 52.9 50.79 49.19 22.85
FACT [55] CVPR2022 75.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 25.07
LIMIT [56] TPAMI2023 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 23.13
GKEAL[57] CVPR2023 73.59 68.90 65.33 62.29 59.39 56.70 54.20 52.59 51.31 22.28
MCNet[15] TIP2023 72.33 67.70 63.50 60.34 57.59 54.70 52.13 50.41 49.08 23.25
SAVC [39] CVPR2023 81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 24.01

CIFSCIL (Ours) − 80.9 77.85 75.34 72.93 70.94 67.78 65.07 63.58 62.21 18.69

methods we compare include: classical incremental-frozen FSCIL
methods, i.e., F2M [37], CEC [51], and FACT [55], and recent state-
of-the-art methods, i.e., SAVC [39], GKEAL [57], MCNet [15]. We
also show a naive baseline that directly finetunes the model with
limited data as "finetune". As observed in the Figure 5, we report the
performance curve of each method. The most recent FSCIL teniques
like SAVC [39], MCNet [15] and GKEAL [57], they significantly
outperforms CEC [51] and F2M [37]. Our CIFSCIL method shows
the best results in overcoming forgetting compared to the state-
of-the-art methods, and it also can be seen in the line graph that
the trend of our method is much flatter in subsequent incremental
sessions, which indicates a good trade-off between mitigating the
catastrophic forgetting and the capability of learning new tasks.

We report our experimental results on the CUB200, CIFAR100,
and miniImageNet datasets in detail in Table 1, Table 2, and Table 3,
respectively. Our approach effectively improves the model’s ability
to recognize novel classes through generalized learning of the base
classes and additional learning of novel classes, effectively mitigat-
ing catastrophic forgetting, as demonstrated by the consistently
highest accuracy of incremental sessions in the experimental results.
For example, our method achieves final accuracy of 61.02%, 64.41%,
and 62.21% for CIFAR100, CUB200, and miniImageNet, respectively,
which are 7.90%, 1.91%, and 5.10% better than the current SOTA

method SAVC, respectively. However, we can note that, except for
the CUB200 dataset, the other two datasets do not have the highest
accuracy in the base session in either case, which we speculate is
due to the fact that the module discards some information about the
base classes samples to learn features of a more generalized nature,
and so has a very subtle effect on the recognition of the base classes.
The CUB200 dataset, on the other hand, exhibits slightly higher
accuracy in the base session, which is due to the good learning of
the base class data caused by the higher image resolution of the
CUB200 dataset. Additionally, for the evaluation metric of PD, the
PD value of our CIFSCIL compared with the classical and the latest
methods is the lowest on all three datasets, proving that our method
achieves a more appropriate balance between alleviating forgetting
and learning novel knowledge.

Moreover, to further demonstrate that our causal inference learn-
ing strategy (CI) and the Fourier transform process (FT) can better
overcome catastrophic forgetting and learn incremental classes,
we introduce the widely used t-SNE [42] tool to visualize feature
distribution maps in 2D space. We visualize the embedding space
on the CIFAR100 dataset in Figure 4. As it can be observed from the
figure, our approach allows for more precise separation of different
classes and tighter clustering of the same class.
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Figure 5: Comparison with SOTA methods on CUB200, CIFAR100, and miniImageNet benchmarks.

Table 4: Ablation studies on miniImageNet benchmark. CI, FT denote causal inference learning, Fourier transform, respectively.

CI FT Acc. in each session (%) ↑ PD ↓0 1 2 3 4 5 6 7 8
81.12 76.14 72.43 68.92 66.48 62.95 59.92 58.39 57.11 24.01

✓ 80.72 77.68 74.67 71.95 69.80 66.37 63.69 62.24 60.76 19.96
✓ 80.72 77.40 74.14 71.28 69.19 65.75 63.02 61.39 59.89 20.83

✓ ✓ 80.90 77.85 75.34 72.93 70.94 67.78 65.07 63.58 62.21 18.69

5.4 Ablation study
We conduct ablation studies to prove the importance of our pro-
posed components. Our ablation experiments include adding only
the CI strategy, adding only the FT process, and both the CI and
FT acting together. Both modules are important to CIFSCIL. In
particular, the CL makes a critical contribution.

As shown in Table 4, we validate the role played by our different
modules in the miniImageNet dataset. In the case of adding only
the CI strategy, the CI improves the model’s generalization ability
when the model is trained for the base classes by learning the
causal relationship of the interference samples and has a lasting
good impact on the subsequent recognition of the novel classes.
Our experimental results clearly show that our CIFSCIL exhibits the
highest accuracy at each incremental session, and this gap becomes
more pronounced the further the incremental sessions go. This
proves the significant role played by our CI strategy in allowing the
model to recognize novel classes and overcome forgetfulness. In the
case of adding only the FT process, the accuracy in the incremental
sessions is somewhat improved. The two modules have different
focuses; the CI mainly allows the model to improve its ability to
cope with unfamiliar information and avoid catastrophic forgetting
by learning sufficient base class data, while the FTmainly focuses on
the features of the novel class data, allowing the model to ultimately
represent the features more accurately. The CI and FTwork together
to make the model not only mitigate catastrophic forgetting, but
also show excellent performance for learning novel classes. As

demonstrated in the last line in Table 4, we show the performance
of the CI and FT acting together, and the results indicate that a new
state-of-the-art performance can be achieved on the FSCIL.

6 CONCLUSION
In this paper, we designed a CIFSCIL framework to effectively ad-
dress the issues of catastrophic forgetting and overfitting in the
task of FSCIL. Through experimental performance evaluation on
three CIL datasets commonly used in FSCIL, our CIFSCIL achieves
the best performance and effectively mitigates the problems of
catastrophic forgetting and overfitting compared to both classi-
cal baseline and state-of-the-art methods. The experiment results
demonstrated that incorporating a causal inference strategy in our
CIFSCIL to learn the causal relationship between features and out-
comes during the base phase training can effectively generalize the
feature-capturing ability to incremental sessions and improve the
recognition of novel classes while alleviating the model’s forget-
fulness of old tasks. Additionally, the Fourier transform process in
our CIFSCIL can effectively strengthen feature learning for novel
classes and facilitate the classifier to better capture the features of
the few-shot data in CIL.
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