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Heegner cycles in Griffiths groups of
Kuga—Sato varieties

Davip T.-B. G. LILIENFELDT

The aim of this article is to prove, using complex Abel-Jacobi
maps, that the subgroup generated by Heegner cycles associated
with a fixed imaginary quadratic field in the Griffiths group of a
Kuga—Sato variety over a modular curve has infinite rank. This
generalises a classical result of Chad Schoen for the Kuga—Sato
threefold, and complements work of Amnon Besser on complex
multiplication cycles over Shimura curves. The proof relies on a
formula for the images of Heegner cycles under the complex Abel—
Jacobi map given in terms of explicit line integrals of even weight
cusp forms on the complex upper half-plane. The latter is deduced
from previous joint work of the author with Massimo Bertolini,
Henri Darmon, and Kartik Prasanna by exploiting connections
with generalised Heegner cycles. As a corollary, it is proved that
the Griffiths group of the product of a Kuga—Sato variety with
powers of an elliptic curve with complex multiplication has infinite
rank. This recovers results of Ashay Burungale by a different and
more direct approach.
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1. Introduction
1.1. Heegner cycles

A generalisation of the conjecture of Birch and Swinnerton-Dyer [7), [§] in-
volving algebraic cycles exists for higher dimensional algebraic varieties over
number fields. It is due independently to Beilinson [2] and Bloch [10]. The
motive of a newform f of level I'y(NN) and higher even weight k + 2, with
k=2r > 2, is cut out from the Kuga—Sato variety Wy over Q of dimen-
sion k+1 and level I';(N) by the work of Scholl [39]. The conjecture of
Beilinson and Bloch roughly predicts that the order of vanishing of the L-
function of f over a number field F' at its center s = r + 1 is accounted for
by the existence of non-torsion elements in the Chow group CH" (W, r)o
of null-homologous algebraic cycles of codimension r + 1 modulo rational
equivalence.

Given an imaginary quadratic field K satisfying the Heegner hypoth-
esis with respect to N (all primes dividing N split in K), a construction
of cycles that could potentially account for the first central derivative of
L(f/K,s) was envisioned in the seminal work of Gross and Zagier [23], §V. 4].
These are higher dimensional analogues of Heegner points known as Heegner
cycles. They live in complex multiplication (CM) fibres of the Kuga—Sato
variety Wp—X1(NN), and lie above Heegner points via the map of mod-
ular curves X (N)—Xo(NV). Zhang [44] has proved a Gross—Zagier type
formula relating L'(f/K,r + 1) to the Beilinson-Bloch height of a Heegner
cycle. This formula has recently been generalised by Qiu [35]. A p-adic ver-
sion of Zhang’s formula has been obtained by Nekovar [32], with a step in
the proof filled by Shnidman [40], generalising previous work of Perrin-Riou
[34] for weight 2 forms. A universal p-adic Gross—Zagier formula encompass-
ing the previously known formulae has recently been obtained by Disegni
[17]. Kolyvagin’s [22] 28] method of Euler systems has also been adapted to
the setting of Heegner cycles by Nekovar [31].
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The present article is concerned with questions about the algebraic geo-
metric, or Hodge theoretic, incarnation of Heegner cycles. The aim is to give
an explicit formula for their images under the complex Abel-Jacobi map,
and deduce consequences for Griffiths groups of Kuga—Sato varieties. This
in turn implies results about certain variants of generalised Heegner cycles
introduced by Bertolini, Darmon, and Prasanna in [5].

1.2. The Griffiths group

The Griffiths group Gr(X) = @;l:o G1/(X) of a smooth projective alge-
braic variety X of dimension d is the group of null-homologous algebraic
cycles modulo algebraic equivalence. It is a rather mysterious quotient of
the null-homologous Chow group. For codimension 1 algebraic cycles, al-
gebraic equivalence coincides with homological equivalence, hence Grl(X )
is trivial. In higher codimension, this is however no longer the case. In-
deed, Griffiths [20] showed that for a general quintic hypersurface X of P*
over C, Gr?(X) ®z Q is non-zero. Clemens [14] then showed in the same
case that dimg Gr?(X) ®z Q = oo. Ceresa [I3] proved that the Ceresa cycle
L(C) — [-1]*¢(C) € Gr9~1(Jac(C)) is non-torsion for a generic curve of genus
g > 3 over C, where ¢ : C — Jac(C) is a fixed Abel-Jacobi embedding, and
Nori [33] later proved in the same case that dimg Gr?(Jac(C)) ®z Q = occ.
In recent related developments, Totaro [41] showed that for a very general
principally polarised complex abelian 3-fold X, Gr*(X) ® Z/¢Z is infinite
for any prime ¢ (see [36}, B8] for prior results).

Over number fields, the first explicit example of a variety for which such
phenoma occurred was found by Harris [24] who studied the Ceresa cycle of
the Fermat quartic over Q, and proved that it is non-zero modulo algebraic
equivalence by computing its image under the complex Abel-Jacobi map.
Bloch [I0] then proved that the algebraic equivalence class of the Ceresa
cycle of the Fermat quartic is non-torsion using a purely algebraic method
involving the étale Abel-Jacobi map. Schoen [37] studied Heegner cycles on
the Kuga—Sato threefold W of level I'(V) and proved that dimg Gr2(W@) ®z
Q = oo. His method cleverly combines a complex Abel-Jacobi calculation
with the algebraic method pioneered by Bloch. The approach of Schoen was
generalised by Besser [6] to Heegner cycles over Shimura curves associated
with indefinite division quaternion algebras over Q.
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1.3. Generalised Heegner cycles

Let K be an imaginary quadratic field satisfying the Heegner hypothesis
with respect to N. Let A be an elliptic curve with CM by the maximal or-
der Ok of K over the Hilbert class field H of K. Fix an embedding H — C
such that Ac = C/Ok. Bertolini, Darmon, and Prasanna introduced in [4]
a distinguished collection of cycles, known as generalised Heegner cycles, on
the product varieties W, p x g A” where r > 1 is an integer. These cycles ac-
count for the motives of cusp forms twisted by certain algebraic Hecke char-
acters of infinite order. In a subsequent paper [5], they further introduced
variants of generalised Heegner cycles on the product varieties W,., i x g A™
where 71 > r9 are non-negative integers of the same parity, and proved some
non-vanishing results in Griffiths groups using p-adic Hodge theoretic meth-
ods. Burungale [11} 12] studied the p-adic syntomic Abel-Jacobi images of
these variants of generalised Heegner cycles modulo p (both in the case of
modular curves and Shimura curves). A consequence of his work is that
the subgroups generated by these cycles in the relevant Griffiths groups
have infinite rank. His method uses tools from Iwasawa theory and cru-
cially relies on the p-adic Gross—Zagier formula for generalised Heegner cy-
cles of [4] and [26]. In joint work of the author with Bertolini, Darmon, and
Prasanna [3], the original approach of Schoen [37] was adapted to the gen-
eralised Heegner cycles of [4]. In the case when r > 2 and the discriminant
of K is not —3 or —4 (assumed for simplicity), the main result of [3] proves
that dimg Gr" ™ (W, i x A")g) ®z Q = oo by exploiting a complex Abel-
Jacobi calculation for generalised Heegner cycles. It is worth pointing out
that the proof actually gives the infinitude of the rank of the Griffiths group
over the maximal abelian extension K?P of K.

1.4. Main results

Let N > 5 and r > 1 be integers, and let k := 2r. Let W} denote the Kuga—
Sato variety over Q fibred over the modular curve X;(N) (defined in Sec-
tion 2.1). In [3, Remark 10], it was noted that the techniques developed in
[3] for generalised Heegner cycles should adapt to the case of Heegner cy-
cles. Namely, it should be possible to establish a formula for the complex
Abel-Jacobi images of Heegner cycles, and use such a formula to deduce
that dimg Gr“‘l(Wk,@) ®z Q = oco. The first goal of the present article is to
carry out this program. This complements the work of Besser [6], which does
not treat the case of the quaternion algebra M>(Q). The second goal is to
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use the result for Wy, to deduce similar results for products of W, with even
powers of CM elliptic curves.

1.4.1. The complex Abel-Jacobi map. The complex Abel-Jacobi

map

(Fil""" Hyd ' (W)
Hpn(Wie(C),Z)

AJ’IH/{}: : CHT+1(Wk7c)o—>JT+1(Wk7c) =

is a homomorphism from the codimension r 4 1 null-homologous Chow
group to the Griffiths intermediate Jacobian of Wy, ¢, a complex torus. The
complex vector space Siio(I'1(N)) of holomorphic cusp forms of weight
k + 2 and level I'1(N) is naturally identified with H*T19(W}, ¢) via the as-
sociation f — wy where wy(C/(1,7),1/N) = f(7)(2midw)* @ (2midr) for T
in the complex upper half-plane H and w the standard coordinate on the
torus C/(1,7) with lattice (1,7) :=Z @ Zr.

1.4.2. Setup and assumptions. Let N > 5 and r > 1 be integers, and
let k:=2r. Let K be an imaginary quadratic field satisfying the Heeg-
ner hypothesis with respect to N: all primes dividing N are split in K.
We impose no restrictions on the discriminant —dx of K (whereas [3] as-
sumed —dg # —3, —4 for simplicity). Choose an ideal N' of O such that
Ok /N =7Z/NZ (which exists by the Heegner hypothesis). Let A be an
elliptic curve with CM by the maximal order Og of K over the Hilbert
class field H of K. Fix an embedding H < C such that Ac = C/Ok and
a choice of T'1(INV)-level structure ¢ € A[N] (i.e., a generator t of the cyclic
group A[N]). Associated to any (isomorphism class of) isogeny ¢ : A— A’
of elliptic curves whose kernel intersects A[N] trivially is a Heegner cycle
denoted Agc € CHT“(WkQ)o (defined in Section .

1.4.3. The complex Abel-Jacobi formula. By definition, we have
eWkAgC = AEC where ey, denotes Scholl’s projector with rational coeffi-
cients (defined in Section [2.1)). Let €y, denote the normalised correspon-
dence with integral coefficients (see Definition . By functoriality of the
complex Abel-Jacobi map, we will solely be interested in the piece of the
Abel-Jacobi map that survives after composing with €y, :

(Fil" ! &y, Hid ' (Wi )V
11 ’

Adw, = &, o AT CHH (W ¢ )o—

with I := éw, Hpr1 (Wi c(C),Z). By properties of Scholl’s projector
ew,, the complex vector space Fil"*! eWKHggl(Wk,@) is identified with
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Sk+2(T'1(N)) via the association described in Section m (see Proposi-
tion . We may thus view AJWk(AgC) as an element of Sgio(T'1(N))Y
modulo some lattice. In Section [4] we will define a slightly larger lattice L}
in the dual space of cusp forms of weight k + 2 and level I'; (), which has
the advantage that it allows for more explicit formulae. The first main result
is a formula for the complex Abel-Jacobi image of a Heegner cycle viewed
in the torus Sg41(T'1(N))Y/L,:

Theorem 1.1. With the assumptions of Section let
0 :C/Ox—C/(1,7") be an isogeny of degree d, whose kernel inter-
sects AN trivially and such that ¢(t) = + (mod (1,7')). For any cusp
form f of weight k+ 2 and level T'1(N), we have the following equality

modulo the lattice L) :

(—2\/—alK)’”dfg(2772')’”“1(22’fN’“(l<:!)2)2

(7_/ _ 7:/)r

Adw, (2°kD?dRAZC) (wy) =

« / T Y (e FY ()

100

Remark 1.2. The proof of Theorem that we give avoids any adap-
tation of the Abel-Jacobi calculations of [3] (although the method of [3]
can be adapted). Instead, by exhibiting correspondences from Wy g X g A to
Wi, i which map generalised Heegner cycles to Heegner cycles (see Propo-
sition , we use functorial properties of the complexr Abel-Jacobi map to
deduce Theorem[1.1] directly from the formula for generalised Heegner cycles
[3, Theorem 1].

Remark 1.3. Theorem[1.1] implies the compatibility of the conjectural par-
tial generalisations of the Gross—Kohnen—Zagier theorem to higher weights
formulated by Hopkins in [25] with the conjectures of Beilinson and Bloch.
This is discussed further in Remark [{.4)

1.4.4. Griffiths groups of Kuga—Sato varieties. Using Theorem
we prove the second main theorem:

Theorem 1.4. With the assumptions of Section the subgroup of
Grr+1(Wk’Kab) generated by the algebraic equivalence classes of the Heegner
cycles AI;C indexed by isomorphism classes of isogenies o : A— A’ whose
kernels intersect AN trivially has infinite rank.
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Remark 1.5. Theorem [1.4] implies in particular that
dlmQ GI‘T+1(W]€7Q) ®Z Q = Q.

In the case when Wy is a threefold (the case r =1) and the congruence
subgroup is T'(N), the latter is Schoen’s main theorem in [37]. However,
Schoen’s proof proceeds by studying Heegner cycles attached to varying imag-
inary quadratic fields, so even in the case r = 1, Theorem[I.4 is a strength-
ening of his result. As already noted, Theorems and together with
their proofs complement the work of Besser [6], which is valid for Kuga—
Sato varieties over indefinite quaternionic Shimura curves.

Remark 1.6. Let F' be a number field and fix a prime £. The (-adic étale
Abel-Jacobi map [10)]

ALY CHY (W, p)o— H Y (Gal(Q/F), HiH (W g, Qe(r + 1)),

s a homomorphism from the codimension r + 1 null-homologous Chow group
of cycles rational over F to the first (continuous) Galois cohomology group
of the Gal(Q/F)-module HQH(Wk’@,Qg(r +1)). It is conjectured, for cy-
cles defined over number fields, to be injective up to torsion [27, Conjec-
ture 9.15]. In the course of proving Theorem we (roughly) show using
Theorem that Agc has infinite order in the Griffiths group asymptotically
as deg(p) goes to infinity. Thus, conjecturally, our results imply asymptotic
non-vanishing results for ¢-adic étale Abel-Jacobi images of Heegner cycles.

1.4.5. Griffiths groups of products of Kuga—Sato varieties with
even powers of CM elliptic curves. We next turn our attention to the
variants of generalised Heegner cycles introduced in [5]. Retain the notations
and assumptions of Section Given an even integer 0 < k' = 2r' <k,
the variants of generalised Heegner cycles are cycles Ak,k’,w of codimension
r+7' 4+ 1 on (Wy g xg A¥) e indexed by isomorphism classes of isogenies
¢ : A— A" whose kernels intersect A[N] trivially (defined in Section |3.2]). In
the case k' = 0 these are Heegner cycles, while in the case k' = k they are the
generalised Heegner cycles of [4]. We prove that Heegner cycles are images
under certain correspondences of these variants of generalised Heegner cycles
(see Proposition . The third main result then follows from Theorem |1.4

Theorem 1.7. Under the assumptions of Section[1.4.3, if 0 < kK = 2r' <k
is another even integer, then the subgroup of GrT‘H’/H((Wk’H X g AF) gan)
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generated by the algebraic equivalence classes of variants of generalised Heeg-
ner cycles Ay o indexed by isomorphism classes of isogenies ¢ : A— A’
whose kernels intersect AINT trivially has infinite rank.

Remark 1.8. Theorem is a generalisation of the main result of [3],
which is walid under the same hypothesis assuming k' =k (and —dx #
—3,—4), but without requiring k > 2 to be even. Theorems and re-
cover results of Burungale [12] by a fundamentally different approach. The
complex geometric method presented here is more direct, as it does not rely on
any type of (p-adic) Gross—Zagier formula, which was instrumental in [12].

1.5. Strategy

The method of proof of Theorem follows closely that of the proof of
[3, Theorem 2|, which itself is an adaptation of the original work and ideas
of Schoen [37]. We give a self-contained proof which does not assume fa-
miliarity with these prior works, offering along the way some additional
details, simplifications, and minor fixes. The method can be summarised as
follows. Analytic estimates of the integrals appearing in Theorem im-
ply that infinitely many Heegner cycles have either infinite or large order
in the Griffiths group. A comparison argument with Bloch’s étale variant of
the Abel-Jacobi map defined on torsion cycles, together with fundamental
properties of étale cohomology, allows us to deduce that in fact infinitely
many Heegner cycles have infinite order in the Griffiths group. Finally, us-
ing knowledge from the theory of complex multiplication about the Galois
action on these cycles enables us to prove that they generate a subgroup of
infinite rank in the Griffiths group.

1.6. Outline

In Section we recall the definition of Kuga—Sato varieties and define
Scholl’s projector, which cuts out spaces of cusp forms in the de Rham coho-
mology of these varieties. We define the product varieties Wy g x AF for
even integers k > k', as well as correspondences relevant for the definition of
the various cycles. In Section 3, we define the variants of generalised Heegner
cycles following [5]. We exhibit certain correspondences from Wy, g x g AF
to W, and prove that they map variants of generalised Heegner cycles to
rational multiples of Heegner cycles. In Section [4) we recall the definition
of the complex Abel-Jacobi map and prove Theorem using the corre-
spondences defined in the previous section with k = k’. The next sections
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are dedicated to proving Theorem Section [5] recalls basic properties of
Bloch’s étale variant of the Abel-Jacobi map on torsion cycles. Section [0]
is devoted to proving a finiteness result for the étale cohomology groups of
Wy, g with torsion coefficients related to the target of Bloch’s map. In Sec-
tion [7} we write down a collection of explicit isogenies that gives rise to a
distinguished subcollection of Heegner cycles on which we will focus for the
proof of Theorem In Section [§] we use Theorem to derive asymp-
totic information about the behaviour of Heegner cycles in our subcollection.
Finally, in Section [9] we prove Theorem and deduce Theorem

1.7. Notations and conventions

All number fields in this article are viewed as embedded in a fixed algebraic
closure Q of Q. Moreover, we fix a complex embedding Q < C, as well
as a p-adic embedding Q — C,, for each rational prime p. In this way, all
finite extensions of Q are viewed simultaneously as subfields of C and C,.
Throughout, the subscript Q on a group will denote the tensor product with
Q over Z. If F'is a field and X is a variety over a field contained in F', then X
will denote its base change. Given two varieties X and Y over a field F', we
write Corr” (X,Y) := CHY™M X+ (X x 1Y) for the group of correspondences
of degree r.

2. Cusp forms and Kuga—Sato varieties
2.1. Kuga—Sato varieties

Let £ > 2 and N > 5 be integers. Throughout, we will suppose that k is even,
and we let & = 2r with » > 1. The open modular curve Y;(N) over Q is the
fine moduli space representing isomorphism classes of pairs consisting of an
elliptic curve over a (Q-scheme together with a point of exact order N. It is
a geometrically connected smooth affine curve over Q. Let Yi(N) — X1(N)
denote the canonical proper desingularisation of Y1(N) over Q. As a Rie-
mann surface over the complex numbers, it is obtained by adjoining the
cusps. The modular curve X (NN) represents isomorphism classes of gener-
alised elliptic curves with 'y (IV)-level structure. Let 7 : E— X7 (N) denote
the universal generalised elliptic curve equipped with its canonical T'y (IV)-
level structure, and write Wy for the canonical proper desingularisation of
the k-fold self fibre product of £ over Q (see [39] §3.0] in the original case
of full level I'(N), and [4, Appendix] in the case of level I'1(IV), even over
SpecZ[1/N]). This is the k-th Kuga—Sato variety. It is smooth and proper
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over Q of dimension k£ + 1, and has a natural fibration 7 : W— X1 (N).
The fibre over a non-cuspidal point x representing the isomorphism class of
an elliptic curve E, with I'1 (IV)-level structure is given by 7'(']:1(.%') = EF.

Scholl has constructed a projector ep,, which cuts out the space
Sk+2(I'1(N)) of cusp forms of weight k£ + 2 and level I'1 (V) inside the de
Rham cohomology of the variety Wy (see [39, §1.1.2] for the original con-
struction of Scholl in full level, and [4 (2.1.2)] for the case of level I'; (N)).
We briefly recall its definition. Translation by the section of order N of
m: E—X1(N) given by the canonical I'1 (IV)-level structure gives rise to
an action of Z/NZ on €. Multiplication by —1 in the fibres of 7 defines an
action of up on €. The symmetric group X acts on £F by permuting the
factors. There is therefore an action of the group

Ap = (Z/NZ x po)* x %y,

on £F. By the canonical nature of the desingularisation, this action ex-
tends to an action on the Kuga-Sato variety W [39, Theorem 3.1.0 (i)].
Let xx : A,—{+£1} be the character which is trivial on (Z/NZ)*, the prod-
uct character on (u2)*, and the sign character on ¥j. The projector

1

1
€w,, ‘= m gEZAk xk(9)g €Z [2Nkz'] [Ax]

is the one corresponding to the character x;. We will view this projector as
an idempotent element of CorrO(Wk, W) as follows. Given g € Ay, denote
by d4 the induced automorphism of Wy, and let I's, C W), x Wy, denote its
graph. By slight abuse of notation we define the idempotent correspondence

1
(2.1) ew, = m Z xk(9)Ts, € CorrO(Wk,Wk)@.

geA,

As such, ey, acts on the various cohomology groups associated to Wj. The
symmetry of the correspondence ey, implies that the push-forward and pull-
back maps it induces are equal, and we will denote any such map simply by

EW, -

Proposition 2.1. We have 'eWkHé"R(Wk@) = EWngﬁrl(Wk@), and the
Hodge filtration is given by Fil/ eWkHc’f;{rl(kaC) =0 forj>k+2, and

Sk+2(T1(N)) ~ FilV ey, HY (Wi ),



Heegner cycles in Griffiths groups of Kuga—Sato varieties 469

for 1 < j < k+1, via the association f + wy where
wi(C/(1,7),1/N) = f(7)(2midw)* ® (2midr)

for T in the complex upper half-plane H and w the standard coordinate on
the torus C/(1, 1) with lattice (1,7) :=7Z & Zr.

Proof. This is [4, Lemma 2.2 & Corollary 2.3] (which hold more generally
over any field of characteristic zero). g

2.2. Products of Kuga—Sato varieties with powers of CM elliptic
curves

Fix an imaginary quadratic field K with ring of integers Ok and discriminant
—dx coprime to N. Let H be the Hilbert class field of K. By our conventions
in Section a complex embedding H < C is fixed. Let A be an elliptic
curve defined over H with ring of endomorphisms Endy(A) isomorphic to
Ok . Such an elliptic curve is said to have CM over H by the maximal order
Ok of K.

Let k' be another even integer with k' = 27’ for some 7’ > 0. We will
assume that k > k’. Consider the variety Xy := Wim Xu AF' which is
smooth and proper over H of dimension k + k/ + 1. It comes equipped with
a natural fibration 7 @ Xj p—>X1(IN), whose fibre over a non-cuspidal
point x representing the isomorphism class of an elliptic curve E, with
'y (N)-level structure is given by frk_’i, (r) = EF x AF,

The group pse acts on A by multiplication by —1, and the symmetric
group ¥ acts on A¥ by permuting the factors. Hence A* carries a natural
action of the group A}, := (u2)* x Sp. Let x}, : A}, —{=£1} be the product
character on (p2)* and the sign character on Xy Let

L 1 / 1 /
€Epr’ = W hg\:’ Xk’(h)h S Z, |:2k':| [Ak’]

be the projector associated with xj,. Given h € A}, denote by §; the in-
duced automorphism of A* and by Is; C AF x AF" its graph. As in the
previous section, we denote by €4+ the corresponding idempotent element
of Corr®(A¥ | A¥")q constructed using these graphs.

We can now define the idempotent correspondence

(2.2) €X) 0 1= €W, X Egqu 1= pris(ew,) - prag(eqn) € CorrO(Xkyk/,Xk’k/)Q,
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where pry; : X,?k—>W,3 and pry, : X/,ak,H(Ak/)2 are the natural projec-
tions. Explicitly, given (g,h) € /NX;M/ := A x A}, denote by Sg’h the auto-
morphism 04 x ¢;,. Letting Xx denote the product character xji % X}, :
Akyk/H{il}, we have

Z >~<k’,k" (g, h)Fgg:h S COI'I'O(Xk7k/, Xk‘,k’)@-
(g7h)eAk,k’

€X, ,., — —=
k,k |Ak7k-l|

Note the symmetry of this correspondence, in the sense that its induced
push-forward and pull-back maps on Chow groups and cohomology groups
are equal. We will therefore denote these simply by €x, ,, by slight abuse of
notation.

Notation 2.2. In order to lighten the notation in the case k' = k, we will
replace the subscript k, k' simply by k, e.g., we will write Xy, for Xy, ;. This
convention will be adopted throughout the article.

Proposition 2.3. We have ex, ,, Hig(Xirc) = €x, o H(’fgklﬂ(Xk’k/,@),
and the (r + 1’ + 1)-th step of the Hodge filtration is identified with

(2.3)  Sp42(T1(N)) ® Sym™ Hig(Ac) ~ Fil" " ey  HEFT(X) o),

k,k’

via the assignment f ® a +— wy A o under the Kinneth decomposition.

Proof. The case k' = 0 is Proposition The case k' =k is [4, Proposi-
tions 2.4 & 2.5]. In general, we have €4 Hi (AE) = Sym* Hl; (Ac) by [,
Lemma 1.8]. The result then follows by Proposition from the Kiinneth
decomposition. O

3. Algebraic cycles in CM fibres

Let N >5and k = 2r > k' = 2r' > 0 with r > 1. Fix an imaginary quadratic
field K satisfying the Heegner hypothesis with respect to IN: every prime
dividing N splits in K. Let A be an elliptic curve with CM by O defined
over the Hilbert class field H of K. By the Heegner hypothesis, there exists
an ideal N of Ok such that Ox /N = Z/NZ. Fix such a choice of ideal N.
Choose a generator t of the cyclic group A[N]. Then the isomorphism class
of (A,t) is represented by a point P; in Y1(N) defined over the ray class
field K of K of conductor A/ by the theory of complex multiplication [I5]
Theorem 11.39]. This point maps to the Heegner point (A, A[N]) in Y5(N)
(as defined in [21]).
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3.1. Isogenies

The algebraic cycles that we will consider on Xy 1 = Wi g X AF are in-
dexed by the set Isog" (A) consisting of K-isomorphism classes (o, A") of
isogenies of elliptic curves ¢ : A— A’ defined over K whose kernels inter-
sect A[N] trivially. The Galois group Gal(K /H) acts naturally on Isog’V (A),
and (p, A’) admits a representative defined over some field H C F C K if it
is fixed by Gal(K /F).

Any isogeny ¢ : A— A’ induces an isomorphism K = End(A) ® Q ~
End(A’) ® Q, and in particular the elliptic curve A" has CM by some order
O, in K. Such orders are determined by their conductor c, := [Ok : O,].
Given ¢ € N, the unique order of conductor ¢ will be denoted by O, :=
Z + cOk, and we let Isog (A) denote the subset of Isog’V (A) consisting of
those isomorphism classes (¢, A’) for which A’ has CM by O.. By the theory
of complex multiplication [15, Theorem 11.1], a representative of (p, A’) €
Isogé\/ (A) can be taken to be defined, along with its complex multiplication,
over the ring class field H. of K of conductor c¢. We then always fix the
isomorphism Endy (A’) ~ O, by the convention that [o]*w’ = aw’ for any
regular differential form w’ of A’, where [a] denotes the element a € O,
viewed as an endomorphism of A’. Note that O, = O, always contains the
order Oy _, where d,, is the degree of .

3.2. Variants of generalised Heegner cycles

Heegner cycles are certain algebraic cycles on Xy g5 = W), g of codimen-
sion r + 1, while the generalised Heegner cycles of [4, §2.3] are cycles on
X = Xj g of codimension k + 1. Variants of generalised Heegner cycles,
as introduced in [5, §4.1], are algebraic cycles on X} 1, g of codimension
r 4+ 1"+ 1. We will now recall their definition. When k' = 0, this gives the
definition of Heegner cycles, while the case k' = k recovers the definition of
generalised Heegner cycles.

Given (¢, A’) € Isog"V (A), the isomorphism class of the pair (A, ¢(t)) is
represented by a rational point P, in Y7 (V), which determines an embedding
v, of (A’ )* in W}, seen as the fibre 7, '(P,). This in turn determines an
embedding ¢, = ¢, x id gi of (A")k x A¥ in X s seen as the fibre ﬁ,;,lc,(Pcp).
Consider the graph I'y; /=5 C A’ x A of the endomorphism [d,v/—dk] €
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End(A4’), as well as the graph I',, € A x A’ of ¢. Define

Tin o= (Tp)" x (Tpa, TdK})T_T/ C(Ax A x (4 x Ay

’ LSO
= (A/)k X Ak C th/.

Applying the projector ([2.2)) gives rise to the variant of the generalised Heeg-
ner cycle associated to ¢

"+1
Apr o = €x, 0 T € CHT N X 1 5)00

in the Chow group of codimension r + 7’ + 1 cycles on X kk,@ With rational
coefficients. The cycle Ay s, is null-homologous since cycle class maps are
functorial with respect to correspondences and €y, ,, annihilates the target
of the cycle class map by Proposition That the cycles are defined over
Q (in fact over K?P) follows from the following:

Proposition 3.1. Let ¢ € N. If (o, A') € Isog (A), then the cycle Ag g o
is defined over the field compositum F, := Ky - H. C K?* c Q.

Proof. The elliptic curve A was chosen to be defined over the Hilbert class
field H of K (possible since H = K(j(A)) by [15, Theorem 11.1}). Similarly,
we may choose a representative of the isomorphism class (¢, A’) € IsogV (A)
that is defined over H. (again by [I5, Theorem 11.1]). The fixed I'; (IV)-level
structure ¢ € A[N] is defined over the extension H(A[N]) obtained by ad-
joining the coordinates of the A/-torsion points. This extension is abelian
over H, but not necessarily over K. However, the isomorphism class of
(A,t) as an elliptic curve with I'y(IV)-level structure (i.e., the point P
of Y1(N)) is defined over the ray class field Ky = H(ha(A[N])), where
ha: A— A/ Aut(A) = A/OF is the Weber function [I5, Theorem 11.39]. It
follows that the isomorphism class of (A’, ¢(t)) (i.e., the point P, of Y1 (N))
is defined over F, hence so is the embedding ¢,. Finally, Endy, (A") ~ O,
and thus [d,v/—dk] is defined over H.. This shows that Yy i/, is defined
over F.. Since €y, ;s is defined over Q, the result follows. O

Definition 3.2. Let ¢ € N and (¢, A') € Isogl (A).

e When k' =0 in the above construction, we write Tgc = Tgo,, and

ASO = Qg = ewkTEC e CH'™ (W, k. )o0-
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This is the Heegner cycle associated to ¢ and studied for instance in
[‘?17 §5/

o When k' =k in the above construction, we write TSHC =Thre =
T, and

AGHC = Ap g = App = ex, TGTC € CH M (X 1 )og-

This is the generalised Heegner cycle associated to @ first introduced

in [{, §2J.

The cycles introduced so far are elements of Chow groups with ratio-
nal coefficients. In order to meaningfully consider their images under Abel—-
Jacobi maps and discuss their torsion or non-torsion properties, we clear
denominators by multiplying the cycles by suitable integers.

Definition 3.3. Let my s = |[Ag | = (2N)FEI2F (K')!. Define the corre-
spondence

- o 0
€Xp = Mk €X, € Corr (Xk,k’an,k'>7

and for all (p, A") € IsogJV(A) define the cycles
Api g = mi Do = €x, , Thire € CH (X 10 6)o.

These cycles have integral coeflicients and inherit the properties described
in Proposition [3.1]

3.3. Relation with Heegner cycles

In [4, §2.4], Bertolini, Darmon, and Prasanna exhibited a correspondence
from X to W; mapping generalised Heegner cycles to multiples of Heegner
cycles. The details of this calculation were left to the reader. A more general
setup was worked out by the same authors in [5, Proposition 4.1.1]. They
exhibited a correspondence from Xj, to X}, » mapping generalised Heegner
cycles to multiples of the cycles Ay, s . This was done for specific isogenies
between elliptic curves both having CM by Of. In this section, we exhibit a
correspondence from Xy ;s to Wy, which maps Ay, s, to an integer multiple
of AHC for all (¢, A') € Isog" (A).
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Consider the variety Wi, g xp A" embedded into
Zp = Xy X5 Wemg = Wi xu A¥ xg Wiy

via the map ¥,y ,, == (idw,, (ida, [dpv/—dK])" ,idw, ). Denote its image by
I} i - This is a k + 7'+ 1 dimensional subvariety of the variety Zj; of
dimension 2k + k' + 2. Its class modulo rational equivalence therefore gives
rise to a correspondence

(3.1) Hka/#, S CHFHFE+1=7 (Xk,k/ X H Wk;,H) = Corr™" (Xka/, Wk,H)

defined over H. This in turn induces push-forward and pull-back maps on
Chow groups and cohomology groups in the usual way. In particular, it
induces via push-forward a map

(Hk,k’, ) CHH_T +1(Xk k.Q ) Q— CHT+1(W;€7@)0 Q-

)

We will use the following notations for the various natural projection maps:
(3.2)

Ly i X g Win Wisr < A¥ x5 Wi

/ \ / e

AF Wim-
Proposition 3.4. Let (¢, A') € IsogM(A) of degree d,. Then
(Wi )s(Thprp) = dL YR and (Mg ) (Dppr o) = d, ALC.
Proof. By definition of the push-forward map, we have
Mgk o) (T p) = (m2) s (M i o - (m01)" (Thepr ),

where - denotes the intersection product in the Chow ring of Z, ;-. Note that
(m01)*(Th,kr o) is described by

{(ch((()p(xl 1= 17 yu d vV — yl xl)f, 17 ) ‘
(Ii)i'clzl €AY, (y)iZ] € A",z € Wi},
and by definition we have

My g = {(s, (t1, [ d V—di](t1),. .. tw, [dw\/%](tr/)) B)

s €Wy, (t)i_, € A"},
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The ambient variety Zjj is smooth of dimension 2k + k' + 2, and the
two subvarieties (mo1)*(Ykp o) and Iy, have respective codimensions
r+1r'+1 and k+ 1’ + 1. Set theoretically we see that they intersect in
a subvariety of dimension r. In particular, they are dimensionally trans-
verse. By [I8, Proposition 1.28], it follows that (mo1)* (Y e ) and Iy p
intersect generically transversely. By [I8, Theorem 1.26 (b)], we deduce
that Hk,k’,(p . (7701)*(Tk,k’,4p) = Hk,k’,go N (WOI)*(Tk,k’,go) in the Chow group,
where M denotes the set theoretic intersection. Using this, we obtain that
(Hk,k/,w)*(TM/,w) is given by

dr {L d V — z—la (yi’ [dQD \% _dK](yl))r;r
()i, € A" (yz): e ATy,

where the appearance of the degree of ¢ stems from the push-forward by .

Observing that ¢ o [dyv/—dk| = [dpov/—dk| o ¢ leads to (Ig o)« (T o)
being equal to

d {ul,( [dpn/—dK] )11, (yis [dp/ —dic) (y:))
<ti)izleAr (yz>: e AT}

The latter is dj, Y 0,0 since ¢ is surjective. We have proved that
(Mg o) 5 (Trpr ) =d, THC.

In order to prove the equality (Mg )5 (A ) = dfo Agc, it suffices to
prove that

(3.3) (Mg 0 €x, )6 (Thro) = (€W © U o) (T o)

in CHT+1(W,§7@)Q, where o denotes composition of correspondences. Given
g € A, we observe by direct calculation that

(3.4) g pols , =Ts, o lkw e

Deﬁn/e a map «a:Aj,—A) as follows. Given ((p1,...,ur),0) € A}, =
(,ug)k X Zkr, define

a((#l, ER) ,uk/)a U) = ((:ulv <o ,Nk’)a (13 SRR 1)70)
€ Af = ((p2)™ x (p2)" ") x5y,

where the natural inclusion Y, C X is obtained by permuting the first &’
factors. The map « is an injective group homomorphism. Composing with
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the inclusion A} C Ay, C ]\k,k/ realises A}, as a subgroup of ]\k,k/, and thus
also as a subgroup of the group of automorphisms of Xj, ;,. Similarly, the
map « composed with the inclusion A} C Ay, realises A}, as a subgroup of
the group of automorphisms of Wj. Consider also the injective group homo-
morphism 1 x id : A}, C ]\k,k’ = Ay x A},. The product of these two homo-
morphisms realises (AZ:,)2 as a subgroup of [Xk’k/, and thus as a subgroup of
the group of automorphisms of X . Note that Ay g /(A},)? ~ Ag/a(AL).
It follows from that, for any (g, h) € (A},)?, we have

Hk,k’,go o FS = Hk,k’,lp ol'z oI+ =T

o
501(9),1 5a(h),h, Hkyklﬁp

o~
a(gh),h a(g) F5a(h),h

in Corr ™" (X, Wi, mr)q. It is immediate that (F&(h),h)*(’rk,k’:w) = T e, and
therefore

(3:5)  (Ugg,pol Jx(Thegerp) = (Toyy © Wieor o) (Thehr o),

Sa(gh)ﬂh

for all (g, h) € (A},)% This is similar to the equality obtained in [5, (4.1.4)].
The following calculation is inspired by the one at the end of the proof of
[5, Proposition 4.1.1]:

Mk kg 0 €x, 0 )6 (Thpr )

1 -
= (Hk»klaCP)* | A ’ Z kak'/ (87 t)(FSs,t)*(Tk’kl’SO)
kb (s,t)EA, 1
Wk
= Mepro)e | 713 > Xek (s2(9), B) (L5 )u(Thpr )
’Ak y Ak/’ ~ (9),
’ (syl)eAk,k’/(A;@/)Q

(9:h)E(A},)?

B9 |O‘(A;«)| Z Xk(s)(rgs)*<ﬂk,k’,ap)*

s€hy/a(Al,)

1 ~
| |2( h);\ | Tep ((9), ) (T a(Thw o)
g,h)E(AL,)?

_ (A} Z Xk (8) (L5, )« (Mg k7 )+

s€Ar/a(AL,)

E D ey, ) ()

(9:h)€(A},)?
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|a(AL)] Z Xk(8)(Ts, )«

Al sEAL/a(AL,)

1
X m Z Xk(a(g))(réa(g))*(Hk7k'»¢)*(Tk,k/,go)
K1 gen,
1
A > Xk (8)(Ts)e (e ) (Thpe )
s€EN,

= (ewy © Mg pr ) (Tt 0)-

In the fourth equality, we made the change of variables g <+ gh, and used
the fact that

X ((gh), h) = xx(a(g))xk(a(h)) Xk (R) = xk(a(g)),

since Xk|a( A = x;c, and these characters are quadratic. Il

4. Complex Abel-Jacobi maps

Let V' denote a smooth projective variety of dimension d defined over C. The
familiar Abel-Jacobi map for curves admits a higher dimensional analogue
(Fﬂdfj+1 Hié—2j+1(v))\/

(41) AN, CH(V)g—J9 (V) := Hyy—2j11(V(C),Z)

defined by the integration formula

AJ(Z)(B) = / 8,  for B e Fill i+t g2y,
0-1(2)

where 071(Z) denotes any continuous (2d — 2j + 1)-chain in V(C) whose

image under the boundary map 0 is Z. Here, Haq_2;41(V(C),Z) is seen

as a lattice by taking its image in the space (Fil?/+! Hi?;QjJrl(V))V via

integration of differential forms over topological chains. The target of AJ{/

is the j-th intermediate Jacobian of V', which by Poincaré duality can be
identified with

(4.2)  J(V)~ H¥Y(V(C),C)/(FiV HY (V)@ H¥~Y(V(C),Z)).

We are interested in the Abel-Jacobi maps of the varieties Wy, ¢ = X} 0.c
and Xy ¢ = X}, i.c, and in particular in the images of Heegner cycles and gen-
eralised Heegner cycles. Observe, using the notations of Definition that
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mk7OAgC = €WkAgC and mhkAg’HC = EXkASHC. Since Abel-Jacobi maps
are functorial with respect to correspondences [19, Propositions 1,2 & 4
iii)], we will solely be interested in the pieces of these maps that survive
after applying the relevant correspondences. By Propositions and
(with k' = k) respectively, this allows us to view the relevant Abel-Jacobi
maps as homomorphisms

(4.3)

Vv
AJWk = AJ;/[ZI OEWk = ng o AJa—,"_kl : CHTJrl(Wk,C)O_)M

Ly, ’
where Lk = EWka+1<Wk7c((C),Z), and

AJx, = AJ T oex, = éx, o AT :
(Skr2(T1(N)) ®~Symk Hg(Ac))”

CHM( Xy c)o—
Ly,

)

where Ly, = éx, Hopr1(Xp,c(C),Z). With these notations, for all (¢, A’) €
IsogV (A), we have

AJ;{,’: (mk,OAEC) = AJWk (AEC)

(4.4) R ’
AT (e g AGHC) = ATx, (AGHC).

The Abel-Jacobi formula that we are about to state gives an expression
for AJw, (Agc) in Sk42(I'1(N))Y modulo a lattice Lj, which is slightly larger
that L. This is less precise, but the resulting formula gains in explicitness.

Definition 4.1. Define the lattice L}, C Sk42(I'1(N))Y to be the Z-module
generated by the period lattice attached to Sp+2(I'1(N)) (see [3, Definition 3])
and the functionals Js p defined by

B
Jap.p(f) = (27ri)k+1/ P(2)f(z)dz,

with a, B € PL(Q), P(X) € Z[X]%e=F. See [3, §9] for further details.
The goal of this section is to prove the following:

Theorem 4.2. Let N > 5 and k = 2r > 2 be integers. Let K be an imag-
inary quadratic field satisfying the Heegner hypothesis with respect to N,
and fix a choice of cyclic N-ideal N'. Let A be an elliptic curve with
CM by Ok over the Hilbert class field H with a T'y(N)-level structure



Heegner cycles in Griffiths groups of Kuga—Sato varieties 479

t e AN]. Let p: Ac—C/(1,7') be an isogeny of degree d, representing
an element of Isog™ (A) and satisfying p(t) = + (mod (1,7')). Then, for
all f € Sky2(T1(N)), we have

(—2\/—dK)’”d];(27ri)’”+1mi’k

(7 =7y

Adw, ("D AL (wy) =

-

X / (z—=7)"(z=7)"f(2)dz (mod Ly,).

00
Remark 4.3. A formula for the images of generalised Heegner cycles un-
der the complex Abel-Jacobi map AJlj(tl was established in joint work of
the author with Bertolini, Darmon, and Prasanna [3, Theorem 1] by writing
down explicit bounding chains for generalised Heegner cycles and computing
the defining integrals in terms of explicit line integrals of modular forms. It
was noted in [3, Remark 10] that the techniques used can likely be adapted to
calculate the images of Heegner cycles under the complex Abel-Jacobi map
AJ%I. While this is indeed possible, we have opted for a different method.
We will use Proposition together with the functorial properties of Abel—
Jacobi maps to deduce the formula for Heegner cycles directly from the for-

mula for generalised Heegner cycles.

Remark 4.4. Fiz a normalised newform f in Sp12(T'1(N)). Composing the
complex Abel-Jacobi map (4.3) with the projection to the f-isotypic Hecke
component of the intermediate Jacobian gives rise to a map

AJkaf : CHT+1(Wk,C)0—>C/Lf,
where Ly is the period lattice of f in C. Theorem yields the formula

(—2\/—dK)Td];m%,ka

=7y

(4.5)  AJw, s ((2°k)?d,AJC

~—

(") (mod Ly),

where o : T1(N)\HM——C/L; is the map on Heegner points of [25, Lemma
2.2] precomposed with T1(N)\HM — To(N)\HM. Suppose that the fired
embedding H — C of Section is such that Ac = C/Oxg = C/(1,7) with
7= (—dg ++v/—dg)/2 € H the standard generator of Ok . Suppose also that
' =d,T (e.g., take ¢ : C/(l,T>—>(C/<1/n,7'>ﬂ>(:/<1,m'> for some posi-
tive integer n). In this case, formula becomes

AJw, £ ((25K1)2d,ATC) = (~2d,)"mi ya(r')  (mod Ly).
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As explained in [25], a relation such as was expected to hold, but was
not verified except for weight 4 newforms (i.e., when k = 2) as a consequence
of the work of Schoen [37]. The relation implies the compatibility of the
conjectural partial generalisations of the Gross—Kohnen—Zagier theorem for
higher weights formulated in [25, Conjectures 3.1 & 3.3] with the conjectures
of Beilinson and Bloch. See the introduction of [25] for further details and
[43] for related work on higher weight Gross—Kohnen—Zagier type theorems.

We will need the following two lemmas for the proof of Theorem
Recall the correspondence IIj, , := Iy 1 , from X} to Wy, g defined in (3.1)).

Lemma 4.5. Under the assumptions of Theorem [{.3, let ¢ : A— A" be
an isogeny of degree d, representing an element of Isog"v(A). Then, for all
f € Sky2(I'1(N)), we have

Adw, (2°KN)2dLALC) (wr) = Ax, (AGHO) (I, (wp))  (mod Ly).

Proof. By functoriality of Abel-Jacobi maps with respect to correspondences
[19, Propositions 1,2 & 4 iii)], the following diagram commutes:

k+1

AT
CH*(X})0(C) —» JFF1(X,,/C)

(nw)*l l(nz,w
CH™ " (W3)o(C) —— JH(W,/C).

ATyt
By Proposition (with ¥ = k), we have~(Hk,g,)*(AgHC) = d&AgC. Since
myr, = 28k!my. 0, we deduce that (Hk’cp)*(ASHC) = Qkk!d;AgC. The result
then follows by (4.4)). O

Let wa € HY°(Ag) be a non-zero differential form. Recall that the iso-
morphism Endy(A) ~ Ok is chosen such that [a]*wys = awy for all a € O.
The choice of wa determines a generator na of H%!'(Ac) by the condition
(wa,ma) =1, where ( , ) denotes the cup-product on the de Rham cohomol-
ogy of Ac. The generator ny4 satisfies [a]*n4 = ana. For 0 < j < k, define

. . Nk — i)
(4.6) whnly 7 = J(kk,]) > prfwis AL ADr @,
Ic{1,...,k}
[1|=j
where w; 1 is either wa or n4 depending on whether ¢ € [ or i ¢ I. A basis
of Sym* H} (Ac) is then given by {w%nfz_] } for 0 < j < k. The cup product
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(, ) induces a self-duality
< , >Ak : Symk HéR(A(C) X Symk HéR(AC)—ﬂC,

given by

1
(4.7) (@1 zp oy g ar = > @1 Yo ) - (ks Yo i)
oEY

Lemma 4.6. Under the assumptions of Theorem let p: A— A" be
an isogeny of degree d, representing an element of IsogN(A). Let wy €
H'YY(Ac) be a non-zero differential form. Then, for all f € Spi2(T1(N)),
we have ex, I} (wy) = (2dpv/—dK)"wp Awimny.

Remark 4.7. The right hand side of the equality in Lemma [4.6 does not
depend on the choice of non-zero differential wa since scaling wa by A € C*
leads to a scaling of na by A~ L.

Proof. The correspondence Il , induces a pull-back map on de Rham co-
homology

I, : Fil"*! HECY (W), o) — FilF T g2 (X, o),

given by the usual formula I} (w) = (mo1)+(clar (Ik,,) A 73(w)), where
clar (g ) € H3§+2(Zk’c) is the de Rham cycle class of II; ,. We are only
interested in the piece of Fil*+! H§§+1(Xk7(c) that survives after applying
€x,. dSince

FﬂkJrl H§§+1(Xk,((:)l — FﬂkJrl Hd2é:{+1(Xk,(C)7

and

Hir ™ (Xke) = Fil HIg™ (X o) © Fil" HEE (X ),
we see that the dual of Fil**! ey, HgﬁH(Xk’(c) with respect to the de Rham

pairing is its complex conjugate. By Proposition ex, I}, (p(wf) is com-
pletely determined by the values

-  h—i
<€XkHz,<p(wf)7wg /\wf477A ]>Xk7
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for all eigenforms g € Sg42(I'1(IV)) and 0 < j < k. Using the notations of
(3.2) and properties of the de Rham pairing, we compute that

(ex, I} o (wp), @y A wyly ) x,
= {(mo1)«(clar (Tx, ) A 5 (wy)), @g A wﬁnﬁ‘%
= (clqr (I, ) A T3 (wy), TH1 (@g A WAUA )>Zk
= —(clar(Hg,p), 75 (@g) A 7] (WAWA ) A7y (wy)) z,
= —((Thp)u(clar (Wi x A™)), 75 (@g) A w5 (s 7) A3 (wy)) 2,
= —{clar (Wi x A7), (Opp)* (5 (@g) A 75 (Whnly ) Ay (wp))) 2,
= (wy AWy, ((ida, [d \/7 wAnA )W x A"

— (W Tyhw (/ (i, [dgv/=drc))")* Wyl ) )

Observe that ((ida, [dov/—dK])")*(pr} @wi,r A ... Apri @) # 0 if and only
if woy_1,1 # wa,r for all 1 <1 < r. In particular j must equal r, and there
are 2" sets I of length r that satisfy this condition. For such a set I, observe
for all 1 <[ < that

(ida, [dpv/ — *(pryj_i (@wa—1) Apry(war)) = —dey/ —dk pri(wa Ana).

From the defining equation (4.6)), we see that

((ida, [dpv/—dr))")* (W 7) = 0

for j # r, and

((ida, [ d VvV —=dr])" ) (Whin')

2r 74 2 .
—dyn/— ‘ pri(wa Ana) A... Aprr(wa Ana).

This shows that for any eigenform ¢ and any 0 < j < k, we have

_ Pk
(4.8) <€XkHz,go(wf)7wg/\wf477A x. = (—2dy/—dk) wf7wg>Wk5JT7

where §;, = 1 if j = r and 0 otherwise.



Heegner cycles in Griffiths groups of Kuga—Sato varieties 483

Observe from (4.7)) that

B . B -
(wr Awiyny, Wy AWimA Nx, = (wr, Wg)w, <W;177;17wf47714 ) ar

r. 2
= (=1)" 52;))‘ <wf7wg>Wk5jT°

The result follows by comparing with (4.8)). O

Proof of Theorem[].3. Using Lemma and the equality AJx, = €x, o
AJ’;E:I, we see that

Adw, (2" kDL ALC) (wr) = AIRHHAZHO) (@, T}, (wp)) - (mod Ly).

Let wq € HY9(Ac) be the non-zero differential form wa = ¢*(2widw). By
Lemma [£.6, we obtain

(4.9)  AJw, ((2°k)*d,AL) (wy)
= My (2dp/—dic )" ATFHASHC) (wp Awlmy)  (mod Ly).

The result follows by applying [3, Theorem 1], remembering that ASHC =
mk’kASHC. O

5. Bloch’s map on torsion cycles

In this section, we recall the existence and properties of an étale cycle class
map defined on torsion cycles first considered by Bloch [9]. Its restriction to
null-homologous cycles admits a comparison with the complex Abel-Jacobi
map restricted to torsion cycles. As we will show, it follows that it factors
through algebraic equivalence when composed with the correspondence €y,
of Definition [3.3] The resulting composition map plays a key role in the
proof of Theorem [I.4] in Section [9] For a more complete account of Bloch’s
map, we refer the reader to [29, §1.5.2].

5.1. Basic properties

Let V denote a smooth projective variety of dimension d defined over a
number field F' and let £ denote a fixed prime. For all non-negative integers
n, j and v, we use the convention HY (Vip, Z/*Z(j)) := HY (Vip, ps? ), where
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1o is the étale sheaf of £¥-th roots of unity. There are natural maps
(5.1) HG(Vp, 2/ L(5))—He (Vi L/ L(j))

induced by the maps Z/#*7Z < Z/¢"T'Z sending m ~ ¢m or by the inclu-
sions pgr < pev+1. By taking the direct limit over v, we obtain the cohomol-
ogy groups of V with ¢-torsion coefficients

(5.2) Hey(Vip, Qe/Ze(7)) = lim Hey Ve, Z/C (7))
Viewing Qy/Zy as a torsion étale sheaf on V', there is a natural isomorphism

(5.3) He (Vip, Qu/Ze) 2q, /7, Qo/Ze(5) = Het(Vi, Qo/Zo(35))

where the right hand side cohomology group is defined by (15.2)).
Let CH’(Vz)[€>°] denote the power-of-¢ torsion subgroup of the Chow
group. Bloch has defined in [9] a map

(5.4) Ny o CHY (Vi) (0] —H ™ (Vie, Qo Zo (7).

whose restriction to null-homologous cycles can be regarded as an arithmetic
avatar of the complex Abel-Jacobi map on torsion (see Section below for
a precise statement). The construction of the map is rather involved, and
we therefore refer the reader to the original [9l §2], or alternatively to [,
Appendix A].

Proposition 5.1. The Bloch map is functorial with respect to corre-
spondences and Gal(F'/F)-equivariant.

Proof. Functoriality for correspondences is [9, Proposition 3.5]. The Galois
equivariance is [I, Proposition A.22]. O

5.2. Comparison with the complex Abel-Jacobi map

Using the description (4.2) of the intermediate Jacobian along with the
natural isomorphism of R-vector spaces

(5.5) H%~Y(Ve(C),R) =~ H¥~Y(V¢(C),C)/ Fi¥ H (V)
there is an identification of real tori

JI(Ve) = H?~1(Ve(C),R)/H* (Ve (C), Z),
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and thus an identification
(5.6) J (Ve dtors = HY7H(Ve(C), Q) /HY ~H(Ve(C), 2).

From the long exact sequence in singular cohomology associated to the short
exact sequence

(5.7) 0—Z—Q—Q/Z—0
we deduce a short exact sequence
(5.8)  0—J (Ve )tors—s H* (Ve (C), Q/Z)— H? (Ve (C), Z)tors—0,

thus identifying J7 (V¢ )tors up to a finite group w1th HY=Y(V(C),Q/Z).
Composing the complex Abel-Jacobi map restricted to torsion with
u yields a map

(5.9) wo AJ, : CHY (Ve)o[f=]— H¥H(Ve(C), Qu/Zy).
For each natural number v, there is a sequence of isomorphisms
(5.10) HE ™ (Vi ) = HZ 7 (Ve ) = B (Ve(C), ).

For the first isomorphism, apply [30, VI Corollary 4.3] with respect to the
complex embedding F < C fixed in Section The second isomorphism
is an application of [30, IIT Theorem 3.12]. Taking direct limits over v, we
obtain a sequence of isomorphisms

(5.11) comp : HY (Vi Qu/Z4(5)) = HZ ™ (Ve, Qe/Za(5))
2H2] '(Ve(C) 7@4/Ze(j))-

Proposition 5.2. If we identify Qu/Z¢ ~ Qu/Z¢(j) by taking e W as the
generator of the £¥-th roots of unity, then the diagram

CHI (Vp)olt®] —v HY ™ (Vi Qu/Z4(5))
(5.12) i zlcomp

CHY (Ve)ole) “A% 121V (C), Qu/20)

commutes, where the vertical left map is induced by the fixed embedding
F—C.

Proof. This is [9, Proposition 3.7]. O
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5.3. Factorisation through algebraic equivalence

Let £k =2r > 2 be an even integer. We now specialise to the case where
V is the Kuga—Sato variety Wy, of level I'1(IV) defined over Q. Recall the
idempotent correspondence ey, defined in and its normalisation €y,
defined in Definition along with the fact that the composition of the
complex Abel-Jacobi map with this correspondence can be viewed as a

map

Ty (N))
Adw, = éw, 0 AT s CH L (W )g—s D27

Ly

Proposition 5.3. The map Alw, factors through algebraic equivalence,
giving rise to a map

Skt2(T1(N))Y .

AJWk : Gr’"H(Wk (C)—>
) Lk

Proof. Let CH’”H(Wk,C) alg denote the subgroup of CH”“(Wk,C)O consisting
of algebraically trivial cycles. The image of CH’"H(Wk,@)alg under AJ’I;‘Zl
lies in an abelian subvariety J™ 1 (Wj ¢)alg of J™ (W c) whose cotangent
space is contained in H" 17" (W), ¢) [42] §12.2.2]. More precisely, if 77, denotes
the largest integral sub-Hodge structure of H**1(W} ¢(C),Z) of type (r +
1L,7)+ (r,r + 1), then

AT CH™ (Wi 0)atg) © T (Wio)alg
= J(Ty) :=Te/(FU Te © Ty) € J™H (Wie).

Recall that AJy, = €y, o AJ’{,[J,:} by definition. Thus, in order to prove the
proposition, it suffices to show that the map on complex tori

&w, : ST (Wi o) — T T (Wi )

restricts to the zero map on JT+1(W;€,C)&1g. This restriction is com-
pletely determined by the restriction of the map of Hodge structures
&w, : H**1\(W},c(C),Z)— H*+' (W c(C),Z) to Ty. By Proposition
the motive (Wg,ew,,0) with rational coefficients is of pure Hodge type
(k+1,0) 4 (0,k+ 1), and in particular

ew, (H™ V(W) @ HP ™ (Wy)) = 0.

It follows that €y, (Tc) = 0 and thus €, (Tz) = 0. O
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Taking the direct sum of the ¢-adic Bloch maps ([5.4) over all primes ¢
yields a map

(5.13) AL s CH P (W, g )tors— Hey (Wi g, Q/Z(r + 1)),

which is functorial with respect to correspondences by Proposition [5.1] In
view of evaluating this map on Heegner cycles, it thus suffices to consider its
composition with €y, . Restricting to null-homologous cycles and composing
with €y, yields a map

(5.14)  Apy, : CH™™ (W), 0)o,t0rs—éwi Hog ™' (Wi g, Q/Z(r + 1))
C HQZH(W,“Q, Q/Z(r + 1)).

Proposition 5.4. The map (5.14) factors through algebraic equivalence,
giving rise to a map
Ny, 1 G (W, g) — HEH (Wi 5, Q/Z(r + 1))

Proof. The group CH™ ! (W.@)alg is divisible since (by definition of algebraic
equivalence) it is generated by images under correspondences of Q-valued
points on Jacobians of curves. It follows that there is an exact sequence of
torsion subgroups
(5.15)

0— CH"™ (W}, 9)alg,tors—* CH™ ™1 (W}, 9)0,tors— Gr" T (W), 5 )tors—0.

In order to prove the result it thus suffices to show that the subgroup
CHT“(Wk’@)alg’tors lies in the kernel of (5.14). By Proposition we have

(5.16) Ay, = éw, o comp ' ouo AJ’I;{,:1 :
By compatibility of the comparison isomorphism ((5.11f) with correspon-
dences (which follows from the compatibility of the cycle class maps with

respect to the comparison isomorphism [27, §5.3]),
(5.17) Ay, = comp™ ' oéyy, o uo AJ%;: .

From the natural compatibility of the map u with correspondences, it follows
that

1

(5.18) Ay, = comp ™ ou o &y, o AJW; = comp " ouo Aly, .

We have AJWk(CHTH(W,C,@)M&»EOI«S) = 0 by Proposition d
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6. A finiteness result for étale cohomology with torsion
coefficients

Let £k =2r > 2 and N > 5 be integers. Let W} be the Kuga—Sato variety of
level T'1(N) over SpecZ[1/N] (constructed in [4, Appendix]). Let K be an
imaginary quadratic field of discriminant —dx coprime to N which satisfies
the Heegner hypothesis with respect to N. Let N be a choice of cyclic N-ideal
of K. For each positive integer n, recall that H,, denotes the ring class field
of conductor n over K, while K is the ray class field of conductor N over
K. Let Hy denote the compositum of the ring class fields H,, for all square-
free integers n coprime to N. Let F,, := K- H, and Fi, := Ky - Hyso. The
goal of this section is to prove the following:

Proposition 6.1. With the above notations, the group
HEP (W), 0, Q/Z(r 4 1)) G @/ Fx)
is finite.

Before proving Proposition we collect a preliminary result concern-
ing the splitting behaviour of primes in the extension Fi of K:

Lemma 6.2. With the above notations, let q be a prime which is coprime
to 2N and inert in K. Let q denote a prime of H above q and denote by s its
residual degree in the extension Ka/H. Then, for any square-free positive
integer n coprime to N, the residual degree of q in the extension F, /H is
equal to s.

Proof. This is [29, Corollary 1.2]. The proof uses the fact that if n is a
square-free positive integer and ¢ is a rational prime which is inert in K,
then the residual degree of ¢Of in the extension H, /K is equal to 1 (see
for instance [29, Proposition 1.8]). O

Proof of Proposition[6.1. Fix ¢; and g2 two distinct primes which are co-
prime to 2N and inert in K. Let ¢ € {1,2}. The variety W} has good reduc-
tion at ¢;, and we may consider the reduction Wy, over Fg,. The embed-
dings fixed in Section determine primes q; in H and q;° in Fy, above
Ok . If s; denotes the residual degree of q; in Kx-/H, then the residual
degree of q; in Fo/H is s; by Lemma Since ¢ is inert in K, gOg splits
completely in H. It follows that the residual degree of ¢Ok in H/K is equal
to 1. By multiplicativity of residual degrees in extension towers, we conclude
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that ¢; has residual degree r; := 2s; in the extension Fu/Q. Let D; denote
the decomposition group of Gal(Q/Fs,) of a prime above q:°.

Let ¢ be a prime and choose i € {1, 2} such that ¢ # ¢;. Note that we may
choose i = 1 except when ¢ = ¢; in which case we must choose i = 2. Using
[30, VI Corollary 4.2] and taking direct limits, we obtain an isomorphism

i Gal I_Fq. F T
HE (Wi g Qe/Za(r +1)P = HE (W g, , Qu/Zo(r + 1)) /50,

In particular, HftH(Wk’@, Q/Z(r + 1))GaQ/F<) injects into

Gal ]FqQ F T2
(6.1) HE (Wyes, , Qqy /2, (r + 1)) 5/ Fp?)

& P HE Wieg,,  Qu/Zi(r + 1))
L#£q

We have reduced the proof to showing that the group (6.1) is finite. Let
¢ be a prime and choose ¢ € {1,2} such that ¢ # ¢;. From the short exact
sequence 0—Zy—Q—Qy/Zs—0, we deduce a short exact sequence

Gal(F,, /F,r)

He (W, Qe(r + 1))
HiH (Wp,  Ze(r + 1))

¥ aq

— HE (W, Qu/Zo(r + 1))

—>Helft+2(wk,ﬂ7‘qi s Zg(r + 1) )tors—0.

The group on the right hand side is finite and trivial for all but finitely
many /. Indeed, using [30, VI Corollary 4.2 & 4.3] and taking inverse limits
gives an isomorphism

HEP (W, Za(r + 1) = HE2(W), g, Z4(r + 1)),

which in turn is isomorphic to HX™ (W}, ¢(C),Z)(r + 1) ® Z; by the com-
parison isomorphism [30, III Theorem 3.12]. The claim follows since
HE 2 (W o(C), Z)tors is finite.

The number of fixed points under the action of Gal(F, / Fgri) of the left
hand side of the above short exact sequence is equal to

| det(1 — Frobyri |HEH (Wyg,  Qe(r + 1)),

which is finite and independent of the prime ¢ by Deligne’s theorem (the
Weil conjecture) [16].

In conclusion, each term in the infinite direct sum is finite, and
trivial for all but finitely many terms. g
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Definition 6.3. Let M, := |H5™ (W), g, Q/Z(r + 1))@/ F=)| which is fi-
nite by Proposition [6.1].

Corollary 6.4. With the above notations, if n is a square-free integer co-
prime to N, then the image ofGrTH(Wk’Fn)tors under the map Ay, of Propo-
sition 1s annihilated by M,.

Proof. By the Galois equivariance of the Bloch map (Proposition , the
image of Gr”l(Wh F, )tors under AWy, lies in

HEF (W), 6, Q/Z(r + 1)) S/ P,

a subgroup of HftH(W,C’@,@/Z(r +1))Gal(@Fx) by definition of Fs. The
result follows by definition of M, (Definition [6.3)). O

7. Explicit isogenies

In the rest of this paper, we will focus on a particular subcollection of Heeg-
ner cycles and their properties. These are indexed by certain explicit (isomor-
phism classes of) isogenies. In Section |§|, will prove that this subcollection
generates a subgroup of infinite rank modulo algebraic equivalence.

Fix an imaginary quadratic field K with ring of integers Ok and dis-
criminant —dy coprime to N. Assume that K satisfies the Heegner hy-
pothesis with respect to N, and let N denote a choice of cyclic N-ideal of
Ok. Let A be an elliptic curve with CM by Og over the Hilbert class field
H of K. Choose the complex embedding H — C of Section [I.7] such that
Ac =C/Ok. Let 7 := (—dg + V/—dk)/2 € H denote the standard genera-
tor of Ok, so that O = (1,7) := Z ® Zr. It satisfies the quadratic equation
72+ dg7 +dg(di +1)/4 = 0. Note that the coefficient dx (dg + 1)/4 is in-
tegral since —dx = 0,1 (mod 4).

7.1. Explicit g-isogenies

Let ¢ be an odd prime which is coprime to dx. Consider the g + 1 lattices
Ay s = (1,78 =Z & Zr,p in C indexed by 3 € P'(F,), where

qT if =00
TqB =

2 if B # oo,

Observe that Ay  is the order O, of K of conductor g.
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There are natural isogenies ¢, 3 : C/Ox—C/A, 3 of complex tori de-
fined as follows:

o If 8 =00, then ¢4 is the natural quotient map induced by the in-
clusion of lattices (1,7) C (1/¢,7) composed with multiplication by
q:

uot lq]
Paco : C/1,TYERC/(1/4, 7V =T/ (1, Ty 00)-

o If 3 # oo, then ¢, 5 is given by the quotient map

a5 C/(1,7)=3C/(1,7 + BYESC/(1, (7 + B)/q),

induced by the inclusion of lattices (1,7 + 8) C (1, (7 + 3)/q)-

Observe that the degree d,,, , of @4 3 is equal to ¢ for all 3 € PL(F,).

Proposition 7.1. If q is an odd prime which is inert in K, then Ay is a
proper fractional Oy-ideal for all 8 € PL(F,).

Proof. The statement is clear for § = oo, hence we assume 3 € F,. The ele-
ment 7, 3 € H satisfies the quadratic equation

0?72 5+ q(dg — 28)745 + (8% — di B+ d (dic +1)/4) = 0.
If B2 —dg B+ di(dg +1)/4=0 (mod q), then

—dr = (28— dg)? (mod g),

hence (%

) =1 and ¢ splits in K. Since ¢ is assumed to be inert, we
conclude that ¢ does not divide the constant coefficient. Thus, the coefficients
of the above quadratic equation satisfied by 7, 3 have no common factors.
By [15, Lemma 7.5, A, is a proper fractional (1, ¢, g)-ideal. The result

follows by observing that (1,7, ) = (1,q(7 + B)) = O,. O

Proposition 7.2. Let g be an odd prime which is inert in K and coprime
to N. For all 3 € PY(F,), there exists an elliptic curve A,z with CM by O,
defined, along with its complex multiplication, over the ring class field H,
such that Ay 3.c = C/Ayp and the isogeny of complex tori ¢, 3 descends to
an isogeny @q.p : A— Ay g giving rise to an isomorphism class (q.3, Aq p) €
IsogN (A) with field of definition H,.
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Proof. By Proposition the elliptic curve C/A, g has CM by O,. The
proposition is then a consequence of the main theorem of complex multipli-
cation [I5, Theorem 11.1]. Note that the assumption that ¢ is coprime to N
guarantees that the classes (¢, 3, Ap.4,8) belong to IsogV (A). O

Lemma 7.3. Let q be a prime which is inert in K, and let ug :=|Ox|/2.
Then the extension Hy/H is cyclic of order (¢ +1)/uk.

Remark 7.4. Note that ux = 1 if dg # 3,4.

Proof. Artin reciprocity yields an isomorphism
(7.1) (Ok/q0k)* /O (Z/qZ)" ~ Gal(Hqy/H),

by mapping c to the Artin symbol [cOk, Hy/H] (see [15, Eq. (7.27)]). Since ¢
is assumed to be inert, we have (O /qOk)* = IFqX2 and the result follows. [J

Proposition 7.5. Let q be an odd prime which is inert in K and co-
prime to N. The action of the Galois group Gal(H,/H) on the subset

{(©q.8: Agp) | B € PL(F,)} C Tsog (A) is simply transitive.

Proof. As in Section Gal(H/H) naturally acts on Isog" (A) since A is
defined over H. There are q + 1 isogenies from A of degree ¢, namely the
isogenies ¢, 5 for 8 € P1(F,). Any isogeny ¢ : A— A’ is completely deter-
mined by its kernel A[p] C A(H). Two isomorphism classes (¢1, A1) and
(p2, A2) are equal if and only if there exists 1) € Aut(A)/(x1) such that
P(Alp1]) = Alp2] (the effect of the automorphism —1 being trivial). Since A
has CM by Ok, we have Aut(A) = Ox. The set {(¢q, Ag.p) | B € P1(F,)} of
isomorphism classes of isogenies of degree q therefore has order (¢+ 1)/ug.
By Proposmon n since ¢ is inert we have {(pq.:Agp) | B € PYF,)} C
Isog/v (in the notations of Section . It follows that the action of
Gal( q/H) on {(pg.8, Ags) | B € PL(F,) is simple. The transitivity then
follows from the fact that {(¢q 4, Ags)| B € P(F,)} and Gal(H,/H) have
the same order by Lemma O

Remark 7.6. In contrast, if q is an odd prime that splits in K, then the
proof of Proposition shows that for exactly two choices of 8 € Fy, say
B1 and B2, the constant term (% — dx B + di(dx +1)/4 of the quadratic
equation satisfied by 14 5 is divisible by q. Hence, fori € {1,2}, 7, 5, satisfies
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the equation
q7_q2,ﬂi + (dg — Qﬁi)Tq,lgi + (,812 —dgPi+dg(dx +1)/4)/qg =0

with coprime coefficients. By [15, Lemma 7.5], Ay, is a proper fractional
(1,q74,8,)-module for i € {1,2}. But (1,q7,8) = Ok for any B € Fq, hence
the elliptic curves C/Ag 5, and C/A, 5, have CM by O and can be defined
over H. Alternatively, writing ¢ = qq for some prime ideal q of K, these
two elliptic curves along with their cyclic q-isogenies can be described as
pq : A—A/A[q] and 5 : A—A/A[q). In conclusion, there are ¢ — 1 cyclic
q-isogenies with CM by O,. Their isogeny classes form a set of order (q —
1)/uk given by a single orbit under the action of Gal(H,/H), which in the
split case has order (q—1)/ug by (7.1). Working under the assumption
that q is inert is not strictly speaking necessary for our method, but it does
simplify the notations and arguments a little bit.

7.2. Explicit T'; (IV)-level structure

Recall that Ac = C/Ok is an elliptic curve with CM by Ok over H, O =
(1,7) with 7 := (—d + v/—dx)/2 satisfying 72 + dg 7 + d (dg +1)/4 =0,
and N is a cyclic N-ideal of Ok.

Proposition 7.7. With the above notations, a generator t of the cyclic
group A[N| must be of the form t = (et +d)/N + (1,7) for some integers
¢,d € Z with ged(c,d,N) =1 and ¢ 20 (mod N).

Proof. Observe that A[N]=N"1/Ok. The canonical isogeny o :
A—A/A[N] is defined over H and given over C by the quotient isogeny
C/Ox—C/N L. Note in particular that A/A[N] has CM by Og. By defi-
nition, ¢ is a generator of the cyclic subgroup A[N], hence there exist integers
¢ and d with ged(c,d, N) = 1 such that ¢t = (¢r + d)/N + (1, 7). Note that
only the classes of ¢ and d modulo N matter in this expression for ¢t. If c =0
(mod N), then d is coprime to N, A[N]= (1/N + (1,7)), and ¢ is the
quotient isogeny C/(1,7)—C/(1/N, 7). But C/(1/N,7) ~C/(1, NT) has
CM by Op [15, Lemma 7.5], contradicting the fact that A/A[N] has CM by
Ok. Thus, ¢ #0 (mod N). O

Remark 7.8. The fact that AJA[N] has CM by Ok places restrictions on
the possible choices of the integer d in Proposition[7.7. For instance, in the
case where N is prime, the generator t of A[N| must, up to multiplication
by an element of (Z/NZ)*, be of the formt = (1 +d)/N + (1, 1) for one of
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the two choices of d € Z/NZ in Remark[7.6 such that C/(1, (T 4+ d)/N) has
CM by Ok. Indeed, in this case AJAIN]| = C/(1,t) must have CM by Ok
and Remark|[7.6 applies since N splits in K by the Heegner hypothesis.

Fix a choice of I'1(NN)-level structure ¢ € A[N]. By Proposition
t=(ct+d)/N + (1,7) for some ¢,d € Z with N {c¢ and ged(c,d, N) = 1.
Let a,b,k € Z be such that ad —bc — kN =1 (possible by the ged condi-
tion). Then the matrix v = := (2¢Y) € Ma(Z) reduces modulo N into
SL2(Z/NZ). By modifying the entries of v modulo N if necessary, we
may and will assume that v = (%Y%) € SLy(Z). This does not affect t =
(et +d)/N + (1,7). Note that if ¢ =1, then we may for instance take

v = (1%') € SLy(Z). Multiplication by ¢ + d yields an isomorphism

on + (C/(Ly(7), /N + (1,4(7)))—=(C/(L,7), (eT + d) /N + (1, 7)) = (A, 1)

of elliptic curves with I';(NN)-level structures. It follows that the point

(A,t) € Y1(N)(C) =T1(N) \ H is represented by I'1(N)~v(1) = Fl(N)‘gig.

Definition 7.9. Let q be an odd prime not dividing c, and let 3 € PL(F,).
Given the above notations, define 7';’5 €H to be qy(r) if f=00 and
(v(1T)+ B)/q if B # oo. Let Afm = <1,7’(§7B> and define the isogeny

C/{1, () ESIC/ (1 /g, 7 (1) DC/AL 5, B = oo

75 /() = CHLA(r) + BYZST/AL ;B # oo

The composed isogeny

(72) 0l 5=l gol(er+d) 1 C/O L e (1, 4(r) E2S /At

has kernel of size g. Hence 1! 5 must be isomorphic (in the sense of Sec-
tion to ¢4 5 of Section for some 3’ € P1(F,). Indeed, we have

ker( 275) =
((r+ctd) /g +(1,7)), B =00
(/g +(1,7)), a+c¢f=0 (mod q)
(r+(a+eB) ' (b+dB))/a+(1,7), B#oo,atcB#0 (modq),
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and thus
(Yg,8:C/Agp) =
(‘Pq,c*lda Aq,c*ld)a B = o0
(‘Pq,ow Aq,oo)a a + CB =0 (mod q)

(Pq,(at+cB)-1 (b+dB)s Ag,(ates)-1(b+dp)), B #00,a+cB#0  (mod g),

as elements of Isog" (A). In particular, there is an equality of subsets of

IsogV (A)
(7.3) {(0q.6,Aq8) | B € PLF)} = {(¥5.5,C/A¢ ) | B € P(Fy)},

and Proposition [7.5] can be restated as:

Proposition 7.10. With the above notations, let g be an odd prime which
is inert in K and copmme to cN. The actzon of the Galozs group Gal(H,/H)
on the subset { (! 0.5 C/Aq, )| B € PYF,)} of IsogN is simply transitive.

7.3. Explicit pg-isogenies
Retain the notations of the previous subsection. In particular,
t=(ct+d)/N+(1,7) € AN]

with ¢,d € Z, ged(c,d, N) = 1,¢#0 (mod N),andy =y = (¢ %) € SLa(Z).

Let ¢ be an odd prime which is coprime to cdx N. Let p be an auxiliary
distinct odd prime which is also coprime to cdg N. Consider the lattices
AZ R <1,qu5> with 8 € PL(F,) of index pg in O where T R = pr! 0.5
Consider the isogenies 7/);,(1,,3 : (C/OK—XC/Ap’q’ﬁ obtained by composing

@ZJ; 5 defined in (7.2)) with the map

C/ (1,7t ) BEC/ (1 /p, 7t ) /1,7t ).

The isogenies wp 4,5 have degree dy: = pq with kernel spanned by ker( é’ ﬂ)

together with the point (7 + ¢ 1d /p + (1, 7).

Proposition 7.11. If q is an odd prime which is inert in K and coprime
to cN, and p is a distinct auxiliary prime not dividing cdx N|ct + d|?, then
Al b3 S a proper fractional Opq-ideal for all § € P! (Fy).
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Proof. Begin by observing that

ar +b T ac|t|* — bed + bd
er+d et +d? ler + d|? '

Consequently, we have Q(7? Tpap) = Q7. B> Q(y(r)) =Q(r) = K. By (7.3),
(C/At g isequal to Ay g c = C/Ay 5 for some 3’ € PL(F,). Since g is inert, it
follovvs by Proposition that At = Ay p is a proper fractional Og-ideal.

Let us first suppose that I3 7$ oo By [15, Lemma 7.5], 7¢ 4,5 must satisfy
a quadratic equation of the form ¢?|er + d|?X? + AX + B, Wlth coefficients
A, B € 7 such that ged(A, B, ¢*|ct +d|?) = 1. But then quﬁ satisfies the
equation ¢?|er + d|?X?% + ApX + Bp?. The coefficients have ged equal to
1 since p and ¢ are distinct and pt |er +d]2 By [15, Lemma 7.5], A;qﬁ
is then a proper fractlonal (1,¢%|er + d|*1! Tp.q.5)-1deal. The result follows by
observing, using , that

(7.4) (1) =

q |CT+d pqﬁ_pq|67—+d’2(/y(7—)+ﬁ)
= pq(T + ac|r]2 — bedg + bd + Bler + d\2),

hence (1, ¢?|er + d|*T pqﬁ) (1,pgr) = (’)pq
If B = oo, then, by [15, Lemma 7.5], 7, . must satisfy a quadratic equa-
tion of the form |c7' + al|2X2 + AX + B, Wlth coefficients A, B € Z such that

ged(A, B, |er + d|?) = 1. But then Ty 4.0 Satisfies the equation

ler 4+ d|*X? + ApX + Bp?.

The coefficients have ged equal to 1 since pJ( |t + d|?. By [15, Lemma 7.5],

A}, , ~ is then a proper fractional (1, c7 + d|? -ideal. The result follows

by observing that

pq<><>>

T + d*7) 4 oo = paleT + d*y(7) = par + pq(ac|t|* — bedg + bd),

hence (1, [er + d*7) ;o) = (1,pg7) = Opq. -

Proposition 7.12. Let q be an odd prime which is inert in K and co-
prime to cN. Let p be a distinct auxiliary odd prime which is coprime to
cdg Nler +d|?. For all B € PL(F,), there exists an elliptic curve A;,qﬂ with
CM by Opq over the ring class field Hy, such that quB(C = (C/A;qﬁ and
the isogeny of complex tori ¢p,q,5 descends to an isogeny ! e AHA; 05
giving rise to an isomorphism class (wpqﬁ, A;qﬁ) € Isong( A) with field of
definition Hy,



Heegner cycles in Griffiths groups of Kuga—Sato varieties 497

Proof. By Proposition 1}, the elliptic curves C/ Ap q.5 have CM by Opg, and
the result is a consequence of the main theorem of complex multiplication
[15, Theorem 11.1]. O

Proposition 7.13. Let g be an odd prime which is inert in K and co-
prime to ¢cN. Let p be a distinct auxiliary odd prime which is coprime
to cdgNl|cr +d|*>. The Galois group Gal(Hp,/H,) acts simply transitively
on the subset {(¢) , 5, A7, 5) 1B € PY(F,)} C IsogN . The action is de-
termined by the action of Gal(H,/H) on {(z/)qﬁ,C/A ) | B € PL(F,)} upon
restricting automorphisms from Hp, to H,.

Proof. Let 3 € P(F,). The isogeny wt 4.5 has kernel of size pg. The p-part
of this kernel is generated by (7 + ¢ 1d) / p+ (1,7), and is therefore indepen-
dent of 5. It corresponds to the isomorphism class of an isogeny from A to
the elliptic curve A, := A, .14 defined over H,, of Section (if p is inert in
K, then A, has CM by O,, while for p split it can happen that A, has CM
by Ok as explained in Remark [7.6] In any case, the isomorphism class is
defined over H,). In particular, Gal(H,,/H)) ﬁxes the p-part of the isogeny
U1 .50 and as a result its action on the set {(1] pq,@’ Al s B € PY(F,)} is
Well deﬁned Note that the latter set has order (¢ + 1)/ug (as in the proof

of Proposition using ) By Proposition we have an inclusion
{45040 8) | ﬁ € PY(F q)} C Isog‘%(A) (in the notation of Section

and the Galois action is simple. Since p and ¢ are distinct primes, we have
H,NH,=H and Hy, = H,- H; |29, Proposition 1.7]. Thus, the natural
restriction map from H,, to H, induces an isomorphism of Galois group

(7.5) Gal(H,q/H,) ~ Gal(H,/H).

By Lemma Gal(Hpy/Hp) thus has order equal to the one of
{0 450 AL . ﬁ) \ B € PL(F,)}, and consequently the action is transitive. [

Definition 7.14. With the above notations, given an odd prime q co-
prime to cdxgN and inert in K, an auziliary disctinct prime p coprime
to cdg Nler +d|?, and B € PY(F,), the cycles associated to the isomorphism
classes (Q/JP W8 qu 3) € IbOg‘I/)\(/; are denoted

AGHC AGHC

quﬁ = Aw;q and D,q,8 1

in the notation of Definition [3.3, By Propositions [3.1 and [7.11} they are
defined over the field compositum Fpy =Ky -Hpy, C K& c Q.
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Proposition 7.15. Fiz a T'1(N)-level structure t € A[N], and let p and
q be distinct odd primes coprime to cdgN with q inert in K and p{
let 4+ d|%. The action of Gal(Fy,,/F)) on the subset {AHC/8 | B € PL(Fpy)}
of CHT‘H(WkF )Jo is determined by the action of Gal(Hpq/Hp) on the
subset {(¢! s pqﬁ) | B € PYF,)} of Isogpq(A) under the restriction map
Gal(Fpq/Fp)—Gal(Hypy/Hp). In particular, the action is transitive.

Proof Let o € Gal(Fp,/F,) and B ¢€PY(F,). Let tpyqﬁ =1, 5(t) €
p 4.5V N Opg] and let ¢, 4 5 denote the inclusion of (A]lfJ " ,3) in Wy, as the ﬁ—

bre above P, , 53 := (Ap,q,,ga tp.q.8) € X1(N)(Fpg). By Definitions [3.2] and |3
we have quﬁ e (tp,g,8) (L ppgy=a))") € CH™ ™ (Wy, F,.)o, and thus

(A5as)” = & (15 ,6):((Tppgy=a)o)")-

We have &), =&y, since €y, is defined over Q, and [pgv/—dk]” =
[pgv/—dk| € End(( pq,B)U) since o fixes H. The map ) 5 is the in-
clusion of ((At 5)")’% in Wy as the fibre above the pomt P.s=
((Af )7, ( pq,B) (t7)) of Xi(N). Since o fixes Ky, it fixes (A,t) €

4,53
X1(N)(Ky), so that P75 = ((AL )",( ?0.8)" (). Thus, the action is de-

P,q,8

termined by the action on (¢p 0.8 A; a 5 € Isog'gg . The last part of the

statement then follows from Proposition O
8. Asymptotics for Abel-Jacobi images of explicit cycles

Let £k =2r > 2 and N > 5 be integers. Fix an imaginary quadratic field K
with ring of integers Ok and discriminant —dg coprime to N. Assume that
K satisfies the Heegner hypothesis with respect to N, and let N denote a
choice of cyclic N-ideal of Ok. Let H be the Hilbert class field of K. Let
A be an elliptic curve with CM by O over H, and choose the embedding
H — C of Section such that Ac = C/Ok. Let 7 := (—drg +V—dk)/2
denote the standard generator of Ok so that Ox = (1,7), and fix a I'; (IV)-
level structure t € A[N]. Then ¢t = (er + d)/N + (1, 7) for some ¢, d € Z with
¢ # 0 (mod N) and ged(c,d, N) = 1 by Proposition[7.7] As in Section[7.2] let
a,b € Z such that v := v = (‘CL g) € SLy(Z) (which might require translating
¢ and d by some multiples of V).
Define the indexing set

Z =17, :={(p,q) | p > q odd primes coprime to
cdg|er +d|?, g inert in K,p,q=1 (mod N)}.
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Note that this set is infinite by Dirichlet’s theorem on primes in arithmetic
progressions since dx and N are coprime. Using Theorem we are going
to produce asymptotic estimates for the Abel-Jacobi images of the Heegner
cycles in the collection

81)  C:={A)T5 € CH' (Wi p,)o | (p,q) € T,8 € P'(F,)}

(see Definition [7.14)) as p/q — oco. As a corollary, we will deduce information
about the orders of the algebraic equivalence classes of these cycles when

p/q is large.

Definition 8.1. Given (p,q) € T and 3 € PL(F,), define

7, = pg PB=oc and K = 1 f=co
P \nla B # P g B

Writing T;’qﬂ =: X;qﬂ + i}/;,q,ﬁ and using (7.4]), we see that

Y;,q,ﬁ = Yp,q.8lcT + d|—? \/@/2

and

. {|c7'—|—d]_2(ac|7'|2—bch—l—bd—dK/Q)pq B = o0
PaB

" Vet + d|2(ac|7|? — bed + bd — dc/2) + B)p/a B % .

Consider the convergent improper integral

o
Bapi= [ 07 = (gsPye iy >0

t
P,q,B

and define
o ok+1_r+1; k k 2 omiXt .7t
Tpqp =271 e + d|"(pg) by g g g™ reo Iy g € CF

Lemma 8.2. Let d be the dimension of Sk+2(I'1(N)) and choose a basis
(f1,..., fa) consisting of normalised cuspidal eigenforms for the action of the
Hecke algebra. This choice identifies Sy, 2(I'1(N))Y with C?, and we let L
denote the lattice in C* whose elements are the evaluations (via integration)
of the elements of the lattice L), C Spo(T1(N))Y at & := (wy,,...,wy,).
Given (p,q) € T and B € P(F,), we view Aw, ((25k)%(pg)"AHC ) as an

pa,8
element of C¢ by identifying it with the formula displayed on the right
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hand side of Theorem (this amounts to choosing a fized representa-
tive of AJWR((2kk!)2(pq)TA£gB) viewed as an element of C°/L). Then, as

a complex vector valued function of (p,q) € Z, AJWk((Qkk!)z(pq)TA]Ing) is
coordinate-wise asymptotically equivalent to J;g”g = (JpgBr---sJpgB) € c?

as p/q — oo.

Proof. By Definition quc 5 is the Heegner cycle associated to
( zt?,q,ﬂ’ A;,q,ﬂ) < ISOgﬁg(A)' We have A;q,ﬁ,c =C/(1, Tpf,q,ﬁ> with Té,q,ﬁ equal
to pgy(1) or (v(7)+ B)p/q depending on whether § = oo or  # co. Re-
call that the isogeny @D;’qﬁ :C/(1, 7y —C/(1, T}ﬁ’qﬁ) is given by map-
ping w (mod (1,7)) + pg(ct + d)w (mod (1,7;;(1,&)) if =00 and w
(mod (1, 7)) + p(er +d)"tw (mod (1, T;;Q 5)) if B # oo. By the assumption
that p and g are both congruent to 1 modulo NV, we thus have wlt) 05 =1/N
(mod (1, 7'; . B>) Applying Theorem therefore yields the equality

Adw, (2K (pa)" Apg ) = (=2)"(2mi)  Her + d|* (pa) w3 g g 1

t

Tp,a,8 -

S ARCEE WPLCEE WO
100

modulo the lattice L, where f = (fi,..-, fa), and kp 4 is defined in Defi-

nition Writing Téyqﬂ = Xt’q’ﬂ + iYg’qﬂ as in Definition and making

P
the change of variables z = X; 08 T 1y gives the equality

Adw, (2% 2 (pg)" A 5) = 25 i |er + d|F (pg) k), smi i

<0 = 0 T+ i)y

P,q,8

modulo the lattice L. For all 1 < j < d, using the Fourier expansion at i0o
together with the fact that f; is a normalised cuspidal eigenform, there exists
a constant ¢; > 0 such that

(8.2) 1£i(2) = e¥™%| < ¢je4m3) for all z € H.

Let ¢:= (c1,...,¢q) € CL Using (8.2)), Definition and the fact that
Y;,q,ﬁ = Ypqpler +d| 72/ d /2, we deduce that
k AHC 7
| Adw, (2°KD? ()" Ay 8) — Jpa.pl
< 2T er - d|* (pa) g g e THITVECE
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It follows that

AJw, (2FK)? (pa)" A} ) = J,

9.8 < €*7p,q=B|CT+d|727rvdKa

=

Jp,qﬁ

The result follows by noting that v, 4 3 — 00 as p/q — oo. O

Proposition 8.3. With the above notations, as p/q tends to oo for (p,q) €
Z, the order of AJW;C(A?S,Q) becomes large (possibly infinite) in the inter-
mediate Jacobian J" 1 (Wi c) for all B € PL(F,).

Proof. We have |J, 45| = 28w er + d|F(pg)"sE | gmi 1! 5 and

t _ Ak+1

Ip,qﬁ = Tp,a,8 (y2 —|er + d|_4dK/4)Te_27r"/p,q,Bydy.

/ICT—&-dZ\/@/?

Unfolding the power (y? — |er + d|~*d /4)" and integrating by parts repeat-
edly yields the formula

(83)  Iya.s="hile” Vora,pler+d| 2 m/dx
X ZT:Z (r) (27)! (Jer +d|"2/d /2)F*
j=0 s=0 (25 — s)! (27Yp.q.8)5 1

It follows that *E?,q,ﬁ tends to 0 in C? as p/q — oco. Let ¢ >0 such
that the open polydisc D.(0)% € C? of radius e¢ and center 0 satisfies
D, (02N L = {0} (posable by discreteness of L). For p/q large enough,
Jpqﬁ lies in D.(0)¢ and thus JpqﬁeL if and only if Jpqﬁ—O How-
ever, Jpq g # 0 as is clear from the definition of the integral I,, 3. The
closer the value J;qﬁ is to 0 € CY, the larger the order (if finite) of fp,qﬁ
(mod L) becomes in C?/L. By Lemma the j-th coordinate satisfies
AJw, (28K (pg)" AUC ) = T, . 5(1 4 0(1)) for all 1 < j < d. In particular,

p,q,8/]
Adw, (2FEN2(p )”AESQ) (viewed in C?) tends to 0 without being equal to
0 as p/q — oo. We deduce that (2¥k!)2(pq)" AJWk(AI})ISB) has large (if fi-

nite) order in Siy2(I'1(N))Y/L). In particular, the same conclusion holds

for Ay, (Ap qc 5)- The result follows since Si12(I'1(V))"/L}, is a quotient of

J T (Wie). U

Proposition 8.4. With the above notations, as p/q tends to oo for (p,q) €

Z, the order of AJWk(AESB) Aldw, (AII;ISOO) becomes large (possibly infi-

nite) in the intermediate Jacobian J" (Wi c) for all oo # 3 € PL(F,).
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Proof. Define the polynomial

ZZ (7”) (29)! (\CT+d’_2m/2)k_st—sGR[X].

| — g)! +1
— = (25 = s)! (2m)°

It has degree < k. By (8.3), for all 3 € PY(F,), we have

I}iq,ﬁ = ¢ maslertdl W\/EP( p.a,3)-
It follows that
t
Jp,q,oo' _ —k Ipa,00 - P(pq) e~ ler+d|*nVdi (¢*—1)p/q
Ipg,8 I} os P(p/q)

In particular, the limit as p/¢ — oo is equal to 0. By Lemma
we deduce that for all 1<j<d, the ratio of the j-th coordi-
nates | AJw, ((2Fk!)2(pq)" qucoo) / AJw, (25k)2(pq)" Ay q.5);] tends to 0 as
p/q — oo. Thus,

AJw, (2°E)2(pg)" AT 5); — Adw, ((2°K)* (pa)" AL o)
= AJw, ((2°k)? (pg)" A5 5);(1 + o(1))
= Jpq8(1+0(1)),

as p/q — oo. From this point on, the result follows from the same argument
as in the proof of Proposition [8-3] O

Corollary 8.5. There exists a constant C, > 0 such that for all (p,q) € T
satisfying p/q > Cy, the following statements hold:

(1) For all B €PLYF,), the algebraic equivalence class of qucﬁ in
Grr+1(Wk7FPq) has infinite order.

(2) For allco#BePY(F,), the algebraic equivalence class ofA B Aggoo
mn Grr‘*'l(Wk’qu) has infinite order.

Proof. Given 8 € P1(F,), we let =, , 5 denote either A;IS g or AHC quq
(in the latter case we exclude 8 = c0). Using either Proposition|8.3|or Propo-
sition we may choose a constant C, > 0 such that for all (p,q) € Z
satisfying p/q > C,, the order of AlJw,(Z,,5) in J' T (W) is greater
that the constant M, of Definition for all B € PL(F,). Let (p,q) €Z

with p/q > C, and let 8 € PY(F,). The cycle Z,,5 is defined over Fj,
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by Proposition and thus its algebraic equivalence class [Z,,3] be-
longs to Gr"t*(Wy 5, ). Suppose by contradiction that [, , ] is torsion
in Gr"*! (W, r,,). Using the Galois equivariance of the Bloch map (Propo-
sition along with Proposition we see that Ay, ([Ep,4,]) belongs to
H,ftH(Wk@,Q/Z(T +1))Gal(@/Fra) and is thus annihilated by M, by Corol-
lary Recall the equality : Aw, = comp ! ou o AJyy,. We conclude
that w(AJw, ([E,,4,])) is annihilated by M,. By injectivity of the map wu,
we deduce that AJyw, ([Z,,4,5]) is annihilated by M,., which contradicts that
fact that the order of AJw, ([Z,,4,]) is greater than M,. This proves by
contradiction that [=, , 3] has infinite order. O

9. Infinite rank Griffiths groups

Let k = 2r > 2 be an even integer. Fix an imaginary quadratic field K with
ring of integers Ok and discriminant —dx coprime to N. Assume that K
satisfies the Heegner hypothesis with respect to N, and let N denote a
choice of cyclic N-ideal of Og. Let H be the Hilbert class field of K. Let
A be an elliptic curve with CM by Ok over H and choose the embedding
H — C of Section such that Ac = C/Ok. Let 7 := (—dg + V—dk)/2
denote the standard generator of Ok so that Ox = (1, 7), and fix a I'1(IV)-
level structure ¢ € A[N]. Then t = (er + d)/N + (1, 7) for some ¢, d € Z with
¢ # 0 (mod N) and ged(c, d, N) = 1 by Proposition[7.7] As in Section[7.2] let
a,b € Z such that v := v = (‘Cl 3) € SLy(Z) (which might require translating
¢ and d by some multiples of N).

Of interest is the group Gr"“(Wk,@) of algebraic equivalence classes of
cycles of codimension 7 + 1 defined over Q. More precisely, we will focus on
the subgroup G?C of Gr“l(Wk’ k=) generated by the algebraic equivalence
classes of the Heegner cycles in the collection C defined in (8.1)).

Theorem 9.1. With the above notations and assumptions, we have
dimQ ch ®7 Q = 0.

Proof. It suffices to prove that dimg ch ®z Q > ¢ — 1 for an arbitrary fixed
prime £ > 6Ndk. Pick an odd prime ¢ which is coprime to cdg|cr + d|?,
congruent to 1 modulo N, inert in K, and such that (¢ + 1)/uxg =0 (mod ).
Recall that ug = |Of|/2 € {1,2,3} and in particular it is coprime to £.
The last condition is thus equivalent to ¢ = —1 (mod ¢). The last three
conditions on q are equivalent to a single congruence condition modulo Ndg¥¢
by the Chinese Remainder Theorem since N, dx, and £ are pairwise coprime.
In particular, there are infinitely many possible choices for ¢ by Dirichlet’s
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theorem on arithmetic progressions. A single choice of a prime ¢ will suffice
for this proof.

Recall from Lemma that the extension H,/H is cyclic of degree
(¢ +1)/ug. Since ¢ divides this degree by assumption on ¢, Gal(H,/H)
admits a unique cyclic subgroup Gy of order ¢. Let o, denote a choice of
generator of Gy. By Proposition we have

(91) W;,w C/Aé,oo) (% Beo C/Aq ,85)

in Isogy(A) for some oo # 3 € PX(F,).

Pick a prime p such that (p,q) € Z and p/q is greater than the constant
C, of Corollary This choice guarantees that the algebraic equivalence
classes
(9.2) [AES, B [quﬁ ], and [qu ool = [quﬂz]

have infinite order in Gr"* (W g, ).
Restriction of automorphisms induces isomorphisms

Gal(qu/KN)[ (—)9)]Gal( Hpe/H) and  Gal(Hpe/Hp )Gal( Hy/H).

Let Gy C Gal(F,,/Ku) be the preimage of Gy under the above maps. It is
a cyclic subgroup of Gal(F),/F},) of order ¢. Denote by &, the preimage of
oy, which is a generator of Gy.

Define a homomorphism of Q-vector spaces

U : Q[Gy]— Gr" M (Wi ) ®2 Q, G0 [(Apges)”]:

The kernel of ¥ is stable under multiplication by Q[G/] and is thus an ideal
of Q[Gy]. Let ¢y € Q be a choice of primitive ¢-th root of unity. There is a
ring isomorphism

—1 -1 —
QG=Q xQC), Y Nidy (Z i, Z Ai @)
=0 =0

=0

The only proper ideals of the ring Q x Q(() are {0} x Q(¢y) and Q x {0},
corresponding respectively to the augmentatlon ideal and the ideal QN in
the group ring Q[G/], where N = ZZ o 0y is the norm element

By Propositions H and @l, the action of 6, on A oo 18 determined
by the action of o on (¢}, .., C/Al ). It follows from (9.1] that (AHC yoe —

P,q,0
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Aggm. By (9.2)), both ¥(1) and ¥(6, — 1) are not equal to 0. Thus, ker(¥)

is neither all of @[Gg] nor the augmentation ideal. In particular, it must
either be trivial or equal to QN, which implies that

dimg Q[Gy]/ ker(¥) > ¢ — 1. O

Corollary 9.2. With the above notations and assumptions, let 0 < k' =
2r" < k be another even integer and let Xy = Wy g X g AF" . The subgroup
of Grr+T,+1(Xk’k/7Kab) generated by the algebraic equivalence classes of the
variants of generalised Heegner cycles Ahk’ﬂbfq‘q,ﬁ indezed by (p,q) € Z has
infinite rank.

Proof. This follows by combining Theorem [9.1] and Proposition [3.4 O

Remark 9.3. The method of Section [f] can be used to give a formula for
the complex Abel-Jacobi images of the variants of generalised Heegner cycles
Ap o with (¢, A) € IsogN(A), as these are images of generalised Heegner
cycles under certain correspondences by [5, Proposition 4.1.1]. Such a for-
mula can then directly be used to prove Theorem [9.3 We have opted not
to do so, as it is enough to know the images of Heegner cycles under the
complex Abel-Jacobi map in order to deduce Corollary[9.3.
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