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Heegner cycles in Griffiths groups of

Kuga–Sato varieties

David T.-B. G. Lilienfeldt

The aim of this article is to prove, using complex Abel–Jacobi
maps, that the subgroup generated by Heegner cycles associated
with a fixed imaginary quadratic field in the Griffiths group of a
Kuga–Sato variety over a modular curve has infinite rank. This
generalises a classical result of Chad Schoen for the Kuga–Sato
threefold, and complements work of Amnon Besser on complex
multiplication cycles over Shimura curves. The proof relies on a
formula for the images of Heegner cycles under the complex Abel–
Jacobi map given in terms of explicit line integrals of even weight
cusp forms on the complex upper half-plane. The latter is deduced
from previous joint work of the author with Massimo Bertolini,
Henri Darmon, and Kartik Prasanna by exploiting connections
with generalised Heegner cycles. As a corollary, it is proved that
the Griffiths group of the product of a Kuga–Sato variety with
powers of an elliptic curve with complex multiplication has infinite
rank. This recovers results of Ashay Burungale by a different and
more direct approach.
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1. Introduction

1.1. Heegner cycles

A generalisation of the conjecture of Birch and Swinnerton-Dyer [7, 8] in-
volving algebraic cycles exists for higher dimensional algebraic varieties over
number fields. It is due independently to Beilinson [2] and Bloch [10]. The
motive of a newform f of level Γ1(N) and higher even weight k + 2, with
k = 2r ≥ 2, is cut out from the Kuga–Sato variety Wk over Q of dimen-
sion k + 1 and level Γ1(N) by the work of Scholl [39]. The conjecture of
Beilinson and Bloch roughly predicts that the order of vanishing of the L-
function of f over a number field F at its center s = r + 1 is accounted for
by the existence of non-torsion elements in the Chow group CHr+1(Wk,F )0
of null-homologous algebraic cycles of codimension r + 1 modulo rational
equivalence.

Given an imaginary quadratic field K satisfying the Heegner hypoth-
esis with respect to N (all primes dividing N split in K), a construction
of cycles that could potentially account for the first central derivative of
L(f/K, s) was envisioned in the seminal work of Gross and Zagier [23, §V. 4].
These are higher dimensional analogues of Heegner points known as Heegner
cycles. They live in complex multiplication (CM) fibres of the Kuga–Sato
variety Wk−→X1(N), and lie above Heegner points via the map of mod-
ular curves X1(N)−→X0(N). Zhang [44] has proved a Gross–Zagier type
formula relating L′(f/K, r + 1) to the Beilinson–Bloch height of a Heegner
cycle. This formula has recently been generalised by Qiu [35]. A p-adic ver-
sion of Zhang’s formula has been obtained by Nekovář [32], with a step in
the proof filled by Shnidman [40], generalising previous work of Perrin-Riou
[34] for weight 2 forms. A universal p-adic Gross–Zagier formula encompass-
ing the previously known formulae has recently been obtained by Disegni
[17]. Kolyvagin’s [22, 28] method of Euler systems has also been adapted to
the setting of Heegner cycles by Nekovář [31].
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The present article is concerned with questions about the algebraic geo-
metric, or Hodge theoretic, incarnation of Heegner cycles. The aim is to give
an explicit formula for their images under the complex Abel–Jacobi map,
and deduce consequences for Griffiths groups of Kuga–Sato varieties. This
in turn implies results about certain variants of generalised Heegner cycles
introduced by Bertolini, Darmon, and Prasanna in [5].

1.2. The Griffiths group

The Griffiths group Gr(X) =
⊕d

j=0Grj(X) of a smooth projective alge-
braic variety X of dimension d is the group of null-homologous algebraic
cycles modulo algebraic equivalence. It is a rather mysterious quotient of
the null-homologous Chow group. For codimension 1 algebraic cycles, al-
gebraic equivalence coincides with homological equivalence, hence Gr1(X)
is trivial. In higher codimension, this is however no longer the case. In-
deed, Griffiths [20] showed that for a general quintic hypersurface X of P4

over C, Gr2(X)⊗Z Q is non-zero. Clemens [14] then showed in the same
case that dimQ Gr2(X)⊗Z Q = ∞. Ceresa [13] proved that the Ceresa cycle
ι(C)− [−1]∗ι(C) ∈ Grg−1(Jac(C)) is non-torsion for a generic curve of genus
g ≥ 3 over C, where ι : C →֒ Jac(C) is a fixed Abel–Jacobi embedding, and
Nori [33] later proved in the same case that dimQ Gr2(Jac(C))⊗Z Q = ∞.
In recent related developments, Totaro [41] showed that for a very general
principally polarised complex abelian 3-fold X, Gr2(X)⊗ Z/ℓZ is infinite
for any prime ℓ (see [36, 38] for prior results).

Over number fields, the first explicit example of a variety for which such
phenoma occurred was found by Harris [24] who studied the Ceresa cycle of
the Fermat quartic over Q, and proved that it is non-zero modulo algebraic
equivalence by computing its image under the complex Abel–Jacobi map.
Bloch [10] then proved that the algebraic equivalence class of the Ceresa
cycle of the Fermat quartic is non-torsion using a purely algebraic method
involving the étale Abel–Jacobi map. Schoen [37] studied Heegner cycles on
the Kuga–Sato threefoldW of level Γ(N) and proved that dimQGr2(WQ̄)⊗Z

Q = ∞. His method cleverly combines a complex Abel–Jacobi calculation
with the algebraic method pioneered by Bloch. The approach of Schoen was
generalised by Besser [6] to Heegner cycles over Shimura curves associated
with indefinite division quaternion algebras over Q.
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1.3. Generalised Heegner cycles

Let K be an imaginary quadratic field satisfying the Heegner hypothesis
with respect to N . Let A be an elliptic curve with CM by the maximal or-
der OK of K over the Hilbert class field H of K. Fix an embedding H →֒ C
such that AC = C/OK . Bertolini, Darmon, and Prasanna introduced in [4]
a distinguished collection of cycles, known as generalised Heegner cycles, on
the product varietiesWr,H ×H Ar where r ≥ 1 is an integer. These cycles ac-
count for the motives of cusp forms twisted by certain algebraic Hecke char-
acters of infinite order. In a subsequent paper [5], they further introduced
variants of generalised Heegner cycles on the product varietiesWr1,H ×H Ar2

where r1 ≥ r2 are non-negative integers of the same parity, and proved some
non-vanishing results in Griffiths groups using p-adic Hodge theoretic meth-
ods. Burungale [11, 12] studied the p-adic syntomic Abel–Jacobi images of
these variants of generalised Heegner cycles modulo p (both in the case of
modular curves and Shimura curves). A consequence of his work is that
the subgroups generated by these cycles in the relevant Griffiths groups
have infinite rank. His method uses tools from Iwasawa theory and cru-
cially relies on the p-adic Gross–Zagier formula for generalised Heegner cy-
cles of [4] and [26]. In joint work of the author with Bertolini, Darmon, and
Prasanna [3], the original approach of Schoen [37] was adapted to the gen-
eralised Heegner cycles of [4]. In the case when r ≥ 2 and the discriminant
of K is not −3 or −4 (assumed for simplicity), the main result of [3] proves
that dimQGrr+1((Wr,H ×H Ar)Q̄)⊗Z Q = ∞ by exploiting a complex Abel–
Jacobi calculation for generalised Heegner cycles. It is worth pointing out
that the proof actually gives the infinitude of the rank of the Griffiths group
over the maximal abelian extension Kab of K.

1.4. Main results

Let N ≥ 5 and r ≥ 1 be integers, and let k := 2r. Let Wk denote the Kuga–
Sato variety over Q fibred over the modular curve X1(N) (defined in Sec-
tion 2.1). In [3, Remark 10], it was noted that the techniques developed in
[3] for generalised Heegner cycles should adapt to the case of Heegner cy-
cles. Namely, it should be possible to establish a formula for the complex
Abel–Jacobi images of Heegner cycles, and use such a formula to deduce
that dimQGrr+1(Wk,Q̄)⊗Z Q = ∞. The first goal of the present article is to
carry out this program. This complements the work of Besser [6], which does
not treat the case of the quaternion algebra M2(Q). The second goal is to
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use the result for Wk to deduce similar results for products of Wk with even
powers of CM elliptic curves.

1.4.1. The complex Abel–Jacobi map. The complex Abel–Jacobi
map

AJr+1
Wk

: CHr+1(Wk,C)0−→Jr+1(Wk,C) :=
(Filr+1Hk+1

dR (Wk,C))
∨

Hk+1(Wk,C(C),Z)
,

is a homomorphism from the codimension r + 1 null-homologous Chow
group to the Griffiths intermediate Jacobian of Wk,C, a complex torus. The
complex vector space Sk+2(Γ1(N)) of holomorphic cusp forms of weight
k + 2 and level Γ1(N) is naturally identified with Hk+1,0(Wk,C) via the as-
sociation f 7→ ωf where ωf (C/⟨1, τ⟩, 1/N) := f(τ)(2πidw)k ⊗ (2πidτ) for τ
in the complex upper half-plane H and w the standard coordinate on the
torus C/⟨1, τ⟩ with lattice ⟨1, τ⟩ := Z⊕ Zτ .

1.4.2. Setup and assumptions. Let N ≥ 5 and r ≥ 1 be integers, and
let k := 2r. Let K be an imaginary quadratic field satisfying the Heeg-
ner hypothesis with respect to N : all primes dividing N are split in K.
We impose no restrictions on the discriminant −dK of K (whereas [3] as-
sumed −dK ̸= −3,−4 for simplicity). Choose an ideal N of OK such that
OK/N = Z/NZ (which exists by the Heegner hypothesis). Let A be an
elliptic curve with CM by the maximal order OK of K over the Hilbert
class field H of K. Fix an embedding H →֒ C such that AC = C/OK and
a choice of Γ1(N)-level structure t ∈ A[N ] (i.e., a generator t of the cyclic
group A[N ]). Associated to any (isomorphism class of) isogeny φ : A−→A′

of elliptic curves whose kernel intersects A[N ] trivially is a Heegner cycle
denoted ∆̃HC

φ ∈ CHr+1(Wk,Q̄)0 (defined in Section 3.2).

1.4.3. The complex Abel–Jacobi formula. By definition, we have
ϵWk

∆̃HC
φ = ∆̃HC

φ where ϵWk
denotes Scholl’s projector with rational coeffi-

cients (defined in Section 2.1). Let ϵ̃Wk
denote the normalised correspon-

dence with integral coefficients (see Definition 3.3). By functoriality of the
complex Abel–Jacobi map, we will solely be interested in the piece of the
Abel–Jacobi map that survives after composing with ϵ̃Wk

:

AJWk
:= ϵ̃Wk

◦AJr+1
Wk

: CHr+1(Wk,C)0−→
(Filr+1 ϵ̃WK

Hk+1
dR (Wk,C))

∨

Πk
,

with Πk := ϵ̃Wk
Hk+1(Wk,C(C),Z). By properties of Scholl’s projector

ϵWk
, the complex vector space Filr+1 ϵWK

Hk+1
dR (Wk,C) is identified with
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Sk+2(Γ1(N)) via the association described in Section 1.4.1 (see Proposi-
tion 2.1). We may thus view AJWk

(∆̃HC
φ ) as an element of Sk+2(Γ1(N))∨

modulo some lattice. In Section 4, we will define a slightly larger lattice L′
k

in the dual space of cusp forms of weight k + 2 and level Γ1(N), which has
the advantage that it allows for more explicit formulae. The first main result
is a formula for the complex Abel–Jacobi image of a Heegner cycle viewed
in the torus Sk+1(Γ1(N))∨/L′

k:

Theorem 1.1. With the assumptions of Section 1.4.2, let
φ : C/OK−→C/⟨1, τ ′⟩ be an isogeny of degree dφ whose kernel inter-
sects A[N ] trivially and such that φ(t) = 1

N (mod ⟨1, τ ′⟩). For any cusp
form f of weight k + 2 and level Γ1(N), we have the following equality
modulo the lattice L′

k:

AJWk
((2kk!)2drφ∆̃

HC
φ )(ωf ) =

(−2
√−dK)rdkφ(2πi)

r+1(22kNk(k!)2)2

(τ ′ − τ̄ ′)r

×
∫ τ ′

i∞
(z − τ ′)r(z − τ̄ ′)rf(z)dz.

Remark 1.2. The proof of Theorem 1.1 that we give avoids any adap-
tation of the Abel–Jacobi calculations of [3] (although the method of [3]
can be adapted). Instead, by exhibiting correspondences from Wk,H ×H Ak to
Wk,H which map generalised Heegner cycles to Heegner cycles (see Propo-
sition 3.4), we use functorial properties of the complex Abel–Jacobi map to
deduce Theorem 1.1 directly from the formula for generalised Heegner cycles
[3, Theorem 1].

Remark 1.3. Theorem 1.1 implies the compatibility of the conjectural par-
tial generalisations of the Gross–Kohnen–Zagier theorem to higher weights
formulated by Hopkins in [25] with the conjectures of Beilinson and Bloch.
This is discussed further in Remark 4.4.

1.4.4. Griffiths groups of Kuga–Sato varieties. Using Theorem 1.1,
we prove the second main theorem:

Theorem 1.4. With the assumptions of Section 1.4.2, the subgroup of
Grr+1(Wk,Kab) generated by the algebraic equivalence classes of the Heegner
cycles ∆̃HC

φ indexed by isomorphism classes of isogenies φ : A−→A′ whose
kernels intersect A[N ] trivially has infinite rank.
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Remark 1.5. Theorem 1.4 implies in particular that

dimQGrr+1(Wk,Q̄)⊗Z Q = ∞.

In the case when Wk is a threefold (the case r = 1) and the congruence
subgroup is Γ(N), the latter is Schoen’s main theorem in [37]. However,
Schoen’s proof proceeds by studying Heegner cycles attached to varying imag-
inary quadratic fields, so even in the case r = 1, Theorem 1.4 is a strength-
ening of his result. As already noted, Theorems 1.1 and 1.4 together with
their proofs complement the work of Besser [6], which is valid for Kuga–
Sato varieties over indefinite quaternionic Shimura curves.

Remark 1.6. Let F be a number field and fix a prime ℓ. The ℓ-adic étale
Abel–Jacobi map [10]

AJr+1
et : CHr+1(Wk,F )0−→H1(Gal(Q̄/F ), Hk+1

et (Wk,Q̄,Qℓ(r + 1))),

is a homomorphism from the codimension r + 1 null-homologous Chow group
of cycles rational over F to the first (continuous) Galois cohomology group
of the Gal(Q̄/F )-module Hk+1

et (Wk,Q̄,Qℓ(r + 1)). It is conjectured, for cy-
cles defined over number fields, to be injective up to torsion [27, Conjec-
ture 9.15]. In the course of proving Theorem 1.4, we (roughly) show using
Theorem 1.1 that ∆HC

φ has infinite order in the Griffiths group asymptotically
as deg(φ) goes to infinity. Thus, conjecturally, our results imply asymptotic
non-vanishing results for ℓ-adic étale Abel–Jacobi images of Heegner cycles.

1.4.5. Griffiths groups of products of Kuga–Sato varieties with
even powers of CM elliptic curves. We next turn our attention to the
variants of generalised Heegner cycles introduced in [5]. Retain the notations
and assumptions of Section 1.4.2. Given an even integer 0 ≤ k′ = 2r′ ≤ k,
the variants of generalised Heegner cycles are cycles ∆̃k,k′,φ of codimension
r + r′ + 1 on (Wk,H ×H Ak

′

)Kab indexed by isomorphism classes of isogenies
φ : A−→A′ whose kernels intersect A[N ] trivially (defined in Section 3.2). In
the case k′ = 0 these are Heegner cycles, while in the case k′ = k they are the
generalised Heegner cycles of [4]. We prove that Heegner cycles are images
under certain correspondences of these variants of generalised Heegner cycles
(see Proposition 3.4). The third main result then follows from Theorem 1.4:

Theorem 1.7. Under the assumptions of Section 1.4.2, if 0 ≤ k′ = 2r′ ≤ k
is another even integer, then the subgroup of Grr+r

′+1((Wk,H ×H Ak
′

)Kab)
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generated by the algebraic equivalence classes of variants of generalised Heeg-
ner cycles ∆̃k,k′,φ indexed by isomorphism classes of isogenies φ : A−→A′

whose kernels intersect A[N ] trivially has infinite rank.

Remark 1.8. Theorem 1.7 is a generalisation of the main result of [3],
which is valid under the same hypothesis assuming k′ = k (and −dK ̸=
−3,−4), but without requiring k ≥ 2 to be even. Theorems 1.4 and 1.7 re-
cover results of Burungale [12] by a fundamentally different approach. The
complex geometric method presented here is more direct, as it does not rely on
any type of (p-adic) Gross–Zagier formula, which was instrumental in [12].

1.5. Strategy

The method of proof of Theorem 1.4 follows closely that of the proof of
[3, Theorem 2], which itself is an adaptation of the original work and ideas
of Schoen [37]. We give a self-contained proof which does not assume fa-
miliarity with these prior works, offering along the way some additional
details, simplifications, and minor fixes. The method can be summarised as
follows. Analytic estimates of the integrals appearing in Theorem 1.1 im-
ply that infinitely many Heegner cycles have either infinite or large order
in the Griffiths group. A comparison argument with Bloch’s étale variant of
the Abel–Jacobi map defined on torsion cycles, together with fundamental
properties of étale cohomology, allows us to deduce that in fact infinitely
many Heegner cycles have infinite order in the Griffiths group. Finally, us-
ing knowledge from the theory of complex multiplication about the Galois
action on these cycles enables us to prove that they generate a subgroup of
infinite rank in the Griffiths group.

1.6. Outline

In Section 2, we recall the definition of Kuga–Sato varieties and define
Scholl’s projector, which cuts out spaces of cusp forms in the de Rham coho-
mology of these varieties. We define the product varieties Wk,H ×H Ak

′

for
even integers k ≥ k′, as well as correspondences relevant for the definition of
the various cycles. In Section 3, we define the variants of generalised Heegner
cycles following [5]. We exhibit certain correspondences from Wk,H ×H Ak

′

to Wk,H , and prove that they map variants of generalised Heegner cycles to
rational multiples of Heegner cycles. In Section 4, we recall the definition
of the complex Abel–Jacobi map and prove Theorem 1.1 using the corre-
spondences defined in the previous section with k = k′. The next sections
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are dedicated to proving Theorem 1.4. Section 5 recalls basic properties of
Bloch’s étale variant of the Abel–Jacobi map on torsion cycles. Section 6
is devoted to proving a finiteness result for the étale cohomology groups of
Wk,Q̄ with torsion coefficients related to the target of Bloch’s map. In Sec-
tion 7, we write down a collection of explicit isogenies that gives rise to a
distinguished subcollection of Heegner cycles on which we will focus for the
proof of Theorem 1.4. In Section 8, we use Theorem 1.1 to derive asymp-
totic information about the behaviour of Heegner cycles in our subcollection.
Finally, in Section 9 we prove Theorem 1.4 and deduce Theorem 1.7.

1.7. Notations and conventions

All number fields in this article are viewed as embedded in a fixed algebraic
closure Q̄ of Q. Moreover, we fix a complex embedding Q̄ →֒ C, as well
as a p-adic embedding Q̄ →֒ Cp for each rational prime p. In this way, all
finite extensions of Q are viewed simultaneously as subfields of C and Cp.
Throughout, the subscript Q on a group will denote the tensor product with
Q over Z. If F is a field andX is a variety over a field contained in F , thenXF

will denote its base change. Given two varieties X and Y over a field F , we
write Corrr(X,Y ) := CHdimX+r(X ×F Y ) for the group of correspondences
of degree r.

2. Cusp forms and Kuga–Sato varieties

2.1. Kuga–Sato varieties

Let k ≥ 2 andN ≥ 5 be integers. Throughout, we will suppose that k is even,
and we let k = 2r with r ≥ 1. The open modular curve Y1(N) over Q is the
fine moduli space representing isomorphism classes of pairs consisting of an
elliptic curve over a Q-scheme together with a point of exact order N . It is
a geometrically connected smooth affine curve over Q. Let Y1(N) →֒ X1(N)
denote the canonical proper desingularisation of Y1(N) over Q. As a Rie-
mann surface over the complex numbers, it is obtained by adjoining the
cusps. The modular curve X1(N) represents isomorphism classes of gener-
alised elliptic curves with Γ1(N)-level structure. Let π : E−→X1(N) denote
the universal generalised elliptic curve equipped with its canonical Γ1(N)-
level structure, and write Wk for the canonical proper desingularisation of
the k-fold self fibre product of E over Q (see [39, §3.0] in the original case
of full level Γ(N), and [4, Appendix] in the case of level Γ1(N), even over
SpecZ[1/N ]). This is the k-th Kuga–Sato variety. It is smooth and proper
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over Q of dimension k + 1, and has a natural fibration πk :Wk−→X1(N).
The fibre over a non-cuspidal point x representing the isomorphism class of
an elliptic curve Ex with Γ1(N)-level structure is given by π−1

k (x) = Ekx .
Scholl has constructed a projector ϵWk

, which cuts out the space
Sk+2(Γ1(N)) of cusp forms of weight k + 2 and level Γ1(N) inside the de
Rham cohomology of the variety Wk (see [39, §1.1.2] for the original con-
struction of Scholl in full level, and [4, (2.1.2)] for the case of level Γ1(N)).
We briefly recall its definition. Translation by the section of order N of
π : E−→X1(N) given by the canonical Γ1(N)-level structure gives rise to
an action of Z/NZ on E . Multiplication by −1 in the fibres of π defines an
action of µ2 on E . The symmetric group Σk acts on Ek by permuting the
factors. There is therefore an action of the group

Λk := (Z/NZ ⋊ µ2)
k ⋊ Σk

on Ek. By the canonical nature of the desingularisation, this action ex-
tends to an action on the Kuga–Sato variety Wk [39, Theorem 3.1.0 (i)].
Let χk : Λk−→{±1} be the character which is trivial on (Z/NZ)k, the prod-
uct character on (µ2)

k, and the sign character on Σk. The projector

ϵWk
:=

1

|Λk|
∑

g∈Λk

χk(g)g ∈ Z

[

1

2N · k!

]

[Λk]

is the one corresponding to the character χk. We will view this projector as
an idempotent element of Corr0(Wk,Wk)Q as follows. Given g ∈ Λk, denote
by δg the induced automorphism of Wk, and let Γδg ⊂Wk ×Wk denote its
graph. By slight abuse of notation we define the idempotent correspondence

(2.1) ϵWk
:=

1

|Λk|
∑

g∈Λk

χk(g)Γδg ∈ Corr0(Wk,Wk)Q.

As such, ϵWk
acts on the various cohomology groups associated to Wk. The

symmetry of the correspondence ϵWk
implies that the push-forward and pull-

back maps it induces are equal, and we will denote any such map simply by
ϵWk

.

Proposition 2.1. We have ϵWk
H∗

dR(Wk,C) = ϵWk
Hk+1

dR (Wk,C), and the

Hodge filtration is given by Filj ϵWk
Hk+1

dR (Wk,C) = 0 for j ≥ k + 2, and

Sk+2(Γ1(N)) ≃ Filj ϵWk
Hk+1

dR (Wk,C),

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==



✐

✐

“5-Lilienfeldt” — 2024/10/15 — 0:37 — page 469 — #11
✐

✐

✐

✐

✐

✐

Heegner cycles in Griffiths groups of Kuga–Sato varieties 469

for 1 ≤ j ≤ k + 1, via the association f 7→ ωf where

ωf (C/⟨1, τ⟩, 1/N) := f(τ)(2πidw)k ⊗ (2πidτ)

for τ in the complex upper half-plane H and w the standard coordinate on
the torus C/⟨1, τ⟩ with lattice ⟨1, τ⟩ := Z⊕ Zτ .

Proof. This is [4, Lemma 2.2 & Corollary 2.3] (which hold more generally
over any field of characteristic zero). □

2.2. Products of Kuga–Sato varieties with powers of CM elliptic
curves

Fix an imaginary quadratic fieldK with ring of integersOK and discriminant
−dK coprime to N . Let H be the Hilbert class field ofK. By our conventions
in Section 1.7, a complex embedding H →֒ C is fixed. Let A be an elliptic
curve defined over H with ring of endomorphisms EndH(A) isomorphic to
OK . Such an elliptic curve is said to have CM over H by the maximal order
OK of K.

Let k′ be another even integer with k′ = 2r′ for some r′ ≥ 0. We will
assume that k ≥ k′. Consider the variety Xk,k′ :=Wk,H ×H Ak

′

, which is
smooth and proper over H of dimension k + k′ + 1. It comes equipped with
a natural fibration π̃k,k′ : Xk,k′−→X1(N), whose fibre over a non-cuspidal
point x representing the isomorphism class of an elliptic curve Ex with
Γ1(N)-level structure is given by π̃−1

k,k′(x) = Ekx ×Ak
′

.
The group µ2 acts on A by multiplication by −1, and the symmetric

group Σk′ acts on Ak
′

by permuting the factors. Hence Ak
′

carries a natural
action of the group Λ′

k′ := (µ2)
k′

⋊ Σk′ . Let χ′
k′ : Λ′

k′−→{±1} be the product
character on (µ2)

k′

and the sign character on Σk′ . Let

ϵAk′ :=
1

|Λ′
k′ |

∑

h∈Λ′

k′

χ′
k′(h)h ∈ Z

[

1

2 · k!

]

[Λ′
k′ ]

be the projector associated with χ′
k′ . Given h ∈ Λ′

k, denote by δ′h the in-
duced automorphism of Ak

′

and by Γδ′h ⊂ Ak
′ ×Ak

′

its graph. As in the
previous section, we denote by ϵAk′ the corresponding idempotent element
of Corr0(Ak

′

, Ak
′

)Q constructed using these graphs.
We can now define the idempotent correspondence

(2.2) ϵXk,k′
:= ϵWk

× ϵAk′ := pr∗13(ϵWk
) · pr∗24(ϵAk′ ) ∈ Corr0(Xk,k′ , Xk,k′)Q,
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where pr13 : X
2
k,k′−→W 2

k and pr24 : X
2
k,k′−→(Ak

′

)2 are the natural projec-

tions. Explicitly, given (g, h) ∈ Λ̃k,k′ := Λk × Λ′
k′ , denote by δ̃g,h the auto-

morphism δg × δ′h. Letting χ̃k,k′ denote the product character χk × χ′
k′ :

Λ̃k,k′−→{±1}, we have

ϵXk,k′
=

1

|Λ̃k,k′ |
∑

(g,h)∈Λ̃k,k′

χ̃k,k′(g, h)Γδ̃g,h ∈ Corr0(Xk,k′ , Xk,k′)Q.

Note the symmetry of this correspondence, in the sense that its induced
push-forward and pull-back maps on Chow groups and cohomology groups
are equal. We will therefore denote these simply by ϵXk,k′

by slight abuse of
notation.

Notation 2.2. In order to lighten the notation in the case k′ = k, we will
replace the subscript k, k′ simply by k, e.g., we will write Xk for Xk,k. This
convention will be adopted throughout the article.

Proposition 2.3. We have ϵXk,k′
H∗

dR(Xk,k′,C) = ϵXk,k′
Hk+k′+1

dR (Xk,k′,C),
and the (r + r′ + 1)-th step of the Hodge filtration is identified with

(2.3) Sk+2(Γ1(N))⊗ Symk′

H1
dR(AC) ≃ Filr+r

′+1 ϵXk,k′
Hk+k′+1

dR (Xk,k′,C),

via the assignment f ⊗ α 7→ ωf ∧ α under the Künneth decomposition.

Proof. The case k′ = 0 is Proposition 2.1. The case k′ = k is [4, Proposi-
tions 2.4 & 2.5]. In general, we have ϵAk′H∗

dR(A
k′

C ) = Symk′

H1
dR(AC) by [4,

Lemma 1.8]. The result then follows by Proposition 2.1 from the Künneth
decomposition. □

3. Algebraic cycles in CM fibres

LetN ≥ 5 and k = 2r ≥ k′ = 2r′ ≥ 0 with r ≥ 1. Fix an imaginary quadratic
field K satisfying the Heegner hypothesis with respect to N : every prime
dividing N splits in K. Let A be an elliptic curve with CM by OK defined
over the Hilbert class field H of K. By the Heegner hypothesis, there exists
an ideal N of OK such that OK/N = Z/NZ. Fix such a choice of ideal N .
Choose a generator t of the cyclic group A[N ]. Then the isomorphism class
of (A, t) is represented by a point P1 in Y1(N) defined over the ray class
field KN of K of conductor N by the theory of complex multiplication [15,
Theorem 11.39]. This point maps to the Heegner point (A,A[N ]) in Y0(N)
(as defined in [21]).
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3.1. Isogenies

The algebraic cycles that we will consider on Xk,k′ =Wk,H ×H Ak
′

are in-
dexed by the set IsogN (A) consisting of K̄-isomorphism classes (φ,A′) of
isogenies of elliptic curves φ : A−→A′ defined over K̄ whose kernels inter-
sect A[N ] trivially. The Galois group Gal(K̄/H) acts naturally on IsogN (A),
and (φ,A′) admits a representative defined over some field H ⊂ F ⊂ K̄ if it
is fixed by Gal(K̄/F ).

Any isogeny φ : A−→A′ induces an isomorphism K = End(A)⊗Q ≃
End(A′)⊗Q, and in particular the elliptic curve A′ has CM by some order
Oφ in K. Such orders are determined by their conductor cφ := [OK : Oφ].
Given c ∈ N, the unique order of conductor c will be denoted by Oc :=
Z+ cOK , and we let IsogNc (A) denote the subset of IsogN (A) consisting of
those isomorphism classes (φ,A′) for which A′ has CM by Oc. By the theory
of complex multiplication [15, Theorem 11.1], a representative of (φ,A′) ∈
IsogNc (A) can be taken to be defined, along with its complex multiplication,
over the ring class field Hc of K of conductor c. We then always fix the
isomorphism EndHc

(A′) ≃ Oc by the convention that [α]∗ω′ = αω′ for any
regular differential form ω′ of A′, where [α] denotes the element α ∈ Oc

viewed as an endomorphism of A′. Note that Oφ = Ocφ always contains the
order Odφ , where dφ is the degree of φ.

3.2. Variants of generalised Heegner cycles

Heegner cycles are certain algebraic cycles on Xk,0,Q̄ =Wk,Q̄ of codimen-
sion r + 1, while the generalised Heegner cycles of [4, §2.3] are cycles on
Xk = Xk,k,Q̄ of codimension k + 1. Variants of generalised Heegner cycles,
as introduced in [5, §4.1], are algebraic cycles on Xk,k′,Q̄ of codimension
r + r′ + 1. We will now recall their definition. When k′ = 0, this gives the
definition of Heegner cycles, while the case k′ = k recovers the definition of
generalised Heegner cycles.

Given (φ,A′) ∈ IsogN (A), the isomorphism class of the pair (A′, φ(t)) is
represented by a rational point Pφ in Y1(N), which determines an embedding
ι′φ of (A′)k in Wk seen as the fibre π−1

k (Pφ). This in turn determines an

embedding ιφ = ι′φ × idAk′ of (A′)k ×Ak
′

in Xk,k′ seen as the fibre π̃−1
k,k′(Pφ).

Consider the graph Γ[dφ
√
−dK ] ⊂ A′ ×A′ of the endomorphism [dφ

√−dK ] ∈
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End(A′), as well as the graph Γφ ⊂ A×A′ of φ. Define

Υk,k′,φ := (Γφ)
k′ × (Γ[dφ

√
−dK ])

r−r′ ⊂ (A×A′)k
′ × (A′ ×A′)r−r

′

= (A′)k ×Ak
′
ι′φ⊂ Xk,k′ .

Applying the projector (2.2) gives rise to the variant of the generalised Heeg-
ner cycle associated to φ

∆k,k′,φ := ϵXk,k′
Υk,k′,φ ∈ CHr+r

′+1(Xk,k′,Q̄)0,Q

in the Chow group of codimension r + r′ + 1 cycles on Xk,k′,Q̄ with rational
coefficients. The cycle ∆k,k′,φ is null-homologous since cycle class maps are
functorial with respect to correspondences and ϵXk,k′

annihilates the target
of the cycle class map by Proposition 2.3. That the cycles are defined over
Q̄ (in fact over Kab) follows from the following:

Proposition 3.1. Let c ∈ N. If (φ,A′) ∈ IsogNc (A), then the cycle ∆k,k′,φ

is defined over the field compositum Fc := KN ·Hc ⊂ Kab ⊂ Q̄.

Proof. The elliptic curve A was chosen to be defined over the Hilbert class
field H of K (possible since H = K(j(A)) by [15, Theorem 11.1]). Similarly,
we may choose a representative of the isomorphism class (φ,A′) ∈ IsogNc (A)
that is defined over Hc (again by [15, Theorem 11.1]). The fixed Γ1(N)-level
structure t ∈ A[N ] is defined over the extension H(A[N ]) obtained by ad-
joining the coordinates of the N -torsion points. This extension is abelian
over H, but not necessarily over K. However, the isomorphism class of
(A, t) as an elliptic curve with Γ1(N)-level structure (i.e., the point P1

of Y1(N)) is defined over the ray class field KN = H(hA(A[N ])), where
hA : A−→A/Aut(A) = A/O×

K is the Weber function [15, Theorem 11.39]. It
follows that the isomorphism class of (A′, φ(t)) (i.e., the point Pφ of Y1(N))
is defined over Fc, hence so is the embedding ι′φ. Finally, EndHc

(A′) ≃ Oc

and thus [dφ
√−dK ] is defined over Hc. This shows that Υk,k′,φ is defined

over Fc. Since ϵk,k′ is defined over Q, the result follows. □

Definition 3.2. Let c ∈ N and (φ,A′) ∈ IsogNc (A).

• When k′ = 0 in the above construction, we write ΥHC
φ := Υk,0,φ and

∆HC
φ := ∆k,0,φ = ϵWk

ΥHC
φ ∈ CHr+1(Wk,Fc

)0,Q.
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This is the Heegner cycle associated to φ and studied for instance in
[31, §5].

• When k′ = k in the above construction, we write ΥGHC
φ := Υk,k,φ =

Υk,φ and

∆GHC
φ := ∆k,k,φ = ∆k,φ = ϵXk

ΥGHC
φ ∈ CHk+1(Xk,Fc

)0,Q.

This is the generalised Heegner cycle associated to φ first introduced
in [4, §2].

The cycles introduced so far are elements of Chow groups with ratio-
nal coefficients. In order to meaningfully consider their images under Abel–
Jacobi maps and discuss their torsion or non-torsion properties, we clear
denominators by multiplying the cycles by suitable integers.

Definition 3.3. Let mk,k′ := |Λ̃k,k′ | = (2N)kk!2k
′

(k′)!. Define the corre-
spondence

ϵ̃Xk,k′
:= mk,k′ϵXk,k′

∈ Corr0(Xk,k′ , Xk,k′),

and for all (φ,A′) ∈ IsogN (A) define the cycles

∆̃k,k′,φ := mk,k′∆k,k′,φ = ϵ̃Xk,k′
Υk,k′,φ ∈ CHr+r

′+1(Xk,k′,Q̄)0.

These cycles have integral coefficients and inherit the properties described
in Proposition 3.1.

3.3. Relation with Heegner cycles

In [4, §2.4], Bertolini, Darmon, and Prasanna exhibited a correspondence
from Xk to Wk mapping generalised Heegner cycles to multiples of Heegner
cycles. The details of this calculation were left to the reader. A more general
setup was worked out by the same authors in [5, Proposition 4.1.1]. They
exhibited a correspondence from Xk to Xk,k′ mapping generalised Heegner
cycles to multiples of the cycles ∆k,k′,φ. This was done for specific isogenies
between elliptic curves both having CM by OK . In this section, we exhibit a
correspondence from Xk,k′ to Wk, which maps ∆k,k′,φ to an integer multiple
of ∆HC

φ for all (φ,A′) ∈ IsogN (A).
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Consider the variety Wk,H ×H Ar
′

embedded into

Zk,k′ := Xk,k′ ×H Wk,H =Wk,H ×H Ak
′ ×H Wk,H

via the map Ψk,k′,φ := (idWk
, (idA, [dφ

√−dK ])r
′

, idWk
). Denote its image by

Πk,k′,φ. This is a k + r′ + 1 dimensional subvariety of the variety Zk,k′ of
dimension 2k + k′ + 2. Its class modulo rational equivalence therefore gives
rise to a correspondence

(3.1) Πk,k′,φ ∈ CHk+k
′+1−r′(Xk,k′ ×H Wk,H) = Corr−r

′

(Xk,k′ ,Wk,H)

defined over H. This in turn induces push-forward and pull-back maps on
Chow groups and cohomology groups in the usual way. In particular, it
induces via push-forward a map

(Πk,k′,φ)∗ : CH
r+r′+1(Xk,k′,Q̄)0,Q−→CHr+1(Wk,Q̄)0,Q.

We will use the following notations for the various natural projection maps:
(3.2)
Zk,k′ = Xk,k′ ×H Wk,H = Wk,H ×H Ak

′ ×H Wk,H

Xk,k′ Wk,H Ak
′

Wk,H .

π01 π2 π0 π1
π2

Proposition 3.4. Let (φ,A′) ∈ IsogN (A) of degree dφ. Then

(Πk,k′,φ)∗(Υk,k′,φ) = dr
′

φΥ
HC
φ and (Πk,k′,φ)∗(∆k,k′,φ) = dr

′

φ∆
HC
φ .

Proof. By definition of the push-forward map, we have

(Πk,k′,φ)∗(Υk,k′,φ) = (π2)∗(Πk,k′,φ · (π01)∗(Υk,k′,φ)),

where · denotes the intersection product in the Chow ring of Zk,k′ . Note that
(π01)

∗(Υk,k′,φ) is described by

{(ι′φ((φ(xi))k
′

i=1, (yi, [dφ
√

−dK ](yi))
r−r′
i=1 ), (xi)

k′

i=1, z) |
(xi)

k′

i=1 ∈ Ak
′

, (yi)
r−r′
i=1 ∈ Ar

′

, z ∈Wk},

and by definition we have

Πk,k′,φ = {(s, (t1, [dφ
√

−dK ](t1), . . . , tr′ , [dφ
√

−dK ](tr′)), s) |
s ∈Wk, (ti)

r′

i=1 ∈ Ar
′}.
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The ambient variety Zk,k′ is smooth of dimension 2k + k′ + 2, and the
two subvarieties (π01)

∗(Υk,k′,φ) and Πk,k′,φ have respective codimensions
r + r′ + 1 and k + r′ + 1. Set theoretically we see that they intersect in
a subvariety of dimension r. In particular, they are dimensionally trans-
verse. By [18, Proposition 1.28], it follows that (π01)

∗(Υk,k′,φ) and Πk,k′,φ

intersect generically transversely. By [18, Theorem 1.26 (b)], we deduce
that Πk,k′,φ · (π01)∗(Υk,k′,φ) = Πk,k′,φ ∩ (π01)

∗(Υk,k′,φ) in the Chow group,
where ∩ denotes the set theoretic intersection. Using this, we obtain that
(Πk,k′,φ)∗(Υk,k′,φ) is given by

dr
′

φ {ι′φ((φ(ti), φ([dφ
√

−dK ](ti)))
r′

i=1, (yi, [dφ
√

−dK ](yi))
r−r′
i=1 ) |

(ti)
r′

i=1 ∈ Ar
′

, (yi)
r−r′
i=1 ∈ Ar

′},

where the appearance of the degree of φ stems from the push-forward by π2.
Observing that φ ◦ [dφ

√−dK ] = [dφ
√−dK ] ◦ φ leads to (Πk,k′,φ)∗(Υk,k′,φ)

being equal to

dr
′

φ {ι′φ((φ(ti), [dφ
√

−dK ](φ(ti)))
r′

i=1, (yi, [dφ
√

−dK ](yi))
r−r′
i=1 ) |

(ti)
r′

i=1 ∈ Ar
′

, (yi)
r−r′
i=1 ∈ Ar

′}.

The latter is dr
′

φΥk,0,φ since φ is surjective. We have proved that

(Πk,k′,φ)∗(Υk,k′,φ) = dr
′

φΥ
HC
φ .

In order to prove the equality (Πk,k′,φ)∗(∆k,k′,φ) = dr
′

φ∆
HC
φ , it suffices to

prove that

(3.3) (Πk,k′,φ ◦ ϵXk,k′
)∗(Υk,k′,φ) = (ϵWk

◦Πk,k′,φ)∗(Υk,k′,φ)

in CHr+1(Wk,Q̄)Q, where ◦ denotes composition of correspondences. Given
g ∈ Λk, we observe by direct calculation that

(3.4) Πk,k′,φ ◦ Γδ̃g,1 = Γδg ◦Πk,k′,φ.

Define a map α : Λ′
k′−→Λ′

k as follows. Given ((µ1, . . . , µk′), σ) ∈ Λ′
k′ =

(µ2)
k′

⋊ Σk′ , define

α((µ1, . . . , µk′), σ) = ((µ1, . . . , µk′), (1, . . . , 1), σ)

∈ Λ′
k = ((µ2)

k′ × (µ2)
k−k′

)⋊ Σk,

where the natural inclusion Σk′ ⊂ Σk is obtained by permuting the first k′

factors. The map α is an injective group homomorphism. Composing with
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the inclusion Λ′
k ⊂ Λk ⊂ Λ̃k,k′ realises Λ′

k′ as a subgroup of Λ̃k,k′ , and thus
also as a subgroup of the group of automorphisms of Xk,k′ . Similarly, the
map α composed with the inclusion Λ′

k ⊂ Λk realises Λ′
k′ as a subgroup of

the group of automorphisms of Wk. Consider also the injective group homo-
morphism 1× id : Λ′

k′ ⊂ Λ̃k,k′ = Λk × Λ′
k′ . The product of these two homo-

morphisms realises (Λ′
k′)2 as a subgroup of Λ̃k,k′ , and thus as a subgroup of

the group of automorphisms of Xk,k′ . Note that Λ̃k,k′/(Λ′
k′)2 ≃ Λk/α(Λ

′
k′).

It follows from (3.4) that, for any (g, h) ∈ (Λ′
k′)2, we have

Πk,k′,φ ◦ Γδ̃α(gh),h
= Πk,k′,φ ◦ Γδ̃α(g),1

◦ Γδ̃α(h),h
= Γδα(g)

◦Πk,k′,φ ◦ Γδ̃α(h),h

in Corr−r(Xk,Wk,H)Q. It is immediate that (Γδ̃α(h),h
)∗(Υk,k′,φ) = Υk,k′,φ, and

therefore

(Πk,k′,φ ◦ Γδ̃α(gh),h
)∗(Υk,k′,φ) = (Γδα(g)

◦Πk,k′,φ)∗(Υk,k′,φ),(3.5)

for all (g, h) ∈ (Λ′
k′)2. This is similar to the equality obtained in [5, (4.1.4)].

The following calculation is inspired by the one at the end of the proof of
[5, Proposition 4.1.1]:

(Πk,k′,φ ◦ ϵXk,k′
)∗(Υk,k′,φ)

= (Πk,k′,φ)∗





1

|Λ̃k,k′ |
∑

(s,t)∈Λ̃k,k′

χ̃k,k′(s, t)(Γδ̃s,t)∗(Υk,k′,φ)





= (Πk,k′,φ)∗











|Λ′
k′ |2

|Λ̃k,k′ ||Λ′
k′ |2

∑

(s,1)∈Λ̃k,k′/(Λ′

k′ )
2

(g,h)∈(Λ′

k′ )
2

χ̃k,k′(sα(g), h)(Γδ̃sα(g),h
)∗(Υk,k′,φ)











(3.4)
=

|α(Λ′
k′)|

|Λk|
∑

s∈Λk/α(Λ′

k′ )

χk(s)(Γδs)∗(Πk,k′,φ)∗

×





1

|Λ′
k′ |2

∑

(g,h)∈(Λ′

k′ )2

χ̃k,k′(α(g), h)(Γδ̃α(g),h
)∗(Υk,k′,φ)





=
|α(Λ′

k′)|
|Λk|

∑

s∈Λk/α(Λ′

k′ )

χk(s)(Γδs)∗(Πk,k′,φ)∗

×





1

|Λ′
k′ |2

∑

(g,h)∈(Λ′

k′ )2

χk(α(g))(Γδ̃α(gh),h
)∗(Υk,k′,φ)




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(3.5)
=

|α(Λ′
k′)|

|Λk|
∑

s∈Λk/α(Λ′

k′ )

χk(s)(Γδs)∗

×





1

|Λ′
k′ |

∑

g∈Λ′

k′

χk(α(g))(Γδα(g)
)∗(Πk,k′,φ)∗(Υk,k′,φ)





=
1

|Λk|
∑

s∈Λk

χk(s)(Γδs)∗(Πk,k′,φ)∗(Υk,k′,φ)

= (ϵWk
◦Πk,k′,φ)∗(Υk,k′,φ).

In the fourth equality, we made the change of variables g ↔ gh, and used
the fact that

χ̃k,k′(α(gh), h) = χk(α(g))χk(α(h))χ
′
k′(h) = χk(α(g)),

since χk|α(Λ′

k′ ) = χ′
k′ and these characters are quadratic. □

4. Complex Abel–Jacobi maps

Let V denote a smooth projective variety of dimension d defined over C. The
familiar Abel–Jacobi map for curves admits a higher dimensional analogue

(4.1) AJjV : CHj(V )0−→J j(V ) :=
(Fild−j+1H2d−2j+1

dR (V ))∨

H2d−2j+1(V (C),Z)
,

defined by the integration formula

AJjV (Z)(β) =

∫

∂−1(Z)
β, for β ∈ Fild−j+1H2d−2j+1

dR (V ),

where ∂−1(Z) denotes any continuous (2d− 2j + 1)-chain in V (C) whose
image under the boundary map ∂ is Z. Here, H2d−2j+1(V (C),Z) is seen

as a lattice by taking its image in the space (Fild−j+1H2d−2j+1
dR (V ))∨ via

integration of differential forms over topological chains. The target of AJjV
is the j-th intermediate Jacobian of V , which by Poincaré duality can be
identified with

(4.2) J j(V ) ≃ H2j−1(V (C),C)/(Filj H2j−1
dR (V )⊕H2j−1(V (C),Z)).

We are interested in the Abel–Jacobi maps of the varietiesWk,C = Xk,0,C

andXk,C = Xk,k,C, and in particular in the images of Heegner cycles and gen-
eralised Heegner cycles. Observe, using the notations of Definition 3.3, that
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mk,0∆̃
HC
φ = ϵ̃Wk

∆̃HC
φ and mk,k∆̃

GHC
φ = ϵ̃Xk

∆̃GHC
φ . Since Abel–Jacobi maps

are functorial with respect to correspondences [19, Propositions 1,2 & 4
iii)], we will solely be interested in the pieces of these maps that survive
after applying the relevant correspondences. By Propositions 2.1 and 2.3
(with k′ = k) respectively, this allows us to view the relevant Abel–Jacobi
maps as homomorphisms
(4.3)

AJWk
:= AJr+1

Wk
◦ϵ̃Wk

= ϵ̃Wk
◦AJr+1

Wk
: CHr+1(Wk,C)0−→

Sk+2(Γ1(N))∨

Lk
,

where Lk = ϵ̃Wk
Hk+1(Wk,C(C),Z), and

AJXk
:= AJk+1

Xk
◦ϵ̃Xk

= ϵ̃Xk
◦AJk+1

Xk
:

CHk+1(Xk,C)0−→
(Sk+2(Γ1(N))⊗ SymkH1

dR(AC))
∨

L̃k
,

where L̃k = ϵ̃Xk
H2k+1(Xk,C(C),Z). With these notations, for all (φ,A′) ∈

IsogN (A), we have

(4.4)
AJr+1

Wk
(mk,0∆̃

HC
φ ) = AJWk

(∆̃HC
φ )

AJk+1
Xk

(mk,k∆̃
GHC
φ ) = AJXk

(∆̃GHC
φ ).

The Abel–Jacobi formula that we are about to state gives an expression
for AJWk

(∆̃HC
φ ) in Sk+2(Γ1(N))∨ modulo a lattice L′

k which is slightly larger
that Lk. This is less precise, but the resulting formula gains in explicitness.

Definition 4.1. Define the lattice L′
k ⊂ Sk+2(Γ1(N))∨ to be the Z-module

generated by the period lattice attached to Sk+2(Γ1(N)) (see [3, Definition 3])
and the functionals Js,t,P defined by

Jα,β,P (f) := (2πi)k+1

∫ β

α
P (z)f(z)dz,

with α, β ∈ P1(Q), P (X) ∈ Z[X]deg=k. See [3, §9] for further details.

The goal of this section is to prove the following:

Theorem 4.2. Let N ≥ 5 and k = 2r ≥ 2 be integers. Let K be an imag-
inary quadratic field satisfying the Heegner hypothesis with respect to N ,
and fix a choice of cyclic N -ideal N . Let A be an elliptic curve with
CM by OK over the Hilbert class field H with a Γ1(N)-level structure
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t ∈ A[N ]. Let φ : AC−→C/⟨1, τ ′⟩ be an isogeny of degree dφ representing
an element of IsogN (A) and satisfying φ(t) = 1

N (mod ⟨1, τ ′⟩). Then, for
all f ∈ Sk+2(Γ1(N)), we have

AJWk
((2kk!)2drφ∆̃

HC
φ )(ωf ) =

(−2
√−dK)rdkφ(2πi)

r+1m2
k,k

(τ ′ − τ ′)r

×
∫ τ ′

i∞
(z − τ ′)r(z − τ̄ ′)rf(z)dz (mod L′

k).

Remark 4.3. A formula for the images of generalised Heegner cycles un-
der the complex Abel–Jacobi map AJk+1

Xk
was established in joint work of

the author with Bertolini, Darmon, and Prasanna [3, Theorem 1] by writing
down explicit bounding chains for generalised Heegner cycles and computing
the defining integrals in terms of explicit line integrals of modular forms. It
was noted in [3, Remark 10] that the techniques used can likely be adapted to
calculate the images of Heegner cycles under the complex Abel–Jacobi map
AJr+1

Wk
. While this is indeed possible, we have opted for a different method.

We will use Proposition 3.4 together with the functorial properties of Abel–
Jacobi maps to deduce the formula for Heegner cycles directly from the for-
mula for generalised Heegner cycles.

Remark 4.4. Fix a normalised newform f in Sk+2(Γ1(N)). Composing the
complex Abel–Jacobi map (4.3) with the projection to the f -isotypic Hecke
component of the intermediate Jacobian gives rise to a map

AJWk,f : CHr+1(Wk,C)0−→C/Lf ,

where Lf is the period lattice of f in C. Theorem 4.2 yields the formula

(4.5) AJWk,f ((2
kk!)2drφ∆̃

HC
φ ) =

(−2
√−dK)rdkφm

2
k,k

(τ ′ − τ ′)r
α(τ ′) (mod Lf ),

where α : Γ1(N)\HCM−→C/Lf is the map on Heegner points of [25, Lemma
2.2] precomposed with Γ1(N)\HCM

↠ Γ0(N)\HCM. Suppose that the fixed
embedding H →֒ C of Section 1.7 is such that AC = C/OK = C/⟨1, τ⟩ with
τ = (−dK +

√−dK)/2 ∈ H the standard generator of OK . Suppose also that

τ ′ = dφτ (e.g., take φ : C/⟨1, τ⟩−→C/⟨1/n, τ⟩ [n]−→C/⟨1, nτ⟩ for some posi-
tive integer n). In this case, formula (4.5) becomes

AJWk,f ((2
kk!)2drφ∆

HC
φ ) = (−2dφ)

rm2
k,kα(τ

′) (mod Lf ).
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As explained in [25], a relation such as (4.5) was expected to hold, but was
not verified except for weight 4 newforms (i.e., when k = 2) as a consequence
of the work of Schoen [37]. The relation (4.5) implies the compatibility of the
conjectural partial generalisations of the Gross–Kohnen–Zagier theorem for
higher weights formulated in [25, Conjectures 3.1 & 3.3] with the conjectures
of Beilinson and Bloch. See the introduction of [25] for further details and
[43] for related work on higher weight Gross–Kohnen–Zagier type theorems.

We will need the following two lemmas for the proof of Theorem 4.2.
Recall the correspondence Πk,φ := Πk,k,φ from Xk to Wk,H defined in (3.1).

Lemma 4.5. Under the assumptions of Theorem 4.2, let φ : A−→A′ be
an isogeny of degree dφ representing an element of IsogN (A). Then, for all
f ∈ Sk+2(Γ1(N)), we have

AJWk
((2kk!)2drφ∆̃

HC
φ )(ωf ) = AJXk

(∆̃GHC
φ )(Π∗

k,φ(ωf )) (mod Lk).

Proof. By functoriality of Abel–Jacobi maps with respect to correspondences
[19, Propositions 1,2 & 4 iii)], the following diagram commutes:

CHk+1(Xk)0(C) Jk+1(Xk/C)

CHr+1(Wk)0(C) Jr+1(Wk/C).

AJk+1
Xk

(Πk,φ)∗ (Π∗

k,φ)
∨

AJr+1
Wk

By Proposition 3.4 (with k′ = k), we have (Πk,φ)∗(∆GHC
φ ) = drφ∆

HC
φ . Since

mk,k = 2kk!mk,0, we deduce that (Πk,φ)∗(∆̃GHC
φ ) = 2kk!drφ∆̃

HC
φ . The result

then follows by (4.4). □

Let ωA ∈ H1,0(AC) be a non-zero differential form. Recall that the iso-
morphism EndH(A) ≃ OK is chosen such that [α]∗ωA = αωA for all α ∈ OK .
The choice of ωA determines a generator ηA of H0,1(AC) by the condition
⟨ωA, ηA⟩ = 1, where ⟨ , ⟩ denotes the cup-product on the de Rham cohomol-
ogy of AC. The generator ηA satisfies [α]∗ηA = ᾱηA. For 0 ≤ j ≤ k, define

(4.6) ωjAη
k−j
A :=

j!(k − j)!

k!

∑

I⊂{1,...,k}
|I|=j

pr∗1ϖ1,I ∧ . . . ∧ pr∗kϖk,I ,

where ϖi,I is either ωA or ηA depending on whether i ∈ I or i ̸∈ I. A basis

of SymkH1
dR(AC) is then given by {ωjAη

k−j
A } for 0 ≤ j ≤ k. The cup product
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⟨ , ⟩ induces a self-duality

⟨ , ⟩Ak : SymkH1
dR(AC)× SymkH1

dR(AC)−→C,

given by

(4.7) ⟨x1 · · ·xk, y1 · · · yk⟩Ak :=
1

k!

∑

σ∈Σk

⟨x1, yσ(1)⟩ . . . ⟨xk, yσ(k)⟩.

Lemma 4.6. Under the assumptions of Theorem 4.2, let φ : A−→A′ be
an isogeny of degree dφ representing an element of IsogN (A). Let ωA ∈
H1,0(AC) be a non-zero differential form. Then, for all f ∈ Sk+2(Γ1(N)),
we have ϵXk

Π∗
k,φ(ωf ) = (2dφ

√−dK)rωf ∧ ωrAηrA.

Remark 4.7. The right hand side of the equality in Lemma 4.6 does not
depend on the choice of non-zero differential ωA since scaling ωA by λ ∈ C×

leads to a scaling of ηA by λ−1.

Proof. The correspondence Πk,φ induces a pull-back map on de Rham co-
homology

Π∗
k,φ : Filr+1Hk+1

dR (Wk,C)−→Filk+1H2k+1
dR (Xk,C),

given by the usual formula Π∗
k,φ(ω) = (π01)∗(cldR(Πk,φ) ∧ π∗2(ω)), where

cldR(Πk,φ) ∈ H3k+2
dR (Zk,C) is the de Rham cycle class of Πk,φ. We are only

interested in the piece of Filk+1H2k+1
dR (Xk,C) that survives after applying

ϵXk
. Since

Filk+1H2k+1
dR (Xk,C)

⊥ = Filk+1H2k+1
dR (Xk,C),

and

H2k+1
dR (Xk,C) = Filk+1H2k+1

dR (Xk,C)⊕ Filk+1H2k+1
dR (Xk,C),

we see that the dual of Filk+1 ϵXk
H2k+1

dR (Xk,C) with respect to the de Rham
pairing is its complex conjugate. By Proposition 2.3, ϵXk

Π∗
k,φ(ωf ) is com-

pletely determined by the values

⟨ϵXk
Π∗
k,φ(ωf ), ωg ∧ ωjAη

k−j
A ⟩Xk

,
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for all eigenforms g ∈ Sk+2(Γ1(N)) and 0 ≤ j ≤ k. Using the notations of
(3.2) and properties of the de Rham pairing, we compute that

⟨ϵXk
Π∗
k,φ(ωf ), ωg ∧ ωjAη

k−j
A ⟩Xk

= ⟨(π01)∗(cldR(Πk,φ) ∧ π∗2(ωf )), ωg ∧ ωjAη
k−j
A ⟩Xk

= ⟨cldR(Πk,φ) ∧ π∗2(ωf ), π∗01(ωg ∧ ωjAη
k−j
A )⟩Zk

= −⟨cldR(Πk,φ), π∗0(ωg) ∧ π∗1(ωjAη
k−j
A ) ∧ π∗2(ωf )⟩Zk

= −⟨(Ψk,φ)∗(cldR(Wk ×Ar)), π∗0(ωg) ∧ π∗1(ωjAη
k−j
A ) ∧ π∗2(ωf )⟩Zk

= −⟨cldR(Wk ×Ar), (Ψk,φ)
∗(π∗0(ωg) ∧ π∗1(ωjAη

k−j
A ) ∧ π∗2(ωf ))⟩Zk

= ⟨ωf ∧ ωg, ((idA, [dφ
√

−dK ])r)∗(ωjAη
k−j
A ))⟩Wk×Ar

= ⟨ωf , ωg⟩Wk

(∫

Ar

((idA, [dφ
√

−dK ])r)∗(ωjAη
k−j
A )

)

.

Observe that ((idA, [dφ
√−dK ])r)∗(pr∗1ϖ1,I ∧ . . . ∧ pr∗kϖk,I) ̸= 0 if and only

if ϖ2l−1,I ̸= ϖ2l,I for all 1 ≤ l ≤ r. In particular j must equal r, and there
are 2r sets I of length r that satisfy this condition. For such a set I, observe
for all 1 ≤ l ≤ r that

(idA, [dφ
√

−dK ])∗(pr∗2l−1(ϖ2l−1) ∧ pr∗2l(ϖ2l,I)) = −dφ
√

−dK pr∗l (ωA ∧ ηA).

From the defining equation (4.6), we see that

((idA, [dφ
√

−dK ])r)∗(ωjAη
k−j
A ) = 0

for j ̸= r, and

((idA, [dφ
√

−dK ])r)∗(ωrAη
r
A)

= (−dφ
√

−dK)r
2r(r!)2

(2r)!
pr∗1(ωA ∧ ηA) ∧ . . . ∧ pr∗r(ωA ∧ ηA).

This shows that for any eigenform g and any 0 ≤ j ≤ k, we have

(4.8) ⟨ϵXk
Π∗
k,φ(ωf ), ωg ∧ ωjAη

k−j
A ⟩Xk

= (−2dφ
√

−dK)r
(r!)2

(2r)!
⟨ωf , ωg⟩Wk

δjr,

where δjr = 1 if j = r and 0 otherwise.
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Observe from (4.7) that

⟨ωf ∧ ωrAηrA, ωg ∧ ωjAη
k−j
A ⟩Xk

= ⟨ωf , ωg⟩Wk
⟨ωrAηrA, ωjAη

k−j
A ⟩Ak

= (−1)r
(r!)2

(2r)!
⟨ωf , ωg⟩Wk

δjr.

The result follows by comparing with (4.8). □

Proof of Theorem 4.2. Using Lemma 4.5 and the equality AJXk
= ϵ̃Xk

◦
AJk+1

Xk
, we see that

AJWk
((2kk!)2drφ∆̃

HC
φ )(ωf ) = AJk+1

Xk
(∆̃GHC

φ )(ϵ̃Xk
Π∗
k,φ(ωf )) (mod Lk).

Let ωA ∈ H1,0(AC) be the non-zero differential form ωA = φ∗(2πidw). By
Lemma 4.6, we obtain

(4.9) AJWk
((2kk!)2drφ∆̃

HC
φ )(ωf )

= mk,k(2dφ
√

−dK)r AJk+1
Xk

(∆̃GHC
φ )(ωf ∧ ωrAηrA) (mod Lk).

The result follows by applying [3, Theorem 1], remembering that ∆̃GHC
φ =

mk,k∆
GHC
φ . □

5. Bloch’s map on torsion cycles

In this section, we recall the existence and properties of an étale cycle class
map defined on torsion cycles first considered by Bloch [9]. Its restriction to
null-homologous cycles admits a comparison with the complex Abel–Jacobi
map restricted to torsion cycles. As we will show, it follows that it factors
through algebraic equivalence when composed with the correspondence ϵ̃Wk

of Definition 3.3. The resulting composition map plays a key role in the
proof of Theorem 1.4 in Section 9. For a more complete account of Bloch’s
map, we refer the reader to [29, §1.5.2].

5.1. Basic properties

Let V denote a smooth projective variety of dimension d defined over a
number field F and let ℓ denote a fixed prime. For all non-negative integers
n, j and ν, we use the convention Hn

et(VF̄ ,Z/ℓ
νZ(j)) := Hn

et(VF̄ , µ
⊗j
ℓν ), where
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µℓν is the étale sheaf of ℓν-th roots of unity. There are natural maps

(5.1) Hn
et(VF̄ ,Z/ℓ

νZ(j))−→Hn
et(VF̄ ,Z/ℓ

ν+1Z(j))

induced by the maps Z/ℓνZ →֒ Z/ℓν+1Z sending m 7→ ℓm or by the inclu-
sions µℓν →֒ µℓν+1 . By taking the direct limit over ν, we obtain the cohomol-
ogy groups of V with ℓ-torsion coefficients

(5.2) Hn
et(VF̄ ,Qℓ/Zℓ(j)) := lim

−→
Hn

et(VF̄ ,Z/ℓ
νZ(j)).

Viewing Qℓ/Zℓ as a torsion étale sheaf on V , there is a natural isomorphism

(5.3) Hn
et(VF̄ ,Qℓ/Zℓ)⊗Qℓ/Zℓ

Qℓ/Zℓ(j) ≃ Hn
et(VF̄ ,Qℓ/Zℓ(j))

where the right hand side cohomology group is defined by (5.2).
Let CHj(VF̄ )[ℓ

∞] denote the power-of-ℓ torsion subgroup of the Chow
group. Bloch has defined in [9] a map

(5.4) λjV,ℓ : CH
j(VF̄ )[ℓ

∞]−→H2j−1
et (VF̄ ,Qℓ/Zℓ(j)).

whose restriction to null-homologous cycles can be regarded as an arithmetic
avatar of the complex Abel–Jacobi map on torsion (see Section 5.2 below for
a precise statement). The construction of the map is rather involved, and
we therefore refer the reader to the original [9, §2], or alternatively to [1,
Appendix A].

Proposition 5.1. The Bloch map (5.4) is functorial with respect to corre-
spondences and Gal(F̄ /F )-equivariant.

Proof. Functoriality for correspondences is [9, Proposition 3.5]. The Galois
equivariance is [1, Proposition A.22]. □

5.2. Comparison with the complex Abel–Jacobi map

Using the description (4.2) of the intermediate Jacobian along with the
natural isomorphism of R-vector spaces

(5.5) H2j−1(VC(C),R) ≃ H2j−1(VC(C),C)/Fil
j H2j−1

dR (VC),

there is an identification of real tori

J j(VC) ≃ H2j−1(VC(C),R)/H
2r−1(VC(C),Z),
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and thus an identification

(5.6) J j(VC)tors ≃ H2j−1(VC(C),Q)/H2j−1(VC(C),Z).

From the long exact sequence in singular cohomology associated to the short
exact sequence

(5.7) 0−→Z−→Q−→Q/Z−→0

we deduce a short exact sequence

(5.8) 0−→J j(VC)tors
u−→H2j−1(VC(C),Q/Z)−→H2j(VC(C),Z)tors−→0,

thus identifying J j(VC)tors up to a finite group with H2j−1(VC(C),Q/Z).
Composing the complex Abel–Jacobi map (4.1) restricted to torsion with

u yields a map

(5.9) u ◦AJjV : CHj(VC)0[ℓ
∞]−→H2j−1(VC(C),Qℓ/Zℓ).

For each natural number ν, there is a sequence of isomorphisms

(5.10) H2j−1
et (VF̄ , µ

⊗j
ℓν ) ≃ H2j−1

et (VC, µ
⊗j
ℓν ) ≃ H2j−1(VC(C), µ

⊗j
ℓν ).

For the first isomorphism, apply [30, VI Corollary 4.3] with respect to the
complex embedding F̄ →֒ C fixed in Section 1.7. The second isomorphism
is an application of [30, III Theorem 3.12]. Taking direct limits over ν, we
obtain a sequence of isomorphisms

comp : H2j−1
et (VF̄ ,Qℓ/Zℓ(j)) ≃ H2j−1

et (VC,Qℓ/Zℓ(j))(5.11)

≃ H2j−1(VC(C),Qℓ/Zℓ(j)).

Proposition 5.2. If we identify Qℓ/Zℓ ≃ Qℓ/Zℓ(j) by taking e
2πi

ℓν as the
generator of the ℓν-th roots of unity, then the diagram

(5.12)

CHj(VF̄ )0[ℓ
∞] H2j−1

et (VF̄ ,Qℓ/Zℓ(j))

CHj(VC)0[ℓ
∞] H2j−1(VC(C),Qℓ/Zℓ)

λr
ℓ

comp≀
u◦AJj

V

commutes, where the vertical left map is induced by the fixed embedding
F̄ →֒ C.

Proof. This is [9, Proposition 3.7]. □
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5.3. Factorisation through algebraic equivalence

Let k = 2r ≥ 2 be an even integer. We now specialise to the case where
V is the Kuga–Sato variety Wk of level Γ1(N) defined over Q. Recall the
idempotent correspondence ϵWk

defined in (2.1) and its normalisation ϵ̃Wk

defined in Definition 3.3, along with the fact that the composition of the
complex Abel–Jacobi map with this correspondence can be viewed as a
map (4.3)

AJWk
= ϵ̃Wk

◦AJr+1
Wk

: CHr+1(Wk,C)0−→
Sk+2(Γ1(N))∨

Lk
.

Proposition 5.3. The map AJWk
factors through algebraic equivalence,

giving rise to a map

AJWk
: Grr+1(Wk,C)−→

Sk+2(Γ1(N))∨

Lk
.

Proof. Let CHr+1(Wk,C)alg denote the subgroup of CHr+1(Wk,C)0 consisting
of algebraically trivial cycles. The image of CHr+1(Wk,C)alg under AJr+1

Wk

lies in an abelian subvariety Jr+1(Wk,C)alg of Jr+1(Wk,C) whose cotangent
space is contained inHr+1,r(Wk,C) [42, §12.2.2]. More precisely, if TZ denotes
the largest integral sub-Hodge structure of Hk+1(Wk,C(C),Z) of type (r +
1, r) + (r, r + 1), then

AJr+1
Wk

(CHr+1(Wk,C)alg) ⊂ Jr+1(Wk,C)alg

= J(TZ) := TC/(Fil
r+1 TC ⊕ TZ) ⊂ Jr+1(Wk,C).

Recall that AJWk
= ϵ̃Wk

◦AJr+1
Wk

by definition. Thus, in order to prove the
proposition, it suffices to show that the map on complex tori

ϵ̃Wk
: Jr+1(Wk,C)−→Jr+1(Wk,C)

restricts to the zero map on Jr+1(Wk,C)alg. This restriction is com-
pletely determined by the restriction of the map of Hodge structures
ϵ̃Wk

: Hk+1(Wk,C(C),Z)−→Hk+1(Wk,C(C),Z) to TZ. By Proposition 2.1,
the motive (Wk, ϵWk

, 0) with rational coefficients is of pure Hodge type
(k + 1, 0) + (0, k + 1), and in particular

ϵWk
(Hr+1,r(Wk)⊕Hr,r+1(Wk)) = 0.

It follows that ϵ̃Wk
(TC) = 0 and thus ϵ̃Wk

(TZ) = 0. □
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Taking the direct sum of the ℓ-adic Bloch maps (5.4) over all primes ℓ
yields a map

(5.13) λr+1
Wk

: CHr+1(Wk,Q̄)tors−→Hk+1
et (Wk,Q̄,Q/Z(r + 1)),

which is functorial with respect to correspondences by Proposition 5.1. In
view of evaluating this map on Heegner cycles, it thus suffices to consider its
composition with ϵ̃Wk

. Restricting to null-homologous cycles and composing
with ϵ̃Wk

yields a map

(5.14) λ◦Wk
: CHr+1(Wk,Q̄)0,tors−→ϵ̃Wk

Hk+1
et (Wk,Q̄,Q/Z(r + 1))

⊂ Hk+1
et (Wk,Q̄,Q/Z(r + 1)).

Proposition 5.4. The map (5.14) factors through algebraic equivalence,
giving rise to a map

λ◦Wk
: Grr+1(Wk,Q̄)−→Hk+1

et (Wk,Q̄,Q/Z(r + 1)).

Proof. The group CHr+1(Wk,Q̄)alg is divisible since (by definition of algebraic
equivalence) it is generated by images under correspondences of Q̄-valued
points on Jacobians of curves. It follows that there is an exact sequence of
torsion subgroups
(5.15)
0−→CHr+1(Wk,Q̄)alg,tors−→CHr+1(Wk,Q̄)0,tors−→Grr+1(Wk,Q̄)tors−→0.

In order to prove the result it thus suffices to show that the subgroup
CHr+1(Wk,Q̄)alg,tors lies in the kernel of (5.14). By Proposition 5.2, we have

(5.16) λ◦Wk
= ϵ̃Wk

◦ comp−1 ◦u ◦AJr+1
Wk

.

By compatibility of the comparison isomorphism (5.11) with correspon-
dences (which follows from the compatibility of the cycle class maps with
respect to the comparison isomorphism [27, §5.3]),

(5.17) λ◦Wk
= comp−1 ◦ϵ̃Wk

◦ u ◦AJr+1
Wk

.

From the natural compatibility of the map u with correspondences, it follows
that

(5.18) λ◦Wk
= comp−1 ◦u ◦ ϵ̃Wk

◦AJr+1
Wk

= comp−1 ◦u ◦AJWk
.

We have AJWk
(CHr+1(Wk,Q̄)alg,tors) = 0 by Proposition 5.3. □
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6. A finiteness result for étale cohomology with torsion

coefficients

Let k = 2r ≥ 2 and N ≥ 5 be integers. Let Wk be the Kuga–Sato variety of
level Γ1(N) over SpecZ[1/N ] (constructed in [4, Appendix]). Let K be an
imaginary quadratic field of discriminant −dK coprime to N which satisfies
the Heegner hypothesis with respect toN . LetN be a choice of cyclicN -ideal
of K. For each positive integer n, recall that Hn denotes the ring class field
of conductor n over K, while KN is the ray class field of conductor N over
K. Let H∞ denote the compositum of the ring class fields Hn for all square-
free integers n coprime to N . Let Fn := KN ·Hn and F∞ := KN ·H∞. The
goal of this section is to prove the following:

Proposition 6.1. With the above notations, the group

Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/F∞)

is finite.

Before proving Proposition 6.1, we collect a preliminary result concern-
ing the splitting behaviour of primes in the extension F∞ of K:

Lemma 6.2. With the above notations, let q be a prime which is coprime
to 2N and inert in K. Let q denote a prime of H above q and denote by s its
residual degree in the extension KN /H. Then, for any square-free positive
integer n coprime to N , the residual degree of q in the extension Fn/H is
equal to s.

Proof. This is [29, Corollary 1.2]. The proof uses the fact that if n is a
square-free positive integer and q is a rational prime which is inert in K,
then the residual degree of qOK in the extension Hn/K is equal to 1 (see
for instance [29, Proposition 1.8]). □

Proof of Proposition 6.1. Fix q1 and q2 two distinct primes which are co-
prime to 2N and inert in K. Let i ∈ {1, 2}. The variety Wk has good reduc-
tion at qi, and we may consider the reduction Wk,Fqi

over Fqi . The embed-
dings fixed in Section 1.7 determine primes qi in H and q

∞
i in F∞ above

qiOK . If si denotes the residual degree of qi in KN /H, then the residual
degree of qi in F∞/H is si by Lemma 6.2. Since q is inert in K, qOK splits
completely in H. It follows that the residual degree of qOK in H/K is equal
to 1. By multiplicativity of residual degrees in extension towers, we conclude
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that qi has residual degree ri := 2si in the extension F∞/Q. Let Di denote
the decomposition group of Gal(Q̄/F∞) of a prime above q

∞
i .

Let ℓ be a prime and choose i ∈ {1, 2} such that ℓ ̸= qi. Note that we may
choose i = 1 except when ℓ = q1 in which case we must choose i = 2. Using
[30, VI Corollary 4.2] and taking direct limits, we obtain an isomorphism

Hk+1
et (Wk,Q̄,Qℓ/Zℓ(r + 1))Di ≃ Hk+1

et (Wk,F̄qi
,Qℓ/Zℓ(r + 1))

Gal(F̄qi
/F

q
ri
i
)
.

In particular, Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/F∞) injects into

(6.1) Hk+1
et (Wk,F̄q2

,Qq1/Zq1(r + 1))
Gal(F̄q2

/F
q
r2
2

)

⊕
⊕

ℓ̸=q1

Hk+1
et (Wk,F̄q1

,Qℓ/Zℓ(r + 1))
Gal(F̄q1/Fq

r1
1

)
.

We have reduced the proof to showing that the group (6.1) is finite. Let
ℓ be a prime and choose i ∈ {1, 2} such that ℓ ̸= qi. From the short exact
sequence 0−→Zℓ−→Qℓ−→Qℓ/Zℓ−→0, we deduce a short exact sequence

0−→
Hk+1

et (Wk,F̄qi
,Qℓ(r + 1))

Hk+1
et (Wk,F̄qi

,Zℓ(r + 1))
−→Hk+1

et (Wk,F̄qi
,Qℓ/Zℓ(r + 1))

−→Hk+2
et (Wk,F̄qi

,Zℓ(r + 1))tors−→0.

The group on the right hand side is finite and trivial for all but finitely
many ℓ. Indeed, using [30, VI Corollary 4.2 & 4.3] and taking inverse limits
gives an isomorphism

Hk+2
et (Wk,F̄qi

,Zℓ(r + 1)) ≃ Hk+2
et (Wk,Q̄,Zℓ(r + 1)),

which in turn is isomorphic to Hk+2
et (Wk,C(C),Z)(r + 1)⊗ Zℓ by the com-

parison isomorphism [30, III Theorem 3.12]. The claim follows since
Hk+2

et (Wk,C(C),Z)tors is finite.
The number of fixed points under the action of Gal(F̄qi/Fqrii ) of the left

hand side of the above short exact sequence is equal to

| det(1− Frobqrii |Hk+1
et (Wk,F̄qi

,Qℓ(r + 1)))|,

which is finite and independent of the prime ℓ by Deligne’s theorem (the
Weil conjecture) [16].

In conclusion, each term in the infinite direct sum (6.1) is finite, and
trivial for all but finitely many terms. □
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Definition 6.3. LetMr := |Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/F∞)|, which is fi-

nite by Proposition 6.1.

Corollary 6.4. With the above notations, if n is a square-free integer co-
prime to N , then the image of Grr+1(Wk,Fn

)tors under the map λ◦Wk
of Propo-

sition 5.4 is annihilated by Mr.

Proof. By the Galois equivariance of the Bloch map (Proposition 5.1), the
image of Grr+1(Wk,Fn

)tors under λ
◦
Wk

lies in

Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/Fn),

a subgroup of Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/F∞) by definition of F∞. The

result follows by definition of Mr (Definition 6.3). □

7. Explicit isogenies

In the rest of this paper, we will focus on a particular subcollection of Heeg-
ner cycles and their properties. These are indexed by certain explicit (isomor-
phism classes of) isogenies. In Section 9, will prove that this subcollection
generates a subgroup of infinite rank modulo algebraic equivalence.

Fix an imaginary quadratic field K with ring of integers OK and dis-
criminant −dK coprime to N . Assume that K satisfies the Heegner hy-
pothesis with respect to N , and let N denote a choice of cyclic N -ideal of
OK . Let A be an elliptic curve with CM by OK over the Hilbert class field
H of K. Choose the complex embedding H →֒ C of Section 1.7 such that
AC = C/OK . Let τ := (−dK +

√−dK)/2 ∈ H denote the standard genera-
tor of OK , so that OK = ⟨1, τ⟩ := Z⊕ Zτ . It satisfies the quadratic equation
τ2 + dKτ + dK(dK + 1)/4 = 0. Note that the coefficient dK(dK + 1)/4 is in-
tegral since −dK ≡ 0, 1 (mod 4).

7.1. Explicit q-isogenies

Let q be an odd prime which is coprime to dK . Consider the q + 1 lattices
Λq,β := ⟨1, τq,β⟩ = Z⊕ Zτq,β in C indexed by β ∈ P1(Fq), where

τq,β :=

{

qτ if β = ∞
τ+β
q if β ̸= ∞.

Observe that Λq,∞ is the order Oq of K of conductor q.
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There are natural isogenies φq,β : C/OK−→C/Λq,β of complex tori de-
fined as follows:

• If β = ∞, then φq,∞ is the natural quotient map induced by the in-
clusion of lattices ⟨1, τ⟩ ⊂ ⟨1/q, τ⟩ composed with multiplication by
q:

φq,∞ : C/⟨1, τ⟩quot−→C/⟨1/q, τ⟩ [q]−→C/⟨1, τq,∞⟩.

• If β ̸= ∞, then φq,β is given by the quotient map

φq,β : C/⟨1, τ⟩ =−→C/⟨1, τ + β⟩quot−→C/⟨1, (τ + β)/q⟩,

induced by the inclusion of lattices ⟨1, τ + β⟩ ⊂ ⟨1, (τ + β)/q⟩.

Observe that the degree dφq,β
of φq,β is equal to q for all β ∈ P1(Fq).

Proposition 7.1. If q is an odd prime which is inert in K, then Λq,β is a
proper fractional Oq-ideal for all β ∈ P1(Fq).

Proof. The statement is clear for β = ∞, hence we assume β ∈ Fq. The ele-
ment τq,β ∈ H satisfies the quadratic equation

q2τ2q,β + q(dK − 2β)τq,β + (β2 − dKβ + dK(dK + 1)/4) = 0.

If β2 − dKβ + dK(dK + 1)/4 ≡ 0 (mod q), then

−dK ≡ (2β − dK)2 (mod q),

hence
(

−dK
q

)

= 1 and q splits in K. Since q is assumed to be inert, we

conclude that q does not divide the constant coefficient. Thus, the coefficients
of the above quadratic equation satisfied by τq,β have no common factors.
By [15, Lemma 7.5], Λq,β is a proper fractional ⟨1, q2τq,β⟩-ideal. The result
follows by observing that ⟨1, q2τq,β⟩ = ⟨1, q(τ + β)⟩ = Oq. □

Proposition 7.2. Let q be an odd prime which is inert in K and coprime
to N . For all β ∈ P1(Fq), there exists an elliptic curve Aq,β with CM by Oq

defined, along with its complex multiplication, over the ring class field Hq

such that Aq,β,C = C/Λq,β and the isogeny of complex tori φq,β descends to
an isogeny φq,β : A−→Aq,β giving rise to an isomorphism class (φq,β , Aq,β) ∈
IsogN (A) with field of definition Hq.

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==



✐

✐

“5-Lilienfeldt” — 2024/10/15 — 0:37 — page 492 — #34
✐

✐

✐

✐

✐

✐

492 David T.-B. G. Lilienfeldt

Proof. By Proposition 7.1, the elliptic curve C/Λq,β has CM by Oq. The
proposition is then a consequence of the main theorem of complex multipli-
cation [15, Theorem 11.1]. Note that the assumption that q is coprime to N
guarantees that the classes (φq,β , Ap,q,β) belong to IsogN (A). □

Lemma 7.3. Let q be a prime which is inert in K, and let uK := |O×
K |/2.

Then the extension Hq/H is cyclic of order (q + 1)/uK .

Remark 7.4. Note that uK = 1 if dK ̸= 3, 4.

Proof. Artin reciprocity yields an isomorphism

(7.1) (OK/qOK)×/O×
K(Z/qZ)× ≃ Gal(Hq/H),

by mapping c to the Artin symbol [cOK , Hq/H] (see [15, Eq. (7.27)]). Since q
is assumed to be inert, we have (OK/qOK)× = F×

q2 and the result follows. □

Proposition 7.5. Let q be an odd prime which is inert in K and co-
prime to N . The action of the Galois group Gal(Hq/H) on the subset
{(φq,β , Aq,β) | β ∈ P1(Fq)} ⊂ IsogN (A) is simply transitive.

Proof. As in Section 3.1, Gal(H̄/H) naturally acts on IsogN (A) since A is
defined over H. There are q + 1 isogenies from A of degree q, namely the
isogenies φq,β for β ∈ P1(Fq). Any isogeny φ : A−→A′ is completely deter-
mined by its kernel A[φ] ⊂ A(H̄). Two isomorphism classes (φ1, A1) and
(φ2, A2) are equal if and only if there exists ψ ∈ Aut(A)/⟨±1⟩ such that
ψ(A[φ1]) = A[φ2] (the effect of the automorphism −1 being trivial). Since A
has CM by OK , we have Aut(A) = O×

K . The set {(φq,β , Aq,β) | β ∈ P1(Fq)} of
isomorphism classes of isogenies of degree q therefore has order (q + 1)/uK .
By Proposition 7.2, since q is inert we have {(φq,β , Aq,β) | β ∈ P1(Fq)} ⊂
IsogNq (A) (in the notations of Section 3.1). It follows that the action of
Gal(Hq/H) on {(φq,β , Aq,β) | β ∈ P1(Fq)} is simple. The transitivity then
follows from the fact that {(φq,β , Aq,β) | β ∈ P1(Fq)} and Gal(Hq/H) have
the same order by Lemma 7.3. □

Remark 7.6. In contrast, if q is an odd prime that splits in K, then the
proof of Proposition 7.1 shows that for exactly two choices of β ∈ Fq, say
β1 and β2, the constant term β2 − dKβ + dK(dK + 1)/4 of the quadratic
equation satisfied by τq,β is divisible by q. Hence, for i ∈ {1, 2}, τq,βi

satisfies
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the equation

qτ2q,βi
+ (dK − 2βi)τq,βi

+ (β2i − dKβi + dK(dK + 1)/4)/q = 0

with coprime coefficients. By [15, Lemma 7.5], Λq,βi
is a proper fractional

⟨1, qτq,βi
⟩-module for i ∈ {1, 2}. But ⟨1, qτq,β⟩ = OK for any β ∈ Fq, hence

the elliptic curves C/Λq,β1
and C/Λq,β2

have CM by OK and can be defined
over H. Alternatively, writing q = qq̄ for some prime ideal q of K, these
two elliptic curves along with their cyclic q-isogenies can be described as
φq : A−→A/A[q] and φq̄ : A−→A/A[q̄]. In conclusion, there are q − 1 cyclic
q-isogenies with CM by Oq. Their isogeny classes form a set of order (q −
1)/uK given by a single orbit under the action of Gal(Hq/H), which in the
split case has order (q − 1)/uK by (7.1). Working under the assumption
that q is inert is not strictly speaking necessary for our method, but it does
simplify the notations and arguments a little bit.

7.2. Explicit Γ1(N)-level structure

Recall that AC = C/OK is an elliptic curve with CM by OK over H, OK =
⟨1, τ⟩ with τ := (−dK +

√−dK)/2 satisfying τ2 + dKτ + dK(dK + 1)/4 = 0,
and N is a cyclic N -ideal of OK .

Proposition 7.7. With the above notations, a generator t of the cyclic
group A[N ] must be of the form t = (cτ + d)/N + ⟨1, τ⟩ for some integers
c, d ∈ Z with gcd(c, d,N) = 1 and c ̸≡ 0 (mod N).

Proof. Observe that A[N ] = N−1/OK . The canonical isogeny φN :
A−→A/A[N ] is defined over H and given over C by the quotient isogeny
C/OK−→C/N−1. Note in particular that A/A[N ] has CM by OK . By defi-
nition, t is a generator of the cyclic subgroup A[N ], hence there exist integers
c and d with gcd(c, d,N) = 1 such that t = (cτ + d)/N + ⟨1, τ⟩. Note that
only the classes of c and d modulo N matter in this expression for t. If c ≡ 0
(mod N), then d is coprime to N , A[N ] = ⟨1/N + ⟨1, τ⟩⟩, and φN is the
quotient isogeny C/⟨1, τ⟩−→C/⟨1/N, τ⟩. But C/⟨1/N, τ⟩ ≃ C/⟨1, Nτ⟩ has
CM by ON [15, Lemma 7.5], contradicting the fact that A/A[N ] has CM by
OK . Thus, c ̸≡ 0 (mod N). □

Remark 7.8. The fact that A/A[N ] has CM by OK places restrictions on
the possible choices of the integer d in Proposition 7.7. For instance, in the
case where N is prime, the generator t of A[N ] must, up to multiplication
by an element of (Z/NZ)×, be of the form t = (τ + d)/N + ⟨1, τ⟩ for one of
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the two choices of d ∈ Z/NZ in Remark 7.6 such that C/⟨1, (τ + d)/N⟩ has
CM by OK . Indeed, in this case A/A[N ] = C/⟨1, t⟩ must have CM by OK

and Remark 7.6 applies since N splits in K by the Heegner hypothesis.

Fix a choice of Γ1(N)-level structure t ∈ A[N ]. By Proposition 7.7,
t = (cτ + d)/N + ⟨1, τ⟩ for some c, d ∈ Z with N ∤ c and gcd(c, d,N) = 1.
Let a, b, k ∈ Z be such that ad− bc− kN = 1 (possible by the gcd condi-
tion). Then the matrix γ = γt :=

(

a b
c d

)

∈ M2(Z) reduces modulo N into
SL2(Z/NZ). By modifying the entries of γ modulo N if necessary, we
may and will assume that γ =

(

a b
c d

)

∈ SL2(Z). This does not affect t =
(cτ + d)/N + ⟨1, τ⟩. Note that if c = 1, then we may for instance take
γ =

(

1 d−1
1 d

)

∈ SL2(Z). Multiplication by cτ + d yields an isomorphism

φN : (C/⟨1, γ(τ)⟩, 1/N + ⟨1, γ(τ)⟩) ∼−→(C/⟨1, τ⟩, (cτ + d)/N + ⟨1, τ⟩) = (A, t)

of elliptic curves with Γ1(N)-level structures. It follows that the point
(A, t) ∈ Y1(N)(C) = Γ1(N) \ H is represented by Γ1(N)γ(τ) = Γ1(N)aτ+bcτ+d .

Definition 7.9. Let q be an odd prime not dividing c, and let β ∈ P1(Fq).
Given the above notations, define τ tq,β ∈ H to be qγ(τ) if β = ∞ and

(γ(τ) + β)/q if β ̸= ∞. Let Λtq,β := ⟨1, τ tq,β⟩ and define the isogeny

φtq,β :







C/⟨1, γ(τ)⟩quot−→C/⟨1/q, γ(τ)⟩ [q]−→C/Λtq,β , β = ∞
C/⟨1, γ(τ)⟩ = C/⟨1, γ(τ) + β⟩quot−→C/Λtq,β , β ̸= ∞.

The composed isogeny

(7.2) ψtq,β := φtq,β ◦ [(cτ + d)−1] : C/OK
[(cτ+d)−1]−→ C/⟨1, γ(τ)⟩φ

t
q,β−→C/Λtq,β

has kernel of size q. Hence ψtq,β must be isomorphic (in the sense of Sec-

tion 3.1) to φq,β′ of Section 7.1 for some β′ ∈ P1(Fq). Indeed, we have

ker(ψtq,β) =










⟨(τ + c−1d)/q + ⟨1, τ⟩⟩, β = ∞
⟨1/q + ⟨1, τ⟩⟩, a+ cβ ≡ 0 (mod q)

⟨(τ + (a+ cβ)−1(b+ dβ))/q + ⟨1, τ⟩⟩, β ̸= ∞, a+ cβ ̸≡ 0 (mod q),
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and thus

(ψtq,β ,C/Λ
t
q,β) =











(φq,c−1d, Aq,c−1d), β = ∞
(φq,∞, Aq,∞), a+ cβ ≡ 0 (mod q)

(φq,(a+cβ)−1(b+dβ), Aq,(a+cβ)−1(b+dβ)), β ̸= ∞, a+ cβ ̸≡ 0 (mod q),

as elements of IsogN (A). In particular, there is an equality of subsets of
IsogN (A)

(7.3) {(φq,β , Aq,β) | β ∈ P1(Fq)} = {(ψtq,β ,C/Λtq,β⟩) | β ∈ P1(Fq)},

and Proposition 7.5 can be restated as:

Proposition 7.10. With the above notations, let q be an odd prime which
is inert in K and coprime to cN . The action of the Galois group Gal(Hq/H)
on the subset {(ψtq,β ,C/Λtq,β) | β ∈ P1(Fq)} of IsogN (A) is simply transitive.

7.3. Explicit pq-isogenies

Retain the notations of the previous subsection. In particular,

t = (cτ + d)/N + ⟨1, τ⟩ ∈ A[N ]

with c, d ∈ Z, gcd(c, d,N) = 1, c ̸≡0 (mod N), and γ = γt =
(

a b
c d

)

∈ SL2(Z).
Let q be an odd prime which is coprime to cdKN . Let p be an auxiliary

distinct odd prime which is also coprime to cdKN . Consider the lattices
Λtp,q,β := ⟨1, τ tp,q,β⟩ with β ∈ P1(Fq) of index pq in OK where τ tp,q,β := pτ tq,β .

Consider the isogenies ψtp,q,β : C/OK−→C/Λtp,q,β obtained by composing

ψtq,β defined in (7.2) with the map

C/⟨1, τ tq,β⟩
quot−→C/⟨1/p, τ tq,β⟩

[p]−→C/⟨1, τ tp,q,β⟩.

The isogenies ψtp,q,β have degree dψt
p,q,β

= pq with kernel spanned by ker(ψtq,β)

together with the point (τ + c−1d)/p+ ⟨1, τ⟩.

Proposition 7.11. If q is an odd prime which is inert in K and coprime
to cN , and p is a distinct auxiliary prime not dividing cdKN |cτ + d|2, then
Λtp,q,β is a proper fractional Opq-ideal for all β ∈ P1(Fq).
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Proof. Begin by observing that

(7.4) γ(τ) :=
aτ + b

cτ + d
=

τ

|cτ + d|2 +
ac|τ |2 − bcdK + bd

|cτ + d|2 .

Consequently, we have Q(τ tp,q,β) = Q(τ tq,β) = Q(γ(τ)) = Q(τ) = K. By (7.3),

C/Λtq,β is equal to Aq,β′,C = C/Λq,β′ for some β′ ∈ P1(Fq). Since q is inert, it

follows by Proposition 7.1 that Λtq,β = Λq,β′ is a proper fractional Oq-ideal.

Let us first suppose that β ̸= ∞. By [15, Lemma 7.5], τ tq,β must satisfy

a quadratic equation of the form q2|cτ + d|2X2 +AX +B, with coefficients
A,B ∈ Z such that gcd(A,B, q2|cτ + d|2) = 1. But then τ tp,q,β satisfies the

equation q2|cτ + d|2X2 +ApX +Bp2. The coefficients have gcd equal to
1 since p and q are distinct and p ∤ |cτ + d|2. By [15, Lemma 7.5], Λtp,q,β
is then a proper fractional ⟨1, q2|cτ + d|2τ tp,q,β⟩-ideal. The result follows by
observing, using (7.4), that

q2|cτ + d|2τ tp,q,β = pq|cτ + d|2(γ(τ) + β)

= pq(τ + ac|τ |2 − bcdK + bd+ β|cτ + d|2),

hence ⟨1, q2|cτ + d|2τ tp,q,β⟩ = ⟨1, pqτ⟩ = Opq.

If β = ∞, then, by [15, Lemma 7.5], τ tq,∞ must satisfy a quadratic equa-
tion of the form |cτ + d|2X2 +AX +B, with coefficients A,B ∈ Z such that
gcd(A,B, |cτ + d|2) = 1. But then τ tp,q,∞ satisfies the equation

|cτ + d|2X2 +ApX +Bp2.

The coefficients have gcd equal to 1 since p ∤ |cτ + d|2. By [15, Lemma 7.5],
Λtp,q,∞ is then a proper fractional ⟨1, |cτ + d|2τ tp,q,∞⟩-ideal. The result follows
by observing that

|cτ + d|2τ tp,q,∞ = pq|cτ + d|2γ(τ) = pqτ + pq(ac|τ |2 − bcdK + bd),

hence ⟨1, |cτ + d|2τ tp,q,∞⟩ = ⟨1, pqτ⟩ = Opq. □

Proposition 7.12. Let q be an odd prime which is inert in K and co-
prime to cN . Let p be a distinct auxiliary odd prime which is coprime to
cdKN |cτ + d|2. For all β ∈ P1(Fq), there exists an elliptic curve Atp,q,β with

CM by Opq over the ring class field Hpq such that Atp,q,β,C = C/Λtp,q,β and

the isogeny of complex tori ψtp,q,β descends to an isogeny ψtp,q,β : A−→Atp,q,β
giving rise to an isomorphism class (ψtp,q,β , A

t
p,q,β) ∈ IsogNpq(A) with field of

definition Hpq.
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Proof. By Proposition 7.11, the elliptic curves C/Λtp,q,β have CM byOpq, and
the result is a consequence of the main theorem of complex multiplication
[15, Theorem 11.1]. □

Proposition 7.13. Let q be an odd prime which is inert in K and co-
prime to cN . Let p be a distinct auxiliary odd prime which is coprime
to cdKN |cτ + d|2. The Galois group Gal(Hpq/Hp) acts simply transitively
on the subset {(ψtp,q,β , Atp,q,β) | β ∈ P1(Fq)} ⊂ IsogN (A). The action is de-

termined by the action of Gal(Hq/H) on {(ψtq,β ,C/Λtq,β) | β ∈ P1(Fq)} upon
restricting automorphisms from Hpq to Hq.

Proof. Let β ∈ P1(Fq). The isogeny ψtp,q,β has kernel of size pq. The p-part

of this kernel is generated by (τ + c−1d)/p+ ⟨1, τ⟩, and is therefore indepen-
dent of β. It corresponds to the isomorphism class of an isogeny from A to
the elliptic curve Ap := Ap,c−1d defined over Hp of Section 7.1 (if p is inert in
K, then Ap has CM by Op, while for p split it can happen that Ap has CM
by OK as explained in Remark 7.6. In any case, the isomorphism class is
defined over Hp). In particular, Gal(Hpq/Hp) fixes the p-part of the isogeny
ψtp,q,β , and as a result its action on the set {(ψtp,q,β , Atp,q,β) | β ∈ P1(Fq)} is
well-defined. Note that the latter set has order (q + 1)/uK (as in the proof
of Proposition 7.5, using (7.3)). By Proposition 7.12, we have an inclusion
{(ψtp,q,β , Atp,q,β) | β ∈ P1(Fq)} ⊂ IsogNpq(A) (in the notation of Section 3.1)
and the Galois action is simple. Since p and q are distinct primes, we have
Hp ∩Hq = H and Hpq = Hp ·Hq [29, Proposition 1.7]. Thus, the natural
restriction map from Hpq to Hq induces an isomorphism of Galois group

(7.5) Gal(Hpq/Hp) ≃ Gal(Hq/H).

By Lemma 7.3, Gal(Hpq/Hp) thus has order equal to the one of
{(ψtp,q,β , Atp,q,β) | β ∈ P1(Fq)}, and consequently the action is transitive. □

Definition 7.14. With the above notations, given an odd prime q co-
prime to cdKN and inert in K, an auxiliary disctinct prime p coprime
to cdKN |cτ + d|2, and β ∈ P1(Fq), the cycles associated to the isomorphism
classes (ψtp,q,β , A

t
p,q,β) ∈ IsogNpq(A) are denoted

∆̃HC
p,q,β := ∆̃HC

ψt
p,q,β

and ∆̃GHC
p,q,β := ∆̃GHC

ψt
p,q,β

in the notation of Definition 3.3. By Propositions 3.1 and 7.11, they are
defined over the field compositum Fpq = KN ·Hpq ⊂ Kab ⊂ Q̄.
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Proposition 7.15. Fix a Γ1(N)-level structure t ∈ A[N ], and let p and
q be distinct odd primes coprime to cdKN with q inert in K and p ∤
|cτ + d|2. The action of Gal(Fpq/Fp) on the subset {∆̃HC

p,q,β | β ∈ P1(Fpq)}
of CHr+1(Wk,Fpq

)0 is determined by the action of Gal(Hpq/Hp) on the
subset {(ψtp,q,β , Atp,q,β) | β ∈ P1(Fq)} of IsogNpq(A) under the restriction map
Gal(Fpq/Fp)−→Gal(Hpq/Hp). In particular, the action is transitive.

Proof. Let σ ∈ Gal(Fpq/Fp) and β ∈ P1(Fq). Let tp,q,β := ψtp,q,β(t) ∈
Atp,q,β [N ∩Opq] and let ιp,q,β denote the inclusion of (Atp,q,β)

k inWk as the fi-

bre above Pp,q,β := (Atp,q,β , tp,q,β) ∈ X1(N)(Fpq). By Definitions 3.2 and 3.3,

we have ∆̃HC
p,q,β := ϵ̃WK

(ιp,q,β)∗((Γ[pq
√
−dK ])

r) ∈ CHr+1(Wk,Fpq
)0, and thus

(∆̃HC
p,q,β)

σ = ϵ̃σWK
(ισp,q,β)∗((Γ[pq

√
−dK ]σ)

r).

We have ϵ̃σWK
= ϵ̃WK

since ϵ̃Wk
is defined over Q, and [pq

√−dK ]σ =
[pq

√−dK ] ∈ End((Atp,q,β)
σ) since σ fixes H. The map ισp,q,β is the in-

clusion of ((Atp,q,β)
σ)k in Wk as the fibre above the point P σp,q,β =

((Atp,q,β)
σ, (ψtp,q,β)

σ(tσ)) of X1(N). Since σ fixes KN , it fixes (A, t) ∈
X1(N)(KN ), so that P σp,q,β = ((Atp,q,β)

σ, (ψtp,q,β)
σ(t)). Thus, the action is de-

termined by the action on (ψtp,q,β , A
t
p,q,β) ∈ IsogNpq(A). The last part of the

statement then follows from Proposition 7.13. □

8. Asymptotics for Abel–Jacobi images of explicit cycles

Let k = 2r ≥ 2 and N ≥ 5 be integers. Fix an imaginary quadratic field K
with ring of integers OK and discriminant −dK coprime to N . Assume that
K satisfies the Heegner hypothesis with respect to N , and let N denote a
choice of cyclic N -ideal of OK . Let H be the Hilbert class field of K. Let
A be an elliptic curve with CM by OK over H, and choose the embedding
H →֒ C of Section 1.7 such that AC = C/OK . Let τ := (−dK +

√−dK)/2
denote the standard generator of OK so that OK = ⟨1, τ⟩, and fix a Γ1(N)-
level structure t ∈ A[N ]. Then t = (cτ + d)/N + ⟨1, τ⟩ for some c, d ∈ Z with
c ̸≡ 0 (mod N) and gcd(c, d,N) = 1 by Proposition 7.7. As in Section 7.2, let
a, b ∈ Z such that γ := γt =

(

a b
c d

)

∈ SL2(Z) (which might require translating
c and d by some multiples of N).

Define the indexing set

I = It := {(p, q) | p > q odd primes coprime to

cdK |cτ + d|2, q inert in K, p, q ≡ 1 (mod N)}.
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Note that this set is infinite by Dirichlet’s theorem on primes in arithmetic
progressions since dK and N are coprime. Using Theorem 4.2, we are going
to produce asymptotic estimates for the Abel–Jacobi images of the Heegner
cycles in the collection

(8.1) C := {∆̃HC
p,q,β ∈ CHr+1(Wk,Fpq

)0 | (p, q) ∈ I, β ∈ P1(Fq)}

(see Definition 7.14) as p/q → ∞. As a corollary, we will deduce information
about the orders of the algebraic equivalence classes of these cycles when
p/q is large.

Definition 8.1. Given (p, q) ∈ I and β ∈ P1(Fq), define

γp,q,β :=

{

pq β = ∞
p/q β ̸= ∞,

and κp,q,β :=

{

1 β = ∞
q β ̸= ∞.

Writing τ tp,q,β =: Xt
p,q,β + iY t

p,q,β and using (7.4), we see that

Y t
p,q,β = γp,q,β |cτ + d|−2

√

dK/2

and

Xt
p,q,β =

{

|cτ + d|−2(ac|τ |2 − bcdK + bd− dK/2)pq β = ∞
(|cτ + d|−2(ac|τ |2 − bcdK + bd− dK/2) + β)p/q β ̸= ∞.

Consider the convergent improper integral

Itp,q,β :=

∫ ∞

Y t
p,q,β

(y2 − (Y t
p,q,β)

2)re−2πydy > 0,

and define

Jp,q,β := 2k+1πr+1ir|cτ + d|k(pq)rκkp,q,βm2
k,ke

2πiXt
p,q,βItp,q,β ∈ C×.

Lemma 8.2. Let d be the dimension of Sk+2(Γ1(N)) and choose a basis
(f1, . . . , fd) consisting of normalised cuspidal eigenforms for the action of the
Hecke algebra. This choice identifies Sk+2(Γ1(N))∨ with Cd, and we let L
denote the lattice in Cd whose elements are the evaluations (via integration)
of the elements of the lattice L′

k ⊂ Sk+2(Γ1(N))∨ at ω⃗ := (ωf1 , . . . , ωfd).
Given (p, q) ∈ I and β ∈ P1(Fq), we view AJWk

((2kk!)2(pq)r∆̃HC
p,q,β) as an

element of Cd by identifying it with the formula displayed on the right
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hand side of Theorem 4.2 (this amounts to choosing a fixed representa-
tive of AJWk

((2kk!)2(pq)r∆̃HC
p,q,β) viewed as an element of Cd/L). Then, as

a complex vector valued function of (p, q) ∈ I, AJWk
((2kk!)2(pq)r∆̃HC

p,q,β) is

coordinate-wise asymptotically equivalent to J⃗p,q,β = (Jp,q,β , . . . , Jp,q,β) ∈ Cd

as p/q → ∞.

Proof. By Definition 7.14, ∆̃HC
p,q,β is the Heegner cycle associated to

(ψtp,q,β , A
t
p,q,β) ∈ IsogNpq(A). We have Atp,q,β,C = C/⟨1, τ tp,q,β⟩ with τ tp,q,β equal

to pqγ(τ) or (γ(τ) + β)p/q depending on whether β = ∞ or β ̸= ∞. Re-
call that the isogeny ψtp,q,β : C/⟨1, τ⟩−→C/⟨1, τ tp,q,β⟩ is given by map-

ping w (mod ⟨1, τ⟩) 7→ pq(cτ + d)−1w (mod ⟨1, τ tp,q,β⟩) if β = ∞ and w

(mod ⟨1, τ⟩) 7→ p(cτ + d)−1w (mod ⟨1, τ tp,q,β⟩) if β ̸= ∞. By the assumption

that p and q are both congruent to 1 moduloN , we thus have ψtp,q,β(t) = 1/N

(mod ⟨1, τ tp,q,β⟩). Applying Theorem 4.2 therefore yields the equality

AJWk
((2kk!)2(pq)r∆̃HC

p,q,β) = (−2)r(2πi)r+1|cτ + d|k(pq)rκkp,q,βm2
k,k

×
∫ τ t

p,q,β

i∞
(z − τ tp,q,β)

r(z − τ̄ tp,q,β)
rf⃗(z)dz

modulo the lattice L, where f⃗ = (f1, . . . , fd), and κp,q,β is defined in Defi-
nition 8.1. Writing τ tp,q,β = Xt

p,q,β + iY t
p,q,β as in Definition 8.1 and making

the change of variables z = Xt
p,q,β + iy gives the equality

AJWk
((2kk!)2(pq)r∆̃HC

p,q,β) = 2k+1πr+1ir|cτ + d|k(pq)rκkp,q,βm2
k,k

×
∫ ∞

Y t
p,q,β

(y2 − (Y t
p,q,β)

2)rf⃗(Xt
p,q,β + iy)dy

modulo the lattice L. For all 1 ≤ j ≤ d, using the Fourier expansion at i∞
together with the fact that fj is a normalised cuspidal eigenform, there exists
a constant cj > 0 such that

(8.2) |fj(z)− e2πiz| ≤ cje
−4πℑ(z) for all z ∈ H.

Let c⃗ := (c1, . . . , cd) ∈ Cd. Using (8.2), Definition 8.1, and the fact that
Y t
p,q,β = γp,q,β |cτ + d|−2

√
dK/2, we deduce that

|AJWk
((2kk!)2(pq)r∆̃HC

p,q,β)− J⃗p,q,β |
≤ 2k+1πr+1|cτ + d|k(pq)rκkp,q,βm2

k,ke
−γp,q,β |cτ+d|−2π

√
dKItp,q,β c⃗.
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It follows that
∣

∣

∣

∣

∣

AJWk
((2kk!)2(pq)r∆̃HC

p,q,β)− J⃗p,q,β

J⃗p,q,β

∣

∣

∣

∣

∣

≤ e−γp,q,β |cτ+d|
−2π

√
dK c⃗.

The result follows by noting that γp,q,β → ∞ as p/q → ∞. □

Proposition 8.3. With the above notations, as p/q tends to ∞ for (p, q) ∈
I, the order of AJWk

(∆̃HC
p,q,β) becomes large (possibly infinite) in the inter-

mediate Jacobian Jr+1(Wk,C) for all β ∈ P1(Fq).

Proof. We have |Jp,q,β | = 2k+1πr+1|cτ + d|k(pq)rκkp,q,βm2
k,kI

t
p,q,β and

Itp,q,β = γk+1
p,q,β

∫ ∞

|cτ+d|−2
√
dK/2

(y2 − |cτ + d|−4dK/4)
re−2πγp,q,βydy.

Unfolding the power (y2 − |cτ + d|−4dK/4)
r and integrating by parts repeat-

edly yields the formula

Itp,q,β = γk+1
p,q,βe

−γp,q,β |cτ+d|−2π
√
dK(8.3)

×
r
∑

j=0

2j
∑

s=0

(−1)r−j
(

r

j

)

(2j)!

(2j − s)!

(|cτ + d|−2
√
dK/2)

k−s

(2πγp,q,β)s+1
.

It follows that J⃗p,q,β tends to 0 in Cd as p/q → ∞. Let ϵ > 0 such
that the open polydisc Dϵ(0)

d ⊂ Cd of radius ϵ and center 0 satisfies
Dϵ(0)

d ∩ L = {0} (possible by discreteness of L). For p/q large enough,
J⃗p,q,β lies in Dϵ(0)

d and thus J⃗p,q,β ∈ L if and only if J⃗p,q,β = 0. How-

ever, J⃗p,q,β ̸= 0 as is clear from the definition of the integral Ip,q,β . The

closer the value J⃗p,q,β is to 0 ∈ Cd, the larger the order (if finite) of J⃗p,q,β
(mod L) becomes in Cd/L. By Lemma 8.2, the j-th coordinate satisfies
AJWk

((2kk!)2(pq)r∆̃HC
p,q,β)j = Jp,q,β(1 + o(1)) for all 1 ≤ j ≤ d. In particular,

AJWk
((2kk!)2(pq)r∆̃HC

p,q,β) (viewed in Cd) tends to 0 without being equal to

0 as p/q → ∞. We deduce that (2kk!)2(pq)r AJWk
(∆̃HC

p,q,β) has large (if fi-
nite) order in Sk+2(Γ1(N))∨/L′

k. In particular, the same conclusion holds
for AJWk

(∆̃HC
p,q,β). The result follows since Sk+2(Γ1(N))∨/L′

k is a quotient of

Jr+1(Wk,C). □

Proposition 8.4. With the above notations, as p/q tends to ∞ for (p, q) ∈
I, the order of AJWk

(∆̃HC
p,q,β)−AJWk

(∆̃HC
p,q,∞) becomes large (possibly infi-

nite) in the intermediate Jacobian Jr+1(Wk,C) for all ∞ ≠ β ∈ P1(Fq).
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Proof. Define the polynomial

P (X) :=

r
∑

j=0

2j
∑

s=0

(−1)r−j
(

r

j

)

(2j)!

(2j − s)!

(|cτ + d|−2
√
dK/2)

k−s

(2π)s+1
Xk−s ∈ R[X].

It has degree < k. By (8.3), for all β ∈ P1(Fq), we have

Itp,q,β = e−γp,q,β |cτ+d|
−2π

√
dKP (γp,q,β).

It follows that
∣

∣

∣

∣

Jp,q,∞
Jp,q,β

∣

∣

∣

∣

= q−k
Itp,q,∞
Itp,q,β

= q−k
P (pq)

P (p/q)
e−|cτ+d|−2π

√
dK(q2−1)p/q.

In particular, the limit as p/q → ∞ is equal to 0. By Lemma 8.2,
we deduce that for all 1 ≤ j ≤ d, the ratio of the j-th coordi-
nates |AJWk

((2kk!)2(pq)r∆̃HC
p,q,∞)j/AJWk

((2kk!)2(pq)r∆̃p,q,β)j | tends to 0 as
p/q → ∞. Thus,

AJWk
((2kk!)2(pq)r∆̃HC

p,q,β)j −AJWk
((2kk!)2(pq)r∆̃HC

p,q,∞)j

= AJWk
((2kk!)2(pq)r∆̃HC

p,q,β)j(1 + o(1))

= Jp,q,β(1 + o(1)),

as p/q → ∞. From this point on, the result follows from the same argument
as in the proof of Proposition 8.3. □

Corollary 8.5. There exists a constant Cr > 0 such that for all (p, q) ∈ I
satisfying p/q > Cr, the following statements hold:

(1) For all β ∈ P1(Fq), the algebraic equivalence class of ∆̃HC
p,q,β in

Grr+1(Wk,Fpq
) has infinite order.

(2) For all ∞̸=β∈P1(Fq), the algebraic equivalence class of ∆̃
HC
p,q,β−∆̃HC

p,q,∞
in Grr+1(Wk,Fpq

) has infinite order.

Proof. Given β ∈ P1(Fq), we let Ξp,q,β denote either ∆̃HC
p,q,β or ∆̃HC

p,q,β − ∆̃HC
p,q,∞

(in the latter case we exclude β = ∞). Using either Proposition 8.3 or Propo-
sition 8.4, we may choose a constant Cr > 0 such that for all (p, q) ∈ I
satisfying p/q > Cr, the order of AJWk

(Ξp,q,β) in Jr+1(Wk,C) is greater
that the constant Mr of Definition 6.3, for all β ∈ P1(Fq). Let (p, q) ∈ I
with p/q > Cr and let β ∈ P1(Fq). The cycle Ξp,q,β is defined over Fpq

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==

qvWp5l9VcOfjGX5zxxjiKLs6OClo56BeoQn0qns/ZnBA9btfgxciVC+bIoa0zuXG0RNy6jVFxNphYnGeg6+nMA==



✐

✐

“5-Lilienfeldt” — 2024/10/15 — 0:37 — page 503 — #45
✐

✐

✐

✐

✐

✐

Heegner cycles in Griffiths groups of Kuga–Sato varieties 503

by Proposition 3.1, and thus its algebraic equivalence class [Ξp,q,β ] be-
longs to Grr+1(Wk,Fpq

). Suppose by contradiction that [Ξp,q,β ] is torsion
in Grr+1(Wk,Fpq

). Using the Galois equivariance of the Bloch map (Propo-
sition 5.1) along with Proposition 5.4, we see that λ◦Wk

([Ξp,q,β ]) belongs to

Hk+1
et (Wk,Q̄,Q/Z(r + 1))Gal(Q̄/Fpq) and is thus annihilated by Mr by Corol-

lary 6.4. Recall the equality (5.18): λ◦Wk
= comp−1 ◦u ◦AJWk

. We conclude
that u(AJWk

([Ξp,q,β ])) is annihilated by Mr. By injectivity of the map u,
we deduce that AJWk

([Ξp,q,β ]) is annihilated by Mr, which contradicts that
fact that the order of AJWk

([Ξp,q,β ]) is greater than Mr. This proves by
contradiction that [Ξp,q,β ] has infinite order. □

9. Infinite rank Griffiths groups

Let k = 2r ≥ 2 be an even integer. Fix an imaginary quadratic field K with
ring of integers OK and discriminant −dK coprime to N . Assume that K
satisfies the Heegner hypothesis with respect to N , and let N denote a
choice of cyclic N -ideal of OK . Let H be the Hilbert class field of K. Let
A be an elliptic curve with CM by OK over H and choose the embedding
H →֒ C of Section 1.7 such that AC = C/OK . Let τ := (−dK +

√−dK)/2
denote the standard generator of OK so that OK = ⟨1, τ⟩, and fix a Γ1(N)-
level structure t ∈ A[N ]. Then t = (cτ + d)/N + ⟨1, τ⟩ for some c, d ∈ Z with
c ̸≡ 0 (mod N) and gcd(c, d,N) = 1 by Proposition 7.7. As in Section 7.2, let
a, b ∈ Z such that γ := γt =

(

a b
c d

)

∈ SL2(Z) (which might require translating
c and d by some multiples of N).

Of interest is the group Grr+1(Wk,Q̄) of algebraic equivalence classes of
cycles of codimension r + 1 defined over Q̄. More precisely, we will focus on
the subgroup GHC

C of Grr+1(Wk,Kab) generated by the algebraic equivalence
classes of the Heegner cycles in the collection C defined in (8.1).

Theorem 9.1. With the above notations and assumptions, we have
dimQG

HC
C ⊗Z Q = ∞.

Proof. It suffices to prove that dimQG
HC
C ⊗Z Q ≥ ℓ− 1 for an arbitrary fixed

prime ℓ > 6NdK . Pick an odd prime q which is coprime to cdK |cτ + d|2,
congruent to 1 moduloN , inert inK, and such that (q + 1)/uK ≡ 0 (mod ℓ).
Recall that uK = |O×

K |/2 ∈ {1, 2, 3} and in particular it is coprime to ℓ.
The last condition is thus equivalent to q ≡ −1 (mod ℓ). The last three
conditions on q are equivalent to a single congruence condition moduloNdKℓ
by the Chinese Remainder Theorem since N, dK , and ℓ are pairwise coprime.
In particular, there are infinitely many possible choices for q by Dirichlet’s
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theorem on arithmetic progressions. A single choice of a prime q will suffice
for this proof.

Recall from Lemma 7.3 that the extension Hq/H is cyclic of degree
(q + 1)/uK . Since ℓ divides this degree by assumption on q, Gal(Hq/H)
admits a unique cyclic subgroup Gℓ of order ℓ. Let σℓ denote a choice of
generator of Gℓ. By Proposition 7.10, we have

(9.1) (ψtq,∞,C/Λ
t
q,∞)σℓ = (ψtq,βℓ

,C/Λtq,βℓ
)

in IsogNq (A) for some ∞ ≠ βℓ ∈ P1(Fq).
Pick a prime p such that (p, q) ∈ I and p/q is greater than the constant

Cr of Corollary 8.5. This choice guarantees that the algebraic equivalence
classes

(9.2) [∆̃HC
p,q,∞], [∆̃HC

p,q,βℓ
], and [∆̃HC

p,q,∞]− [∆̃HC
p,q,βℓ

]

have infinite order in Grr+1(Wk,Fpq
).

Restriction of automorphisms induces isomorphisms

Gal(Fpq/KN )
∼−→

[29, (1.39)]
Gal(Hpq/H) and Gal(Hpq/Hp)

∼−→
(7.5)

Gal(Hq/H).

Let G̃ℓ ⊂ Gal(Fpq/KN ) be the preimage of Gℓ under the above maps. It is
a cyclic subgroup of Gal(Fpq/Fp) of order ℓ. Denote by σ̃ℓ the preimage of
σℓ, which is a generator of G̃ℓ.

Define a homomorphism of Q-vector spaces

Ψ : Q[G̃ℓ]−→Grr+1(Wk,Fpq
)⊗Z Q, σ̃ℓ 7→ [(∆̃HC

p,q,∞)σ̃ℓ ].

The kernel of Ψ is stable under multiplication by Q[G̃ℓ] and is thus an ideal
of Q[G̃ℓ]. Let ζℓ ∈ Q̄ be a choice of primitive ℓ-th root of unity. There is a
ring isomorphism

Q[G̃ℓ]
∼−→Q×Q(ζℓ),

ℓ−1
∑

i=0

λiσ̃
i
ℓ 7→

(

ℓ−1
∑

i=0

λi,

ℓ−1
∑

i=0

λiζ
i
ℓ

)

.

The only proper ideals of the ring Q×Q(ζℓ) are {0} ×Q(ζℓ) and Q× {0},
corresponding respectively to the augmentation ideal and the ideal QN in
the group ring Q[G̃ℓ], where N =

∑ℓ−1
i=0 σ̃

i
ℓ is the norm element.

By Propositions 7.15 and 7.13, the action of σ̃ℓ on ∆̃HC
p,q,∞ is determined

by the action of σℓ on (ψtq,∞,C/Λ
t
q,∞). It follows from (9.1) that (∆̃HC

p,q,∞)σ̃ℓ =
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∆̃HC
p,q,βℓ

. By (9.2), both Ψ(1) and Ψ(σ̃ℓ − 1) are not equal to 0. Thus, ker(Ψ)

is neither all of Q[G̃ℓ] nor the augmentation ideal. In particular, it must
either be trivial or equal to QN , which implies that

dimQQ[G̃ℓ]/ ker(Ψ) ≥ ℓ− 1. □

Corollary 9.2. With the above notations and assumptions, let 0 ≤ k′ =
2r′ ≤ k be another even integer and let Xk,k′ :=Wk,H ×H Ak

′

. The subgroup
of Grr+r

′+1(Xk,k′,Kab) generated by the algebraic equivalence classes of the
variants of generalised Heegner cycles ∆k,k′,ψt

p,q,β
indexed by (p, q) ∈ I has

infinite rank.

Proof. This follows by combining Theorem 9.1 and Proposition 3.4. □

Remark 9.3. The method of Section 4 can be used to give a formula for
the complex Abel–Jacobi images of the variants of generalised Heegner cycles
∆k,k′,φ with (φ,A′) ∈ IsogN (A), as these are images of generalised Heegner
cycles under certain correspondences by [5, Proposition 4.1.1]. Such a for-
mula can then directly be used to prove Theorem 9.2. We have opted not
to do so, as it is enough to know the images of Heegner cycles under the
complex Abel–Jacobi map in order to deduce Corollary 9.2.
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