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Abstract
Aims/hypothesis People with type 2 diabetes are heterogeneous in their disease trajectory, with some progressing more 
quickly to insulin initiation than others. Although classical biomarkers such as age,  HbA1c and diabetes duration are associ-
ated with glycaemic progression, it is unclear how well such variables predict insulin initiation or requirement and whether 
newly identified markers have added predictive value.
Methods In two prospective cohort studies as part of IMI-RHAPSODY, we investigated whether clinical variables and three 
types of molecular markers (metabolites, lipids, proteins) can predict time to insulin requirement using different machine 
learning approaches (lasso, ridge, GRridge, random forest). Clinical variables included age, sex,  HbA1c, HDL-cholesterol 
and C-peptide. Models were run with unpenalised clinical variables (i.e. always included in the model without weights) or 
penalised clinical variables, or without clinical variables. Model development was performed in one cohort and the model 
was applied in a second cohort. Model performance was evaluated using Harrel’s C statistic.
Results Of the 585 individuals from the Hoorn Diabetes Care System (DCS) cohort, 69 required insulin during follow-up 
(1.0–11.4 years); of the 571 individuals in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) 
cohort, 175 required insulin during follow-up (0.3–11.8 years). Overall, the clinical variables and proteins were selected in 
the different models most often, followed by the metabolites. The most frequently selected clinical variables were  HbA1c 
(18 of the 36 models, 50%), age (15 models, 41.2%) and C-peptide (15 models, 41.2%). Base models (age, sex, BMI, 
 HbA1c) including only clinical variables performed moderately in both the DCS discovery cohort (C statistic 0.71 [95% CI 
0.64, 0.79]) and the GoDARTS replication cohort (C 0.71 [95% CI 0.69, 0.75]). A more extensive model including HDL-
cholesterol and C-peptide performed better in both cohorts (DCS, C 0.74 [95% CI 0.67, 0.81]; GoDARTS, C 0.73 [95% CI 
0.69, 0.77]). Two proteins, lactadherin and proto-oncogene tyrosine-protein kinase receptor, were most consistently selected 
and slightly improved model performance.
Conclusions/interpretation Using machine learning approaches, we show that insulin requirement risk can be modestly well 
predicted by predominantly clinical variables. Inclusion of molecular markers improves the prognostic performance beyond 
that of clinical variables by up to 5%. Such prognostic models could be useful for identifying people with diabetes at high 
risk of progressing quickly to treatment intensification.
Data availability Summary statistics of lipidomic, proteomic and metabolomic data are available from a Shiny dashboard 
at https:// rhapd ata- app. vital- it. ch.
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Introduction

People with type 2 diabetes are heterogeneous in their dis-
ease trajectory. While some progress quickly to insulin, oth-
ers show good glycaemic control for decades using only oral 
glucose-lowering drugs. Ideally, one would identify those at 
risk of progressing quickly to initiation of treatment intensi-
fication to prevent glycaemic progression and development 
of complications. Therefore, many studies have investigated 
predictors of glycaemic progression, treatment intensifica-
tion, initiation of insulin or requirement for insulin. These 
studies showed that baseline  HbA1c, young age and weight 
gain were independently associated with these outcomes in 
different populations [1–5]. Other important predictors in 
some of these studies included diabetes duration, compli-
cations or levels of blood lipids, such as HDL-cholesterol 

or triacylglycerol [1, 3–5]. Although these studies reported 
independent associations between these determinants and 
different outcomes of glycaemic progression, they did not 
investigate how well such risk factors predicted risk of pro-
gression in terms of identification of high-risk individu-
als (discrimination) or quantifying the risk of progression 
(calibration).

As genetics play a key role in the development of dia-
betes, and pharmacogenetic studies have identified certain 
variants associated with poor response to certain glucose-
lowering drugs, several studies have investigated the genetic 
predictors of glycaemic progression. These studies showed 
that polygenic risk scores including known diabetes variants 
were associated with a young age at diagnosis or insulin 
initiation [3] or with rapid progression to insulin therapy [1]. 
Such findings may provide insight into the pathophysiologi-
cal pathways underlying glycaemic progression.

In a previous study, we identified biomarkers for time to 
insulin requirement using a univariate approach based on 
proteomics, metabolomics and lipidomics [6]. This study 
showed that biomarkers from different molecular classes, 
including triacylglycerol, multiple proteins and small 
charged metabolites, were associated with time to insulin 
requirement. However, these univariate analyses do not 
identify the most informative combination of biomarkers 
with which to predict time to insulin requirement. Moreover, 
they do not account for the added prognostic value beyond 
that of known predictors of progression, such as age,  HbA1c 
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or BMI. In recent years, an increasing number of stud-
ies have adopted machine learning approaches to identify 
optimal sets of predictors for specific outcomes, and take 
into account additional information such as the type of bio-
markers included in the selection model [7]. In the current 
study, we build on our previous work and develop predic-
tion models for time to insulin initiation using previously 
identified clinical variables and three types of molecular 
measures (small charged metabolites, lipids and proteins). 
For this, we explored different machine learning approaches 
to identify the most optimal model in the Hoorn Diabetes 
Care System (DCS) cohort and validated the models in the 
Genetics of Diabetes Audit and Research in Tayside Scot-
land (GoDARTS) cohort.

Methods

IMI‑RHAPSODY RHAPSODY (https:// imi- rhaps ody. eu/) is a 
European collaboration based around EU Innovative Medi-
cines Initiative-2. As part of RHAPSODY, three different 
biomarker classes were measured, that is, charged small 
molecules (metabolites), lipids and proteins, in three large 
cohorts (DCS, GoDARTS and All New Diabetics In Scania 
[ANDIS]).

Cohorts Data from two cohorts, DCS (the Netherlands) 
and GoDARTS (Scotland), were used in the current study. 
Criteria for inclusion in this study have been described pre-
viously [6]. Briefly, individuals were included when the 
age of diagnosis was ≥35 years, when clinical data were 
available within 2 years after diagnosis and they were GAD 
negative, and when genome-wide association study (GWAS) 
data were present. Descriptions of the DCS and GoDARTS 
can be found in their respective cohort profiles [8, 9]. In 
short, the DCS is an open prospective cohort study from the 
north-west part of the Netherlands that started in 1998 and 
includes over 14,000 individuals with type 2 diabetes. The 
Ethical Review Committee of the Vrije Universiteit Medical 
Center, Amsterdam, approved the study and informed con-
sent was obtained from all participants. Laboratory variables 
and molecular measures (metabolomics, lipidomics, prot-
eomics) in the DCS were obtained from a sample collected 
in the fasted state. GoDARTS includes people with type 2 
diabetes from the Tayside region of Scotland (N=391,274; 
January 1996) who were added to the Diabetes Audit and 
Research in Tayside Scotland (DARTS) register [9]. Data 
were collected from medical registries, including data on 
prescribing, biochemistry and clinical data. Laboratory vari-
ables and molecular measures in GoDARTS were obtained 
from a sample collected in the non-fasted state. The Tayside 
Medical Ethics Committee approved the GoDARTS study 

and informed consent was obtained from all participants. 
Cohorts were representative of the larger cohorts from 
which they were sampled. The self-reported race and eth-
nicity of individuals was collected and people were mainly 
of European descent. Sex was self-reported and both men 
and women were included in the study.

Endpoint The primary endpoint in the current study was 
time to insulin requirement. Time to insulin requirement was 
defined as prescribed insulin use or the requirement of insu-
lin, with the latter defined as  HbA1c >69 mmol/mol (8.5%) 
when on two or more non-insulin diabetes therapies. In the 
DCS, medication data were obtained from dispensing labels 
on medication that participants brought to their annual moni-
toring visit. In GoDARTS, prescribing data were obtained 
from registries.

Clinical covariates Clinical variables included age, sex, 
 HbA1c, HDL-cholesterol and C-peptide. In the DCS,  HbA1c 
was measured annually using the turbidimetric inhibition 
immunoassay for haemolysed whole EDTA blood (Cobas 
c501; Roche Diagnostics, Mannheim, Germany). HDL-
cholesterol (mmol/l) was determined enzymatically (Cobas 
c501; Roche Diagnostics). In GoDARTS, these measure-
ments were collected from the registry. C-peptide was meas-
ured in both the DCS and GoDARTS on a DiaSorin Liaison 
(DiaSorin, Saluggia, Italy). In GoDARTS, all laboratory 
measurements were measured in a non-fasted state.

Biomarkers Three molecular data types were included in the 
model (i.e. small charged metabolites, lipids and proteins) 
and are described in more detail elsewhere [6]. Nineteen 
small charged metabolites were measured using ultra-high-
performance LC–tandem MS (UHPLC-MS/MS). Lipids 
(162 lipids) were measured on the Lipotype lipidomics plat-
form (Dresden, Germany) and proteins (1195 proteins) on 
the SomaLogic SomaScan platform (Boulder, USA).

Statistical analysis Baseline characteristics are provided 
for the DCS and GoDARTS cohorts separately. Continuous 
variables were summarised using median (IQR). Categorical 
variables were summarised as percentages. Eight types of 
model were initially investigated for DCS data, with time to 
insulin requirement as the outcome, to find the best predic-
tion model. We also used the models to rank variables based 
on the number of times they were selected, to give some 
indication of their relevance for the endpoint studied.

The following models were included:

• least absolute shrinkage and selection operator (lasso)
• (regular) ridge
• empirical Bayes group-regularised ridge (GRridge)

https://imi-rhapsody.eu/
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• empirical Bayes group-regularised ridge with selection 
(GRridgesel)

• cross-validated group-regularised ridge (multiridge)
• empirical Bayes group-regularised lasso (GRlasso)
• (regular) random forest
• co-data regularised random forest (CoRF)

Lasso and ridge (both fitted with the glmnet package, 
https:// glmnet. stanf ord. edu/ artic les/ glmnet. html) are regu-
larisation methods that shrink the regression coefficients 
towards zero, where lasso may set them to zero (automatic 
variable selection). Here, lasso and ridge were combined 
with Cox regression. They both require one tuning parameter 
that was estimated by cross-validation (i.e. predictive par-
tial likelihood maximisation). GRridge [7] and multiridge 
[10] are similar to regular ridge but estimate one tuning 
parameter per feature group (clinical variables, metabo-
lites, lipids, proteins) by empirical Bayes and cross-valida-
tion, respectively. As such, they take the different types of 
markers and predictor variables into account and this may 
improve prediction. GRridgesel is an extension of GRridge 
and implements a post hoc step that selects features through 
the addition of a lasso penalty term to the ridge model [7]. 
Alternatively, GRlasso uses the penalty weights estimated by 
GRridge in the estimation of a lasso model [11]. The random 
forest is a non-linear (less interpretable) machine learner 
that fits many (1000 in the current study) decision trees to a 
random selection of predictors and predicts from new data 
by averaging over these decision trees. CoRF [12] is similar 
to the regular random forest but estimates predictor-specific 
sampling probabilities by considering extra information 
on the predictors (i.e. marker type). For both random for-
est types we changed the node splitting rule from logrank 
to logrankscore to yield better-calibrated survival curves. 
We included these learners because they all have different 
strengths. Random forest can deal with non-linear effects 
and interactions. Lasso caters for sparse settings in which 
only a few features matter (plus it performs feature selec-
tion). Ridge accounts for dense settings (many small effects) 
and allows for accounting for different feature groups (mul-
tiridge, GRridge).

All models were fitted in three different versions, differing 
in their use of clinical variables; the first version excluded 
penalisation of the clinical variables (model 1; M1); the 
second version penalised the clinical variables just as the 
other markers (model 2; M2); and the third version excluded 
the clinical variables from the model altogether (model 3; 
M3). Exclusion of clinical variables penalisation in the 
random forest was achieved by using large-feature sampling 
weights for the decision trees. Finally, we also fitted a model 
with only classical risk factors. Models were performed on 
the population for which all data types were available (i.e. 
the set with metabolomics, lipidomics and proteomics). 

The features comprised clinical covariates, including age, 
sex, creatinine,  HbA1c, HDL-cholesterol, LDL-cholesterol, 
C-peptide, 15 metabolites, 135 lipids and 1195 peptides. 
The features were standardised before analysis to ensure 
that shrinkage of the coefficients was on the same scale. 
The eight methods that were applied included lasso, ridge, 
GRridge, GRridgesel, multiridge, GRlasso, random forest 
and CoRF. In total, 14 fits were applied: (1–3) lasso with 
the automatic variable selection and with 10 or 50 variables; 
(4) ridge; (5) GRridge with automatic variable selection; (6) 
GRridge combined with lasso; (7, 8) GRridge with 10 and 50 
variables; (9–11) GRlasso with automatic selection and with 
10 and 50 variables; (12) multiridge; (13) random forest; 
and (14) CoRF. The R package glmnet was used for lasso 
and ridge, the GRridge package for GRridge, the multiridge 
package for multiridge, the CoRF package for CoRF. For 
ridge models, post hoc feature selection was performed as 
described in van de Wiel et al [7]. The date of accession for 
the packages to fit the models was 5 November 2020.

Models were cross-validated ten times in the DCS to 
obtain performance estimates. GRridge, GRlasso and lasso 
models were subsequently replicated in GoDARTS. Dis-
crimination of models in the discovery and validation cohort 
was based on Harrel’s C statistic, which is a measure for pre-
diction performance ranging from zero to one. A C statistic 
of 0.5 indicated that the model did not perform better than 
random chance, whereas values above 0.7 indicated a good 
model and above 0.8 a strong model.

Results

Characteristics of the DCS and GoDARTS cohorts are 
shown in Table 1. Both cohorts comprised people with 
type 2 diabetes who were followed longitudinally. Most 
individuals were male (DCS, 56.7%; GoDARTS, 59.1%), 
over 60 years of age (DCS, median 63.2 [IQR 56.2–70.3]; 
GoDARTS, median 61.9 [54.1–70.2]) and mainly treated 
with glucose-lowering drugs (DCS, 76.3%; GoDARTS, 
55.7%). The endpoint of the study, time to insulin require-
ment, was reached in 69 individuals in the DCS out of the 
585 individuals (follow-up 1.0–11.4 years) with all three 
measurements (metabolites, lipids and proteomics) and in 
175 out of the 571 individuals in GoDARTS (follow-up 
0.3–11.8 years).

Fourteen models were fitted on the DCS with time to 
insulin requirement as the outcome (Table 2) with (M1, 
M2) and without clinical variables (M3) and with the 
clinical variables unpenalised (M1) and penalised (M2). 
Overall, the clinical variables and proteins were selected 
in the different models most often (nine models), followed 
by the small charged metabolites. Lipids were selected 

https://glmnet.stanford.edu/articles/glmnet.html
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in only three models (electronic supplementary material 
[ESM] Fig. 1). Among the most frequently selected clini-
cal variables were  HbA1c (18 models; ESM Fig. 2, ESM 
Table 1), age (15 models) and C-peptide (15 models). Of 
the metabolites, isoleucine (26 models) and asymmet-
ric dimethylarginine (SDMA/ADMA; 23 models) were 
selected most frequently. Isoleucine is a branched-chain 
amino acid and SDMA/ADMA are nitric oxide synthase 
inhibitors. From the proteins, proto-oncogene tyrosine-
protein kinase receptor (RET; 27 models; ESM Table 1), 

C-C motif chemokine 14 (CCL14/HCC-1; 24 models) and 
IL-18 receptor 1 (IL18Ra; 23 models) were most often 
selected.

Discrimination and validation of models Base models (age, 
sex, BMI,  HbA1c) including only clinical variables per-
formed modestly in both the DCS discovery cohort (C sta-
tistic 0.71 [95% CI 0.64, 0.79]) and the GoDARTS replica-
tion cohort (C 0.71 [95% CI 0.69, 0.75]). A more extensive 
model that also included HDL-cholesterol and C-peptide 
performed better in both cohorts (DCS, C 0.74 [95% CI 
0.67, 0.81]; GoDARTS, C 0.73 [95% CI 0.69, 0.77]). The 
discrimination of investigated models with molecular meas-
ures is shown in Table 2. Models that included clinical vari-
ables generally performed better than models that excluded 
clinical variables. The best discrimination was observed for 
GRridge with penalised clinical variables and feature selec-
tion with lasso with a C statistic of 0.76 in the DCS (Fig. 1). 
This model contained four clinical variables, four metabo-
lites and 15 proteins (ESM Table 1). The clinical variables 
 HbA1c (weight 0.08), age (weight −0.03), C-peptide (weight 
0.03) and HDL-cholesterol (weight −0.02) were included. 
For the metabolites, isoleucine (weight 0.04), SDMA/
ADMA (weight 0.03), indoxyl-sulfate (IndS, weight 0.03) 
and phenylalanine (weight 0.02) were included. For the 15 
proteins, the strongest contributors were RET (weight 0.03), 
IL18Ra (weight 0.03) and apolipoprotein M (ApoM, weight 
−0.02). Insulin itself was also included (weight 0.02).

The poorest discrimination was achieved for the CoRF 
model with ‘penalised’ (weighted) clinical variables 
(C=0.63) or exclusion of clinical variables (C=0.59, no 
clinical variables). Validation of the models in GoDARTS 
showed that the most consistent results were observed for the 
unpenalised models, while the penalised models generally 
showed higher C statistic values in DCS than in GoDARTS. 
The performance of the unpenalised sparse models (~10 
variables) was similar, with a C statistic of 0.72 in both DCS 
and GoDARTS and seven overlapping variables (Fig. 1, 
ESM Fig. 3). Among these were the expected clinical vari-
ables age, sex, C-peptide, HDL-cholesterol,  HbA1c and two 
proteins, lactadherin (milk fat globule-EGF factor 8 protein 
[MFGM]) and RET. Of note, while RET was selected in 
most models, lactadherin was selected in 18 models (ESM 
Fig. 2). In univariate meta-analyses, however, neither lac-
tadherin nor RET was significantly associated with insulin 
requirement. Higher RET levels were associated with higher 
risk for insulin requirement (HR 1.29 [95% CI 0.92, 1.81], 
p=0.14), although both cohorts in the meta-analysis showed 
heterogeneity (I2=0.84) [6]. Higher levels of lactadherin 
were associated with a lower risk for insulin requirement 
(HR 0.90 (95% CI 0.60, 1.33], p=0.59) [6]. The models that 
excluded the clinical variables generally did not perform as 
well as the models with clinical variables included, with C 

Table 1  Characteristics of the DCS and GoDARTS cohorts

Data are presented as median (IQR) unless indicated otherwise

Variable DCS GoDARTS

N 573 597
Male sex (%) 56.7 59.1
Age, years 63.2 (56.2–70.3) 61.9 (54.1–70.2)
BMI, kg/m2 30.2 (26.7–33.1) 32.3 (27.7–35.8)
HbA1c, mmol/mol 46.9 (42.0–49.7) 55.5 (48.0–61.0)
HbA1c, % 6.4 (6.0–6.7) 7.2 (6.5–7.7)
C-peptide, nmol/l 1.2 (0.8–1.4) 2.2 (1.4–2.7)
HDL-cholesterol, mmol/l 1.2 (1.0–1.4) 1.3 (1.1–1.5)
LDL-cholesterol, mmol/l 2.6 (2.0–3.3) 2.2 (1.6–2.7)
Triacylglycerol, mmol/l 1.8 (1.1–2.2) 2.3 (1.4–2.8)
Diabetes duration at sampling 

(years)
1.6 (1.1–2.1) 0.9 (0.3–1.4)

Glucose-lowering medication 
use (%)

76.3 55.7

Table 2  Cross-validated C-index estimates in the DCS cohort

a Numbers in parentheses indicate the number of features selected in 
the model, that is, optimal number (cv) of features, 10 features or 50 
features
cv, cross-validation; MR, multiridge; RF, random forest; sel, selection

Modela Unpenalised Penalised Exclusion

Lasso+sel (cv) 0.72 0.73 0.69
Lasso+sel (10) 0.72 0.72 0.67
Lasso+sel (50) 0.73 0.73 0.70
ridge 0.72 0.69 0.68
GRridge 0.73 0.72 0.69
GRridge+sel (lasso) 0.72 0.76 0.72
GRridge+sel (10) 0.72 0.73 0.71
GRridge+sel (50) 0.72 0.75 0.72
GRlasso+sel (cv) 0.73 0.73 0.67
GRlasso+sel (10) 0.72 0.73 0.70
GRlasso+sel (50) 0.72 0.72 0.68
MR 0.74 0.73 0.71
RF 0.71 0.67 0.67
CoRF 0.73 0.63 0.59
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statistics around 0.69. There were seven variables that were 
selected in nine models out of the 12 models with clinical 
variables excluded. These include isoleucine, RET, IL18Ra, 
hepatocyte growth factor receptor (MET), melanoma-
derived growth regulatory protein (MIA), cystatin M and 
ApoM (ESM Fig. 4).

Biomarkers are correlated with clinical variables The added 
value of biomarkers to the included models was modest. 
In part, this was the result of correlations between clinical 
markers and studied biomarkers. Indeed, correlations were 
observed for several of the biomarkers (Fig. 2a), particu-
larly for HDL-cholesterol, BMI, C-peptide and age. HDL-
cholesterol levels were positively correlated with histone-
lysine N-methyltransferase (NG36 [also known as EHMT2], 
r=0.57; Fig. 2b) and ApoM levels (r=0.54; Fig. 2a,c) and 
negatively with diacylglycerols and triacylglycerols (ESM 

Fig. 5). Protein levels that altered with age included endosta-
tin (r=0.50, Fig. 2d) and mothers against decapentaplegic 
homolog 3 (SMAD3, r=−0.44; Fig. 2e). ApoM levels also 
negatively correlated with C-peptide (r=−0.43) and BMI 
(r=−0.37; Fig. 2f,g).

Discussion

In the current study, we used machine learning approaches to 
identify the most optimal model for time to insulin require-
ment from a compendium of three types of molecular meas-
urements: small charged metabolites, lipids and proteins. We 
showed that models generally gave a modest prediction of 
time to insulin requirement, with C statistics ranging from 
0.70 to 0.75. The most frequently selected variables were 
 HbA1c, age, C-peptide, isoleucine, SDMA/ADMA, RET, 
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Fig. 1  Comparison of model performance in the DCS and GoDARTS 
cohorts. Unpenalised (a-c) or penalised (d-f) clinical variables were 
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methods were compared: GRlasso (a, d, g); GRridge (b, e, h); and 
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(C statistic >0.7) or strong (C statistic >0.8) performance. 95% CIs 
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CCL14 and IL18Ra. As expected, models that included 
the clinical variables generally performed better than mod-
els that completely omitted clinical variables. Inclusion 
of molecular markers improved predictive performance 
by up to 5%. Replication of the models was reasonable in 
GoDARTS, particularly when the clinical variables entered 
the model unpenalised.

This study shows that a model consisting of clinical vari-
ables and several selected biomarkers performs reasonably 
well to predict time to insulin requirement. Previous studies 
have not investigated the predictive performance of selected 
predictors for glycaemic progression to insulin initiation or 
requirement. We can thus not compare our findings with 
those of previous studies. Nevertheless, in our study, age, 
 HbA1c and C-peptide were the most frequently selected 
clinical variables, similar to findings of previous studies 
[1, 3–5]. In addition, model performance improved when 
including HDL-cholesterol and C-peptide, also in line with 
previous studies [1, 3–5]. Replication in GoDARTS showed 
reasonable prediction when clinical variables were included 
unpenalised, but the prediction was diminished in the other 
models. Nevertheless, the results were comparable overall 

with those of the DCS. The models that showed the best 
discrimination in the validation in GoDARTS were based 
largely on the same variables, with seven variables that 
overlapped across models (i.e. age, sex, C-peptide, HDL-
cholesterol,  HbA1c and two proteins lactadherin and RET). 
For RET, higher levels were associated with higher insu-
lin requirement risk in the univariate analysis. In previous 
studies, RET has been associated with cardiometabolic end-
points. Higher levels of RET were associated with higher 
risk of the metabolic syndrome and a Mendelian randomisa-
tion in the same study suggested a causal relationship [13]. 
Lactadherin is transcribed from the MFGE8 locus and has 
been shown to be present in microvescicles excreted by dif-
ferent cell types including dendritic cells and adipocytes 
[14, 15]. In the latter, exposure to high levels of glucose 
increased the levels of lactadherin [15]. This is in line with 
the current study wherein higher lactadherin levels were 
associated with higher risk of insulin requirement.

Compared with our previous discovery study, there was 
limited overlap with the identified markers in the current 
study. For the metabolites, isoleucine and SDMA/ADMA 
were selected most often but these were not necessarily 
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the top metabolites in our previous study [6]. We did, 
however, show in our previous study [6] that plasma iso-
leucine levels are significantly associated with prevalent 
and incident diabetes. For the most frequently selected 
proteins, only IL18Ra overlapped with the top identified 
proteins in our previous study [6]. The small overlap may 
be due to collinearity with the clinical variables, correla-
tion among the omics variables or differences between the 
included cohorts.

Regarding the three distinct types of molecules, the 
metabolites and proteins were more often selected into the 
models than the lipids. We observed that ApoM and NG36 
levels correlated with lipid levels. ApoM was selected far 
more often than lipids (19 models) and was selected more 
often than NG36 (two models). ApoM is a lipoprotein and 
more than 95% of the ApoM is bound to HDL-cholesterol 
[16]. Given this, it is not surprising that ApoM protein levels 
are a good predictor for time to insulin requirement. ApoM 
also showed a correlation with C-peptide and BMI, although 
the correlation was negative.

The methods that account for different feature types 
(GRridge, GRridgesel, multiridge, GRlasso) performed 
somewhat better than the other methods, although plain 
lasso also performed well. The various selection meth-
ods are very competitive and suggest 50 features usually 
suffice for the prediction. While models add value to the 
overall prediction, their use in a clinical setting may be 
limited given that a base model with only  HbA1c already 
performed moderately well (C=0.71). In part, this can 
be explained by the aforementioned correlation between 
clinical markers and biomarkers. For example, adding 
ApoM on top of HDL-cholesterol will have limited effect 
on discrimination. Nonetheless, it would be interesting to 
explore further the identified variables in terms of patho-
physiology [6].

Strengths of the current study are the use of multiple 
omics types in large cohorts and the external validation in 
one of the cohorts. However, certain limitations need to be 
addressed. Based on the availability of all three molecu-
lar classes, we had relatively small sample sizes in each 
cohort. This may have limited selection of molecules with 
more modest effect sizes. The samples in GoDARTS were 
obtained from participants in a non-fasting state, which may 
have affected the associations for blood lipids. Although we 
did not include diabetes duration in our base models, the 
selection of participants was based on those close to diag-
nosis of diabetes. We therefore do not expect that this would 
have affected our results to a significant extent. Finally, we 
did not see any indication of differences between men and 
women given that sex was not selected in any of the models 
except for the unpenalised models.

Conclusion In conclusion, by using machine learning 
approaches we show that insulin requirement risk can be 
modestly well predicted by predominantly clinical vari-
ables. Inclusion of molecular markers improves prognostic 
performance beyond that of clinical variables by up to 5%. 
Models based on these variables could be useful for iden-
tifying people with diabetes at high risk of rapid progres-
sion to treatment intensification in order to target interven-
tions to prevent glycaemic progression and development of 
complications.
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