
Brug: an Adaptive Memory (Re-)Allocator
Weng, W.; Uta, A.; Rellermeijer, J.S.

Citation
Weng, W., Uta, A., & Rellermeijer, J. S. (2024). Brug: an Adaptive Memory (Re-)Allocator.
2024 Ieee 24Th International Symposium On Cluster, Cloud And Internet Computing (Ccgrid),
67-76. doi:10.1109/CCGrid59990.2024.00017

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/4176732

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/4176732

Brug: An Adaptive Memory (Re-)Allocator

Weikang Weng
LIACS, Leiden University

w.weng@liacs.leidenuniv.nl

Alexandru Uta
DFINITY, Zürich

alexandru.uta@gmail.com

Jan S. Rellermeyer
Leibniz University Hannover

rellermeyer@vss.uni-hannover.de

Abstract—Although memory allocation is well-studied, it is far
from being a solved problem. There exist many allocators, each
offering varied performance depending on the underlying work-
load. With workloads becoming ever more complex, practitioners
need to take difficult decisions for the performance tuning of
memory allocation: which allocators to choose and how to tweak
their knobs are legitimate questions.

In this article, we take a deep look at memory allocators and
propose Brug, an adaptive memory allocator that builds upon the
strengths of all existing allocators and discards their weaknesses.
Brug can help programmers choose the suitable allocator for
their applications or even for individual data structures and
functions within applications, allowing for different allocators
within the same program. Brug also offers an auto-tuner to
minimize developer decision-making.

Brug comes in two flavors: (1) Rust-based library that can
be added to modern Rust code bases, helping in allocation and
re-allocation performance and diagnosis. (2) C-based library
that can be dynamically linked at runtime for existing legacy
programs to optimize their performance. Brug was deployed with
industry standard-grade frameworks, such as Apache Arrow,
Wasmtime WebAssembly virtual machine, and Redis. Our exper-
iments show that Brug can improve performance in all types of
applications and help developers toward taking otherwise difficult
decisions. Brug consistently improves application execution time.

I. INTRODUCTION

Memory (mis-)management is a major (performance) lim-

iting factor for demanding applications in growth areas like

big data [1], [2], graph processing [3], or cloud-based work-

loads [4], [5]. Such applications use various dynamic heap

objects [6] backed by memory allocators, software interfaces

that manage memory usage. Different memory allocators

follow different designs and leads to different performance

characteristics. In Figure 1, we show the lifetime of an object

being allocated and then re-allocated several times during the

runtime of a program. To achieve optimal performance, four

different allocators have to be used. This optimal result is

impossible to achieve in practice without adaptive allocators

and is difficult to predict.

Choosing the optimal memory allocator for the workload is

often difficult for programmers and demands knowledge, ex-

perience and ultimately large amount of experimentation. Sub-

optimal allocator choice may lead to long-term performance

loss. In this work, we present the design and implementation

of Brug, an adaptive and efficient memory (re-)allocator. Brug

builds upon the strengths of all existing allocation techniques

but discards their weaknesses, helping developers to achieve

good allocation and re-allocation performance.

Fig. 1. Best re-allocation performance is achieved when a combination of
allocators is used during runtime. Individual allocation performance is colored
differently per allocator type to showcase this unexpected behavior.

Brug fills the existing gap in current memory allocation

techniques—adapting to workload demand during runtime.

Heap-based memory allocators are usually efficient but lack

performance with multi-threaded allocation workloads. To

solve this issue, previous research primarily focuses on al-

location response time for new objects and reconciling multi-

threading interaction with allocators. We identified 4 differ-

ent approaches from literature: (1) fast multi-threaded tech-

niques [7], (2) reducing locking overhead [8], (3) improving

cache miss rate [9] and TLB efficiency [10], or (4) avoiding

context switch overhead by using the memory pool model and

moving the memory controller into user space.

Most of these allocators generally use a sequence called

malloc-copy-free when it comes to subsequent re-allocations

of objects. This sequence works as follows: (1) allocate a new

memory object with the new size, (2) copy the old content

into the new object, and (3) de-allocate the old object. In

modern systems, these operations have a high potential for

adding additional (performance) pressure on DRAM and CPU.

Furthermore, with large-size memory objects [11]–[13] that

are touched by concurrent threads in modern and emerging

workloads, such as big data, databases, or modern data for-

mats [14]–[16], performance degradation caused by copying

(and page-faulting) can be significant.

In this paper, we take a systematic approach to assess

different allocators and their impact on data structures and

memory workloads. For example, in an experiment using the

C++ Vector, we measured four different memory allocators:

Jemalloc [17], Mimalloc [18], TCmalloc [19], Ptmalloc2 [20]

and the MMAP-MREMAP [21] approach. We observed that

different allocators could make up to a 10% difference in

performance for the vector push operation, and even 20% in

multi-threaded operation.

Tapping into this performance difference, we designed and

67

2024 IEEE 24th International Symposium on Cluster, Cloud and Internet Computing (CCGrid)

979-8-3503-9566-2/24/$31.00 ©2024 IEEE
DOI 10.1109/CCGrid59990.2024.00017

20
24

 IE
EE

 2
4t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

C
lu

st
er

, C
lo

ud
 a

nd
 In

te
rn

et
 C

om
pu

tin
g

(C
C

G
rid

) |
 9

79
-8

-3
50

3-
95

66
-2

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

G
rid

59
99

0.
20

24
.0

00
17

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

implemented the Brug allocator, which helps programmers by

reducing the overhead of memory (re-)allocation and improv-

ing performance in modern code bases (e.g., Rust 1, as well as

in legacy applications (which cannot be recompiled) with C.

We chose Rust as a target for Brug as its developer community

is growing rapidly and the language is gaining more and more

attention in system programming [22], [23]. By using Brug

in Rust programs, programmers can not only add different

allocators for different data structures, but also mix and change

them during program runtime. Moreover, Brug offers an auto-

tuner which is able to closely follow the optimal allocator for

every (re-)allocation decision. Our contributions are:
1. An in-depth analysis of existing memory allocation
mechanisms. We provide an overview of different mecha-

nisms used in different allocators. We further investigate the

re-allocation performance of widespread memory allocators

built on these primitives. The allocators we consider are Pt-

malloc2 in Glibc-2.31, Jemalloc-5.0, TCmalloc in gperftools-

2.9.1 and MImalloc 2.0.6.
2. The design and implementation of Brug: our open-
source, library-based adaptive memory allocator for mod-
ern Rust code bases and (legacy) C/C++-based applica-
tions. Brug is an adaptive, lightweight, portable and flexible

library-based allocator. The Brug Rust version is designed to

explore more possibilities in interacting with different data

structures. It allows programmers to set specific memory al-

locators for different function blocks and dynamically switch,

monitor and tweak memory settings during runtime. In addi-

tion, Brug provides a convenient and flexible auto-tuner, which

helps programmers optimize allocator performance. For legacy

programs the Rust version is impossible to use. Therefore, we

provide the Brug C version, an easy-to-use dynamic linking

library for legacy applications. It overrides the default allocator

in legacy binaries the Linux LD PRELOAD primitive [24].

After the override, Brug helps fix performance degradation

because of expensive re-allocation copies.
3. The many-fold evaluation of Brug. Our findings demon-

strate the versatility of Brug in handling various Rust data

structures while incurring minimal overhead during the auto-

tuner’s training process. Notably, we showcase the seamless

integration of Brug with Rust-native code bases. Our experi-

ments target industry-grade state-of-the-art frameworks, such

as Apache Arrow [25], which is a foundational component

for data-centric systems, Wasmtime [26], an industry-grade

WebAssembly [27] VM, as well as the Redis key-value store

running write-heavy workloads from YCSB [28], [29].
Our findings confirm that Brug optimizes re-allocation per-

formance and enables allocator switching with minimal over-

head, while the auto-tuner can take accurate decisions for re-

allocation operations. For Redis, across various configurations,

Brug achieves considerable throughput improvement.

II. MEMORY ALLOCATION MECHANISMS

In modern operating systems, applications operate on virtual

addresses, which are software-controlled sets of memory ad-

1https://github.com/WayneWeng95/brug/

dresses. These addresses provide each process with a unique

view of a computer’s physical memory. The translation be-

tween virtual and physical addresses includes a process called

memory mapping. Memory mapping involves two hardware

components: the Memory Management Unit (MMU) and the

Translation Lookaside Buffer (TLB). The results of mapping

are stored inside the Operating System-managed page tables.

Programs do not interact directly with these low-level con-

structs for security and isolation reasons. Instead, they interact

with memory allocators, a type of software designed to handle

memory-related operations. In UNIX-derivatives like Linux,

allocating dynamic memory objects involves calling malloc or

calloc. Resizing already allocated objects during runtime uses

the realloc [30] API. When objects are no longer needed, free
releases them.

We study four popular allocators: the GNU allocator (Ptmal-

loc2) from Glibc [20], Tcmalloc from Google [19], Jemalloc

from Meta [17], and Mimalloc from Microsoft [18]. Addition-

ally, we include the Mmap-mremap primitives [21].

Ptmalloc2 is the default memory allocator in Glibc and is

used by Linux. It relies on a heap-based approach, where new

memory is allocated and placed on the process heap. When

objects needs to change size, the brk/sbrk system call is used

to set the break value to addr and change the allocated space

accordingly. For very large blocks, i.e., much larger than a

page, these requests are allocated with mmap. This allows

chunks to be returned to the system immediately when freed,

avoiding large chunks being locked in between smaller ones,

leading to fragmentation [31].

Mmap-mremap primitives use the mapping mechanism

between the Linux virtual memory pages and physical memory

(i.e., the page table). However, this incurs significant overhead

through context switches and TLB shootdowns [32]. Addition-

ally, it only works at page granularity (i.e., 4 KiB).

Tcmalloc, Jemalloc, and Mimalloc can be categorized

as user-space allocators. They share the same vision of us-

ing a pre-allocated memory pool in user space, setting up

thread caches and size classes for higher parallel allocation

performance. Tcmalloc involves a three-level caching system:

ThreadCache, CentralCache (Central Freelist), and PageHeap.

Jemalloc shares ThreadCache but uses multiple arenas instead

of a central free list in the middle layer. Mimalloc adds a free

list for each thread called a free list multi-sharding. These

designs avoid the context switch between userspace and the

kernel, and the parallel design ensures they serve the allocation

request from multi-thread applications.

On the re-allocation side, Tcmalloc and Mimalloc take a

straightforward approach to the malloc-copy-free sequence

between different size classes. Jemalloc added additional

merging for re-allocation. It checks the neighbors of the

current size class and tries to merge them if possible. For

very large objects, mremap was considered but not adopted.

As Jemalloc operates under userspace, the remapped virtual

memory will leave memory holes that cannot be released back

to the OS. The solution for this is using huge size classes (4, 8,

12 MiB) [33] and keeping the merging mechanism if possible.

68

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Re-allocation time for different allocators with C dynamic array micro-
benchmark experiment: (a). The object grows from 4 KiB to 128 KiB. (b).
The object grows from 4 KiB to 2 GiB. (Lower is better.)

Fig. 3. The performance of Rust data structure allocation relative to the
system allocator (SYS). Note the MMAP is not tested in linked list-based
data structures (LinkedList, Hashmap, Btreemap) because of the internal
fragmentation caused by page size. (The Y-axis indicates the execution time
normalized by SYS. Results are mean value of 15 repetitions, lower is better.)

If the merge cannot be done or even for larger re-allocation,

it falls back to the malloc-copy-free sequence.

To quantify the re-allocation performance among different

allocators, we set up a simple vector size increase benchmark

with C. It works as follows: we allocate a 4 KiB buffer and

double its size with realloc inside a loop. After each re-

allocation, we fill the buffer and touch all buffer elements. We

measure the total re-allocation time for this entire operation.

We further divide this experiment into two scenarios: small

and large objects. The former grows from 4 KiB to 128

KiB, while the latter grows from 4 KiB to 2 GiB. In the

small objects group (Figure 2(a)), we observe that Ptmalloc2

achieves the best performance, followed by Jemalloc, and

mremap takes the third position. In the large objects group

(Figure 2(b)), the re-allocation costs for TCmalloc, Jemalloc,

and Mimalloc are one order of magnitude higher compared

to Ptmalloc2 and mremap. Between the latter two, Ptmalloc2

provides solid performance, but mremap performs best.

As the size increases, we observed a significant difference

between copying and page table operations. When dealing

with larger objects, more data must be copied from the old

block to the new one for user-space allocators. An inherent

side effect of this copying process is a substantial increase in

overall memory usage before the old memory block is freed.

Apart from the burst in memory costs, this copying operation

also consumes considerable CPU cycles, posing a substantial

performance issue.

Taking our analysis one step further, we examined the

performance of different allocators with Rust data structures

from the standard collection. The results are represented in

Figure 3. The collections can be grouped into four categories:

(1) Sequences: Vector, VectorDequeue, and Linked List; (2)

Maps: Hashmap and Btreemap; (3) Sets: Hashset and Btreeset;

(4) Misc: BinaryHeap.

Among the three sequences, Vector and Vectordequeue are

implementated using arrays and exhibit different characteris-

tics compared to the linked list. With the two maps, Hashmap

is backed by the LinkedList, while Btreemap is backed by an

array. HashSet and Btreeset are set versions of Hashmap and

Btreemap. The Binary heap is simply an array.

We observed that different allocators do exhibit a per-

formance preference for different data structures, and the

performance difference could be as high as 20%.

Observations: 1. Various allocators exhibit distinct perfor-

mance characteristics in vector re-allocations, with significant

differences observed. 2. User-space allocators experience

noticeable performance degradation during re-allocations,

primarily due to the copying cost associated with the malloc-
copy-free process in large objects. 3. In multi-threaded sce-

narios, the copy overhead becomes even more pronounced

when multiple objects undergo simultaneous realloc op-

erations. 4. Different allocators showcase preferences for

specific data structures, indicating varied suitability across

different use cases.

Summarizing the allocators analyzed above, three mecha-

nisms for implementing a realloc function are identified:

1) brk/sbrk system call: Moving the program break to

expand or contract the memory area.

2) malloc-copy-free sequence: Allocating new chunks and

copying existing contents.

3) mmap-mremap primitive: Remapping virtual address

with page tables.

A. brk/sbrk system call in Ptmalloc2

The brk/sbrk system call in Glibc’s ptmalloc2 represents

the classic heap-based memory scheme [34] (Figure 4(a)).

When the memory object grows, it moves the barrier, i.e., the

program break. Specifically, the brk system call moves with

the actual address, while sbrk moves with size increments.

In the ideal scenario, the brk/sbrk system call will con-

sistently encounter soft page faults. The page fault handler

quickly attaches new virtual pages after this memory object,

notifying the MMU and TLB for further physical memory

mappings. In this situation, the performance is relatively good,

as shown in Figures 2 and 3.

However, the heap approach faces challenges in certain

expansion scenarios. Ptmalloc2 stacks objects on the heap

compactly, saving space but paying less attention to re-

allocation. For objects frequently re-allocated (likely blocked

by other objects) or exceeding arena limits (64 MiB in a 64-bit

system), Ptmalloc2 is forced into a malloc-copy-free sequence,

leading to performance degradation.

69

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Three different (re-)allocation mechanisms: (a) Heap using brk/sbrk to expand sizes. When the growing is blocked, one must perform a malloc-copy-
free sequence to create space. (b) The process of a malloc-copy-free. Every re-allocation equals a copy of existing content to a larger memory space. (c) The
process of mmap-mremap. Notice that the remapping only applies to the virtual memory space but does not lead to physical memory changes like in the
previous approaches.

TABLE I
Brk/sbrk-TRIGGERED COPIES IN A MULTI-THREADED ENVIRONMENT. THE

EXPERIMENT WAS REPEATED 30 TIMES.

Number of threads 1 2 4 8

Average copies per thread 5 13.5 49.75 61.75

Another issue with the heap implementation arises in multi-

threaded environments. Threads sharing the same heap in the

same process can cause different objects to potentially block

each other during expansion. The number of memory copies

increases, and the performance impact is detailed in Table I,

indicating a significant increase in copies with the number

of threads. Although the arena concept has been introduced

to address this problem [31], complex workloads can lead to

more frequent copies than anticipated.

Downside 1: Brk/sbrk is bundled with the heap design, but

the heap cannot grow infinitely. Therefore there is always

the risk of touching other objects and making expensive

copies. This design exacerbates performance overhead in

multi-threaded environments.

B. Malloc-copy-free in fast user-space allocators

Multi-threaded workloads pose a challenge as the heap

becomes a bottleneck due to concurrent memory operations.

To address this challenge, user-space memory management

utilizes pre-allocated memory pools, allowing processes to

maintain their own pools. Notable user-space allocators, such

as Jemalloc, TCmalloc, and Mimalloc, implement different

policies to optimize memory allocation.

However, a drawback of the user-space memory-pool design

is that it makes heap-growth realloc unavailable, thereby

forcing allocators to choose the malloc-copy-free sequence,

illustrated in Figure 4(b). An additional source of overhead

is that the approach requires an additional release process to

return the memory back to the OS. Designing a proper pool

release mechanism is still challenging.

While user-space memory-pool allocators work well with

small objects and even demonstrate better performance due to

fast allocations, the copy cost introduces substantial overhead

in execution time and memory space when object sizes grow

significantly, as illustrated in Figure 2(a) to Figure 2(b).

Downside 2: Multi-threaded user-space allocators use

malloc-copy-free during realloc. This leads to performance

penalties when object sizes grow. Combined with lazy release

of memory, overall memory usage is higher.

C. Mremap

Unlike user-space memory re-allocation methods, mremap
is rarely used due to its reputation as an expensive operation.

During remapping, it triggers context switches and TLB shoot-

down, leading to degraded performance and scalability [32].

The mremap system call [21] resizes memory mappings

created by mmap. Figure 4(c) illustrates its mechanism. This

modifies the mapping between virtual addresses and memory

pages. Realloc can thus be implemented by changing the

virtual address mapping in the page table without copying.

Mremap is considered expensive due to the significant work

it entails. The process includes changing the MMU to re-link

the existing physical page with the new virtual address and

flushing the TLB to clean up the old links. There is also a limit

to this approach; the minimum size of this operation is one

memory page (i.e., 4 KiB on x86 64 Linux), causing internal

fragmentation for small objects. Additionally, integrating it

into user-space allocators, as we explained with Jemalloc,

poses challenges. Despite these issues, the results in Figure 2

and 3 highlight its performance advantage compared to larger

object malloc-copy-free in large object reallocation.

Downside 3: The mremap approach avoids the copy cost

by using a remapping mechanism between virtual and phys-

ical memory. However, it incurs quite significant overhead

(context switch and TLB shootdown) Moreover, it uses a

minimum size of 4 KiB (i.e., standard page size).

Following from our analysis and experiments, we noticed

that different allocators provide different re-allocation charac-

teristics which emerge from different tradeoffs. For small-size

memory objects, heap-based allocators can realloc faster and

save space (single heap) under single-threaded environments.

User-space allocators emphasize multi-threaded fast allocation

performance but lead to larger space occupation. With larger

size memory objects, the drawback from malloc-copy-free
becomes more significant. To a certain extent, the copy cost

70

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Brug Allocator Design Overview: 1© Application requests memory
changes from the Brug allocator. The request handler receives the request. 2©
The request handler sends the request to the decision maker. 3© The Decision
maker forwards the request to the allocator. 4© The allocator processes
the request using its remapped memory pool. 5© The allocator returns the
requested memory to the memory mapping store. 6© The Decision maker
sends the request to the memory mapping. 7© The memory mapper manages
the request with the OS Virtual Memory Manager. 8© The mapped memory
is sent to the memory mapping store. 9© Brug delivers the memory to the
user code based on the request. 10© The execution time of Memory allocators
and Memory mapper is recorded in the performance measurement table.11©
The Decision maker may update the policy based on the backlogs.

becomes a dominant factor in re-allocation overhead. This

makes system-level page table modification attractive in large-

size memory re-allocation with no copy cost and overcomes

its problems like context switches and TLB shootdown. As

a consequence, we argued and showed evidence that for the

existing realloc mechanisms in allocators, there is significant

opportunity for optimizations.

III. BRUG DESIGN AND IMPLEMENTATION

We propose Brug, an adaptive memory allocator that op-

timizes for both efficient allocation and re-allocation. This is

crucial for the performance of systems that tend to have large

but dynamically growing working sets, as is the case for many

data-centric systems.

Brug is designed as a library implemented in Rust and C.

Brug takes advantage of the ability to allow different alloca-

tors during runtime and further includes a built-in auto-tuner

mechanism to help programmers achieve good performance

without resorting to large-scale experimentation to understand

which allocator works best for given workloads. Brug Rust

is available as a Rust crate, allowing for easy integration

with existing code bases. The C version of Brug utilizes an

adaptive mechanism that switches between Linux page table

mmap-mremap primitives and existing user-space allocator

implementations. It can override allocators in legacy C codes

using the Linux LD PRELOAD primitive [24].

We present the overview of Brug system design in Figure 5

and memory operations in Figure 6 When a request comes in,

the handler sends it to the Brug decision maker. The decision

maker will decide what action to take based on the metadata

and request size and will pass the request along to the proper

handling route.

Fig. 6. Memory Operations. 1© Malloc: The malloc request with the size
is passed to the decision maker. The decision maker decides the allocator
to use. The allocator performs the allocation, stores the address and size in
the memory mapping store, and returns the memory to the user. 2© Realloc:
The realloc request is passed into the mapping store to retrieve the metadata.
Combined with the new size, the decision maker determines the re-allocation
operation. (With the autotuner, we record the cost of each re-allocation in the
measurement table, instructing further re-allocation decisions). 3© Free: The
request is passed into the mapping store to choose the corresponding memory
allocator to free it.

Memory Allocators: The memory allocators are more

suitable for dealing with small and short-lived objects. Dif-

ferent allocators promise different benefits according to their

characteristics. Ptmalloc2 in Glibc [20] is the default base

allocator providing re-allocation performance, less memory

waste, and high availability.

Memory Mapping: On the other hand, large and highly-

active objects use mmap-mremap to take advantage of Linux

OS memory management characteristics. When a memory

request meets the policy (such as crossing a sweet spot), we

proceed with a mmap-copy-free routine to switch the object

from the memory allocator to the OS-managed mmap area.

In this way, we preserve all the mechanisms and provide

the optimal solution for dealing with all spectrum of memory

requests (small and fast allocation memory objects as well as

long-time, large memory objects).

A. System Design

1) Rust Library for Modern Code Bases: Brug takes ad-

vantage of several Rust characteristics and incorporates a

powerful decision-maker equipped with an auto-tuner. As Rust

has emerged as a viable alternative for system software and

modern middleware, we view it as pivotal in advancing the

efficiency of memory-intensive applications. We leverage the

Rust runtime interface to implement memory-related functions

(malloc, realloc, calloc, and free).

Brug comprises three main components: the Decision

Maker, Memory Mapping Store, and Performance Measure-

ment Table. When a request is received, the handler forwards

it to the Brug decision maker. After determining the action

based on metadata from the Memory Mapping Store and

Performance Measurement Table, it directs the request to the

appropriate handling route. The design of Brug is outlined as

follows:

Decision Maker: Decision Maker includes both the manual

mode and the automatic mode. In manual mode, the user can

supply their own size-allocator mapping to allow different

71

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

sizes of the objects to use the desired memory allocator.

Alternatively, the user can choose the convenient auto-tuner

mode, which can decide the desired memory allocator based

on collected data.

Memory Mapping Store: The Memory Mapping Store is

implemented using a BtreeMap to record the address of

the memory object with the allocators it used. When further

memory operations touch this object (realloc or free), its

allocator information is retrieved. This ensures the proper

memory allocator handles this object. During program run-

time, an object can also switch to a different allocator if

necessary. This switch happens during a re-allocation, follow-

ing a malloc-copy-free sequence (the specified allocator

allocates a new memory block, and copies old content there).

Performance Measurement Table: Each re-allocation time

will be recorded into the Performance Measurement Table (a

2-D array representing different allocators and size classes

(multiples of 4 KiB)). The recording process calculates the

arithmetic mean between old and new record values.

Brug Modes: Six different modes are available in Brug

and can be switched via a flag (BRUG_ALLOC). Three modes

utilize existing Rust memory allocators: Ptmalloc2 (SYS),

Jemalloc, and Mimalloc. The fourth mode is a Rust implemen-

tation using Mmap-Mremap primitives. The final two modes

use the new features of the decision maker: size template

(BrugTemplate) and auto-tuner (BrugAutoOpt).

BrugTemplate: The size template uses a simple map to

record the re-allocation size with the allocator to use. It is

configurable to the user using the mapping entry before the

program execution. Users can define which allocator they want

to use in specific memory size groups (e.g., Ptmalloc2 for

objects between 0-4 KiB, MiMalloc for objects between 4

KiB-10 KiB, and Jemalloc for 10 KiB-10 MiB). With previous

knowledge from our large-scale experimentation, we have pre-

set the BrugTemplate as follows: Jemalloc (0 to 4 KiB),

Ptmalloc2 (4 KiB to 64 KiB), mremap (64 KiB and larger).

BrugAutoOpt: BrugAutoOpt includes an auto-tuner to

automatically choose the optimal memory allocator. With the

data recorded in the Performance Measurement Table, the fol-

lowing re-allocation operation will choose the best-performing

allocator strategy within a specific size class. However, it is

important to note that this training process incurs additional

overhead before all the data is learned, and the auto-tuner

reaches its full potential.

Object Monitor: Expanding the functionality with the

Memory Mapping Store and Performance Measurement Table,

we build this monitoring function. In this mode, we record

additional data, including the number of re-allocations, the

times an object gets remapped, and the total size and re-

allocation duration during the life of a memory object. This

information could help programmers understand deeper details

about the lifespan of an object and provide information for

further optimization.

With Brug design, what we achieve is flexibility and ease

of use tools for the programmer to interact with memory

allocators. In a typical program, programmers are limited to

only one specific allocator across the whole program. Brug

brings the capability to set up specific allocators at the program

level, data structure level, and function level.

Brug is packaged into a crate that can be accessed through

the Rust package system. Loading it into new projects is also

convenient using the #[global_allocator] attribute.

Mode changes are easily accomplished via this macro, as

shown in Listing 1.

s e t a l l o c a t o r m o d e ! (mode ,{ func }) ;

Listing 1. Macro switch mode

2) C Library for Legacy Applications: In the C implemen-

tation, Brug includes a simpler decision-maker designed to

mitigate API differences and implement the switch policy. It

only takes the re-allocation size as the deciding factor and

checks the object when it gets re-allocated. For requests with

a size larger than a certain value (switch point, 128 KiB by

default), it applies the mmap-mremap scheme. Otherwise, it

uses the basic base allocators (Ptmalloc2/Jemalloc/TCmalloc).

In addition to the size switch point policy, we have in-

troduced the concept of identifying frequently re-allocated

objects. When we categorize an object as frequently resized,

it will be switched from the heap or memory pool to the

mmap area. This movement ensures Brug eliminates copies

for future re-allocations while providing fast allocation speed

and avoiding internal fragmentation for small objects.

We use an integer called allocation counter for this function-

ality. It works as follows: each expansion grows the counter

by one, and each contraction will decrease until zero. We

expect objects with a high counter in two scenarios. The first

is a small memory object with high activeness (i.e., gets re-

allocated often). In this case, this object could significantly

benefit from overcommitting the virtual memory. After over-

committing, this object gets a fast response and has less chance

of fragmentation. The second scenario is large data structures

or data chunks with a long lifespan. They may have significant

copy overhead which can be eliminated by the mremap.

To record additional metadata of Brug, we append a header

before the object. Considering the space needed by the header,

we will only store the size variable for objects less than a page

size (4096 KiB).

IV. BRUG PERFORMANCE EVALUATION

We evaluate Brug using benchmarks and real-world appli-

cations. For the Rust version, we conducted experiments with

typical data structures as well as industry-grade frameworks

and workloads, such as Apache Arrow [25] and Wasmtime

WebAsembly engine [26]. For the C version, we assessed Brug

with Redis [15] running the YCSB [28], [29] benchmark. Our

experiments ran on multiple platforms listed in Table II.

A. Brug Microbenchmarks

We start by discussing three Brug Rust modes and compare

them with the Rust #[global allocator] attribute. The first set of

experiments showcases all six scenarios with a Rust standard

72

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II
HARDWARE PLATFORMS USED FOR BRUG EXPERIMENTATION.

Evaluation platform CPU RAM L1 Cache L2 Cache L3 Cache Software Version Implementation

Commodity Local machine AMD Ryzen 9 5900X 64 GiB 768 KiB 6 MiB 64 MiB Ubuntu 22.04, Linux-6.2.6, Rust-1.67.1 Rust

AWS C6a.4xlarge AMD EPYC 7R13 32 GiB 256 KiB 4 MiB 32 MiB Ubuntu 20.04, Linux-5.15, GCC-9.4.0 C

Fig. 7. Total execution time from inserting 100 million integers into a Rust
vector, all allocators performance. The results are the sum of 15 repetitions.
(Lower is better.)

Fig. 8. Total execution time from writing 15 GiB data into a Rust vector
with page granularity (4 KiB), all allocators performance. Data is the sum of
15 repetitions. (Lower is better.)

vector, set up as follows: we insert a hundred million integers

into a standard library Rust vector.

In the experiments shown in Figure 7, we observe a 3.5%

overhead between the default setting using the Brug Ptmalloc2

(SYS) mode. However, when using Jemalloc and Mimalloc,

which employ the same attributes, the results are very close.

This difference suggests that there is a certain overhead when

using the #[global allocator] attribute.

Further interpreting the results presented in Figure 7, we

observe the auto-tuner (BrugAutoOpt) performing closely in

terms of time. The size template (BrugTemplate) mode lags

behind, with a 6% slower execution time compared to the

baseline. Meanwhile, all these modes exhibit slightly faster

performance compared to the two user-space allocators, Jemal-

loc and Mimalloc. Overall, the performance of Rust standard

vector integer insertions across all nine groups is fairly close.

In a subsequent step, we increased the data size in each

insert operation, conducting an experiment where we wrote

15 GiB of data into a Rust standard vector, with each write

consisting of a single page size (4 KiB). The significant over-

Fig. 9. Results of inserting data into different Rust std::collection data
structures, showcasing the performance of all allocators. Experiments trigger
both the re-allocation and allocation phases. BrugAuto Trained is not applied
to Linked List, Hashmap, BTreemap, Hashset, and BTreeset, as they primarily
involve small allocations. Importantly, BrugAuto does not negatively impact
allocation performance or re-allocation performance (The Y-axis indicates the
execution time normalized by SYS. The results are the mean value of 15
repetitions; lower is better).

head incurred by the two user-space allocators, Jemalloc and

Mimalloc, is evident, reporting a 1.95X increase in execution

time compared to the baseline. Among all nine groups, Brug

SYS mode gives the best performance, surpassing the baseline

performance. Brug MMAP mode and BrugTemplate also show

similar results to the baseline. Meanwhile, BrugAutoOpt does

not perform as well; we believe that result is due to the

additional cost during the training process.

This experiment demonstrates that the overhead observed in

write-based workloads with user-space allocators also applies

to Rust. Moreover, we have shown that with the proper setup,

Brug can maintain close performance to the baseline consid-

ering the additional cost imposed by the #[global allocator]

attribute. These results show that the default allocator still has

room for better performance.

We evaluated various Rust standard collection data struc-

tures, and the results are presented in Figure 9. In the Vec-

torDequeue experiment, similar results were observed to Vec-

tor: user-space allocators (Jemalloc and Mimalloc) incurred

overhead compared to the system allocator. Various Brug

modes demonstrated comparable performance to the baseline.

Notably, the trained Brug auto tuner mode outperforms all

other modes in Vector and VectorDequeue.

In the Maps experiment, Hashmap showed improved per-

formance with user-space allocators (Jemalloc and Mimalloc)

outperforming the baseline. Jemalloc demonstrated the most

significant gain of 8%, and Mimalloc around 4%, due to the

design of Hashmap based on the allocation of small objects.

BrugAuto still managed to show better performance than the

baseline, gaining a 1-2% advantage. However, in BTreemap,

which is backed by an array-based data structure, the baseline

performed the best again, and Jemalloc exhibited the worst

performance with a 4% decrease compared to the baseline.

73

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Total execution time from inserting 100 million integers into an
Arrow mutable buffer, all allocators performance. Data is the sum of 15
repetitions. (Lower is better.)

Fig. 11. Total execution time from writing 15 GiB data into an Arrow mutable
buffer with page granularity, all allocators performance. Data is the sum of
15 repetitions. (Lower is better.)

BrugAuto managed to handle this situation as well, showing a

< 1% performance difference and gaining the second position.

In the Sets experiment, most allocators yielded similar

results, except for the mmap-mremap mode, which incurred

a performance loss of nearly 20% in BTreeset. In the rest

of the data structures (LinkedList and BinaryHeap), different

allocators exhibited a narrow margin of 1-2% performance

difference. Ptmalloc2 managed to slightly outperform the other

allocators in HashSet and BinaryHeap, while user-space allo-

cators won in Btreeset. In all three cases, BrugAuto managed

to keep the performance losses lower than the worst case and

even become the best performing in BinaryHeap, showing

promising results.

B. Brug Integration with Industry-grade Frameworks

Brug seamlessly integrates with various applications, of-

fering a straightforward integration process. This integration

extends to applications like Apache Arrow, enabling develop-

ers to leverage the performance benefits provided by Brug.

Furthermore, we demonstrate its applicability in real-world

scenarios through experiments conducted with Wasmtime, a

web assembly engine. This diverse integration showcases the

versatility of Brug and its ability to deliver performance gains

across different applications.

Apache Arrow: In our experiments with the Arrow Mutable

buffer, presented in Figure 10, we write into this buffer at

either integer (4 bytes) or page-size (4 KiB) granularities.

Interestingly, we observed a turnaround when comparing

the results with the standard vector experiments. The baseline

Fig. 12. Wasmtime linking workload, all allocators performance. Data is the
average of 5 repetitions. (Lower is better.)

Ptmalloc2 allocator performed the worst in all groups, trailing

behind the best-performing Brug mmap-mremap mode by

33% in execution time. Simultaneously, BrugTemplate and

BrugAutoOpt showed very close results to the optimal. Addi-

tionally, we found that the SYS mode in Brug outperformed

the baseline Ptmalloc2 by 17%. These findings suggest that

the baseline allocator may encounter issues when handling the

Arrow mutable buffer.

Expanding the experiment from integer inserts to writing

large file data, as depicted in Figure 11, notable differences

emerged in the results when utilizing the MMAP alloca-

tor compared to the other three allocators. Both MMAP
and BrugTemplate demonstrated similar performance, while

BrugAutoOpt exhibited a slight performance gap due to its

training overhead.

Wasmtime WebAssembly Engine: WebAssembly [27] is

an increasingly important technology that offers practitioners

a hardware-independent program representation that is used

in applications ranging from browser workloads to blockchain

technology and serverless applications [35]. Wasmtime [26] is

the industry de-facto standard for running WebAssembly code

under a runtime engine.

In Figure 12, we explore the performance of different

allocators when handling the Wasmtime linking example in

Rust [36]. Linking is very important in this case as it lies

in the cold start path of WebAssembly-enabled serverless

workloads [35]. Saving time here means running client code

more efficiently.

The Linker data structure in this example serves as a

comprehensive case, encompassing both Hashmap, Vector,

and PhantomData (representative of various data structures).

The example illustrates how to set a linker in the Wasmtime

runtime. The results reveal that Brug outperforms any individ-

ual allocator, highlighting the potential benefits of judiciously

employing different allocators in tandem and how they fit with

different data structures.

Overall, Brug demonstrates competitive performance across

TABLE III
THE BRUG AUTO-TUNER PERFORMANCE COMPARED WITH BEST- AND

WORST-CASE PERFORMANCE SCENARIOS.

ArrowBuffer Wasmtime
Page granularity Integer granularity Linker

Best solution 14.99 (s) 87.76 (s) 47.72 (us)
Auto tuner 15.21 (s) (1.45%) 100.33 (s) (14.32%) 47.72 (us)
Worst case 19.96 (s) (31.69%) 261.52 (s) (183.67%) 142.70 (us)

74

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

Fig. 13. Redis YCSB time series workload on AWS AMD C6a.4xlarge
instance listed in Table II. Throughput normalized to Jemalloc. (Higher is
better.)

various data structures and applications (Table III). Addi-

tionally, it provides programmers with a powerful auto-tuner

mechanism, enabling them to achieve optimal performance

without the overhead of extensive experimentation in iden-

tifying the right allocator for a specific workload.

C. Brug with Legacy Applications

Whereas modern Rust code-bases are growing and the

Rust language is constantly increasing in popularity, legacy

applications still exist and make up a large portion of modern

workloads. We therefore believe it is important to optimize

their memory (re-)allocation behavior. We thus deploy the

(more limited) Brug C-library version to memory-intensive

legacy applications.

Using the LD PRELOAD mechanism we integrated the

Brug C-version library with the widely used, industry-standard

Redis key-value store. The Yahoo! Cloud Serving Benchmark

(YCSB) [28] is an open-source and widely-used realistic

benchmark for key-value stores. In this context, we employ

the write-based time series workload, comprising 90% inserts

and 10% reads, to simulate a write-heavy workload.

We utilized an Amazon AWS AMD-based platform, as

outlined in Table II. The results are presented in Figure 13.

Brug shows a clear advantage over the rest, achieving 2.5%

better performance in the small size groups and more than

5% better performance in the 4 KiB and 40 KiB groups. The

mmap-mremap approach provides 1-2% better performance

than baseline Jemalloc. The rest three allocators share a

similar performance. We conclude that Brug provides higher

throughput compared to the baseline Jemalloc in write-heavy

workloads in key-value store workloads.

V. DISCUSSION

Our investigation underscores the impact of (re-)allocation

performance on various allocator designs and their consequen-

tial influence on application performance. This perspective of-

fers a fresh lens for understanding memory allocators, proving

critical for enhancing the memory performance of systems

and middleware dealing with large and dynamic working sets.

Below, we delve into key insights derived from our work.

Adaptation: The intricacies of optimizing performance from

both memory allocator and data structure perspectives pose a

challenge for most programmers. Despite not always providing

the optimal solution, the Brug auto-tuner consistently yields

favorable results in various scenarios without necessitating

additional modifications. Across all experiment results in

Table III, Brug incurs at most a 20% overhead due to the

training process, while managing to achieve performance gains

ranging from 12% to 170% compared to worst-case scenarios.

We stress that this is very important going forward because,

as our experiments attest, there is no one-size-fits all allocator.

Therefore, an adaptive mechanism that can leverage strengths

of all kinds of allocation techniques, while discarding their

weaknesses is key for achieving acceptable performance.
Object Lifespan Opaqueness: The effect of long-running re-

sizable objects, particularly those accessed by multiple threads,

represents a seldom-explored area in current research. To

address this gap, we integrated a monitoring mechanism into

our design, enabling programmers to gain clearer insights into

the runtime behavior of such objects.
Limitations: While our allocator introduces additional storage

and runtime overhead for small objects, its primary advantages

become apparent in write-heavy workloads. Future optimiza-

tions could aim to mitigate overheads related to small objects.

VI. RELATED WORK

Memory allocation research encompasses two key domains:

OS memory management and user-space allocators.
Linux Memory Management: Noteworthy contributions

in Linux memory management have been made by Huang

et al., who conducted an extensive study on its evolution,

highlighting both achievements and persisting challenges [37].

Additional works, such as DAOS [38], have aimed at ad-

vancing our understanding of data and memory. Proposals for

new page table designs, including hashed page tables [39],

clustered page tables [40], and the integration of page walk

caches [41], showcase ongoing innovation in this space.
Allocators: The optimization trajectory for TCmalloc in-

cludes significant strides, particularly with Huge Page support

evident in TCMalloc’s page heap implementation [42] and

strategies for releasing partial huge pages to the operating

system [43]. Recent research has delved into the development

of smarter allocators tailored for embedded systems [44] and

the dynamic landscape of mobile edge computing [45].
Diverging from the outlined research, our work introduces

a fresh perspective on memory allocators. Our focus lies on

modern workloads characterized by dynamic changes in object

sizes during runtime. The distinctive aspect of our approach

lies in making judicious decisions between employing user-

space allocators and OS-based schemes. By leveraging the

strengths of both paradigms, Brug aims to optimize perfor-

mance in the context of contemporary workloads.

VII. CONCLUSION

We have presented, designed, and implemented Brug, an

adaptive memory allocator. Brug provides seamless integration

and competitive performance across different industry-grade

applications. In addition, it offers practitioners an auto-tuner

mechanism that allows for good performance without the need

for large-scale experimentation or much application-related

knowledge. For legacy code-bases, a drop-in library version is

available to help practitioners with re-allocation performance.

75

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge, and
A. Veitch, “In-memory performance for big data,” 2014.

[2] D. Durner, V. Leis, and T. Neumann, “On the impact of memory
allocation on high-performance query processing,” in Proceedings of the
15th International Workshop on Data Management on New Hardware,
2019, pp. 1–3.

[3] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), 2017, pp.
649–667.

[4] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon, “Overdriver:
Handling memory overload in an oversubscribed cloud,” ACM SIGPLAN
Notices, vol. 46, no. 7, pp. 205–216, 2011.

[5] N. K. Sehgal and P. C. P. Bhatt, Cloud Workload Characterization.
Cham: Springer International Publishing, 2018, pp. 61–83. [Online].
Available: https://doi.org/10.1007/978-3-319-77839-6 5

[6] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi,
“Clearing the clouds: A study of emerging scale-out workloads on
modern hardware,” SIGPLAN Not., vol. 47, no. 4, p. 37–48, mar 2012.
[Online]. Available: https://doi.org/10.1145/2248487.2150982

[7] B. C. Kuszmaul, “Supermalloc: A super fast multithreaded malloc for
64-bit machines,” in Proceedings of the 2015 International Symposium
on Memory Management, ser. ISMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 41–55. [Online].
Available: https://doi.org/10.1145/2754169.2754178

[8] D. Dice and A. Garthwaite, “Mostly lock-free malloc,” SIGPLAN Not.,
vol. 38, no. 2 supplement, p. 163–174, jun 2002. [Online]. Available:
https://doi.org/10.1145/773039.512451

[9] Y. Afek, D. Dice, and A. Morrison, “Cache index-aware memory
allocation,” SIGPLAN Not., vol. 46, no. 11, p. 55–64, jun 2011.
[Online]. Available: https://doi.org/10.1145/2076022.1993486

[10] S. Schildermans, K. Aerts, J. Shan, and X. Ding, “Ptlbmalloc2: Reducing
tlb shootdowns with high memory efficiency,” in 2020 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data & Cloud
Computing, Sustainable Computing & Communications, Social Com-
puting & Networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE,
2020, pp. 76–83.

[11] O. Mutlu, “Memory scaling: A systems architecture perspective,” in
2013 5th IEEE International Memory Workshop, 2013, pp. 21–25.

[12] R. Bryant, “Data-intensive supercomputing: The case for disc,” 05 2007.
[13] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge,

and A. Veitch, “In-memory performance for big data,” Proceedings of
the VLDB Endowment, vol. 8, pp. 37–48, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2735465

[14] A. S. Foundation, “Apeche spark,” https://spark.apache.org/, 2022, on-
line. Accessed: 2022-10-7.

[15] R. Ltd., “Redis,” https://redis.io/, 2022, online. Accessed: 2022-5-14.
[16] J. Chakraborty, I. Jimenez, S. A. Rodriguez, A. Uta, J. LeFevre, and

C. Maltzahn, “Skyhook: Towards an arrow-native storage system,”
in 2022 22nd IEEE International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), 2022, pp. 81–88.

[17] D. Elias, R. Matias, M. Fernandes, and L. Borges, “Experimental and
theoretical analyses of memory allocation algorithms,” in Proceedings
of the 29th annual acm symposium on applied computing, 2014, pp.
1545–1546.

[18] D. Leijen, B. Zorn, and L. d. Moura, “Mimalloc: Free list sharding in
action,” in Asian Symposium on Programming Languages and Systems.
Springer, 2019, pp. 244–265.

[19] S. Ghemawat and P. Menage, “Tcmalloc: Thread-caching malloc,” 2009.
[20] S. Poyarekar, “The gnu c library version 2.31 is now avail-

able,” https://sourceware.org/legacy-ml/libc-announce/2020/msg00001.
html, 2020, online. Accessed: 2022-5-14.

[21] D. McCracken, “Object-based reverse mapping,” in Linux Symposium,
2004, p. 357.

[22] github, “The top programming languages,” https://octoverse.github.com/
2022/top-programming-languages, 2023, online. Accessed: 2023-11-24.

[23] M. M. Yuliia Panasenko, “Rust market overview: reasons to adopt
rust, rust use cases, and hiring opportunities,” https://yalantis.com/blog/
rust-market-overview/, 2023, online. Accessed: 2023-11-24.

[24] M. Kerrisk, “ld.so(8) — linux manual page,” https://man7.org/linux/
man-pages/man8/ld.so.8.html, 2021, online. 2021-08-27.

[25] T. A. S. Foundation, “Apache arrow,” https://arrow.apache.org/, 2022,
online. Accessed: 2022-5-14.

[26] B. Alliance, “Wasmtime,” https://wasmtime.dev, 2023, online. Accessed:
2023-11-30.

[27] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2017, pp. 185–200.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143–154.

[29] W. Wang and S. Diestelhorst, “Quantify the performance overheads
of pmdk,” in Proceedings of the International Symposium on Memory
Systems, 2018, pp. 50–52.

[30] cppreference.com, “realloc,” https://en.cppreference.com/w/c/memory/
realloc/, 2022, online. Accessed: 2022-7-8.

[31] MallocInternals, “Glibc wiki,” https://sourceware.org/glibc/wiki/
MallocInternals, 2022, online. Accessed: 2023-11-30.

[32] N. Amit, “Optimizing the TLB shootdown algorithm with page access
tracking,” in 2017 USENIX Annual Technical Conference (USENIX
ATC 17). Santa Clara, CA: USENIX Association, Jul. 2017, pp.
27–39. [Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/amit

[33] J. Evans, “mremap with modern linux kernel,” https://jemalloc.net/
mailman/jemalloc-discuss/2014-April/000757.html, 2015, online. Ac-
cessed: 2023-11-30.

[34] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic stor-
age allocation: A survey and critical review,” in Memory Management,
H. G. Baler, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,
pp. 1–116.

[35] M. Arutyunyan, A. Berestovskyy, A. Bratschi-Kaye, U. Degenbaev,
M. Drijvers, I. El-Ashi, S. Kaestle, R. Kashitsyn, M. Kot, Y.-A. Pignolet
et al., “Decentralized and stateful serverless computing on the internet
computer blockchain,” in 2023 USENIX Annual Technical Conference
(USENIX ATC 23), 2023, pp. 329–343.

[36] alexcrichton, “wasmtime/examples/linking.rs,” https://github.com/
bytecodealliance/wasmtime/blob/main/examples/linking.rs, 2022,
online. Accessed: 2023-12-5.

[37] J. Huang, M. K. Qureshi, and K. Schwan, “An evolutionary study of
linux memory management for fun and profit,” in 2016 USENIX Annual
Technical Conference (USENIX ATC 16), 2016, pp. 465–478.

[38] S. Park, M. Bhowmik, and A. Uta, “Daos: Data access-aware operating
system,” in HPDC 2022, 2022. [Online]. Available: https://www.
amazon.science/publications/daos-data-access-aware-operating-system

[39] J. Huck and J. Hays, “Architectural support for translation table
management in large address space machines,” SIGARCH Comput.
Archit. News, vol. 21, no. 2, p. 39–50, may 1993. [Online]. Available:
https://doi.org/10.1145/173682.165128

[40] M. Talluri, M. D. Hill, and Y. A. Khalidi, “A new page table for 64-bit
address spaces,” in Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’95. New York, NY, USA:
Association for Computing Machinery, 1995, p. 184–200. [Online].
Available: https://doi.org/10.1145/224056.224071

[41] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
Skip, don’t walk (the page table),” SIGARCH Comput. Archit.
News, vol. 38, no. 3, p. 48–59, jun 2010. [Online]. Available:
https://doi.org/10.1145/1816038.1815970

[42] A. H. Hunter, C. Kennelly, D. Gove, P. Ranganathan, P. J. Turner, and
T. J. Moseley, “Beyond malloc efficiency to fleet efficiency: a hugepage-
aware memory allocator,” in 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), 2021.

[43] M. Maas, C. Kennelly, K. Nguyen, D. Gove, K. S. McKinley, and
P. J. Turner, “Adaptive hugepage subrelease for non-moving memory
allocators in warehouse-scale computers,” in International Symposium
on Memory Management (ISMM) 2021, 2021.

[44] M. Ramakrishna, J. Kim, W. Lee, and Y. Chung, “Smart dynamic
memory allocator for embedded systems,” in 2008 23rd International
Symposium on Computer and Information Sciences, 2008, pp. 1–6.

[45] Z. Ali, S. Khaf, Z. H. Abbas, G. Abbas, F. Muhammad, and S. Kim, “A
deep learning approach for mobility-aware and energy-efficient resource
allocation in mec,” IEEE Access, vol. 8, pp. 179 530–179 546, 2020.

76

Authorized licensed use limited to: Universiteit Leiden. Downloaded on December 18,2024 at 13:53:25 UTC from IEEE Xplore. Restrictions apply.

