
Daily variation in blood glucose levels during continuous enteral
nutrition in patients on the intensive care unit: a retrospective
observational study
Hiemstra, F.W.; Stenvers, D.J.; Kalsbeek, A.; Jonge, E. de; Westerloo, D.J. van; Kervezee, L.

Citation
Hiemstra, F. W., Stenvers, D. J., Kalsbeek, A., Jonge, E. de, Westerloo, D. J. van, &
Kervezee, L. (2024). Daily variation in blood glucose levels during continuous enteral
nutrition in patients on the intensive care unit: a retrospective observational study.
Ebiomedicine, 104. doi:10.1016/j.ebiom.2024.105169
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4176014
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4176014


Articles
eBioMedicine
2024;104: 105169

Published Online 30 May

2024

https://doi.org/10.
1016/j.ebiom.2024.
105169
Daily variation in blood glucose levels during continuous
enteral nutrition in patients on the intensive care unit:
a retrospective observational study
Floor W. Hiemstra,a,b Dirk Jan Stenvers,c,d,e Andries Kalsbeek,c,d,f ,g Evert de Jonge,a David J. van Westerloo,a and Laura Kervezeeb,∗

aDepartment of Intensive Care, Leiden University Medical Center, Albinusdreef 2, Leiden 2333 ZA, the Netherlands
bGroup of Circadian Medicine, Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333
ZA, the Netherlands
cDepartment of Endocrinology and Metabolism, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam
1105 AZ, the Netherlands
dAmsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
eDepartment of Endocrinology and Metabolism, Amsterdam UMC Location Vrije Universiteit, Meibergdreef 9, Amsterdam 1105 AZ, the
Netherlands
fNetherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Meibergdreef 47, Amsterdam 1105
BA, the Netherlands
gLaboratory of Endocrinology, Department of Laboratory Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef
9, Amsterdam 1105 AZ, the Netherlands

Summary
Background The circadian timing system coordinates daily cycles in physiological functions, including glucose
metabolism and insulin sensitivity. Here, the aim was to characterise the 24-h variation in glucose levels in critically
ill patients during continuous enteral nutrition after controlling for potential sources of bias.

Methods Time-stamped clinical data from adult patients who stayed in the Intensive Care Unit (ICU) for at least 4
days and received enteral nutrition were extracted from the Medical Information Mart for Intensive Care (MIMIC)-IV
database. Linear mixed-effects and XGBoost modelling were used to determine the effect of time of day on blood
glucose values.

Findings In total, 207,647 glucose measurements collected during enteral nutrition were available from 6,929 ICU
patients (3,948 males and 2,981 females). Using linear mixed-effects modelling, time of day had a significant effect on
blood glucose levels (p < 0.001), with a peak of 9.6 [9.5–9.6; estimated marginal means, 95% CI] mmol/L at 10:00 in
the morning and a trough of 8.6 [8.5–8.6] mmol/L at 02:00 at night. A similar impact of time of day on glucose levels
was found with the XGBoost regression model.

Interpretation These results revealed marked 24-h variation in glucose levels in ICU patients even during continuous
enteral nutrition. This 24-h pattern persists after adjustment for potential sources of bias, suggesting it may be the
result of endogenous biological rhythmicity.

Funding This work was supported by a VENI grant from the Netherlands Organisation for Health Research and
Development (ZonMw), an institutional project grant, and by the Dutch Research Council (NWO).

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction
The circadian timing system coordinates daily cycles in
physiological functions, including glucose metabolism.1
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Local tissue clocks work in concert with the central
circadian clock in the suprachiasmatic nucleus to opti-
mally prepare the body for the predictable daily
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Research in context

Evidence before this study
Many physiological processes follow a circadian rhythm. These
24-h rhythms are controlled by an endogenous timing system
that regulates optimal functioning of cells, organs and
systems. Also physiological processes affecting plasma glucose
levels, such as endogenous glucose production, glucose-
induced insulin secretion and local insulin sensitivity exhibit
marked 24-h rhythms. As such, previous studies have shown
notable daily variation in glucose levels in critically ill patients.
However, these studies did not correct for various potential
sources of bias. Daily patterns in clinical practice, such as
administration of enteral nutrition, timing and frequency of
blood sampling, or administration of medication that affects
glucose levels, can evoke 24-h variation in glucose levels that
have little to do with endogenous biological variation. It is
unknown to what extent blood glucose levels show 24-h
variation in the critical care setting after controlling for these
potential sources of bias.

Added value of this study
This study aimed to characterise the 24-h pattern in blood
glucose levels in critically ill patients while receiving enteral
nutrition, while controlling for potential sources of bias,
including patient characteristics as well as administration of
carbohydrates (via nutrition), insulin, dextrose, and
glucocorticoids. 207,647 glucose measurements from the

Medical Information Mart for Intensive Care-IV (MIMIC-IV)
database, which included time-stamped and detailed clinical
data extracted from the electronic health record, allowed us
to study daily patterns in physiology in a real-world critical
care setting. Our results indicate that glucose levels in critically
ill patients show marked daily variation despite the provision
of continuous enteral nutrition, characterised by a morning
rise and nighttime trough. This daily pattern persists when
adjusting for potential sources of bias as well as in the various
subgroups that were assessed.

Implications of all the available evidence
Our findings suggest that the observed 24-h variation in
glucose levels is due to intrinsic biological variation rather
than health care processes, patient characteristics, or
treatment effects. The sharp increase in glucose levels during
the morning bears resemblance to the dawn phenomenon
commonly observed in diabetic patients. This may reflect
increased insulin resistance that is frequently observed in the
ICU population. In our study, we emphasise the importance of
incorporating potential sources of variation in the analysis of
time series data extracted from electronic health records. In
addition, our findings contribute to a deeper understanding
of daily fluctuations in glucose levels in general and at the ICU
specifically.
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variations in feeding and fasting and rest and activity. As
such, physiological processes affecting plasma glucose
levels, such as endogenous glucose production, glucose-
induced insulin secretion, and local insulin sensitivity
all show marked 24-h rhythms.2 In healthy humans, this
results in lower glucose excursions in response to food
intake in the morning as compared to in the evening
and night. In contrast, in people with diabetes mellitus,
these 24-h rhythms give rise to the so called dawn
phenomenon; a sharp rise in blood glucose levels in the
early morning as a result of reduced insulin sensitivity
at the time of highest endogenous glucose production in
the early morning.3

The relevance of these daily changes in glucose
regulation in real-world settings is exemplified by
various lines of evidence. For example, a large-scale
study in which adults not known to have diabetes
were randomised to have their blood glucose examined
in either the morning or the afternoon.4 Despite a
shorter fasting duration for afternoon blood draws
(breakfast was allowed), fasting glucose levels were
lower in the afternoon than in the morning. It was
estimated that half of the diabetes cases would go un-
diagnosed in the afternoon group with the current
diagnostic criteria, underscoring that time of blood
sampling is an important consideration in the diagnosis
of diabetes mellitus specifically, and in clinical practice
in general.

In hospitalised patients, various outcomes related to
glucose regulation have also been reported to vary by
time of day. In general, several retrospective studies
have found that low glucose levels occur more
frequently at night compared to other times of day in
adult inpatients, both in those with diabetes mellitus5–7

and without diabetes mellitus.8 In addition, various
retrospective studies have shown that blood glucose
levels vary by time of day in critically ill patients in the
Intensive Care Unit (ICU), with higher levels during the
day and lower levels at night.9–11 Indeed, the importance
of clock time for the prediction of glucose values is
highlighted by the finding that time of day emerged as
the third most important feature to forecast glucose
values in ICU patients in a machine learning algorithm
based on more than 70 clinical features derived from
electronic health records.12

The origin of this daily variation in glucose control in
hospitalised patients is unknown. On the one hand,
some authors argued that this effect can be ascribed to
24-h variation in underlying physiological processes,
such as circadian changes in insulin sensitivity.9 On the
other hand, this time-of-day dependent effect has mostly
been attributed to daily variations in health care
www.thelancet.com Vol 104 June, 2024
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processes rather than physiology, such as daily changes
in feeding support or exogenous insulin administra-
tion.10,11 Moreover, selection bias can play a role, as
glucose levels are examined more frequently in patients
with poor glucose control, while sampling in more sta-
ble patients may be restricted to a routine check during
clinical rounds in the morning.13 Indeed, controlling for
uneven sampling by using time-weighted average
glucose levels was found to diminish the 24-h variation
in glucose levels in ICU patients.13 Clearly, identifying
and adjusting for sources of bias is an essential step in
the analysis of circadian patterns in electronic health
record data.14 This is underlined by the finding that the
hour of the day a laboratory test is ordered in the hos-
pital can be more predictive for survival than the actual
value of the test result.15

Thus, it remains unexplored to what extent blood
glucose levels show 24-h variation in clinical settings
after controlling for the various sources of bias intro-
duced by daily rhythms in clinical practice. Therefore,
the goal of this study was to characterise 24-h variation
in blood glucose levels in critically ill patients during
periods of continuous enteral nutrition and to evaluate
the effect of potential sources of bias that may influ-
ence these results. To this end, we made use of the
Medical Information Mart for Intensive Care-IV
(MIMIC-IV) database, containing detailed time-
stamped, annotated clinical data of >50,000 adult ICU
patients, providing a wealth of data to study daily pat-
terns in physiology in a real-world critical care setting.
As such, this study aimed to shed light on the daily
dynamics of blood glucose regulation in critically ill
patients, facilitating a deeper understanding of their
daily physiological patterns.
Methods
Data source
Data were obtained from the MIMIC-IV (version 2.0)
database.16,17 This is a publicly available, single-centre
critical care database consisting of detailed, time-
stamped clinical data from over 50,000 patients ≥18
years and admitted to the ICU of the Beth Israel
Deaconess Medical Center (Boston, Massachusetts) be-
tween 2008 and 2019. The database includes patient
demographics and characteristics, measurements, pro-
cedures, administered medication and treatments
sourced from the electronic health record. Two authors
(FWH and LK) obtained access to the database by
completing the Collaborative Institutional Training
Initiative program and were responsible for data
extraction and analysis (certification numbers: 45894318
and 35567467, respectively). The study was reported in
accordance with the Strengthening the Reporting of
Observational studies in Epidemiology (STROBE)
statement18 and the REporting of studies Conducted
using Observational Routinely collected health Data
www.thelancet.com Vol 104 June, 2024
(RECORD) statement.19 The code of data extraction and
analysis is available on GitHub (https://github.com/
fwhiemstra/mimic-glucose-24h-variation-in-icu).

Data extraction and pre-processing
Data from the MIMIC-IV database were extracted us-
ing structured query language within PostgreSQL
(version 16, PostgreSQL Global Development Group)
and pre-processing was performed using R program-
ming language (version 4.3.1). Patients and ICU stays
were selected from the database using the following
inclusion criteria: 1) total length of ICU stay (from
admission to discharge) ≥ 4 days; 2) ICU stay was not a
readmission; 3) glucose measurements were taken
during the ICU stay; and 4) enteral nutrition was
administered during the ICU stay. All glucose mea-
surements that were taken while patients received
enteral nutrition during their ICU stay were extracted.
Both point-of-care capillary tests as well as laboratory
(serum and whole arterial blood) measurements were
included. It was previously shown in the MIMIC-III
database that the systematic bias between these mea-
surement methods is limited.20 In the case of simul-
taneous glucose measurements, whole blood
measurements were preferred over serum measure-
ments, that were in their turn preferred over point-of-
care capillary measurements, following a similar
approach as Robles Arévalo et al.20 Glucose measure-
ments with a value > 55.6 mmol/L (1000 mg/dL) were
excluded from the dataset, as they exceed the limit of
accuracy for the laboratory analyser that was used in
the Beth Israel Deaconess Medical Center.20 For capil-
lary samples, measurements with a value > 27.8 mmol/
L (500 mg/dL) were excluded, according to the limit of
accuracy for the point-of-care glucometers (Precision
Xceed, Abbott Laboratories, Chicago, Illinois, United
States). The charting time was used to time-stamp the
glucose measurements as this is considered in the
MIMIC-IV database to be the closest proxy to the time
the data was actually measured. However, in case the
‘store time’ (the time the measurement was recorded
by the care giver) was recorded before the ‘chart time’
(the time the actual data entry occurred), the ‘store
time’ was used as time-stamp for the glucose mea-
surement, as described previously.20 Time of day was
rounded down to the nearest integer hour on a scale
from 0 to 23.

For each patient, the following variables were
extracted: age, sex, diagnosis of diabetes, in-hospital
mortality, type of admission (elective or emergency),
race, Charlson Comorbidity Index, Sequential Organ
Failure Assessment (SOFA) score and Oxford Acute
Severity of Illness Score (OASIS) score.21–23 Sample-level
variables that vary with the timing of the glucose sam-
pling within an individual ICU stay were collected and
time-matched to each glucose measurement in the
dataset (administration of carbohydrates via nutrition,
3
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insulin, dextrose and glucocorticoids, type of mechani-
cal ventilation and Richmond Agitation-Sedation Scale
(RASS) score). Insulin and dextrose administrations
were quantified (units/hour and grams/hour, respec-
tively). Glucocorticoid administration was used as a bi-
nary variable (yes/no). Rate of carbohydrate
administration (grams per hour) was determined for
each enteral nutrition event by multiplying the hourly
nutrition rate by the carbohydrate content of the
respective nutrition product (for details, see
Supplementary Table S1). Glucose measurements that
were taken during enteral nutrition events with un-
known carbohydrate content were removed from the
dataset. Continuous variables (age and administration
rates of carbohydrates, dextrose and insulin) were cat-
egorised for use in the linear mixed-effects model.
Boundaries for categorization were based on data dis-
tributions and can be viewed in Supplementary
Table S2.

Next, time corrections were applied to the start and
end time of the insulin administrations before matching
the insulin events to the glucose measurements, in or-
der to take into account the variation in the start and
duration of action between different types of insulin.
Start times of insulin administrations were corrected by
adding 0.5 h and end times were extended, depending
on their mode of actions, with 2, 4, 10 and 12 h for
rapid-, short-, intermediate and long-action insulin,
respectively.20 Additionally, a time correction was used
for the administration of glucocorticoids by adding 24 h
to the end time of administration, thereby accounting
for the sustained effects of glucocorticoids on glucose
metabolism. Similarly, end times of drug push or bolus
administrations of dextrose were prolonged to 10 min
after start time. In the subsequent sections of this
article, the glucose measurements taken during
administration of insulin, dextrose and glucocorticoids
include those that fall within the time correction win-
dows. Finally, days since ICU admission and time to the
next glucose measurement (using all glucose measure-
ments from the MIMIC-IV dataset, including those not
collected during enteral nutrition) were derived for each
glucose measurement in the data. An overview of the
extracted variables is provided in Supplementary Fig. S1
and Table S2.

Statistical analysis
Statistical analysis and visualization was performed us-
ing R programming language (version 4.3.1). To visu-
alise variation of glucose levels over time, the glucose
levels were normalised per patient and plotted against
time. Next, a linear mixed-effects model was used to
assess the effect of time of day on glucose levels,
adjusted for relevant variables (LME4 package, version
1.1.30).24 Glucose levels (in mmol/L) were used as the
dependent variable and patient IDs were added as
random effect on the intercept.
Four different linear mixed-effects models were fitted,
with each subsequent model incorporating additional
fixed effects to evaluate the effect of adding fixed effects
to the model (Supplementary Table S2). In model 1, only
an intercept was used. In model 2, patient-level variables
were added (age (categorised), sex, diabetes mellitus
diagnosis (yes/no)) as fixed effects, followed by subse-
quent addition of sample-level variables in model 3
(carbohydrate administration rate (categorised), dextrose
administration rate (categorised), insulin administration
rate (categorised) and glucocorticoid administration (bi-
nary)). Selection of these fixed effects was based on their
known, direct effect on glucose levels (Supplementary
Fig. S1). Finally, in model 4, in addition to the patient-
level and sample-level variables, time (in hourly bins)
was included as fixed effect. The models were fitted using
the entire glucose data set, employing the Restricted
Maximum Likelihood approach to estimate the variance
of random effects, and subsequently subjected to likeli-
hood ratio tests for model comparison. A significance
level of 0.05 was considered as statistically significant and
was used to select the final model. Estimated marginal
means were calculated with the Maximum Likelihood
approach and used to visualise the glucose levels over the
24-h period. Residual plots were created for the final
linear mixed-effects model to assess whether the model
assumptions of linearity and constant variance were met.

As an alternative approach, the same dataset was
analysed with a decision tree-based machine learning
method Extreme Gradient Boosting (XGBoost) to assess
the time of day effect using Shapley Additive exPlanations
(SHAP) values.25,26 In contrast to the linear mixed-effects
models, the variables age and administration rate of car-
bohydrates, dextrose and insulin were not categorised and
used as continuous variables (Supplementary Table S2). A
detailed description of this method is available in the
Supplementary Methods S1.

Next, sensitivity analyses were performed on various
subgroups, based on variables that are considered to
have an indirect effect on glucose levels or that may
potentially bias the time-of-day dependent effect: type of
mechanical ventilation, RASS scores (both as proxy for
no oral intake), in-hospital mortality, days in ICU (both
as proxy for severity of illness), sample type and sam-
pling frequency (to rule out sampling bias)
(Supplementary Fig. S1). Furthermore, four subgroups
were made to distinguish between patients without in-
sulin requirement and with various levels of insulin
requirements—who are thus assumed to have impaired
glucose tolerance. Patients without insulin requirement
were defined as those who did not receive insulin at any
point during their ICU stay, and patients who required
insulin therapy were divided in three groups: those who
received an average daily administration of more than
0 < x ≤ 35, 35 <x ≤ 70, or >70 units of insulin. For each
subgroup, a linear mixed-effects model (using the same
variables and settings as in model 4) was fitted.
www.thelancet.com Vol 104 June, 2024
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Patient characteristics Patients (n = 6929)

Sex, n (%)

Male 3948 (57%)

Female 2981 (43%)

Age (years), median [IQR] 66 [54–77]

Race, n (%)

White 4245 (61%)

Black 664 (9.6%)

Hispanic 250 (3.6%)

Asian 193 (2.8%)

Other 270 (3.9%)

Unknown 1307 (19%)

Admission type, n (%)

Elective 491 (7.1%)

Emergency 6438 (93%)

SOFA score at admission, median [IQR] 8 [5–11]

OASIS score, median [IQR] 40 [35–46]

Length of stay (days), median [IQR] 10 [7–16]

Diabetes diagnosis, n (%) 2126 (31%)

In-hospital mortality, n (%) 1967 (28%)

Mechanical ventilation during ICU stay, n (%)

Invasive ventilation 6219 (90%)

Non-invasive ventilation only 603 (8.7%)

None/No ventilation data available 107 (1.5%)

SOFA: Sequential Organ Failure Assessment23; OASIS: Oxford Acute Severity of
Illness Score22; IQR: inter-quartile range.

Table 1: Baseline characteristics of included patients.

Articles
Estimated marginal means were used to visualise the
24-h patterns for each of the subgroups.

Ethics
The Institutional Review Board at the Beth Israel
Deaconess Medical Center reviewed the collection of
patient data and creation of this research database and
granted a waiver of informed consent.

Role of funders
The funders had no role in the study design, data collec-
tion, data analyses, interpretation, or writing of report.

Results
Baseline characteristics
A total of 6,929 ICU stays (52,333 ICU days) were
included in the dataset, with a total of 207,647 valid
glucose measurements that were taking during enteral
nutrition (Fig. 1). Baseline characteristics of the
included patients and characteristics of the included
glucose measurements are summarised in Table 1 and
Supplementary Table S3, respectively. A representative
example of the timing of enteral nutrition, glucose
measurements, and the administration of dextrose,
glucocorticoids, and insulin during a day in the ICU is
shown in Fig. 2a, and a typical pattern of enteral nutri-
tional support across the ICU stay is shown in Fig. 2b.
Overall, the included glucose measurements were taken
Total ICU stays in
MIMIC-IV database:
n = 76,943 (from n =

53,569 patients)

ICU stays with length of
stay > 4 days:

n = 17,386 (from n =
14,512 patients)

First ICU stays with
length of stay > 4 days:

n = 14,512

Included ICU stays:
n = 7,172

ICU stays with length of
stay < 4 days:

n = 59,557 (from n =
39,057 patients)

Readmissions:
n = 2,874

No enteral feeding
during ICU stay:

n = 7,337

No glucose
measurements
during ICU stay:

n = 3

Total glucose
measurements recorded

in the included ICU
stays:

n = 490,600 (in n = 7,172
ICU stays)

Valid glucose
measurements:

n = 487,367 (in n = 7,172
ICU stays)

Included glucose
measurements:

n = 207,647 (in n = 6,929
ICU stays)

Duplicates:
n  = 3,155

Invalid value:
n = 78

Not during enteral
feeding episode:

n = 279,214

ICU stays Glucose measurements

Carbohydrate content of
enteral feeding event

unknown:
n = 506

Fig. 1: Inclusion flowchart of ICU stays and glucose measurements.
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throughout the 24-h period with an increase of the
number of measurements at some time points, pre-
sumably corresponding to the timing of routine lab
rounds (Fig. 2c). Time-of-day distributions of dosing
rates of enteral nutrition and administrations of insulin,
dextrose and glucocorticoids are shown in Fig. 2d and
Supplementary Fig. S2, respectively.

Analysis of 24-h variation in glucose levels during
enteral nutrition
Without adjustment for potential confounders, normal-
ised glucose levels showed substantial variation over
time, with a peak at 10:00 h and trough at 03:00 h
0
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versus model 3: χ2 (df = 10) = 7719.3, p < 0.001), followed
by the inclusion of time of day (χ2 (df = 23) = 2449.1,
p < 0.001). Therefore, model 4, incorporating patient-
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selected as the final model. Blood glucose levels were
significantly affected by time of day (p < 0.001), with a
peak of 9.6 [9.5–9.6; estimated marginal means, 95% CI]
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[8.5–8.6] mmol/L at 02:00 at night (Table 2; Fig. 3a). The
effect of diabetes on glucose levels was found to be most
pronounced (2.2 [2.2–2.3; coefficient, 95% CI], p < 0.001),
followed by an administration rate of carbohydrates
>8.5 g/h (1.4 [1.3–1.4], p < 0.001) and administration of
glucocorticoids (1.0 [1.0–1.1], p < 0.001) (Table 2). Model
diagnostics showed no violation of model assumptions
(Supplementary Fig. S4).

Following selection of the optimal XGBoost model by
hyperparameter tuning (optimal parameters: maximum
tree depth: 5; Learning rate: 0.1; Number of estimators:
150; Minimum child weight: 5; Fraction of columns to be
subsampled in each tree: 0.75; Subsample ratio of
training instances: 0.75), a 24-h pattern was observed in
the SHAP values for time of day, with highest values
around 10:00 h and lowest values between 01:00 h and
03:00 h (Fig. 3b), resembling the 24-h pattern observed
with the linear-mixed effects model (Fig. 3a). Time of day
was the fifth most important feature, preceded by dia-
betes, carbohydrate and insulin administration rate and
glucocorticoid administration, and followed by age,
dextrose administration and sex (Supplementary Fig. S5a
and b). SHAP dependence plots for continuous features
(carbohydrate, insulin and dextrose administration rate
and age) are shown in Supplementary Fig. S6a–d, in
which the relationship between values of features and
SHAP values can be assessed.
Variable Category

Fixed effects

(Intercept)

Time of day [ref = 00:00]a 02:00

10:00

Age [ref = <55 years] 55–65 years

66–75 years

>75 years

Sex [ref = Female] Male

Diabetes diagnosis [ref = No] Yes

Carbohydrate administration [ref = ≤4.5 g/h] 4.5<x≤6.5 g/h

6.5<x≤8.5 g/h

>8.5 g/h

Insulin administration [ref = 0 units/h]b 0<x≤1.5 units/h

1.5<x≤3 units/h

>3 units/h

Dextrose administration [ref = 0 grams/h] 0<x≤0.5 g/h

0.5<x≤2 g/h

>2 g/h

Glucocorticoid administration [ref = No]b Yes

Inter-patient random effect (intercept)

Residual

CI: confidence interval; ref = reference. aTime of day was included as a categorical variab
here due to space constraints. Estimates at all time bins are shown in Fig. 3a. bThe start a
corrected to account for the delaying and/or persisting effect of insulin and glucocorti

Table 2: Summary of the final linear mixed-effects model.

www.thelancet.com Vol 104 June, 2024
In all subgroups of type of mechanical ventilation, in-
hospital mortality, RASS-scores, sample type, days in
ICU and sampling frequencies, similar 24-h patterns
were observed, with expected differences in 24-h base-
line levels (Fig. 4). Remarkably, the peak-to-trough dif-
ference in glucose levels was more than two-fold larger
in the subgroup of patients who received on
average > 70 units of insulin per day during their stay
(9.7 [9.4–9.9] versus 10.7 [10.4–10.9] mmol/L at 02:00
and 10:00, respectively) and 35–75 units of insulin per
day (10.4 [10.1–10.7] versus 11.8 [11.6–12.1] at 02:00 and
10:00, respectively), compared to the subgroup of pa-
tients who did not require insulin therapy (7.1 [7.0–7.2]
mmol/L at 02:00 and 7.5 [7.4–7.6] at 10:00) (Fig. 5).
Discussion
Our results indicate that glucose levels in critically ill
patients show marked 24-h variation during contin-
uous enteral nutrition. This daily pattern persists when
controlling for potential sources of bias and con-
founding factors, suggesting that the observed 24-h
variation is due to biological processes rather than
health care processes, patient characteristics, or treat-
ment effects. These findings were confirmed with an
alternative machine learning approach, thereby
showing the consistency of the results obtained with
Estimates 95% CI p-value

6.6 6.5–6.7 <0.001

−0.4 -0.5 to -0.4 <0.001

0.6 0.5–0.7 <0.001

0.5 0.3–0.6 <0.001

0.6 0.5–0.7 <0.001

0.6 0.5–0.7 <0.001

-0.2 -0.3 to -0.1 <0.001

2.2 2.2–2.3 <0.001

0.7 0.6–0.7 <0.001

1.0 0.9–1.0 <0.001

1.4 1.3–1.4 <0.001

0.5 0.4–0.5 <0.001

0.4 0.4–0.5 <0.001

-0.2 -0.3 to -0.2 <0.001

0.1 0.0–0.1 0.002

0.2 0.2–0.2 <0.001

0.6 0.5–0.6 <0.001

1.0 1.0–1.1 <0.001

Variance

2.8

5.4

le with 24 levels of 1-h time bins; only 02:00 (trough) and 10:00 (peak) are shown
nd end time of administration of insulin and glucocorticoids (end times only) were
coids on glucose levels (see Methods for details).
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Fig. 4: Subgroup analysis of 24-h variation in glucose levels. (a) Ventilation mode. (b) Survivor status. (c) Depth of sedation. (d) Days in ICU.
(e) Sample type. (f) Time to next glucose sample. For each subgroup, a linear mixed-effects model was fitted. Data presented as estimated
marginal means ± 95% CI, adjusted for covariates. The dashed line represents a normal range of glucose levels in the ICU. Number of patients
and measurements per group are shown in Supplementary Table S5.
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Articles
the linear mixed-effects model. Remarkably, the effect
of time of day on glucose levels, even during contin-
uous nutritional support, is equal to or even larger than
covariates that are commonly considered in analyses,
such as sex and age. This highlights the importance of
incorporating time of day in analyses of biological time
series data.

We found a decrease of glucose levels during
nighttime, followed by a substantial rise of glucose
levels in the early morning. Previous studies also
observed a nocturnal decrease in glucose levels in crit-
ically ill patients, although the timing of the trough
varied among studies.9–11 However, those studies
included glucose measurements regardless of nutri-
tional status or administration of medication or fluids
that directly affect glucose levels, such as insulin, glu-
cocorticoids, or dextrose. The daily variation in glucose
levels observed in previous studies may therefore be
driven by an interfering daily pattern in nutrition,
particularly when considering oral intake. Since most
oral food intake presumably occurs during the daytime
and not during the nighttime, any observed 24-h pattern
in glucose levels may be attributable to patterns in food
intake rather than endogenous variation in glucose
control. A strength of our study is that we only included
glucose measurements that were taken while patients
received enteral nutrition in order to investigate 24-h
variation in glucose levels during nutritional intake. To
verify whether the observed daily variation in glucose
levels is driven by patients who have (daytime) oral
intake (which may not be well documented in the EHR),
we performed subgroup analyses on data from sedated
www.thelancet.com Vol 104 June, 2024
patients (with RASS score ≤ −2) and patients on invasive
mechanical, who can be presumed not to have any oral
food intake. These analyses show that the 24-h pattern
persists in these subgroups, ruling out an effect of oral
food intake. In addition, we verified that the timing of
glucose measurements, enteral nutrition, and adminis-
tration of insulin, dextrose, and glucocorticoids were
equally distributed over the 24-h period and included
these as covariates in the model.

In addition to the subgroup analyses to control for
patients with potential oral intake, we performed further
subgroup analyses to assess the effect of other potential
sources of bias that were not or insufficiently available
in the MIMIC-IV database. Subgroups were created
based on available variables that might indirectly affect
glucose levels. Firstly, the glucose sampling method
used (lab or point-of-care tests) can be influenced by
health care processes and acuteness of situation. Lab
tests are more likely to be a routine test, collected as part
of a panel of tests, while point-of-care tests can be more
likely to performed when glucose needs to be closely
monitored. Besides, the sampling method used could
have affected the measured glucose levels, although this
effect was shown limited in the MIMIC-III database.20

Also, severity of illness could affect the glucose levels.
Indicators of severity of illness, such as Sequential Or-
gan Failure Assessment (SOFA) scores, were not
consistently present in the data. Therefore, in-hospital
mortality and days in the ICU were regarded to be
associated with illness severity. To assess the effect of
sampling bias, time to the next glucose measurements
was used a proxy of sampling frequency. For all these
potential sources of bias, the expected differences in
mean 24-h levels were observed, but the 24-h pattern
with the morning rise and its timing remained consis-
tent among the subgroups.

Linear mixed-effects models prove to be valuable in
the analyses conducted in our study as this approach
allows for adjustment of several factors with a known
influence on the dependent variable (fixed effects) and
accounts for individual variability (random effects). As
an addition to the main analyses, the same dataset was
analysed with an XGBoost regression model. XGBoost
is a widely adopted machine learning algorithm that
uses decision trees within a gradient boosting frame-
work. Although XGBoost is commonly employed for
prediction tasks, it is used in our study to assess the
effect of a variable of interest (time of day) on an
observed parameter (glucose levels), as was also done
previously.27 While our linear mixed-effects models as-
sume a linear relationship between fixed effects and
outcome variable, we used XGBoost to capture more
intricate patterns and non-linear associations that might
exist in the data. This allowed us to incorporate age and
administration rates of carbohydrates, insulin and
dextrose as continuous variables in the XGBoost
models. Consequently, we revealed the pattern of the
9
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non-linear relationship between insulin administration
rate and glucose levels. However, a notable drawback of
the XGBoost model is its inability to account for inter-
patient variability and repeated measurements, as is
possible with the random effects in the linear mixed-
effects model. In the end, similar results were found
when analysing the data with an XGBoost model as with
the linear mixed-effects model, which shows consis-
tency of our findings. Moreover, this indicates that the
use of a machine learning model may be a powerful
alternative to traditional linear mixed-effects models in
the analysis of time series data.

The 24-h pattern in glucose levels with low levels at
night and an increase in the early morning that we
observe in our study is markedly different from what
could be expected based on studies on circadian
rhythms in glucose control in healthy individuals. In
healthy individuals, a complex interplay of peripheral
circadian clocks in different tissues regulate the physi-
ological processes involved in glucose metabolism in a
time of day-dependent manner, resulting, for example,
from circadian variation in circulating ghrelin28 and
leptin levels,29 pancreatic insulin secretion,30 and whole-
body insulin sensitivity.31 In general, this results in
higher glucose excursions when food is consumed at the
wrong time of day, i.e., during the biological night
compared to the day.25 A study among healthy male
participants who received continuous enteral nutrition
in controlled laboratory conditions revealed that glucose
levels are highest during the second half of the night
and lowest during the day, i.e., a 24-h rhythm that is
advanced by several hours compared to the pattern
observed in our study.32 However, the sharp rise in
blood glucose levels observed in our analysis during the
early morning is reminiscent of the dawn phenomenon
observed in people with diabetes mellitus. This phe-
nomenon occurs as a result of reduced insulin sensi-
tivity at the time of highest endogenous glucose
production.3 The morning increase that we observe in
critically ill patients may reflect increased insulin resis-
tance that is frequently observed in the ICU popula-
tion.33 This notion gains further support from the
observation that patients who require insulin therapy—
who are thus likely to have impaired glucose tolerance,
or even a certain degree of insulin resistance—exhibited
a more pronounced morning peak compared to patients
who did not require insulin therapy. Albeit correlational,
our findings add real-world support to the body of
literature from pre-clinical studies and studies in
healthy human participants that show that glucose
metabolism is anything but constant across the 24-h
period.2 The exact mechanisms that underlie the
observed pattern, e.g., 24-h variation in local insulin
sensitivity, pancreatic β-cell function, fever and/or
circulating levels of other hormones involved in glucose
metabolism (e.g., cortisol, leptin, or ghrelin) remains to
be uncovered in future (experimental) studies.
Monitoring of blood glucose levels is an essential
aspect of critical care management, as critically ill pa-
tients are prone to high glycaemic variations. Our study
contributes to the understanding of daily fluctuations of
glucose levels in patients during clinical practice at the
ICU. With this understanding, glucose levels can be
interpreted in the context of the time of day. Nonethe-
less, we recognise that the variation of about 1 mmol/L
across 24 h may not affect glucose monitoring or insulin
administration protocols in the ICU. Also, the sub-
stantial effect of time of day on blood glucose levels
observed in our study emphasises the importance of
considering the 24-h variation in scientific research on
glucose regulation in critically ill patients. Relying solely
on single measurements or averages derived from un-
equally distributed measurements may inaccurately
reflect the average daily glucose control.13 Likewise,
clinical trials investigating glucose control in critically ill
patients may need to consider this daily variation in
their sampling protocol and ensuing study endpoints.

One of the strengths of our study is the large number
of glucose measurements that was included in the
analysis. The availability of a large, rich, clinical dataset
enabled the adjustment of multiple confounding factors.
Additionally, a heterogeneous group of patients
admitted to the ICU was included, thereby making the
results more applicable to the mixed ICU population.
Nonetheless, several limitations should be considered
when interpreting our findings. The retrospective
design introduces inherent limitations and a certain
degree of uncontrolled variability.34 As a result, it was
not possible to control the timing of blood glucose
measurements, the ensuing medical decisions, or any
potential bias between actual blood glucose values and
the measured values due to continued glycolysis after
collection or other factors related to sample processing.
Being constrained to data available in the electronic
health records, we had to deal with a limited number of
samples per patient per day and with the potential of
incomplete data. Consequently, a limitation is that we
assumed that the lack of recorded events, diabetes ICD-
codes, or date of death data within the MIMIC-IV
dataset indicated their absence in real-life. Unfortu-
nately, we were unable to extract information about
glucocorticoid dose and therefore had to restrict our
analysis to a binary classification on whether or not
patients received glucocorticoids, precluding us from
evaluating its impact on glucose levels in more detail. In
the end, with the chosen variables, all data required to
construct the variables was available for each glucose
measurement. Another limitation is introduced by the
variability in the delay and persisting effects after the
start and end of administration of the assessed medi-
cation on glucose levels. We incorporated fixed correc-
tion times to the start and end times of insulin and
glucocorticoid administration to account for their dura-
tion of action, but any interindividual variability or
www.thelancet.com Vol 104 June, 2024
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variability resulting from the route of administration
(e.g., subcutaneous injections versus intravenous in-
fusions of insulin) in the duration or magnitude of their
effect was not taken into account. Also, the use of single-
centre data in this study may introduce bias due to
centre-specific factors, patient population, or variations
in patient management practices.

In general, our study provides insight into the
glucose control during continuous enteral nutrition in
critically ill patients. However, it remains to be inves-
tigated to what extent patient-level factors that influ-
ence 24-h patterns in glucose levels impact our
findings, such as sleep,35–37 neurotrauma,38 or circadian
clock function.39 In addition, an interesting question is
to what extent the administration of continuous enteral
nutrition gives rise to the 24-h pattern in blood glucose
values and is responsible for the high prevalence of
insulin resistance that is observed in ICU patients in
general. Although this type of nutritional support is
common practice in ICUs worldwide, it is known from
pre-clinical work and studies in healthy human par-
ticipants that food intake at the wrong time of day (i.e.,
during the biological night) leads to unfavourable
glucose responses.2 Indeed, it has been questioned
whether continuous nutrition is the most optimal
nutrition schedule from various perspectives (incl.
glycaemic control, circadian rhythmicity, muscle
metabolism, and gastrointestinal function).40,41 Future
studies that compare the effect of continuous feeding
to other schedules on various clinical outcomes could
additionally investigate the impact on daily glucose
variability.

To conclude, our findings demonstrate the presence
of a substantial 24-h pattern in blood glucose levels
during continuous enteral nutrition in critically ill pa-
tients that persists after adjustment for relevant sources
of bias. This suggests that the observed 24-h variation is
due to the endogenous biological variation rather than
as a result of bias introduced by health care processes,
patient characteristics, or treatment effects. In addition,
our study provides a framework for addressing these
sources of bias when analysing the effect of time of day
on physiological variables available in electronic health
records. Our findings contribute to a deeper under-
standing of daily fluctuations in glucose levels observed
at the bedside by nurses and clinicians working at the
ICU. Future research should focus on multicentre co-
horts and incorporate individual circadian phase and
brain states in the analysis to further enhance our un-
derstanding of these observations.
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