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Volunteers are a key part of the archaeological labour
force and, with the growth of digital datasets, these
citizen scientists represent a vast pool of interpretive
potential; yet, concerns remain about the quality
and reliability of crowd-sourced data. This article
evaluates the classification of prehistoric barrows on
lidar images of the central Netherlands by thousands
of volunteers on the Heritage Quest project. In ana-
lysing inter-user agreement and assessing results
against fieldwork at 380 locations, the authors show
that the probability of an accurate barrow identifica-
tion is related to volunteer consensus in image classi-
fications. Even messy data can lead to the discovery of
many previously undetected prehistoric burial

mounds.
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Introduction

The definition of citizen science is very broad and can encompass many differing degrees of
public involvement (Gibb 2019). In recent years, the concept has often been applied to
‘crowd science’, where large groups of volunteers participate in scientific research (Heigl
et al. 2019; Haklay er al. 2021). Although the term ‘citizen scientist’ has faced resistance
in archaeology for potentially excluding specific groups, such as indigenous communities,
it remains the most widely accepted term (Liebenberg ez al. 2021). Archaeology has used
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Assessing the quality of citizen science in archaeological remote sensing

citizen science for decades, pre-dating its current popularity; volunteer participation occurs at
multiple levels in excavation projects and surveys (Smith 2014; Gibb 2019), and the
emergence of large-scale, crowd-sourced projects has seen thousands of participants collabor-
ating online. Examples of the latter include the registration of finds by metal-detectorists
(Kars & Heeren 2018; Dobat ez a/. 2020) and the creation of peer-to-peer collaboration plat-
forms (Wilkins 2020; Wernke ez al. 2024). The popularity of high-profile projects in astro-
physics such as Galaxy Zoo—where participants identified galaxies from shapes on telescope
images (Willett ez a/. 2017)—and similar projects in other scientific fields (Jones ez a/. 2018,
2020) demonstrates the potential for such an approach in archaeology. Specifically, the ana-
lysis of high-resolution remote sensing images with the assistance of citizen scientists has
gained in popularity (Duckers 2013; Lin ez a/. 2014). Such projects rely on multiple parti-
cipants classifying a single image and then aggregating the results to obtain expert-quality
datasets (Swanson et a/. 2016).

Although these projects showcase the potential of volunteer scientists, concerns and criti-
cisms regarding the quality of these datasets persist (Dickinson ez al. 2012; Deckers ez al.
2018). A significant obstacle is that the datasets generated by untrained and unsupervised
volunteers are inherently messy and noisy (Kosmala et a/. 2016; Swanson ez al. 2016;
Clare et al. 2019). This noisiness has led some researchers to dismiss crowd-sourced results
as “analytically useless” (Casana 2020: 595). While we fundamentally disagree with this
assessment, it must be acknowledged that the quality of crowd-sourced data requires critical
assessment before further analysis can proceed (Baldzs er al. 2021).

In this article, we address this criticism by testing and validating citizen science data drawn
from our large-scale citizen science project called Heritage Quest (E7fgoed Gezocht in Dutch)
where volunteers classified thousands of lidar images via an online platform (Lambers e al.
2019). We present our investigations into the overall quality of user classifications, inter-user
agreement (consensus) and the quality of the classifications based on a ground-based survey.

Background: the Heritage Quest project

Odur citizen science project focuses on two regions in the central Netherlands that share simi-
larities in terms of geology, land-use and history: the Veluwe and the Utrechtse Heuvelrug
(Figure 1). These regions are characterised by ice-pushed ridges formed during the Saale gla-
cial period (¢. 400 000—130 000 years BP), which were subsequently partly covered by cover-
sand deposits during the Weichselian glacial period (115 000-11 700 years BP) (Berendsen
2004). The result of these processes is an undulating landscape with significant variation in
elevation. Forests and heathland covered the area from the Neolithic period (5500-2000 BC)
onwards, surrounded by marshes and river valleys. Gradually increasing deforestation from
prehistoric times (Doorenbosch 2013) expanded further in the Middle Ages (c. AD
1000-1500), leading to the formation of large drift-sand areas (Koster 2009). In the late
nineteenth and early twentieth centuries, large parts of the area were reforested, resulting
in today’s extensive forests interspersed with heathlands.

Both study regions contain well-preserved archacological remains located either in heath-
land or under forest cover. Prehistoric barrows, Celtic field systems, charcoal kilns, hollow
roads and landweren (long distance land boundaries dating to the Middle Ages) are among

© The Author(s), 2024. Published by Cambridge University Press on behalf of Antiquity Publications Ltd
1663



Quentin Bourgeois et al.

200000
Q& G

e i
N -

200000

Figure 1. The Heritage Quest research areas (dashed outline, Utrechtse Heuvelrug on the lefl, the Veluwe on the right)
on an elevation map of the Netherlands. Inset) location of research area (black squares) and known barrows (black dors)
within the Netherlands (elevation model: Nationaal Georegister 2023; co-ordinates in Amersfoort/RD New, EPSG:
28992) (figure by authors).

the more common objects found in the area. In the field of computer vision, the term ‘fea-
ture’ refers to the properties of an image, while an ‘object’ refers to real-world entities (Tra-
viglia ez al. 2016: 14). Within this article the term ‘objects’ is therefore used for archaeological
features, such as barrows. Lidar imagery is essential in detecting these archacological objects,
which are often obscured by dense vegetation cover.
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To analyse the lidar imagery (generated from lidar data provided by the Aczueel Hoogtebe-
stand Nederland; Table 1) from both the Veluwe and the Utrechtse Heuvelrug, we used the
Zooniverse, a web-based platform that allows people to participate in citizen science projects
or ‘people-powered research’ without any specialised background, training or expertise
(Simpson ez al. 2014). In our Zooniverse project, Heritage Quest, we asked participants
to mark any potential barrow, Celtic field, cart track and charcoal kiln within small lidar
tiles (Figure 2). These tiles were obtained by dividing the lidar image of the entire area
into tiles of 300 x 300m (600 x 600 pixels) with five per cent (30 pixels) overlap to all
sides. Participants were presented with two different lidar visualisations (see Figure 2), shaded
relief and a simple local relief model (Kokalj & Hesse 2017) to assist them in their classifi-
cation. The first visualisation was more intuitive to interpret by volunteers, while the second
allowed for better visibility of faint traces that would otherwise be difficult to distinguish on a
shaded relief map. The latter visualisation improved the detection of Celtic fields
significantly.

The user interface was bilingual Dutch/English, ensuring that international citizen scien-
tists, as well as Dutch-speaking volunteers, could participate. Every lidar image was classified
by at least 15 different users for the Veluwe and 60 users for the Utrechtse Heuvelrug. A dedi-
cated staff member, assisted by a team of citizen scientists, monitored user-engagement and
provided feedback and online support on an accompanying forum throughout the project.
When avolunteer joined the project, they were provided with a short tutorial on how to oper-
ate the website and how to identify archaeological objects in the images. A comprehensive
field guide (see Figure 2) was always available and included many examples of the objects
we were interested in, tips on how to identify positive and negative examples (e.g. a round-
about on a road network compared to an actual prehistoric barrow), general background
information on the archaeological
objects and the region under investiga-
tion, as well as an introduction to arch-
acological prospection and remote
sensing in general.

Table 1. Meta-information for the lidar imagery
dataset, the so-called Actueel Hoogtebestand
Nederland (Nationaal Georegister 2023).

Meta-information lidar data

The project was launched in May
2019 on the Veluwe and succeeded

Pl.lrp ose . Wat.er management in mapping the entire 1780km” of
Time of data acquisition April 2010 this area in approximately five months.
Equipment RIEGL LMS-Q680i In total 2063 users . . d

Full-Waveform > participated,
Scan angle (whole FOV) 450 between them classifying 396 552
Flying height above ground  600m tiles. Volunteers were asked to place
Speed of aircraft (TAS) 36m/s points on the locations of potential
Laser pulse rate 100 000Hz barrows and charcoal kilns and to
Scan rate 66Hz draw polygons covering areas where
Strip adjustment Yes Celtic fields were detected. Each tile
Filtering Yes was classified by a minimum of 15
Int.erpolati(‘)n method Moving planes volunteers before being retired and
Pomt-densnty.(p tpersqm) 6-10 removed from the set of available
DTM-resolution 0.5m

tiles. In April 2020, the Utrechtse
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Figure 2. Top image) overview of the interface of the Heritage Quest project on the Zooniverse platform. The image
shows both visualisations with a shaded relief image on the left and a simple local relief model on the right.
Participants could click on either to mark locations. Ar any point they could also write comments or questions on this
image in the forum. Lower images) segments of the more detailed field guide, providing in-depth information on
detecting archaeological objects on lidar imagery (figure by authors).

Heuvelrug project launched with 4572 users who classified 300 971 tiles covering an area of
350km?>. The workflow for the Utrechtse Heuvelrug focused on identifying barrows, Celtic
field-systems and medieval cart tracks, rather than charcoal kilns, as preliminary observations
of the images indicated that kilns were very rare in the region. We increased the number of
classifications needed before a tile was retired, from 30 to 60, after more than 46 000 tiles
were classified on the first day; even so, the entire area was investigated within a month.
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Taking the results from both projects together, approximately 6.3 per cent of the entire land
surface of the Netherlands was classified.

Aggregating classifications in Heritage Quest

A significant challenge in any citizen science project involving large numbers of participants is
creating meaningful data from inherently noisy sources (Swanson ez a/. 2016; Rosenthal ez 4/.
2018). Most of the volunteers who participated in our project were not trained as archaeol-
ogists; certainly not as remote sensing specialists knowledgeable in the detection of archaco-
logical objects on lidar imagery. Nevertheless, through the repetition of research, the quality
of the output data can be increased (Swanson ez al. 2016; Rosenthal ez al. 2018). When each
image is investigated by multiple participants, a consensus is reached (inter-user agreement).
Objects that fit the requirements given to the citizen scientists in the tutorial will be identified
by more participants, while more enigmatic objects will be selected by fewer participants.
Moreover, accidental errors are easily filtered out as two volunteers will rarely mark the
(exact) same location by accident.

In this article, we focus on aggregating the results from barrow classifications. In total,
222699 individual barrow classifications were registered across both areas (see Table 2).
These individual classifications consist of some errors, or misidentifications, but also of loca-
tions that were clicked on dozens of times. To aggregate the results of the online project, the
data from the Zooniverse (i.e. all individual classifications or ‘clicks’) were converted into geo-
spatial entities (i.e. points) with real-world co-ordinates and an additional field (count), con-
taining a single integer (1). Subsequently, a chain of processing tools in the open-access
geographic information system software QGIS (v. 3.16, QGIS Development Team 2017)
was used to turn these points into polygons incorporating the number of classifications
per polygon (Algorithm 1): all points were buffered (with an empirically determined 4m
radius) and dissolved to turn them into polygons. These polygons were converted into

Table 2. Factsheet of the results from the Heritage Quest project in both regions.

The Veluwe region The Utrechtse Heuvelrug region
Period May 2019 — September 2019 April 2020 — May 2020
Users 2063 4572
Area (km®) 1780 350
Tiles analysed 396 552 300 971
Total number of unique tiles 23 598 5671
Retirement rate 15 60
Total detections 131 874 182 740
Barrows 88 783 133916
Celtic fields 6728 13 266
Charcoal kilns 26 363 -
Cart tracks - 35558

Note that charcoal kilns were researched in the Veluwe region, but since we did not expect these to be common on the Utrechtse
Heuvelrug we asked volunteers to mark medieval cart tracks instead. The latter feature was often flagged by volunteers during the
Veluwe project in the forum and we therefore decided to mark these as well.
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individual, separate features with the Multipart_to_singleparts processing tool. Finally, the
number of classifications (points) within these polygons was counted through the Join_attri-
butes_by_location (summary) tool (Figure 3).

An analysis of the application of the above workflow demonstrates its usability, even in
areas where barrows are close together (Figure 4A—C). Occasionally this processing results
in the lumping of disparate objects in very close proximity (within 4m) into a single location
(Figure 4D) or the artificial separation of a single location into multiple locations when the
classifications are overly spread out (more than 4m away; Figure 4A). These issues occur
rarely, however, as the average diameter, shape and form of the barrows in the investigated
areas are quite stable (see Bourgeois 2013).

The resulting aggregation created 77 014 individual consensus locations in the Veluwe
(37 812) and the Utrechtse Heuvelrug (39 202). These consist of locations identified by
between one and 243 individual users, although the higher end of this scale was only reached
a few times, if an object was located in the overlap zone between different tiles.

To ensure the accuracy of the aggregated classifications, we corrected the data on the basis of
land-use. Two processes have had a negative impact on the preservation and visibility of barrows
in the Netherlands. Firstly, (post)medieval agriculture, urbanisation and infrastructure develop-
ment have systematically erased all above-ground traces of barrows in these regions. Secondly,
areas affected by erosion and sedimentation caused by wind (drift-sand) exhibit a negative cor-
relation with the presence of barrows (Bourgeois 2013: 40—47; Verschoof-van der Vaart et .
2020). Almost all preserved prehistoric barrows in the central Netherlands have been found in
areas covered with forest or vegetation such as natural grasslands or heather.

As such, we expected to find new potential barrows only in forested areas, heath- or grass-
lands, which were not affected by drift-sand. The chance of discovering unknown above-
ground barrows outside of these areas is close to zero (Verschoof-van der Vaart ez al.
2020). Therefore, we removed all consensus locations outside of areas covered with forest,
heather or grasslands, using the map on present day land-use created by Centraal Bureau
voor de Statistiek (Statistics Netherlands) (Nationaal Georegister 2023; Figure 5). In most
cases the inter-user agreement in these areas was low and in total consisted of 22-30 per
cent of the overall consensus locations. We also eliminated all locations in known drift-sand
areas based on the geomorphological map of the Netherlands 2019 by the Basisregistratie

Algorithm 1: Consensus

Input: points
Output: polygons with number of clicks
1 for each point do

2 | add count parameter <— add ”Count” (integer,1) and fill with 1"

3 buf fered_points < compute buffer (4mradius) of point and dissolve

4 generate polygons < multipart_to_singleparts on buf fered_points

5 count < join_attributes_by_location between polygons and points
count variable Count

6 end

Figure 3. Algorithm showing the aggregation process in QGIS (figure by authors).
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Figure 4. Results from aggregation at dense concentrations of potential barrows: A) aggregation results from a closely
spaced group of barrows—all locations with 12 or more classifications are known burial mounds; B) aggregation
results of a group of burial mounds within a Celtic field—volunteers were able ro correctly identify all known burial
mounds (12 or more classifications); C) aggregation results of a previously known urnfield on the Veluwe consisting
of at least 28 or more low burial mounds (Verlinde & Hulst 2010; fig. 53). The volunteers have potentially
discovered a much larger number of burial mounds than previously known. D) aggregation results of a previously
known line of burial mounds. All previously known barrows have been identified, as well as a number of previously
unknown mounds. Note that here, the classifications tend to blend into one another if the mounds are close, with
closely spaced objects being added together (i.e. providing 24 or even 40 classifications) (figure by authors).

Ondergrond (Nationaal Georegister 2023) and the recent drift-sand map by the Bryologische
en Lichenologische Werkgroep and Wageningen University (Sparrius & Riksen 2019). Our
fieldwork identified several additional areas of drift-sand and, as all consensus locations we
investigated in drift-sand areas were determined to be sand dunes (Verschoof-van der
Vaart et al. 2022a), consensus locations were also removed from these newly identified
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Figure 5. Workflow illustrating the selection processes to identify potential newly discovered locations within the dataset
(figure by authors).

areas. Finally, we removed all already known and recorded barrows using the Archeologisch
Monumenten Register (AMR2) from the State Service for Cultural Heritage (RCE). In
total, we retained 22 206 consensus locations (Figure 5).

Assessing the quality of the consensus locations

The main challenge we faced was assessing the overall quality of the remaining 22 000-plus
consensus locations. Evaluating the data based on known barrows in the region proved prob-
lematic because these are primarily scheduled monuments that have been restored by adding a
layer of material, often sand, on top of the mound. This increases their height significantly,
while vegetation is regularly cleared making these restored mounds significantly easier to
detect on lidar imagery than the unknown (and therefore unrestored) barrows. Thus, the
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detection of these known barrows does not inform us how well the volunteers were able to
correctly distinguish natural or modern topographical features from ancient barrows.
Using these known barrows to assess the quality would only inform us if the consensus loca-
tions conformed to already known and restored prehistoric barrows.

To address this issue, we, together with students and volunteers, investigated 219 individ-
ual consensus locations in the field to establish whether they were prehistoric barrows. Using
Mergin Maps, an open-source app that uses the internal GPS of a smartphone to present geo-
spatial data, we located the consensus locations. We then collected at least three hand coring
samples from across each consensus location: one outside, one in the flank and one (slightly
off) the centre of the elevation. Coring is required as a simple visual inspection is often not
sufficient for the identification of barrows. Many natural topographical features look very
similar to burial mounds and present-day dense vegetation obscures their overall shape, mak-
ing coring and inspection of the internal build-up of the feature necessary for identification.
Based on the coring data, each individual consensus location was then interpreted as either an
ancient anthropogenic mound or a natural mound, the latter almost always either wind-
blown deposits or glacial meltwater relics. Earlier fieldwork by other researchers had previ-
ously assessed 161 of our consensus locations either through coring or small test-trenches.
These were added to our dataset, resulting in a total of 380 investigated consensus locations,
of which 136 were located in the Utrechtse Heuvelrug and 244 in the Veluwe, with the loca-
tions distributed throughout landscapes of different geomorphological types. The results of
the fieldwork are published elsewhere (Verschoof-van der Vaart ez al. 2022a, b & ¢).

Of these 380 consensus locations, 226 were interpreted as barrows, providing an average
precision (equal to true positives divided by the sum of true positives and false positives;
Verschoof-van der Vaart ez al. 2020) of 0.59. However, this performance changes signifi-
cantly when the number of volunteers that agreed on a given consensus location is taken
into account (i.e. the inter-user agreement; Figure 6). For consensus locations with an
inter-user agreement less than seven, the precision (here calculated as the ratio of barrows ver-
sus natural topographic features) fluctuates between 0.21 and 0.41. The precision signifi-
cantly increases to 0.75 for an inter-user agreement of 10, and further improves to around
0.82 for an inter-user agreement of 12 or greater. An inter-user agreement of 15 or more
results in a precision of 0.85 of investigated consensus locations being a prehistoric barrow.

Discussion

The results of our study demonstrate that citizen scientists can effectively identify prehistoric
barrows in lidar imagery, particularly when there is a high level of inter-user agreement.
Extrapolation of the precision from our ground-truthed subsample to all consensus locations
indicates that the volunteers have likely discovered about a thousand potential barrows—and
this is if we only consider the consensus locations identified by more than seven volunteers
(Figure 7). These have a greater than 50 per cent chance of indeed being prehistoric barrows.
This figure would double the current number of known barrows in the central Netherlands
(Bourgeois 2013) and has far reaching implications for research into the communities who
built these mounds, as well as for heritage management.
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Figure 6. Precision versus inter-user agreement based on fieldwork validated consensus locations. The top panel shows
the precision for the Veluwe, the centre panel for the Utrechtse Heuvelrug and the bottom panel the overall precision for
the entire project. The error bars indicate examples where the anthropogenic nature of the mound could be established,
but not conclusively if it represented a barrow. Note that the 15 classifications also contain objects that have been classified
by more than 15 contributors due to overlap between images, aggregation of multiple objects into one, or in the case of the

Utrechtse Heuvelrug project, due to a higher retirement rate of the image (figure by authors).
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Figure 7. Overview of the locations of all new potential barrows with high (red points) or middle high (orange points)
probabilities, known barrows (small black points) and drift-sand (grey shaded areas) (co-ordinates in Amersfoort/RD
New, EPSG: 28992) (figure by authors).

However, we also highlight the challenge with using crowd-sourced data for archaeological
research; in particular, the noisy nature of the data makes it difficult to assess the quality of the
consensus locations. The distinction between natural and anthropogenic elevations on lidar
imagery is often difficult to make, even for trained archacologists (Banaszek ez a/. 2018). Our
fieldwork aimed to address this and allowed us to determine the precision of classifications
and how this varied depending on the level of inter-user agreement. By validating a sample
of the consensus locations, we could determine that the precision increased substantially as
the level of inter-user agreement increased. This suggests that our consensus-based approach
can be used to complement traditional, expert-led field-survey methods that might otherwise
be too time consuming or expensive to cover a similar area. In our project, investigating the
dense forests of the Veluwe and Utrechtse Heuvelrug in their entirety with traditional
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fieldwork would simply not be possible. Furthermore, expert-led field survey or desk-based
assessment may also result in incomplete and error-prone datasets (e.g. Kaptijn 2009:
42-59). Studies using satellite images as base data for archaeological prospection have
shown how mapping results may vary considerably between archacologists (Sadr 2016)
depending on their level of training and experience (Snyder & Haas 2024). Thus, independ-
ent data, either collected by citizen researchers as in Heritage Quest or by computational
approaches (Verschoof-van der Vaart & Lambers 2022), are an important complementary
data source for heritage management, as they often include archacological objects not
found by experts. The map we have now generated can be effectively used by local stake-
holders, such as municipalities and the state forestry service, to monitor and manage these
important features.

Although precision increased with higher levels of inter-user agreement, even low consen-
sus locations still had a non-zero chance of being prehistoric barrows. As the results show, if
only one volunteer classified a location as a barrow, it still had a 35 per cent chance of being a
barrow. However, it is worth noting that this number is probably inflated owing to the dis-
covery of a Late Prehistoric urnfield during our fieldwork. In this case, the urnfield consisted
of a dozen very small mounds of only 0.2-0.3m in elevation that most volunteers did not
classify as barrows, yet one of our most prolific users—who classified more than 20 000
images—did identify the small and low mounds as potential barrows. To avoid confusion,
the tutorial focused on isolated barrows and omitted the much more difficult to recognise
urnfield mounds. Correcting for this urnfield, the actual probability of a location marked
only once being a barrow will be lower, and more towards 15-20 per cent. Nevertheless,
the discovery of this urnfield suggests that there may be certain types of barrows that are par-
ticularly challenging to identify for volunteers, and in fact even for experts. This is an import-
ant caveat to keep in mind, and while the consensus-based approach used in this study was
effective at identifying a large number of prehistoric barrows, it is possible that some were still
missed. Future research could explore ways to improve the detection of these more challen-
ging types of barrows, perhaps through the use of more advanced survey methods or machine
learning algorithms.

The latter could be a promising avenue to improve the results obtained through a
volunteer-based approach such as the one we have developed. Previously, we have argued
for such an approach where human expertise and machine learning algorithms could be
used in a collaborative, integrated and iterative process (Lambers ez a/. 2019). We feel this
could help improve accuracy and the identification process while still leveraging the knowl-
edge and experience of archaeologists. Such a human-in-the-loop approach could also over-
come some of the limitations facing machine learning algorithms, in particular the
recognition of patterns that are novel or outside the norm (Verschoof-van der Vaart & Lam-
bers 2022). Within our project we only asked volunteers to classify three different object
classes but they were also able to flag specific tiles with their own tags and add them to
the forum. One of the categories that they systematically flagged were traces from a new
type of prehistoric land parcelling system, comparable to Celtic fields, which was hitherto
unknown but suggests landscape organisation on a much larger scale than previously believed
and the need for an upward revision of population density estimates (Arnoldussen ez al.
2022).
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Finally, our study has broader implications for citizen science and public engagement
within archaeology. By involving thousands of volunteers in the research process, this project
not only generated valuable data but also helped to raise awareness and interest in archae-
ology. Many of our volunteers have become vocal ambassadors of their local archaeological
heritage. Local initiatives have been implemented in several of the provinces and municipal-
ities involved, from teaching prehistory and lidar technology in schools (https://www.
reizenindetijd.nl/themas/mijn-huis-staat-in/kaartkijken-met-de-ahn/) to nature conserva-
tion groups incorporating traces of prehistoric landscapes in their excursions. Information
on the project also features in several popular books (Neefjes & Bleumink 2021; Tonk
2022). This highlights the potential of citizen science not only as a research tool but also
as a means of fostering public engagement and interest in archaeology.

Conclusion

Results from our study suggest that a volunteer-based approach to identifying prehistoric bar-
rows complements traditional, expert-led field survey methods. With higher inter-user agree-
ment, the accuracy of identifying prehistoric barrows increases significantly. Based on our
fieldwork and an assessment of the quality of the consensus locations we can establish that
the precision increases above 0.82 with an inter-user agreement of 12 or higher. Even a
lower consensus of 7 or higher still has a precision of 0.7 on average. Taking our results
into consideration we have arguably doubled the number of known barrows within the
research area. Furthermore, our approach proved to be cost-effective in analysing a large
research area in a relatively short period of time, producing results that are of fundamental
importance for research, heritage planning and wider community awareness of local heritage.
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