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—— Abstract

Directed topology augments the concept of a topological space with a notion of directed paths. This

leads to a category of directed spaces, in which the morphisms are continuous maps respecting
directed paths. Directed topology thereby enables an accurate representation of computation paths
in concurrent systems that usually cannot be reversed.

Even though ideas from algebraic topology have analogues in directed topology, the directedness
drastically changes how spaces can be characterised. For instance, while an important homotopy
invariant of a topological space is its fundamental groupoid, for directed spaces this has to be
replaced by the fundamental category because directed paths are not necessarily reversible.

In this paper, we present a Lean 4 formalisation of directed spaces and of a Van Kampen theorem
for them, which allows the fundamental category of a directed space to be computed in terms of
the fundamental categories of subspaces. Part of this formalisation is also a significant theory of
directed spaces, directed homotopy theory and path coverings, which can serve as basis for future
formalisations of directed topology. The formalisation in Lean can also be used in computer-assisted
reasoning about the behaviour of concurrent systems that have been represented as directed spaces.
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1 Introduction

Any topological space is equipped with a set of paths (continuous maps from the unit
interval into the space), which is closed under composition and reversion. However, one often
needs to distinguish a subset of paths following a particular direction, for example to model
non-reversible processes. One motivation stems from models of true concurrency [9], where
executions are modelled as non-reversible paths in a space. For instance, two programs A
and B can be executed sequentially in two ways: either we first run A and then B, or vice
versa, see a) of Figure 1. This choice between two sequential linearisations corresponds to
semantics of labelled transition systems, but it neglects potential parallel execution. To see
this, suppose that A and B have no dependency or interaction and can be run in parallel.
This situation can be modelled by admitting any path in the square from the bottom left
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Figure 1 Possible execution paths of two programs A and B under three conditions: a) sequential
(left), b) simultaneous (middle) and c¢) simultaneous with obstacles (right).

to the top right as a valid execution, with the intuition that going along the path tracks
how far each of the processes has been run, see b) of Figure 1. The caveat is that processes
can, in general, not be reversed and therefore the path may only ever go up and to the
right, following the directions of the arrows. Suppose that there is a dependency between
the processes, for instance they need to write to the same memory location. To prevent race
conditions, we could rule out execution paths in which the processes access that memory
location at the same time. This can be modelled by the space in Figure 1 c), where the
darker rectangle is an obstacle that paths have to bypass. The two displayed paths in that
space represent different memory access patterns: the lower path means that process B first
gets access to the memory location, while the upper means that A first gets access. These
two paths are essentially different because the observable behaviour of the system differs and
because we cannot change the access pattern during execution. In contrast, the different
paths in Figure 1 b) model executions that differ only in the relative execution speeds of
A and B but are otherwise equivalent. By giving one process more execution time, we can
always deform one path into another in this space. Finally, the space in Figure 1 a) has
exactly two paths from the bottom left to top right, neither of which can be deformed to the
other due to the absence of parallelism. This tells us that the spaces in Figure 1 all model
different systems. The question is then how our intuition about relating execution paths can
be made precise and how we can reason about these relations.

Directed topology and directed homotopy theory [8, 13] make the above intuition precise
and enable the analysis of concurrent systems with the tools of algebraic topology. There
are various ways to enforce direction in topological spaces, such as higher-dimensional
automata [22, 20], spaces with a global order [10], spaces with local orders [7], streams [15],
and various others [6, 11]. We will focus here on the notion of d-space [12], which represents
a directed space as a topological space with a distinguished set of directed paths. It then
turns out that reasoning about concurrent systems becomes reasoning about the homotopy
type of d-spaces, that is, the relation between directed paths in a d-space.

An important strategy in building and analysing large systems is to prove local properties
of subsystems and deduce properties of the composed system from these local properties. In
algebraic topology, an important result allowing us to combine knowledge of the homotopy
type of subspaces into knowledge about the whole space is the Van Kampen theorem [3]. This
result expresses the fundamental group of a topological space as a pushout of fundamental
groups of suitably chosen subspaces. It has been extended to d-spaces by Grandis [12]. To
make the latter result applicable in larger systems, we set out in this paper to formalise the Van
Kampen theorem for d-spaces in the proof assistant Lean [5], thereby enabling compositional
reasoning about homotopy types of d-spaces and of concurrent systems modelled as d-spaces.
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1.1 Contributions

Our main contribution is the formalisation of definitions and theorems relating to directed
topology, in particular the Van Kampen Theorem. For this formalisation we used Lean
4.6.0-rc1 and we built upon the work already present in mathlib [18]. All of the formalisation
can be found in the accompanying Git repository [16]. It consists of 5.6k lines of code
distributed over 30 files. Throughout the article, excerpts from the formalisation are given
to show the implementations of definitions and lemmas.

As directed topology has not been formalised before, our formalisation is a natural starting
point for the development of a formalised directed topology. Our work has not yet been
integrated into mathlib, but we plan on doing so in the near future.

1.2 Related work

There are currently no other formalisations of (parts of) directed topology. The undirected
Van Kampen theorem has been formalised in Agda by Favonia and Shulman [14], and in
Lean 2 by Van Doorn et al. [21]. In both cases, the formalisation uses synthetic homotopy
theory in the form of univalent homotopy type theory, while our formalisation is analytic,
that is, we define homotopy as concept derived from (directed) topological spaces. At the
moment, mathlib does not contain a proof of the undirected Van Kampen Theorem.

1.3 Overview

In Section 2, we define the notion of directed spaces and directed maps and give a few
examples. In Section 3, the definitions and some properties of directed homotopies and
directed path homotopies are given. We use those to define relations on the set of directed
paths between two points. In Section 4, the equivalence classes of paths under these relations
are used to define the fundamental category. The Van Kampen Theorem is stated in Section 5

and we describe the connection between its proof and its formalisation in a precise manner.

Finally, in Section 6 we reflect on the ideas presented in this article.

2 Directed Spaces

In this section, we will look at the basic structure of a directed space. With directed maps
as morphisms, the category of directed spaces dTop is obtained.

2.1 Directed Spaces

A directed space is a topological space with a distinguished set of paths, whose elements are
called directed paths. This set must contain all constant paths and must be closed under
concatenation and monotone subparametrisation. We denote the concatenation of two paths
by ©.

» Definition 1 (Directed space). A directed space is a topological space X together with a

subset Px of the set of paths in X, satisfying the following three properties:

1. For any point x € X, we have 0, € Px, where 0, is the constant path in x.

2. For any two paths y1,7v2 € Px with y1(1) = 72(0), we have ;3 ® 2 € Px.

3. For any path v € Px and any continuous, monotone map ¢ : [0,1] — [0,1], we have
yoyp € Px.

The elements of Px are called directed paths or dipaths.

8:3
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We will first consider some examples of directed spaces.

» Example 2 (Directed unit interval). We can give the unit interval a rightward direction.
This is done by taking Pjg 1) = {¢ : [0,1] — [0,1] | ¢ continuous and monotone}. We will
denote this directed space by I. More generally, every (pre)ordered space can be given a set
of directed paths this way.

» Example 3 (Product of directed spaces). If (X, Px) and (Y, Py) are two directed spaces,
then the space X x Y with the product topology can be made into a directed space by
letting Py xy = {t = (71(t),72(t)) | 1 € Px and 72 € Py}. As we will see in Section 2.2,
with this set of directed paths both projection maps will be examples of directed maps and
(X x Y, Pxxy) becomes a product in a categorical sense.

» Example 4 (Induced directed space). Let X be a topological space and (Y, Py) a directed
space. Let a continuous map f : X — Y be given. If v : [0,1] — X is a path in X,
then fo~:[0,1] — Y is a path in Y. We can make X into a directed space by taking
Px ={y€ C([0,1],X) | f oy € Py}. In the special case that X is a subspace of Y and f is
the inclusion map, we find that every subspace of a directed space can be given a natural
directedness.

We formalised the notion of a directed space by extending the TopologicalSpace class.
In our formalisation, we do not explicitly use a set containing paths. Rather, being a directed
path is a property of a path itself, analogously to how being open is a property of a set in
the TopologicalSpace class. Paths in topological spaces have been implemented in mathlib
in the file Topology/Connected/PathConnected.lean. A path has type Path x y, where
its starting point is x and its endpoint is y. The definition of a directed space can be found
in directed_space.lean.

class DirectedSpace (o : Type u) extends TopologicalSpace « where

IsDipath : V {x y : a}, Path x y — Prop
isDipath_constant : V (x : a), IsDipath (Path.refl x)
isDipath_concat : V {x y z : a} {71 : Path x y} {72 : Path y z},

IsDipath 73 — IsDipath 2 — IsDipath (Path.trans -y 72)
isDipath_reparam : V {x y : a} {y : Path x y} {to t1 : I}

{f : Path to t1}, Monotone f — IsDipath 7 —

IsDipath (f.map (7.continuous_toFun))

The term IsDipath determines whether a path is directed. The three other terms are
exactly the three properties of a directed space. Path.refl x is the constant path in a
point x and Path.trans is used for the concatenation of paths. The mathlib library only
has support for reparametrisations of paths (meaning that the endpoints must remain the
same), but we want to also allow strict subparametrisations. We do this by interpreting the
subparametrisation f as a monotone path in [0,1]. Then the path v o f can be obtained
using Path.map, where we interpret v as a continuous map.

In constructions.lean, various instances of directed spaces can be found: topological
spaces with a preorder (Example 2), products of directed spaces (Example 3) and induced
directedness (Example 4).

For brevity, we introduce a notation for the set of all directed paths between x and y.

» Definition 5. If X is a directed space and x,y € X points, we use the shorthand notation
Px(x,y) for the set {y € Px | v(0) =« and v(1) = y}.

This definition can also be seen as a type for our formalisation. That is exactly how to
interpret the structure Dipath, found in dipath.lean:


https://github.com/leanprover-community/mathlib4/blob/fa48894/Mathlib/Topology/Connected/PathConnected.lean
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https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/dipath.lean
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variable {X : Type u} [DirectedSpace X]
structure Dipath (x y : X) extends Path x y :=
(dipath_toPath : IsDipath toPath)

It extends the path structure and depends on two points x and y in a directed space X.

The term dipath_toPath has type IsDipath toPath. That means that the underlying
path it extends must be a directed path. Due to the axioms of a directed space, we can
define Dipath.refl and Dipath.trans analogously to their path-counterparts. However,
Path.symm, the reversal of a path, cannot be converted to a directed variant as it is not
guaranteed that the reversal of a directed path is directed.

We introduce a notation for a special kind of subpath of a directed path.

» Definition 6. Let X be a directed space and v € Px a directed path. Given integers
n >0 and 1 <i < n, we will define v;, € Px to be the path from y(*=1) to (L) given by
Yin(t) = ().

We can now say what it means for a directed path to be covered by a cover of a directed
space. This definition will play a big role in proving and formalising the Van Kampen
Theorem for directed spaces.

» Definition 7. Let X be a directed space, U C X a subset and v € Px a directed path. We
say that ~y is contained in U if Im~vy C U.

» Definition 8. Let X be a directed space and U a cover of X. Let v € Px be a directed

path and n > 0 an integer. We say that 7y is n-covered (by U) if vin is contained in some
U; €U for each 1 <i<n.

In path_cover.lean we formalise this definition of n-covered in the special case that U
consists of two sets Xy and X; using induction:

variable {x y : X} (hX : Xo U X; = univ)

def covered (y : Dipath x y) : Prop :=
(range v C Xo) V (range v C Xi)

def covered_partwise (y : Dipath x y) (n : N) : Prop := match n with
| Nat.zero => covered hX 7y
| Nat.succ n =>
covered hX (FirstPart v (Fraction.ofPos (Nat.succ_pos n.succ))) A
covered_partwise hX
(SecondPart y (Fraction.ofPos (Nat.succ_pos n.succ))) n

Here covered corresponds with v being 1-covered: its image is either contained in X or
in X;. We use this definition to inductively define covered_partwise. As it is easier to start
at zero in Lean, covered_partwise hX v n corresponds with y being (n+1)-covered. In the
case that n = 0, we have that covered_partwise simply agrees with covered. Otherwise,
we use an induction step to define that covered_partwise hX v (Nat.succ n) holds if the
first part ;42 is covered and the remainder of 7y is covered_partwise hX v n. Note the
use of n + 2 instead of n + 1 due to the offset between the definitions. The remainder of
path_cover.lean contains lemmas about conditions for being n-covered.
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2.2 Directed Maps

As directed spaces are an extension of topological spaces, directed maps will be extensions
of continuous maps. They will need to respect the extra directed structure. If a path in
the domain space is given, a path in the codomain space can be obtained by composing the
continuous map with the path. If the former is directed, so should be the latter.

» Definition 9 (Directed map). Let X and Y be two directed spaces. A directed map
f X = Y is a continuous map on the underlying topological spaces that furthermore
satisfies: for any v € Px, we have foy € Py.

By the construction of the product of directed spaces in Example 3, the continuous
projection maps on both coordinates are directed: a directed path in the product space is
a pair of directed paths and a projection returns the original directed path. Similarly, if
a continuous map f : X — Y is used to induce a direction on X as in Example 4, then f
becomes a directed map from X to Y, where X has the induced directedness.

In order to formalise the definition of a directed map in Lean, we define the property
Directed, which expresses exactly that a continuous map between two directed spaces maps
directed paths to directed paths. A directed map is then an extension of the ContinuousMap
structure with a proof for being Directed.

variable {a B : Typex} [DirectedSpace o] [DirectedSpace []
def Directed (f : C(w, f)) : Prop :=V {x y : a} (y : Path x y),
IsDipath v — IsDipath (vy.map f.continuous_toFun)

structure DirectedMap extends ContinuousMap a [ where
protected directed_toFun : DirectedMap.Directed toContinuousMap

Within Lean, we use the notation D(«, 3) for the type of directed maps between two
spaces « and (. Directed paths are also instances of directed maps, because they map
directed paths in I to monotone subparametrisation of themselves. dipath.lean contains
definitions on how to convert the Dipath type to the DirectedMap type and the other way
around. These are called toDirectedMap and of _directedMap respectively.

Directed spaces and directed maps form a category, which we will denote by dTop.

3 Directed Homotopies

In this section, we will look at directed homotopies and directed path homotopies. These
two concepts realise the idea of deformation, while respecting the directedness of a directed
space.

3.1 Homotopies
A directed homotopy is the deformation of one directed map into another.

» Definition 10 (Directed homotopy). Let X and Y be two directed spaces. A homotopy
between two directed maps f,g: X — Y s a directed map H : I x X —Y such that for all
x € X we have H(0,2) = f(x) and H(1,x) = g(z), where the product I x X is taken between
directed spaces, see Example 3.

We say that H is a directed homotopy from f to g. This order matters, as unlike in the
undirected case a directed homotopy cannot generally be reversed. In our formalisation, we
adhere to the method used in defining homotopies between continuous maps in mathlib, which
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can be found in Topology/Homotopy/Basic.lean. In an analogous manner, the structure
extends the DirectedMap (I x X) Y structure and has two extra properties.

structure Dihomotopy (fo f1 : D(X, Y)) extends D((I x X), Y) :=
(map_zero_left : V x, toFun (0, x) = fp.toFun x)
(map_one_left : V x, toFun (1, x) = f;.toFun x)

As a directed map is always a continuous map on the underlying topological spaces, we
can convert a Dihomotopy to a Homotopy. Conversely, if we are given a Homotopy and we
know that it is directed, we can obtain a Dihomotopy.

If f: X — Y is a directed map, there is an identity homotopy H from f to f, given by
H(t,z) = f(x). Also, if G is a directed homotopy from f to g and H a directed homotopy
from g to h, we obtain a directed homotopy G ® H from f to h given by

G(2t, ),

(G® H)t, )= {H(2t— 1,2) tl <

These constructions are called refl and trans in directed_homotopy.lean. In both
cases we coerce a Homotopy to a Dihomotopy, by supplying proofs that the obtained homo-
topies are directed. Here we use the existing proofs in mathlib that the constructed maps are
indeed homotopies, i.e. are continuous and satisfy the two mapping properties.

3.2 Path Homotopies

» Definition 11 (Directed path homotopy). Let X be a directed space and x,y € X two points.
A directed path homotopy between two directed paths v1,7v2 € Px(x,y) is a directed homotopy
H:IxI— X from~ to~s such that additionally for all t € [0,1] we have H(t,0) = z and
H(t,1)=y.

In other words, a path homotopy is a homotopy between two paths that keeps both
endpoints fixed. Again we say that H is a directed path homotopy from 7; to 7o. Between
two paths 1 and 72 in I with the same endpoints exists a path homotopy under the condition
that v1(t) < v2(t) for all ¢t € I as the following example shows.

» Example 12. Let ¢g,t; € I be two points and 1,72 € Pr(to,t1). If v1(¢) < va(t) forallt € I,
then there is a directed path homotopy H from 1 to s given by H(t, s) = (1—t)-y1(s)+t-72(s).
It is continuous by continuity of paths, multiplication and addition. It can be shown that
H(ag,bo) < H(ay,by) if ag < a1 and by < by. From this, it follows that H is directed, because
a directed path in I x I is exactly a pair of monotone maps I — I by definition.

Note that H interpolates two paths vy, and . The formalised proof of it being a directed
map can be found in the file interpolate.lean.

Let z,y,z € X be three points, 51,v1 € Px(z,y) and 83,72 € Px(y, z). If there are two
directed path homotopies G from (1 to v; and H from (B2 to 72, we can construct a directed
path homotopy G ® H from 1 ® B2 to 1 ® 72 given by

G(t,2s), s

(GO H)(t,s) = (t,2s) X
H(t, 2s — 1), 5 <
Let z,y € X be two points and 71,2 € Px (z,y). If there exists a path homotopy from 7
to v2, we will write 1 ~> 2. This defines a relation on the set Px(x,y), but that relation is
not guaranteed to be an equivalence relation, as it is generally not symmetric. This is due to
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the fact that the reversal of a directed path may not be directed. In order get an equivalence
relation on the set of directed paths between two points, we will take the symmetric transitive
closure of this relation.

» Definition 13. Let X be a directed space and x,y € X two points. We say that two dipaths
T,7%2 € Px(z,y) are equivalent, or 1 =~ 7o, if there is an integer n > 0 together with dipaths
Bi € Px(x,y), for each 1 <1i <mn, such that

Y1 P o By e .

This alternating sequence of arrows is also called a zigzag. As 2 «~ 72 holds for any path 7
by reflexivity, we can always assume that there is an odd number of paths in a zigzag between
two paths 77 and 7,. By taking n = 0, it follows that v; ~ 75 holds if ;3 ~> 2. More
precisely, ~ is the smallest equivalence relation on Px (x,y) such that that property holds
[17, p. 129]. As ~ is an equivalence relation, we can talk about equivalence classes of paths,
denoted by [v]. An important property of these equivalence classes is that they are invariant
under directed maps and path reparametrisation.

» Lemma 14. Let X, Y be directed spaces and x,y € X. Letv1,v2 € Px(z,y) and f : X =Y
directed. If v1 ~ 7o, then fo~vy; >~ foys.

Proof. Let n > 0 odd and f; € Px(z,y) for 1 <i < n such that

Y1~ By Po v v By e 0.

If H:1x1— X is a directed path homotopy from v, to 1, then f o H is a directed path
homotopy from f o~ to foS;. We find that f o~y ~» f o ;. Repeating this for all other
arrows in the zigzag gives us

Jovi~ fopre fofa~s ..o fof, e« for,
We conclude that fovy; ~ fo~s. |

» Lemma 15. Let X be a directed space and x,y € X. Let v € Px(z,y) and p,¢’ : I — 1
continuous and monotone with ¢(0) = ¢’'(0) =0 and ¢(1) = ¢'(1) =1. Then yop ~~yoy'.

Proof. As v is a directed map from I to X, it is enough by Lemma 14 to show that ¢ ~ ¢’.
Let 81 = ¢ ®0; and B2 = 0p ® ¢’. Then, by applying Example 12 three times, we obtain the
zigzag @ ~» 31 « P2 ~» ¢'. This shows that ¢ ~ ¢’, completing the proof. |

In the next section, we will construct the fundamental category of a directed space. For
that we need the following four additional equalities of equivalence classes.

» Lemma 16. Let X be a directed space and x,y,z,w € X. Let p1,71 € Px(x,y), B2,72 €
Px(y, z) and 3 € Px(z,w) such that 81 ~v; and P2 ~ v2. Then the following holds:

L o~y

2.0, 0m=m

3. MO0, ~m

4 MOR) 01BN 0O(12073)

Proof. Statements 2, 3 and 4 are direct applications of Lemma 15 as they are all repara-
metrisations. We will now show statement 1. Let n,m > 0 odd and p;,q; € Px(z,y) for
1<i<nand1<j<m such that

Bi~prevpr~ oDy vy and fo v e go v @ o Yol
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Let G be a directed path homotopy from 1 to p; and H be the identity homotopy from (s
to B2. Then G ® H is a directed path homotopy from 81 ® 2 to p; ® B2. Repeating this, we
obtain a zigzag

B1O© B2~ p1 O PP ® Py~ pp @ Py ey O Po,

S0 B1 ® B2 ~ v1 ® B2. Analogously we obtain a zigzag

MOB2 711 Oq 110G~ ... 71O Gm 71O Y.
This results in v ®B2 ~ 71 ®72 and combining both equivalences gives us 51 ®f >~ 71 Oy2. <

The definition of a directed path homotopy and the three lemmas above have all been
been formalised in directed_path_homotopy.lean. For the path homotopies, we followed
the more general approach from mathlib, where we first defined directed homotopies that
satisfy some property P. Thereafter we defined DihomotopyRel as directed homotopies that
are fixed on a select subset of points. This is all defined in directed_homotopy.lean. A
path homotopy is a homotopy that is fixed on both endpoints, that is, on {0,1} C I, so we
can define a directed path homotopy as

abbrev Dihomotopy (po p1 : Dipath x y) :=
DirectedMap.DihomotopyRel pg.toDirectedMap p;.toDirectedMap {0, 1}

The construction ® is called hcomp and ® is called trans. If f,g € D(I,I) are two
directed maps with f(t) < g(¢) for all ¢t € I, the definition Dihomotopy.reparam constructs
a homotopy from 7o f to v o g. This is done by composing v and the homotopy obtained
from Example 12. If H is a homotopy from v; to 72 with 1,72 € Px(z,y), and f: X =Y
is a directed map, then the homotopy from f o~; to f o~y given by f o H is exactly what
Dihomotopy.map entails.

Now we can formalise the relations ~» and ~. These are called PreDihomotopic and
Dihomotopic respectively.

def PreDihomotopic : Prop := Nonempty (Dihomotopy po pi1)
def Dihomotopic : Prop := EqvGen PreDihomotopic po p1

The term Nonempty means exactly that there exists some directed homotopy, which
corresponds with our definition of ~». EqvGen gives the smallest equivalence relation generated
by a relation. The lemmas map, reparam and hcomp in the namespace Dihomotopic now
correspond with Lemma 14, Lemma 15 and the first point of Lemma 16 respectively.

This gives us enough tools to construct the so called fundamental category.

4 The Fundamental Category

Using the properties found in Section 3.2, we can define a category that captures the
information of all paths up to directed deformation in a directed space. This is the directed
version of the fundamental groupoid.

» Definition 17 (Fundamental Category). Let X be a directed space. The fundamental
category of X, denoted by T1(X), is the category that consists of:

Objects: points x € X.

Morphisms: TL(X)(z,y) = Px(x,y)/~.

Composition: [y2] o [v1] = [71 © Y2

Identity: id, = [0].
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» Remark 18. The fact that this category is well defined follows from Lemma 16. Due to
property 1, composition is well defined. Due to properties 2 and 3, the constant path behaves
as an identity and property 4 gives us associativity.

Note that ﬁ maps objects in dTop to objects in Cat. It turns out that it can also be
defined on morphisms making it into a functor.

» Definition 19. Let f : X — Y be a directed map. We define ﬁ(f) : ﬁ(X) — H(Y) as
the functor:

On objects: ﬁ(f)(m) = f(x).
On morphisms: ﬁ(f)(['y]) =[fon].

It is well behaved on morphisms, because of Lemma 14. It is straightforward to verify
that ﬁ( f) respects composition and identities.

In our formalisation, we follow the construction of the fundamental groupoid in mathlib
found in AlgebraicTopology/FundamentalGroupoid/Basic.lean closely. Our implement-
ation is found in fundamental_category.lean.

structure FundamentalCategory (X : Type u) where
as : X

instance : CategoryTheory.Category (FundamentalCategory X) where
Hom x y := Dipath.Dihomotopic.Quotient x.as y.as
id x := [Dipath.refl x.as]
comp {_ _ _} := Dipath.Dihomotopic.Quotient.comp
id_comp {x _} f := Quotient.inductionOn f fun a =>
show [(Dipath.refl x.as).trans al = [a] from
Quotient.sound (EqvGen.rel _ _ (Dipath.Dihomotopy.refl_trans a))
comp_id {_ y} £ := /- Proof omitted -/
assoc {_ _ _ _} £ gh := /- Proof omitted -/

We show that FundamentalCategory X is an instance of a category by defining the morph-
isms (hom), identities (id) and composition (comp). The morphisms between two objects x and
y are given by Dipath.Dihomotopic.Quotient x y. This is the quotient of Dipath x y
under the Dihomotopic relation and is defined in directed_path_homotopy.lean. The
identity on x is then the equivalence class (denoted by [ ]) of the constant path in x. The
composition of the equivalence classes of two compatible paths is defined as the equivalence
class of the concatenation of the two paths in Dipath.Dihomotopic.Quotient.comp.

The proof that this defines a category is given by id_comp, comp_id and assoc. For
example, id_comp requires us to show that the directed paths (Dipath.refl x).trans a
and a are dihomotopic, corresponding to statement 2 of Lemma 16. The file also contains
the definition of the Il-functor from dTop to Cat. Analogously to the undirected mathlib
implementation, we use the notation dn for this functor.

5 The Van Kampen Theorem

In this section, we will state and prove the Van Kampen Theorem. We follow the proof of
Grandis [12] and work out some of the details that were omitted there. In Section 5.2 we
show how we have formalised this proof by comparing the proof to the Lean code.


https://github.com/leanprover-community/mathlib4/blob/fa48894/Mathlib/AlgebraicTopology/FundamentalGroupoid/Basic.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/fundamental_category.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_path_homotopy.lean
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5.1 The Van Kampen Theorem

Before we state and prove the theorem, we will define the notion of being covered for directed
homotopies.

» Definition 20. Let X be a directed space and U a cover of X. Let H: I x I — X be a
directed homotopy and n,m > 0 two integers. We say that H is (n,m)-covered (by U) if for
all1 <i<mnandl <j<m the image of [121,%] X [%7 %] C I x I under H is contained
in someU € U.

By the Lebesgue Number Lemma [19, p. 179], for any homotopy H and open cover U
of X, there are n,m > 0 such that H is (n, m)-covered by U.

» Theorem 21 (Van Kampen Theorem). Let X be a directed space and X1 and Xa two open
subspaces such that X = X1 U X5 and let Xg = X1 N Xy, Let iy : Xo = Xg and ji : X — X
be the inclusion maps, k € {1,2}. Then we obtain a pushout square in Cait:

. (i)

Ti(iz) II(j1)
) -
H(Xz) —— T(X)
(j2)

Proof. As j; oiy = jy 0ip and Iiis a functor, the square is commutative. It remains to
show it satisfies the universal property of a pushout square. Let C be any category and
Fy :II(X;) — C and F5 : II(X2) — C be two functors such that Fy o II(i1) = F5 o II(i3). We

will explicitly construct a functor F : TI(X) — C such that Foli(j,) = Fy and Foli(js) = Fj.

The construction will show that this functor is necessarily unique with this property.

Step 1) The objects of ﬁ(X) are exactly the points of X. If an object x € ﬁ(X) is also
contained in Ti(X1), it holds that F(z) = F(ji(z)) = (F o Ii(j1))(x). The desired condition
F oTi(j;) = Fy then requires us to define F(z) = Fy(z). A similar argument gives us that if
z € II(Xy) then F(z) = Fy(z). As X1 and X, cover X, for all € II(X) we have

F(;L')— Fl(l‘), I’EXh
- FQ(iE), z € Xs.

By the assumption that F} o ﬁ(zl) =Fo ﬁ(lg) this is well defined, so we know how F' must
behave on objects.

Step 2) Let [y] : 2 — y be a morphism in II(X). Then there is an n > 0 such that v is
n-covered by the open cover { X7, Xo}, with +; ,, contained in Xy, k; € {1,2}. One important
thing to note is that +; ,, can be both seen as a path in X and as a path in X}, by restricting
its codomain. This matters when we talk about [v; ], as it could be a morphism in Ii(X)
and in TI(X}, ). Within this proof will always consider it as a morphism in II(X},) and write
[7k; © Yin] for the morphism in ﬁ(X) Note that we have [y] = [jk, © Yn,n] © .- 0 [fk; © V1,0
in ﬁ(X), as v is equal to 1., © (2,0 @ . .. (Yn—1,n © Yn,n)) UpP to reparametrisation. Because
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we want F' to be a functor and thus to respect composition, we find that necessarily

Fly] = F([jk, ©Ynmnlo ... 0 [jk, ©71,n])
= Fljg, o 'Vn,n] o...0F[j o '71,n]

= P (TG ) Bl ) o0 F (k)]

= (F o (jk,)[Ynn] © - - © (F 0 TL(jix, ) [71.]
= Iy, ['Ynn] o...0Fy, ['71,n]~

As multiple choices were made, we need to make sure that F' is well defined this way. We do
this by defining a map F’ : Px — Mor(C), where Mor(C) is the collection of all morphisms
in C. The map is given by

F/('Y) = Fg, ['Vn,n] o...0F [’Yl,n]v

where 7y is n-covered with ; ,, contained in Xj,. In the next steps, we will first show that
this map is well defined. Then we show that F’ respects equivalence classes. From this it
follows that F' is well defined, as it is simply F’ descended to equivalence classes.

Step 3) We first need to make sure that F’ does not depend on any choices of k;. In
the case that +; , is contained in both X; and X5, the value of k; can be either 1 or 2.
The condition that Fy o Ii(i1) = Fj o Ii(iy) assures us that both options give us the same
morphism.

Step 4) The second choice we made is that of n. It is possible that v is also m-covered for
another integer m > 0, with v, ,, being contained in X,.. We want to show that

Fkn ['Vn,n] 0...0 Fkl [71777'] = Fan [rym)m} ©...0 Fpl [717777/]'

If we refine the partition of v in n pieces into a partition of mn pieces, that partition will
surely also be partwise covered. Let [; € {1,2} for all 1 < ¢ < mn such that 7; ,,,s, is contained
in X;,;. We now claim that for all 1 < i < n it holds that Fy,[vin] = Fl,..[Ymimn] © ... 0
iy [Ym@—1)+1,mn)e AS Ym(i—1)4j,mn With 1 < j <m is a subparametrisation of v; ,
we may assume that lm(i—1)+j = k;. This is because F; and F;, agree on X; N Xo. As Fy,
is a functor, the claim now follows because functors respect composition and because v;
is exactly the concatenation of all the smaller paths up to reparametrisation. By a similar
claim for F), [v;,] we find:

Fkn [’Yn,n] ©...0 Fk1 [Vl,n] = Flmn [’Ymn,mn] ©...0 B1 [Vl,mn]
= Fp, [ymm] 0.0 Fp [y1,m]-

We conclude that the definition is independent of the value of n. This makes F’ well defined.
Step 5) Before we verify that F’ is independent of the choice of representative v, we will
first show that F” satisfies two properties:
Vo € TH(X) : F'(0,) = idp(a). (1)
Vy € Px(z,y),0 € Px(y,2) : F'(y ©0) = F'(3) o F'(7). (2)
Let z € ﬁ(X) be given. If x € X;, then 0, is already contained in X; and so by

definition of F' we find F'(0,) = F1[0;] = idp, (z) = idp(s). Otherwise it holds that » € Xy,
so [(0;) = F»[0;] = idp,(2) = idp(s). This proves Equation (1).
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Let v € Px(z,y) and § € Px(y, z) be two paths in X. We can then find an n such that
both v and § are n-covered, with ; , contained in Xy, and §; ,, contained in X,,. Then y® 46
is 2n-covered as it holds that

7, S ’
o= fp 15"

i—n,n» P> n.
We find:

F'l(0oq) =
Fp, (0o 7)2n,2n] o...0kp [(0 ©V)nt1,2n) © F, [(6 © 'Y)n,2n] o...0oF[(00® ’7)1,2n] =
(Fpo[0nnl 0.0 Fyy [01,0]) © (Fi, [Ynn] 0 - v 0 Fiy [v1,0]) = F'(8) o F'().

This shows that Equation (2) holds.

Step 6) We will now show that F’ respects equivalence classes. Then it descends to the
quotient and it follows that F' is well defined. If [y] = [§] with ¢ another path from z to y,
we want that

F'(y) = F'(9). 3)

Because of the way the equivalence classes are defined, it is enough to show this for v and
0 such that v ~» §. Let in that case a directed path homotopy H from ~ to J be given.
We take n,m > 0 such that H is (n,m)-covered by {X;, Xo}. Firstly assume that n > 1.
Restricting H to the rectangle [0, -] x [0, 1] gives us a directed path homotopy H; from v to
the directed path n given by n(t) = H (%,t). By restricting H to the rectangle [£,1] x [0, 1]
we get a directed path homotopy Hs from 7 to §. It is clear that Hy is (1, m)-covered and
that Hs is (n — 1, m)-covered. By applying induction on n, we can conclude that it is enough
to show that Equation (3) holds for (1, m)-covered directed path homotopies, as we would

obtain that F'(y) = F'(y) = F'(6).

Step 7) We will prove the case where H is (1,m)-covered by showing a more general
statement:

Let H be any directed homotopy — not necessarily a path homotopy — from one path
v € Px(z,y) to another path § € Px(z',y’) that is (1, m)-covered, m > 0. Let 19 be the path
given by no(t) = H(t,0) and n; be given by 1 (t) = H(t,1). Then F'(ng ©® §) = F'(v ® n1).
We do this by induction on m.

In the case that m = 1, we have a homotopy contained in X; or X,. Without loss
of generality, we can assume it is contained in Xj. Let I'y be the directed homotopy
given by I'y (¢, s) = no(min(t, s)) from 0, to ny. Let T's be the directed homotopy given by
Ty(t, s) = ni(max(t,s)) from 7, to 0,,. We then can construct a directed path homotopy
from (0, ® ) ©® m to (o © ) ® 0, given by (I'1 © H) © I's. It is a directed path homotopy
because T'1(t,0) = no(min(¢,0)) = 1o(0) = x and Ty (¢, 1) = ny (max(¢t, 1)) = n1 (1) =y’ for
all t € I. As ng,m and H are all contained in X7, this directed path homotopy will be
contained in X; as well. We find that [y ® ;] = [0 ® 6] in II(X;). This gives us that
Fi(y ©m) = Fily @ m] = Fi[no © 6] = F'(no © 9).

Let now m > 1 and assume the statement holds for (1,m — 1)-covered homotopies. We
can restrict H to [0,1] x [O, mT*l] to obtain a (1, m — 1)-covered homotopy Hj, say from v,
to &;. Similarly, we can restrict H to [0,1] x [=1 1] to obtain a (1,1)-covered homotopy Hs>,

m

say from 7o to 6. We write 1’ for the path given by 7/(t) = H(t, ™=1) = H,(t,1) = Hy(t,0).

m
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Note that F'(vy) = F'(v2) o F'(y1) by definition, because 1 is (m — 1)-covered, ~, is 1-covered
and v is m-covered. Similarly it holds that F'(§) = F’(d2) o F'(d1). We find:
Fl(yom)=F'(m

(1) o F'(7) (Equation (2))
=F'(m

o (F'(72) o F'(m1))
= (F'(m) o F'(72)) o F'(m)
(F/(52) F'(n')) o F'(m

F'(d2) o (F'(n) o F'(m1)

—F'(52)0(F/(51)° "(10)
= (F'(02) o F'(01)) o F'(n

= F'(8) o F"(10)

= F'(ny ®9) (Equation (2)).

)
)
(Case m = 1)

)
)
) (Induction Hypothesis)
0)

This proves the statement. From the statement we find that Equation (3) holds:
F'(§) =F'(§)oid, = F'(§) o F'(0,) = F'(0, ®6) =
F'(y ©0y) = F'(0y) 0 F'(y) = ids 0 F'(y) = F'(7).
Here, the fourth equality follows from the statement. We conclude that F' is well defined.

Step 8) As we have F[y] = F'(7), it is immediate that F' is a functor by Equation (1) and
Equation (2). The equalities FoTl(j;) = F; and FoTIi(j,) = F; hold by construction: if ~ is
contained in X7, then ;5 is as well, so (FoTl(j1))[y] = Flj101] = F'(7) = Fi[n.1) = B[]
We conclude that the commutative square is indeed a pushout. |

5.2 Formalisation

In the formalisation of Theorem 21, we follow the constructive nature of its proof. It can be
found in directed_van_kampen.lean. We have the following global variables, corresponding
with the assumptions of the Van Kampen Theorem:

variable {X : dTopCat.{u}} {X; X2 : Set X}
variable (hX : X; U X2 = Set.univ)
variable (X;_open : IsOpen X;) (X2_open : IsOpen X2)

Like in the proof, we introduce a category C' and two functors Fj : f[(Xl) — C' and
F, : TI(X3) — C. Using these we are going to explicitly construct a functor from II(X) to C
and show that it is unique. We will use that to prove that we indeed have a pushout square.

variable {C : CategoryTheory.Cat.{u, ul}}

variable (F; : (dw, (dTopCat.of X;) — C))

variable (Fy : (dm, (dTopCat.of X3) — C))

variable (h_comm : (dm, i1) > F1 = (@, i2) >> Fs)

/- Here we use two abbreviations:
iy = dTopCat.DirectedSubsetHom (Set.inter_subset_left X; X2)
ip = dTopCat.DirectedSubsetHom (Set.inter_subset_right X; X2)
=/

The variable h_comm is the assumption that the two maps F} and F5 out of C' form a
commutative square when composed with the inclusions I(X;) — II(X) and TI(X,) — I(X).
These inclusions are obtained by DirectedSubsetHom, defined in dTop.lean. This defines
the inclusion morphism Xy — X7 in dTop in the case that Xy C X; C X. We start with
defining the functor F' on objects (Step 1).


https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/directed_van_kampen.lean
https://github.com/Dominique-Lawson/Directed-Topology-Lean-4/blob/v1.1/Lean4/dTop.lean
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def FunctorOnObj (x : dm, X) : C := Or.by_cases
((Set.mem_union x.as X; X2).mp (Filter.mem_top.mpr hX x.as))
(fun hx => F;.obj (x.as, hx))
(fun hx => Fy.o0bj (x.as, hx))

We use Filter.mem_top.mpr hX x.as to show that z € X; U X5. From this, we use
Set.mem_union to obtain x € X; or x € X5 and we can split by those cases to apply
either I} or Fy. We abbreviate FunctorOnObj hX F; Fy to F_obj in our formalisation to
maintain clarity. After this definition, there are two lemmas that prove for k € {1,2} that
F(z) = Fy(z) if x € X,

In the proof of Theorem 21, F” is first defined and it is then shown to be a valid definition.
Within our Lean formalisation, we have to do these two parts in the reverse order. Once
we have shown that the construction is well-defined, we can define F’ in our formalisation.
That is why Step 2 will be completed later.

We use the definitions of covered and covered_partwise, shown in Section 2, to define
the mapping of morphisms inductively (Step 3):

def FunctorOnHomOfCovered {7 : Dipath x y} (hy : covered hX <)
F_obj (x) — F_obj (y) :=
Or.by_cases hy
(fun hy => FunctorOnHomOfCoveredAux; hX h_comm hvy)
(fun hy => FunctorOnHomOfCoveredAuxs hX h_comm hvy)

def FunctorOnHomOfCoveredPartwiseAux {n : N} :
V (xy : X) (v : Dipath x y) (hy : covered_partwise hX v n),
F_obj (x) — F_obj (y) :=
Nat.recOn n
(fun _ _ _ hy => Fo hvy)

(fun _ ih _ _ _ hy => (Fg hy.1) > (ih _ _ _ hvy.2))

In FunctorOnHom0fCovered we define what to do with a path ~ that is 1-covered, that
is, we map it to Fy[y] or Fs[y] depending on whether + is contained in X; or X5. It depends
on FunctorOnHomOfCoveredAux;, which specifies what Fj[y] should be, as [y] is a morphism
in ﬁ(X) and not in ﬁ(Xl). We use Fy to abbreviate FunctorOnHom0fCovered hX h_comm.
We can then use this base case to define FunctorOnHomOfCoveredPartwiseAux for an n-
covered path inductively by applying Fy to the first covered part of . In the construction of
FunctorOnHom0OfCoveredPartwiseAux, the variables x, y and « are given explicitly in order
to use induction. We use this definition in order to define FunctorOnHom0fCoveredPartwise
which uses these implicitly and we abbreviate it to F,, to maintain readability.

Since n is an input of the definition, we need to show that it is independent of the choice
of n. The lemma functorOnHom0fCoveredPartwise_unique captures this (Step 4).

lemma functorOnHomOfCoveredPartwise unique {n m : N} {y : Dipath x y}
(hy_n : covered_partwise hX v n) (hy_m : covered_partwise hX v m)
F, hy n = F, hy_m :=
/- Proof omitted -/

This lemma makes use of the following lemma that shows that the image remains the

same if we refine the partition of v, so when we use an nk-covering instead of an n-covering.

lemma functorOnHomOfCoveredPartwise_refine {n : N} (k : N)
II {x y : X} {y : Dipath x y} (hy_n : covered_partwise hX 7 n),
F, hy_n = F, (covered_partwise_refine hX n k hy_n) :=
/- Proof omitted -/
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Now we know that the image is independent of n, and because an n > 0 exists such
that 7 is n-covered (shown by has_subpaths), we can choose one such n and we obtain the
following formalisation of F’, completing Step 2. We abbreviate this map to Fh_aux.

def FunctorOnHomAux (v : Dipath x y) : F_obj (x) — F_obj (y) :=
F, (Classical.choose_spec (has_subpaths hX X;_open X2_open 7))

Now we show that Equation (1) and Equation (2) from the proof hold (Step 5).

lemma functorOnHomAux_refl {x : X} :
Fh_aux (Dipath.refl x) = 1 (F_obj (x)) :=
/- Proof omitted -/

lemma functorOnHomAux_trans {x y z : X} (41 : Dipath x y)
(y2 : Dipath y z)
Fh_aux (vi.trans 72) = Fh_aux 7 > Fh_aux 7 :=
/- Proof omitted -/

As shown in Step 6, we want to show that F” is invariant under the Dihomotopic relation.
To do this we need to show the claim from the proof: if we have a directed homotopy H
from f to g that is (1, m)-covered, then F'[H(_,1)] o F'[f] = F'[g] o F'[H(_,0)] (Step 7).
lemma functorOnHomAux_of_homotopic_dimaps {m : N} :
II {f g : D(I, X)} {H : DirectedMap.Dihomotopy f g}
(_ : DirectedMap.Dihomotopy.coveredPartwise hX H O m),
Fh_aux (Dipath.of_directedMap f) > Fh_aux (H.eval_at_right 1) =

Fh_aux (H.eval_at_right 0) > Fh_aux (Dipath.of_directedMap g) :=
/- Proof omitted -/

By using induction once again, we end up with the lemma showing us that the choice of
representative does not matter.

variable (y «’ : Dipath x y)

lemma functorOnHomAux_of_dihomotopic (h : .Dihomotopic 7’)
Fh_aux 7 = Fh_aux v’ :=
/- Proof omitted -/

We can now finally define the behaviour on morphisms to obtain a functor by using the
universal mapping property of quotients.

def FunctorOnHom {x y : dmy X} (y : x —> y) : F_obj x —> F_obj y :=
Quotient.liftOn v Fh_aux
(functorOnHomAux_of_dihomotopic hX X;_open Xs_open h_comm)

def Functor : (dm, X) — C where
obj := F_obj
map 7y := F_hom
map_id x := functorOnHom_id hX X;_open X2_open h_comm x
map_comp 71 72 := functorOnHom_comp hX X;_open X>_open h_comm 71 72

Here F_hom is an abbreviation for FunctorOnHom and the final Functor is abbreviated
to F. Finally, we get to Step 8. The remaining lemmas show that F o II(ji) = Fj for k =1
and k = 2, and that F' is the unique functor with this property.

lemma functor_comp_left : (dmy, ji1) > F = F; := /- Proof omitted -/

lemma functor_comp_right : (dm, j2) > F = Fa := /- Proof omitted -/

lemma functor_uniq (F’ : (dmy X) — C) (hi : (dmm j1) > F’ = F1)
(hy : (dmp j2) > F’ = F3) : F> = F := /- Proof omitted -/
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The Van Kampen Theorem is stated as

theorem directed_van_kampen (_ : IsOpen X;) (_ : IsOpen Xz)
(hX : X3 U Xg = Set.univ)
IsPushout (dm, i1) (dmm, i2) (dmm j1) @mp j2) :=
/- Proof omitted -/

This theorem now follows easily from the lemmas above.

6 Conclusion and Further Research

In this article, we presented a formalisation of the Van Kampen Theorem in directed topology
in the proof assistant Lean 4. This theorem allows one to calculate the fundamental category
of a directed space using the fundamental categories of subspaces under a mild condition on
the subspaces. At the moment, mathlib does not have a version of the Van Kampen Theorem
for groupoids, originally proven by Brown in 1968 [2, 3]. The undirected version is a corollary
of the directed version because the fundamental groupoid of a topological space can be seen
as the fundamental category of a directed space, where all paths are directed. We have not
formalised this implication, but it should not be hard to prove the Van Kampen Theorem
for groupoids in this manner.

There are generalisations of the undirected version that allow an arbitrary open cover [4,
Theorem 2.3.5]. An extension of our formalisation to allow this would be possible using the
same general approach, but we have not investigated this in depth.

As a next step, it would be natural to formalise the relation between d-spaces and their
homotopy theory with other models of concurrency, such as higher-dimensional automata
and their languages, and to develop the homotopy theory of d-spaces further in Lean.
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