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Chapter 7

Theory of Mind in Large
Language Models

To what degree should we ascribe cognitive capacities to Large Language Models
(LLMs), such as the ability to reason about intentions and beliefs known as The-
ory of Mind (ToM)? Here we add to this emerging debate by (i) testing 11 base and
instruction-tuned LLMs on capabilities relevant to ToM beyond the dominant false-
belief paradigm, including non-literal language usage and recursive intentionality;
(ii) using newly rewritten versions of standardised tests to gauge LLMs’ robustness;
(iii) prompting and scoring for open besides closed questions; and (iv) benchmark-
ing LLM performance against that of children aged 7-10y on the same tasks. We find
that instruction-tuned LLMs from the GPT family outperform other models, and often
also children. Base-LLMs are mostly unable to solve ToM tasks, even with specialised
prompting. We suggest that the interlinked evolution and development of language
and ToM may help explain what instruction-tuning adds: rewarding cooperative com-
munication that takes into account interlocutor and context. We conclude by arguing
for a nuanced perspective on ToM in LLMs.

This work was originally published as: Van Duijn, M.J.,* Van Dijk, B.M.A.,* Kouwenhoven, T.,* De Valk,
W.M., Spruit, M.R., and Van Der Putten, P.W.H. (2023). Theory of Mind in Large Language Models: Ex-
amining Performance of 11 State-of-the-Art Models vs. Children Aged 7-10 on Advanced Tests. In Jiang,
J., Reitter, D., and Deng, S., editors, Proceedings of the 27th Conference on Computational Natural Language
Learning, pages 389-402. Association for Computational Linguistics. (* denotes equal contribution.)
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7.1. Introduction

7.1 Introduction

Machines that can think like us have always triggered our imagination. Contempla-
tion of such machines can be traced as far back as antiquity (Liveley and Thomas,
2020), and peaked with the advent of all kinds of ‘automata’ in the early days of
the Industrial Revolution (Voskuhl, 2019) before settling in computer science from
the 1950s (Turing, 1950). Currently people around the world can interact with pow-
erful chatbots driven by Large Language Models (LLMs), such as OpenAI’s Chat-
GPT (Achiam et al., 2024), and wonder to what degree such systems are capable of
thought.

LLMs are large-scale deep neural networks, trained on massive amounts of text
from the web. They are vastly complex systems: even if all details about their ar-
chitecture, training data, and optional fine-tuning procedures are known (which is
currently not the case for the most competitive models), it is very difficult to oversee
their capabilities and predict how they will perform on a variety of tasks. Researchers
from linguistics (Manning et al., 2020), psychology (Binz and Schulz, 2023; Kosin-
ski, 2024; Webb et al., 2023), psychiatry (Kjell et al., 2023), epistemology (Sileo and
Lernould, 2023), logic (Creswell et al., 2023), and other fields, have therefore started
to study LLMs as new, ‘alien’ entities, with their own sort of intelligence, that needs
to be probed with experiments, an endeavour recently described as ‘machine psy-
chology’ (Hagendorff, 2023). This not only yields knowledge about what LLMs are
capable of, but also provides a unique opportunity to shed new light on questions
surrounding our own intelligence (Binz and Schulz, 2024; Dillion et al., 2023).

Here we focus on attempts to determine to what degree LLMs demonstrate a ca-
pacity for Theory of Mind (ToM), defined as the ability to work with beliefs, inten-
tions, desires, and other mental states, to anticipate and explain behaviour in social
settings (Apperly, 2012). We first address the question how LLMs perform on stan-
dardised, language-based tasks used to assess ToM capabilities in humans. We
extend existing work in this area, surveyed in Section 7.2, in four ways:

1. By testing 11 LLMs (see Table 7.1) for a broader suite of capabilities relevant
to ToM beyond just the dominant false-belief paradigm, including non-literal
language understanding and recursive intentionality (A wants B to believe that
C intends...);

2. By using newly written versions of standardised tests with varying degrees of
deviation from the originals;
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Chapter 7. Theory of Mind in Large Language Models

3. By including open questions besides closed ones;

4. By benchmarking LLM performance against that of children aged 7-8 (n=37)
and 9-10 (n=36) on the same tasks.

Section 7.3 contains details of our test procedures for both children and LLMs. After
reporting the results in Section 7.4, we turn to the question how variation in per-
formance of the LLMs we tested can be explained in Section 7.5. We conclude by
placing our findings in the broader context of strong links between language and
ToM in human development and evolution, and tentatively interpret what it means
for a LLM to pass (or fail) ToM tests.

We are aware of issues regarding LLM training and deployment, for example re-
garding the biases they inherit (Bender et al., 2021; Lucy and Bamman, 2021), prob-
lems for educators (Sparrow, 2022), and ethical concerns in obtaining human feed-
back (Perrigo, 2023). Ongoing reflection on the use of LLMs is necessary, but outside
the scope of this chapter.

7.2 Background

Large language models

The field of Natural Language Processing (NLP) has been revolutionised by the ad-
vent of the Transformer architecture (Devlin et al., 2019; Vaswani et al., 2017) in deep
neural networks that can induce language structures through self-supervised learn-
ing. During training, such models iteratively predict masked words from context
in large sets of natural language data. They improve at this task by building repre-
sentations of the many morphological, lexical, and syntactic rules governing human
language production and understanding (Grand et al., 2022; Manning et al., 2020;
Rogers et al., 2020). Models exclusively trained through such self-supervision consti-
tute what we refer to as ‘base-LLMs’ in this chapter.

Base-LLMs can generate natural language when they are prompted with comple-
tion queries (‘A mouse is an ...’). They can also be leveraged successfully for an array
of other challenges, such as question-answering and translation, which often requires
task-specific fine-tuning or prompting with specific examples, known as few-shot-
learning (Brown et al., 2020). This makes them different from a new generation of
LLMs that we refer to as ‘instruct-LLMs’ in this chapter, and to which the currently
most competitive models belong. In instruction-tuning, various forms of human
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7.2. Background

feedback are collected, such as ranking most suitable responses, which then forms
the reward signal for further aligning these models to human preferences through
reinforcement learning (Ouyang et al., 2022). The resulting LLMs can be prompted
with natural language in the form of instructions to perform a wide variety of tasks
directly.

A key realisation is thus that LLMs are given either no explicitly labelled data at
all, or, in the case of instruct-LLMs, data with human labels pertaining to relatively
general aspects of communicative interaction. As such they are part of a completely
different paradigm than earlier language models that were trained on, for example,
datasets of human-annotated language structures (e.g. Nivre et al., 2016). This means
that when LLMs are capable of such tasks as solving co-reference relationships or
identifying word classes (Manning et al., 2020), this arises as an emergent property of
the model’s architecture and training on different objectives. Given that such emer-
gent linguistic capabilities have been observed (Grand et al., 2022; Reif et al., 2019), it
is a legitimate empirical question which other capacities LLMs may have acquired as
‘by-catch’.

Theory of Mind in humans and LLMs

ToM, also known as ‘mindreading’, is classically defined as the capacity to attribute
mental states to others (and oneself), in order to explain and anticipate behaviour.
The concept goes back to research in ethology in which Premack and Woodruff (1978)
famously studied chimpanzees’ abilities to anticipate behaviour of caretakers. When
focus shifted to ToM in humans, tests were developed that present a scenario in which
a character behaves according to its false beliefs about a situation, and not according to
the reality of the situation itself –– which a successful participant, having the benefit
of spectator-sight, can work out.

Initial consensus that children could pass versions of this test from the age of
4 was followed by scepticism about additional abilities it presumed, including lan-
guage skills and executive functioning, which led to the development of simplified
false-belief tests based on eye gaze that even 15 month old children were found to
‘pass’ (Onishi and Baillargeon, 2005). While this line of research also met important
criticism (for a review see Barone et al., 2019), it highlights two key distinctions in
debate from the past decades: implicit-behavioural versus explicit-representational
and innate versus learned components of ToM. Some researchers see results from
eye-gaze paradigms as evidence for a native or very early developing capacity for
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Chapter 7. Theory of Mind in Large Language Models

belief-attribution in humans (Carruthers, 2013) and hold that performance on more
complex tests is initially ‘masked’ by a lack of expressive skills (cf. also Fodor, 1992).
Others have attempted to explain eye gaze results in terms of lower-level cognitive
mechanisms (Heyes, 2014) and argued that the capacity for belief attribution itself
develops gradually in interaction with more general social, linguistic, and narrative
competencies (Heyes and Frith, 2014; Hutto, 2008; Milligan et al., 2007). Two-systems
approaches (Apperly, 2012) essentially reconcile both sides by positing that our ToM
capacity encompasses both a basic, fast, and early developing component and a more
advanced and flexible component that develops later.

In computational cognitive research, a variety of approaches to modelling ToM
has been proposed (e.g. Arslan et al., 2017; Baker et al., 2011). More recently neural
agents (Rabinowitz et al., 2018b) have been implemented, along with an increasing
number of deep learning paradigms aimed at testing first- and second-order ToM via
question-answering. Initially this was done with recurrent memory networks (Grant
et al., 2017; Nematzadeh et al., 2018) using datasets of classic false-belief tests from
psychology, but after issues surfaced with simple heuristics for solving such tasks,
scenarios were made more varied and challenging (Le et al., 2019). From the inception
of BERT as one of the first language models (Devlin et al., 2019), we have seen roughly
two approaches for testing ToM in LLMs: many different ToM scenarios integrated in
large benchmark suites (e.g. Ma et al., 2023a; Sap et al., 2022; Shapira et al., 2024; Sileo
and Lernould, 2023; Srivastava et al., 2023), and studies that modified standardised
ToM tests as used in developmental and clinical research for prompting LLMs (e.g.
Brunet-Gouet et al., 2023; Bubeck et al., 2023; Chowdhery et al., 2022; Kosinski, 2024;
Marchetti et al., 2023; Moghaddam and Honey, 2023; Ullman, 2023). This chapter
adds to the latter tradition in four respects, as explained in the introduction.

7.3 Methods

Here we describe our tasks and procedures for testing LLMs and children.1

Theory of Mind tests

Sally-Anne test, first-order (SA1) – The Sally-Anne test (Baron-Cohen et al., 1985;
Wimmer and Perner, 1983) is a classic first-order false belief test. It relies on a nar-
rative in which Sally and Anne stand behind a table with a box and a basket on it.

1All code, materials, and data are available on OSF: https://osf.io/426p9/.
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7.3. Methods

When Anne is still present, Sally puts a ball in her box. When Sally leaves, Anne re-
trieves the ball from the box and puts it in her own basket. The story ends when Sally
returns and the participant is asked the experimental question ‘Where will Sally look
for the ball?’ The correct answer is that she will look in her box. We followed up by
asking a motivation question, ‘Why?’, to prompt an explanation to the effect of ‘she
(falsely) believes the object is where she left it’.

Sally-Anne test, second-order (SA2) – While SA1 targets the participant’s judge-
ment of what a character believes about the location of an unexpectedly displaced
object, in SA2 the participant needs to judge what a character believes that another
character believes about the location of an ice cream truck (Perner and Wimmer, 1985).
Sally and Anne are in a park this time, where an ice cream man is positioned next
to the fountain. Anne runs home to get her wallet just while the ice cream man de-
cides to move his truck to the swings. He tells Sally about this, but unknown to her,
he meets Anne on the way and tells her too. Sally then runs after Anne, and finds
her mother at home, who says that Anne picked up the wallet and went to buy ice
cream. The experimental question now is ‘Where does Sally think Anne went to buy
ice cream?’, with as correct answer ‘to the fountain’, also followed up with ‘Why?’,
to prompt an explanation to the effect of ‘Sally doesn’t know that the ice cream man
told Anne that he was moving to the swings’.

Strange Stories test (SS) – The Strange Stories test (Happé, 1994; Kaland et al.,
2005) depicts seven social situations with non-literal language use that can easily be
misinterpreted, but cause no problems to typically developed adults. To understand
the situations, subjects must infer the characters’ intentions, applying ToM. For ex-
ample, in one of the test items a girl wants a rabbit for Christmas. When she opens
her present, wrapped in a big enough box, it turns out that she received a pile of
books. She says that she is really happy with her gift, after which subjects are asked
the experimental question ‘Is what the girl says true?’, with correct answer ‘No’. They
can motivate their answer after the question ‘Why does she say this?’, with as correct
answer “to avoid her parents’ feelings being hurt”. Items increase in difficulty and
cover a lie, pretend play scenario, practical joke, white lie (example above), misun-
derstanding, sarcasm, and double bluff.

Imposing Memory test (IM) – The Imposing Memory test was originally de-
veloped by Kinderman et al. (1998), but the test has been revised several times;
we rely on an unpublished version created by Anneke Haddad and Robin Dunbar
(Van Duijn, 2016), originally for adolescents, which we adapted thoroughly to make
it suitable for children aged 7-10y. Our version features two different stories, fol-
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lowed by true/false questions, 10 of which are ‘intentionality’ and 12 of which are
‘memory’ questions. For instance, in one story Sam has just moved to a new town.
He asks one of his new classmates, Helen, where he can buy post stamps for a birth-
day card for his granny. When Helen initially sends him to the wrong location, Sam
wonders whether she was playing a prank on him or just got confused about the
whereabouts of the shop herself. He asks another classmate, Pete, for help. As in
the original IM, the intentionality questions involve reasoning about different levels
of recursively embedded mental states (e.g. at third-level: ‘Helen thought Sam did
not believe that she knew the location of the store that sells post stamps’), whereas the
memory questions require just remembering facts presented in the story (to match
third-level intentionality questions, three elements from the story are combined, e.g.
‘Sam was looking for a store where they sell post stamps. He told Pete that he had
asked Helen about this’).

Testing procedures

Scoring – For both children and LLMs test scores were determined in the following
way. For each of the SA1 and SA2 items, as well as for the seven SS items, a correct
answer to the experimental question yielded 1 point. These answers were discrete
and thus easy to assess (‘box’, ‘fountain’, ‘no’, etc.). For the motivation question a
consensus score was obtained from two expert raters, on a range from 0-2 with 0
meaning a missing, irrelevant, or wrong motivation, 1 meaning a partly appropriate
motivation, and 2 meaning a completely appropriate motivation that fully explained
why the character in each scenario did or said something, or had a mental or emo-
tional mental state. Thus, the maximum score for the SA1, SA2, and SS was 3 points
per item, which were averaged to obtain a score between 0 and 1. For each correct
answer to a true/false question in the IM, 1 point was given, and IM scores were
averaged over its items as well. All scores and ratings can be found on OSF.

Deviations – We tested the LLMs on the original SA and SS scenarios, but also on
manually created deviations that increasingly stray from their original formulations,
to prevent LLMs from leveraging heuristics and memorising relevant patterns from
the training data. Thus, deviations probe the degree to which performance on ToM
tests in LLMs generalises. Deviation 0 was always the original test scenario (likely
present in the training data); deviation 1 was a superficial variation on the original,
e.g. with only objects and names changed (similar to Kosinski (2024)), whereas de-
viation 2 was a completely new scenario where only the ToM-phenomenon at issue
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7.3. Methods

LLMs Source Size

Base

Falcon Penedo et al. (2023) 7B
LLaMA Touvron et al. (2023) 30B

GPT-davinci Brown et al. (2020) 175B
BLOOM Scao et al. (2022) 176B

Instruct

Falcon-instruct Penedo et al. (2023) 7B
Flan-T5 Chung et al. (2024) 11B

GPT-3 (text-davinci-003) Ouyang et al. (2022) 175B
GPT-3.5-turbo Ouyang et al. (2022) 175B

PaLM2 Anil et al. (2023) 175-340B
PaLM2-chat Anil et al. (2023) 175-340B

GPT-4 Achiam et al. (2024) >340B

Table 7.1: LLMs used in this study. Model sizes are undisclosed for GPT-4 and for PaLM2
and PaLM2-chat, thus we base ourselves on secondary sources for estimations; Knight (2023)
and Elias (2023), respectively.

was kept constant (e.g. ‘second-order false belief’ or ‘irony’). Since our adaptation of
the IM test has hitherto not been used or published, we did not include deviations
for this test.

Testing LLMs

We leveraged 11 state-of-the-art LLMs: 4 base-LLMs and 7 instruct-LLMs (see Ta-
ble 7.1). Inference parameters were set such that their output was as deterministic as
possible (i.e. a temperature ≊ zero or zero where possible) improving reproducibility.
Each inference was done independently to avoid in-context learning or memory leak-
age between questions. This means that for each question, the prompt repeated the
following general structure: [instruction] + [test scenario] + [question].

Instruct-LLMs were prompted in a question-answering format that stayed as close
as possible to the questionnaires given to children, without further custom prompt-
ing or provision of examples. Instructions were also similar to those given to chil-
dren (e.g. ‘You will be asked a question. Please respond to it as accurately as possible
without using many words.’). The ‘Why’-questions in SA1 and SA2 were created
by inserting the experimental question and answer the LLM gave into the prompt:
[instruction] + [test scenario] + [question] + [LLM answer] + [‘Why?’].
This was not necessary for SS, given that experimental and motivation questions
could be answered independently.

For base-LLMs, known to continue prompts rather than follow instructions, stay-
ing this close to the children’s questionnaires was not feasible. For the SA and SS we
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Chapter 7. Theory of Mind in Large Language Models

therefore fed base-LLMs the scenario as described before, but formulated the ques-
tions as text-completion exercises (e.g. ‘Sally will look for the ball in the ’). Addition-
ally, when creating the motivation questions for SA1 and SA2, we inserted the correct
answer to the experimental question, instead of the LLM’s answer. This was because
base-LLMs so often derailed in their output that the method described for instruct-
LLMs did not yield sensible prompts. Base-LLMs thus had an advantage here over
children and instruct-LLMs, who were potentially providing a motivation following
up on an incorrect answer they gave to the experimental question.

For the closed questions in the IM we attempted to streamline the output of base-
LLMs by including two example continuations in the desired answer format. These
examples were based on trivial information we added to the scenarios, unrelated
to the actual experimental questions. For example: ‘Helen: I wear a blue jumper
today. This is [incorrect]’, where it was added in the story that Helen wears a green
jumper. This pushed nearly all base-LLM responses towards starting with ‘[correct]’
or ‘[incorrect]’, which we then assessed as answers to the true/false questions. We
considered a similar prompt structure for SA and SS, amounting to adopting few-shot
learning for base-LLMs throughout (Brown et al., 2020), but given that reformulating
questions as text-completion exercises was by itself effective to get the desired output
format, we refrained from inserting further differences from how instruct-LLMs were
prompted. It is important to note that our prompts were in general not optimised for
maximal test performance, but rather designed to stay as uniform and close to the
way children were tested as possible, enabling a fair comparison among LLMs and
with child performance.

Testing children

Children were recruited from one Dutch and one international school in the South-
West of the Netherlands: 37 children in the younger group (7-8y) and 36 children
in the older group (9-10y). Children were administered digital versions of the SA
and SS for the younger group, and of the IM for the older group, which they com-
pleted individually on tablets or PCs equipped with a touch screen. Test scenarios
and questions were presented in a self-paced text format and all SA and SS questions
were followed by an open text field in which they had to type their answer. As the
IM features long scenarios, voice-overs of the text were included to alleviate reading
fatigue. Here children had to answer by pressing yes/no after each question. To re-
duce memory bottlenecks, accompanying drawings were inserted (see Figure 1.2 in
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7.4. Results

Figure 7.1: Performance on Sally-Anne tests for base-LLMs (top row) and instruct-LLMs (bot-
tom row). Left column depicts performance on first- and second-order ToM (i.e. SA1 vs. SA2),
averaged over the original and rewritten test versions (deviations). Middle and right columns
depict performance for SA1 and SA2 over levels of deviation from the original test (0, 1, and 2
as explained in Section 7.3). Dashed black lines indicate average child performance (n=37, age
7-8 years).

the Introduction) and navigating back and forth throughout the tests was enabled.
Informed consent for each child was obtained from caregivers, and the study was
approved by the Leiden University Science Ethics Committee (ref. no. 2021-18). Test
answers were evaluated and scored parallel to the approach for LLMs.

7.4 Results

Sally-Anne Test

Overall performance on SA1 versus SA2 is given in Figure 7.1, left column. Most
base-LLMs perform above child level on first-order ToM (BLOOM, Davinci, LLaMA-
30B) but fall at or below child level on second-order ToM. A similar pattern is vis-
ible for instruct-LLMs: most models perform well above child level on first-order
(GPT-4, GPT-3.5, PaLM2-chat, PaLM2), but not on second-order ToM. Exceptions are
GPT-4 and GPT-3.5: while degrading on second-order, they remain above child level.
For both base- and instruct-LLMs, smaller models tend to perform worse (Falcon-
7B, Falcon-7B-I, FLAN-T5) with GPT-3’s structurally low scores as striking exception.
This is inconsistent with results reported by Kosinski (2024) for GPT-3, which is prob-
ably due to the fact that Kosinski applied a text-completion approach whereas we
prompted GPT-3 with open questions.
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Chapter 7. Theory of Mind in Large Language Models

Figure 7.2: Performance on Strange Stories for base-LLMs (top row) and instruct-LLMs (bot-
tom row). Left column shows overall performance, averaged over deviations from the original
test. Right column shows performance over deviations, averaged over items. Dashed black
lines indicate average child performance (n=37, 7-8y).

When we consider the performance on SA1 and SA2 over deviations (middle
and right columns in Figure 7.1), we see once more that almost all LLMs struggle
with second-order ToM, since performance decreases already on deviation 0 (i.e. the
original test scenario), except for GPT-3.5 and GPT-4. Yet, it is the combination of
second-order ToM and deviation 2 that pushes also GPT-3.5 and GPT-4 substantially
below child levels, except for Falcon-7B, although the instruction-tuned version of
this model (Falcon-7B-I) fails on all second-order questions.

Strange Stories Test

General performance on SS is given in Figure 7.2, left column. Whereas child perfor-
mance declines as items become more complex (from 1 to 7; see Section 7.3), this is
overall less the case for LLM performance. As a result, all models surpass child level
at some point, except for the smallest model, Falcon-7B. All base-LLMs score below
child level on most items but perform above child level on the most difficult ones,
except Falcon-7B. For instruct-LLMs, we see that GPT-4 approaches perfect scores
throughout. GPT-3 and GPT-3.5 perform at or close to child level on item 1, after
which their performance declines somewhat, while staying well above child level.
Other instruct-LLMs show a mixed picture: PaLM2-chat and FLAN-T5 surpass child
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Figure 7.3: Performance on Imposing Memory test for base-LLMs (top row) and instruct-
LLMs (bottom row). Left column depicts overall performance over five levels of recursion,
averaged over deviations. Middle and right columns depict performance for Memory and
Intentional questions. Dashed lines indicate average child performance (n=36, 9-10y).

level earlier than PaLM2. Interestingly, smaller FLAN-T5 outperforms larger PaLM2
and PaLM2-chat on more difficult items. Falcon-7B-I, as smallest instruct-LLM, per-
forms overall worst.

If performance is plotted over deviations (right column in Figure 7.2) we see little
impact on most base-LLMs. For instruct-LLMs, it is striking that deviation levels have
almost no effect on the larger models (GPT-4, PaLM2, PaLM2-chat, GPT-3, GPT-3.5),
but do more dramatically lower performance of smaller models (FLAN-T5, Falcon-
7B-I). In sum, base-LLMs perform below child level, except for the most complex
items. Several large instruct-LLMs match or surpass child level throughout, others
only for more complex items. Unlike for the SA test, deviation levels seem to have
little negative impact for SS.

Imposing Memory Test

The classical finding for the IM test is that error rates go up significantly for questions
involving higher levels of recursive intentionality, but not for memory questions on
matched levels of complexity, suggesting a limit to the capacity for recursive ToM
specifically (Stiller and Dunbar, 2007).2

2While there is consensus in the literature that higher levels of intentionality are significantly harder for
participants than lower levels, by various measures, there is debate about the difference with memory
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We verified this for our child data (n=36) with two mixed linear models for mem-
ory and intentional questions with random intercepts. We included five predictors
that were contrast-coded such that each predictor indicated the difference in average
IM performance with the previous level. For intentional questions, only the differ-
ence between level two and one was significant (β = −0.222, p < .05), marking a
cut-off point after which performance remained consistently low. For memory ques-
tions, performance remained high across all levels (>.85), except for level four, where
scores were significantly lower than at level three (β =−0.292, p < .00), but went up
again at level five (β=0.208, p<.00). Thus, in line with earlier work, we find a cut-off
point after which scores on intentionality questions remained consistently low, com-
pared to scores on matched memory questions. We have no clear explanation for the
dip in performance on memory questions at level four, but observe that it is driven
by low scores on only one specific question out of a total of four for this level, which
children may have found confusing.

In Figure 7.3 we see that all base-LLMs perform below child level, in general and
on both intentionality and memory questions, and there is little variation in perfor-
mance, except that larger base-LLMs (BLOOM, GPT-davinci) improve on higher lev-
els of recursion. Regarding instruct-LLMs, we see largely the same picture, as they
almost all perform below child level, in general and on both types of questions. The
exception is GPT-4, which performs consistently well on all levels and stays above
child level after first-order intentionality. For the difference between memory and in-
tentional questions, instruct-LLMs perform better on easier memory questions, and
drop towards the end, while on intentional questions, they already start lower and
stay relatively constant. Lastly, it is remarkable that FLAN-T5, as one of the smallest
instruct-LLMs, overall increases performance as recursion levels go up, and ends at
child level. For GPT-3.5, which performs worst of all instruct-LLMs on this task, we
see the exact opposite.

Notes on child performance

It can be observed that performance for SA was overall low compared to what could
be expected from children aged 7-8 years: x̄ = 0.45 for SA1 and x̄ = 0.23 for SA2. We
have two complementary explanations for this. Firstly, as discussed in Section 7.3,
children had to read the tests on a screen, after which they had to type answers in
open text fields. This is a challenging task by itself that relies on additional skills in-

questions; see e.g. Lewis et al. (2017). For a critical discussion of measuring recursive intentionality in
general, see Wilson et al. (2023).
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cluding language proficiency, conscientiousness, digital literacy, and more. Secondly,
whereas ‘passing’ originally only means that a child can work out where Sally will
look (for the ball, or for Anne on her way to buy ice cream), we also asked for a mo-
tivation, which makes the test more demanding. For the SS test, completed by the
same group of children, we see the expected pattern that scores show a downward
tendency as test items become increasingly difficult. The older group, aged 9-10, com-
pleted the IM. As discussed above, IM scores resonate with earlier work. Given that
we see child performance not as the central phenomenon under observation in this
chapter, but rather as a reference for LLM performance, further discussion is outside
our scope.

7.5 Discussion

Summing up the results for the Sally-Anne tests, while it is less surprising that base-
LLMs and smaller instruct-LLMs struggle with increasing test complexity and devia-
tions, it is striking that second-order ToM immediately perturbs some large instruct-
LLMs (e.g. PaLM2-chat), and that adding deviations from the original test formula-
tions pushed down performance of even the most competitive models (e.g. GPT-4,
GPT-3.5). This initially suggests that performance on ToM tasks does not generalise
well beyond a few standard contexts in LLMs, in line with earlier work (Sap et al.,
2022; Shapira et al., 2024; Ullman, 2023).

For the Strange Stories test we saw that base-LLMs perform generally below child
level. Most instruct-LLMs perform close to or above child level, particularly as items
become more complex, and child performance drops much more dramatically than
LLM performance. Levels of deviation from the original test formulation seem to
have made almost no impact for the SS test, suggesting that the capacity to deal
with non-literal language targeted by the Strange Storiesdoes generalise to novel con-
texts. We conclude that instruct-LLMs are quite capable at interpreting non-literal
language, a skill that in humans involves ToM.

Since the training data of LLMs includes numerous books and fora, which are typ-
ically rich in irony, misunderstanding, jokes, sarcasm, and similar figures of speech,
we tentatively suggest that LLMs are in general well-equipped to handle the sort of
scenarios covered in the Strange Stories. This should in theory include base-LLMs,
but it could be that their knowledge does not surface due to the test format, even
after specialised prompting. Going one step further, we hypothesise that Sally-Anne
is generally harder for LLMs given that this test relies less on a very specific sort of
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Figure 7.4: Grand mean performance (stars) of all mean test scores (dots) for children and
LLMs.

advanced language ability, but more on a type of behaviourally-situated reasoning
that LLMs have limited access to during training (see also Mahowald et al., 2024).

The Imposing Memory test was the most challenging for both base- and instruct-
LLMs. Since our version of this test was never published before, it constitutes another
robustness test, which only GPT-4 as largest instruct-LLM seems to pass well.

The gap between base- and instruct-LLMs is best summarised in Figure 7.4. Here
we see that no base-LLM achieves child level: all LLMs approaching or exceeding
child performance are larger instruct-LLMs. Our adapted prompts and insertion of
correct answers for motivation questions for the SA test did not make a difference.
We suggest that another issue for base-LLMs, besides the prompt format, was prompt
length. This was highest for IM, which can explain why they struggled most with
this test. Prompt length, in relation to the models’ varying context window sizes and
ability to engage in what Hagendorff et al. (2023) call chain-of-thought reasoning,
merits further research (see also Liu et al., 2023). We tested whether there was a
difference between model performance on closed versus open questions across all
three tasks, but found no signal: the models that struggled with closed questions
were also those that performed low on open questions (for more details see OSF).

Evidence is emerging that most LLM capacities are learned in the self-supervised
pre-training phase (Gudibande et al., 2023; Ye et al., 2023), which suggests that base-
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7.6. Conclusion

LLMs are essentially ‘complete’ models. Instruction-tuning, however, even in small
amounts adds adherence to the desired interaction format and teaches LLMs, as it
were, to apply their knowledge appropriately (Zhou et al., 2023a). We see a paral-
lel between instruction-tuning and the role for rewarding cooperative communication
in human evolution and development. It has been argued extensively that human
communication is fundamentally cooperative in that it relies on a basic ability and
willingness to engage in mental coordination (e.g Grice, 1975; Verhagen, 2015). It
is a key characteristic of the socio-cultural niche in which we evolved that, when
growing up, we are constantly being rewarded for showing such willingness and co-
operating with others to achieve successful communicative interactions (Tomasello,
2008). Reversely, if we do not, we are being punished, explicitly or implicitly via
increasing social exclusion (David-Barrett and Dunbar, 2016). This brings us back
to our context: instruction-tuning essentially rewards similar cooperative principles,
but punishes the opposite, which may amount to an enhanced capacity for coordinat-
ing with an interaction partner’s perspective, in humans and LLMs alike. This is reflected
in performance on ToM tasks, which are banking on this capacity too.

7.6 Conclusion

We have shown that the majority of recent LLMs operate below performance of chil-
dren aged 7-10y on three standardised tests relevant to ToM. Yet, those that are largest
in terms of parameters, and most heavily instruction-tuned, surpass children, with
GPT-4 well above all other models, including more recent competitors like PaLM2-
chat and PaLM2. We have interpreted these findings by drawing a parallel between
instruction-tuning and rewarding cooperative interaction in human evolution. We
conclude that researching the degree to which LLMs are capable of anything like
thought in the human sense has only just begun, which leaves the field with exciting
challenges ahead.
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