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Application of Natural Language 
Processing in Various Healthcare 
Settings
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2.1 Abstract

The number of clinician burnouts is increasing and has been linked to a high ad-
ministrative burden. Automatic speech recognition (ASR) and natural language 
processing (NLP) techniques may address this issue by creating the possibility 
of automating clinical documentation with a “digital scribe”. We reviewed the 
current status of the digital scribe in development towards clinical practice and 
present a scope for future research. We performed a literature search of four 
scientific databases (Medline, Web of Science, ACL Anthology, and Arxiv) and 
requested several companies that offer digital scribes to provide performance 
data. We included articles that describe the use of models on clinical conversa-
tional data, either automatically or manually transcribed, to automate clinical 
documentation. Of 20 included articles, three described ASR models for clinical 
conversations. The other 17 articles presented models for entity extraction, clas-
sification, or summarization of clinical conversations. Two studies examined the 
system’s clinical validity and usability, while the other 18 studies only assessed 
their model’s technical validity on the specific NLP task. One company provid-
ed performance data. The most promising models use context-sensitive word 
embeddings in combination with attention-based neural networks. However, 
the studies on digital scribes only focus on technical validity, while companies 
offering digital scribes do not publish information on any of the research phases. 
Future research should focus on more extensive reporting, iteratively studying 
technical validity and clinical validity and usability, and investigating the clinical 
utility of digital scribes.
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2.2 Introduction

In the past few years, clinician burnout has become an acknowledged problem 
in healthcare. In a 2017 survey among 5000 US clinicians, 44% reported at least 
one symptom of burnout[1]. To investigate this problem, the National Academy 
of Medicine formed a committee focused on improving patient care by support-
ing clinician well-being. The committee’s extensive report, called Taking Action 
Against Clinician Burnout, describes reasons for clinician burnout. An important 
reason is the increasing administrative burden[2]. Since the introduction of 
the electronic health record (EHR), the time spent on administrative tasks has 
increased to approximately half of a clinician’s workday[3,4,5]. These adminis-
trative tasks decrease clinicians’ career satisfaction[6] and negatively affect the 
clinician–patient relationship[7]. Other studies have assessed the relationship 
between EHR-use and burnout and found that more time spent on the EHR, 
especially after-hours, was linked to a higher risk of burnout[8,9].

Recently, clinicians have hired medical scribes to reduce the administrative 
burden, i.e., persons who manage administrative tasks, such as summarizing a 
consultation. Studies show positive results for the use of medical scribes, with 
clinicians spending more face-to-face time with patients and less after-hour 
time on the EHR[10,11]. Although a medical scribe might seem like the perfect 
solution, it shifts the burden to other personnel. As a result, direct medical 
costs increase, while the administrative burden remains substantial. Two recent 
perspectives[12,13] describe the need for a so-called digital scribe. This digital 
scribe uses techniques such as automatic speech recognition (ASR) and natural 
language processing (NLP) to automate (parts of) clinical documentation. The 
proposed structure for a digital scribe includes a microphone that records a 
conversation, an ASR system that transcribes this conversation, and a set of NLP 
models to extract or summarize relevant information and present it to the phy-
sician. The extracted information could, for instance, be used to create clinical 
notes, add billing codes, or use the extracted information for diagnosis support.

Companies like Google, Nuance, Amazon, and many startups are creating a dig-
ital scribe[14,15,16]. Although much needed, there are several concerns about 

2
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implementing a digital scribe in healthcare. These relate to technical aspects 
such as the accuracy of current ASR systems for transcription of spontaneous 
speech[13] and a digital scribe’s ability to extract all the essential information 
from a non-linear, fragmented conversation[13,17]. There are also concerns 
related to a digital scribe’s clinical utility, such as the effect on a physician’s 
workflow. Such concerns need to be addressed before digital scribes can be 
safely implemented in practice. More specifically, successful implementation of 
an artificial intelligence (AI) tool, such as a digital scribe, requires a thorough 
investigation of its suitability, technical validity, clinical validity and usability, and 
clinical utility (see Box 1). A scoping review of current evidence is needed to 
determine the current status of the digital scribe and to make recommendations 
for future research.

Box 1: Four research phases

Suitability: The first step aims to create a clear overview of the problem 
and find a suitable solution. In the digital scribe field, the problem is the 
administrative burden. Deciding on a suitable solution (e.g., symptom 
list, summary) is the next step towards determining the required model’s 
output and a reliable ground truth[52]. When the problem and solution 
are clear, researchers can find a suitable dataset or collect data themselves. 
Researchers should also check if the dataset contains any unintended bias 
or underrepresented groups.

Technical validity: Next, various methods may be created and the best per-
forming model determined[55]. Apart from determining the model’s over-
all performance, researchers should assess in which situations the model 
performs well and in which it performs less adequately. This includes as-
sessing if the model performs consistently across different patient groups, 
for example gender[56]. The data source, model, and context in which the 
model was tested should all be described transparently[50]. Sharing data 
and code help the community better understand the models and enables 
researchers to build on past work[52].
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Clinical validity and usability: Once the model passes the technical valida-
tion, the researchers should perform a qualitative evaluation of the output 
with the end-user. This evaluation has two goals: first, to evaluate whether 
the output makes sense and is clinically relevant; second, to evaluate how 
the output affects clinical practice. This includes the presentation of the 
output, the most appropriate timing, and the effect on end-users’ decision 
making[57].

Clinical utility: In this last step, the researchers should prospectively study 
the model in clinical practice. First, the model might run in clinical prac-
tice without showing the output to the end-users. At specific time points, 
end-users analyze the output to identify any errors. If no new problems 
arise, a prospective study can be set up to determine clinical impact.

Objective

The purpose of the present study is to perform a scoping review of the literature 
and contact companies on the current status of digital scribes in healthcare. The 
specific research questions are:

•	 Which methods are being used to develop (part of) a digital scribe? (Suit-
ability)

•	 How accurate are these methods? (Technical validity)
•	 Have any of these methods been evaluated in clinical practice? (Clinical va-

lidity and usability, clinical utility)

2.3 Methods

Data search

We performed a scoping review based on the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRIS-
MA-ScR) statement[18]. We searched Medline, Web of Science, Arxiv, and ACL 
Anthology for all relevant articles until December 25, 2020. Furthermore, we 

2
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scanned reference lists of relevant publications for additional articles. Search 
terms included terms describing the setting (clinical conversations) in com-
bination with relevant methods (NLP, ASR) and usage of the output (clinical 
documentation). We also included “digital scribe” and “automated scribe” as 
search terms because these incorporate the setting, method, and goal. The full 
search queries can be found in Supplementary Table 1.

Besides, we aimed to include real-world data on existing digital scribes to bridge 
the gap between research and practice. Quiroz et al.[13] provided a list of active 
companies in the digital scribe space: Robin Healthcare, DeepScribe, Saykara, 
Sopris Health, Amazon, Nuance. These companies were requested to provide 
unpublished performance data for their digital scribe.

Inclusion and exclusion criteria

Our definition of a digital scribe is any system that uses a clinical conversation 
as input, either as audio or text, and automatically extracts information that 
can be used to generate an encounter note. We included articles that describe 
the performance of either ASR or NLP on clinical conversational data. A clinical 
conversation was defined as a conversation—in real life, over the phone, or via 
chat—between at least one patient and one healthcare professional. Because 
ASR and NLP are different fields of expertize and will often be described in 
separate studies, we chose to include studies that only focused on part of a 
digital scribe. Studies that described NLP models that were not aimed at cre-
ating an encounter note but, for example, extracted information for research 
purposes, were excluded. Articles written in any language other than English 
were excluded. Because of the rapidly evolving research field and the time lag 
for publications, proceedings and preprints were included.

Study selection

Two reviewers (M.M.v.B. and S.A.C.) independently screened all articles on title 
and abstract, using the inclusion and exclusion criteria. The selected articles 
were assessed for eligibility by reading the full text.
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Data extraction and synthesis

The first reviewer extracted information from the included articles and the un-
published data provided by companies. The second reviewer verified the extract-
ed information. The following aspects were extracted and assessed:

1.	 Setting and research phase
2.	 ASR models and performance
3.	 NLP tasks, models, and performance

2.4 Results

Study selection

Our search resulted in 2348 articles. After screening the titles and abstracts 
of these articles, we assessed 144 full-text articles for eligibility. We included 
20 articles[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] for 
our analysis (Figure 1 and Supplementary Table 2). Of these, ten were confer-
ence proceedings[19,20,21,23,27,28,32,38], seven were workshop proceed-
ings[22,26,29,34,35,36,37], two were journal articles[24,25], and three were 
Arxiv preprints[30,31,33].

Of the six contacted companies, DeepScribe[39] was the only one to provide 
unpublished data on their digital scribe system’s performance. We were unable 
to obtain performance data from other companies.

Setting and research phase

Although all 20 studies aimed to decrease the administrative burden of clinical 
documentation in some way, the specific approaches and the setting differed 
greatly among studies. Three studies focused on improving the ASR for clinical 
conversations as the first step towards accurately extracting information from 
them[19,21,36]. Eleven studies chose to manually transcribe the conversations 
and performed NLP tasks on the transcripts[20,22,24,25,27,30,31,32,34,35,40]. 
Five studies used input data representative of the input of an implemented digital 
scribe (ASR transcripts or chat dialogs)[26,28,33,37,38].

2
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Figure 1: Inclusion flowchart. The four phases of article selection following the PRIS-

MA-ScR statement.

Settings differed greatly between studies, as most did not define a specific 
specialty[19,21,22,23,26,31,32,33,34,35,36,38], while others were focused on 
primary care[20,25,27], home hemodialysis[24], orthopedic encounters[37], 
cardiology, family medicine, internal medicine[31], and patient-clinician dialogs 
via a telemedicine platform[28]. Fifteen studies were performed by or in col-
laboration with a company[19,20,21,23,25,26,27,28,30,33,34,35,36,37].

All included studies focused on the technical validity of the digital scribe; only 
two studies investigated the clinical validity and usability by performing a qual-
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itative evaluation with end-users[24,28]. None of the studies investigated the 
clinical utility.

Automatic speech recognition (ASR)

In total, seven of 20 studies used ASR to automate clinical documenta-
tion[19,21,23,26,33,36,38], and one company provided data on their 
ASR system. Of these, two studies and the company presented a new ASR 
model[19,21], four used ASR to transcribe conversations as input for NLP 
models[26,33,37,38], one presented a model to correct ASR errors[36], and 
one compared the performance of existing ASR systems on clinical conversa-
tions[23] (see Supplementary Table 3).

In all studies, the metric used to evaluate the ASR transcripts was the word 
error rate (WER, see Box 2). The lowest WER was 14.1%, according to the 
unpublished data provided by DeepScribe. This ASR system combines Google 
Video Model[41], IBM Watson[42], and a custom-made Kaldi model[43]. The 
best performing published (as opposed to the unpublished data provided by 
DeepScribe) ASR system had a WER of 18%[19]. Four studies[23,26,33,36] 
used existing ASR systems and found WERs between 38% (IBM Watson) and 
65% (Mozilla DeepSpeech[44]).

One study[36] presented a postprocessing model to correct ASR errors. By 
using an attention-based neural network, WERs were improved from 41 to 
35% (Google Speech-to-Text[45]) and 36 to 35% (off-the-shelf open-source 
model[46]).

Box 2: Explanation of metrics

WER: This metric counts the number of substitutions, deletions, and inser-
tions in the automatic transcript, compared to the manual transcript. The 
lower the WER, the better the performance.

F1 score: the F1 score is the harmonic mean between the precision (or 
positive predictive value) and the recall (or sensitivity).

2
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ROUGE: this is a score that measures the similarity between the automat-
ic summary and the golden standard summary, in unigrams (ROUGE-1), 
bigrams (ROUGE-2), or the longest common subsequence (ROUGE-L). 
The ROUGE-L score considers sentence-level structure, while the ROUGE-
1 and ROUGE-2 scores only examine if a uni- or bigram occurs in both the 
automatic and golden standard summary.

Natural language processing (NLP) tasks and models

The NLP tasks that were performed could be split into three categories: entity 
extraction[20,25,26,27,30,32,35,38], classification[22,24,30,31,32,33,34,35], 
and summarization[22,24,28,29,31,37] (see Figure 2 and Supplementary 
Table 4). All except one study used word embeddings (see Box 3) as input to 
their model. This study did not use word embeddings as input but used a clus-
tering model to create 2000 clusters[24]. The model’s input consisted of the 
current words’ clusters, the number of words, and the previous words’ clusters.

 

Figure 2: Overview of a digital scribe. Scope of the different aspects and tech-
niques of the included digital scribes.

Entity extraction

The eight studies using entity extraction focused on extracting symp-
toms[20,25,27,32,38], medication regimen[20,26,27,32,35], and condi-
tions[27]. However, the studies differed in the combination of entities and 
properties they extracted. Several studies examined the possibility of extracting 
symptoms and identifying whether a symptom was present or not[20,27,38], 
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while only one study focused on all the other combinations (i.e., medication 
dosage, frequency, symptom properties). Almost all studies reported their re-
sults as F1 scores (see Box 2). The tasks of extracting the medication, medica-
tion dosage, and symptom resulted in the highest F1 scores and thus showed 
the best performance (see Figure 3).

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Medication (SAT [27])

Medication dosage (Seq2Seq [26])

Symptom (Seq2Seq [38])

Medication frequency (NN [35])

Symptom + status (SAT [38])

Conditions (SAT [27])

Medication route (NN [35])

Conditions + status (SAT [27])

Medication + property (R-SAT [20])

Symptom + property (R-SAT [20])

Medication change (NN [35])

F1 best performing model

Figure 3: Performance of entity extraction models. Highest F1 scores per entity ex-

traction task, with best performing model.

All studies used neural networks, although the type of neural network differed. 
Some studies used general neural networks[22,30,35], but most used neural 
network-based sequence models with attention (see Box 3). In the studies that 
compared different types of models, the neural networks with attention layer 
achieved higher F1 scores than the neural networks without attention layer 
(see Figure 3).

2
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Three studies[27,32,38] performed an error analysis of which one investigated 
the symptoms that were incorrectly labeled as “absent”. The authors reported 
that these symptoms were often discussed in multiple talk-turns. In the other 
study[27], ten human annotators categorized the cause of all labeling errors 
and the impact on the clinical note. They concluded that 16 to 32% of the errors 
did not affect the clinical note’s content. Furthermore, most errors were caused 
by a failure of the model to take context into account or the lack of knowledge 
about a patient’s medical background. In 29 to 42% of the errors, the human 
annotators agreed with the model, showing the difficulty of annotating the data. 
One study reported that most errors originated from informal language use and 
describing symptoms in physical manifestations (“I only sleep for 4 h”)[32].

Two studies[26,38] made a comparison between manually transcribed and au-
tomatically transcribed data regarding the performance of their entity extraction 
model. Both found that models trained on manually transcribed data outperform 
the model trained on the automatically transcribed data. The difference in F1 for 
extracting symptoms was 0.79 versus 0.72, whereas the difference in ROUGE-1 
(see Box 2) for extracting medication dosage was 85 versus 79[26].

Classification

Six studies performed a type of classification[22,24,30,33,34,35], which varied 
greatly: in which summary section it belonged[22,24,33,34]; if a sentence 
was said by the patient or the physician[33]; relevant diagnoses of the pa-
tient[22,30]; if any abnormalities were found in the medical history[30] (see 
Supplementary Table 4). A greater variety of models was used for classification 
than for entity extraction, although neural networks were used most often. 
The classification tasks resulting in the highest F1 scores were the classifica-
tion of primary diagnosis, utterance type, and entity status (see Supplementary 
Table 4). In two of these tasks, support vector machines were used.

One study[33] tested their classification model on manually transcribed data 
and automatically transcribed data. The model performed better on the man-
ually transcribed data, with a difference in F1 score ranging from 0.03 to 0.06, 
although they did not mention if the difference was significant.
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One study assessed possible disparities of their classification model towards dis-
advantaged groups[34]. They formed 18 disadvantaged and advantaged groups 
based on gender, ethnicity, socioeconomic status, age, obesity, mental health, 
and location. In 7 of 90 cases, there was a statistically significant difference in 
favor of the advantaged group. The main reason for the disparity is a difference 
in the type of medical visit. For example, “blood” is a strong lexical cue to classify 
a sentence as important for the “Plan” section of the summary, but this word is 
said less often in conversations with Asian patients.

Summarization

Six studies[22,24,28,29,31,37] used NLP to summarize the conversation be-
tween patient and healthcare professional automatically. Four studies used 
pointer generator networks to create a hybrid extractive and abstractive summa-
ry[28,29,31,37]. One of these studies approached the summarization problem 
as a machine translation problem, where the transcript has to be “translated” to 
a summary[37]. This study compared the pointer generator network to three 
other attention-based models (see Supplementary Table 4).

The other two studies used extractive methods, where the output of the clas-
sification or entity extraction models was used to extract the most important 
utterances from the conversation[22,24]. The combination of these utterances 
formed the summary. One of these studies did not compare their summaries 
to a gold standard[24]; the other study asked physicians to extract the most 
important utterances as gold standard[22]. The F1 score for the latter study 
was 0.61.

All studies using pointer generator networks reported their results as ROUGE-
scores. However, one study only reported their results as ROUGE-L relative error 
rate reduction[37], limiting the comparability with the other studies.

The ROUGE-L scores in the other three studies were 0.42[31], 0.55[28], and 
0.55[29]. One study also presented a model that returned summaries with a 
ROUGE-L of 0.58, but this was based on manually extracting noteworthy utter-

2
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ances[31]. When using the same model with automatically extracted notewor-
thy utterances, the performance dropped to 0.42.

The best performing model used a pretrained pointer generator network (see 
Box 3) fine-tuned on medical dialog summarization, with an added penalty for 
the generator distribution to force the model to favor copying text from the 
transcript over generating new text[28]. The other models were: a topic-aware 
pointer-generator network using embeddings (see Box 3)[29], which takes 
the topic of the current segment into account when copying or generating the 
next word; an LSTM architecture with BERT embeddings to extract noteworthy 
utterances (see Box 3)[31]; a combination of a transformer and pointer gen-
erator network that creates a summary per summary section (see Box 3)[37].

Two studies included physicians to evaluate their summaries[24,28]. One study 
examined physicians’ ability to answer questions about patient care based on 
the automatic summary[24]. They did not find any significant difference in 
physicians’ answers using the human-made summaries compared to the auto-
matic summaries. Another study asked physicians to rate the amount of relevant 
information in the summaries[28]. Physicians found that 80% of the summaries 
included “all” or “most” relevant facts. The study did not specify which parts 
were deemed relevant or not or if the model missed specific information.

DeepScribe did not provide information on the models used for summarization 
but included how often a summary needed to be adjusted in practice. They 
report that 77% of their summaries do not need modification by a medical scribe 
before being sent to the physician. Furthermore, 74% of their summaries do not 
need modification from a medical scribe or a physician before being accepted 
as part of the patient’s record, saving time on administrative tasks.
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Box 3: Neural network-based sequence models with attention and word em-
beddings.

Attention-based neural networks: These models specifically take the se-
quence of the words into account, and have an attention layer. This layer 
acts as a filter, only passing the relevant subset of the input to the next layer.

Sequence2sequence (seq2seq)[52]: the seq2seq model uses a bidirec-
tional encoder LSTM to include context, and has an attention mechanism 
to focus on the relevant parts of the input.

Span-attribute tagging model (SAT)[43]: the SAT model extracts symp-
toms and classifies them as present or not. It first identifies the relevant 
parts of the text and then classifies those relevant parts into symptoms that 
are or are not present. The relation-span-attribute tagging model (R-SAT) 
is a variant of the sat that focuses on relations between attributes.

Pointer generator network (PGNet)[53]: pgnets are based on the seq2seq 
architecture. The added value of a PGNet is that it has the ability to generate 
new words or copy words from the text, increasing the summary’s accuracy.

Word embeddings: word embeddings are used to numerically represent 
words in a way that similar words have similar representations. For exam-
ple, the words ‘physician’, ‘clinician’, and ‘doctor’ will have similar repre-
sentations. There are different types of word embeddings, but the most 
important distinction for this review is between context-sensitive and con-
text-insensitive embeddings. Context-sensitive embeddings have different 
representations for words that have multiple meanings. For example, the 
word ‘bank’ can mean a riverbank, or a financial institution. Some word 
embeddings, like Word2Vec[54], allow only one representation per word, 
whereas context-sensitive embeddings like ELMo[55] and BERT[56] can 
distinguish the different meanings of the word ‘bank’.

2
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2.5 Discussion

This scoping review provides an overview of the current state of the devel-
opment, validation, and implementation of digital scribes. Although the digital 
scribe is still in an early research phase, there appears to be a substantial re-
search body testing various techniques in different settings. The first results 
are promising: state-of-the-art models are trained on vast corpora of annotated 
clinical conversations. Although the performance of these models varies per 
task, the results give a clear view of which tasks and which models yield high 
performance. Reports of clinical validity and usability, and especially clinical 
utility are, however, mostly lacking.

All studies focusing on ASR used physician–patient dialogs without further spec-
ification of the setting. In general, existing ASR systems not explicitly trained on 
clinical conversations did not perform well, with WERs up to 65%. The speech 
recognition systems trained on thousands of clinical conversations had WERs 
as low as 18%. This WER is still high compared to the claimed WERs of general, 
state-of-the-art, available ASR systems that attain WERs as low as 5%[47]. The 
difference in performance can be explained by the uncontrolled setting of clinical 
conversations with background noise, multiple speakers, and the spontaneity 
of the speech[13]. However, these aspects were not reported by any of the 
studies, complicating the comparison of WERs. Two new approaches decreased 
the WER by postprocessing the automatic transcript[36] and combining mul-
tiple ASR systems (DeepScribe). These approaches are promising new ways 
to decrease the WER. However, what is most important is whether the WER is 
good enough to extract all the relevant information. Currently, the NLP models 
trained on manually transcribed data outperform those trained on automatically 
transcribed data, which means there is room for improvement of the WER.

When comparing the different NLP tasks, the diverseness in both tasks and 
underlying models was large. The classification models focused mainly on ex-
tracting metadata, such as relevance or structure induction of an utterance, and 
used various models ranging from logistic regression to neural networks. The 
entity extraction models were more homogeneous in models but extracted many 
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different entities, complicating the comparison, whereas the summarization 
task was mostly uniform, both in models and in metrics. One notable aspect of 
the NLP tasks overall is the use of word embeddings. Only one study did not 
use word embeddings, but this was a study from 2006 when context-sensitive 
word embeddings were not yet available. All the other studies were published 
after 2019 and used various word embeddings as input. The introduction of 
context-sensitive word embeddings has been essential for extracting entities 
and summarizing clinical conversations.

In the entity extraction task, the specific tasks, such as extracting symptoms, led 
to better performance than more general tasks, such as extracting symptoms 
and their properties. An explanation for this is the heterogeneity in, for example, 
symptom properties, which entail the location, severity, duration, and other 
characteristics of a symptom. These properties can be phrased in various ways, 
in contrast to medication or frequency, which will be much more homogeneous 
in phrasing. Therefore, this homogeneity leads to many more annotations per 
entity, increasing performance.

The same pattern was observed in the models, where the addition of an atten-
tion layer increased performance. This finding is in line with previous studies 
on neural attention[48,49], which describe the decrease in neural networks’ 
performance with increased input length. By adding weights to the input text, 
the model knows which parts of the text are important for its task. Adding at-
tention not only improves performance; it also decreases the amount of training 
data needed, which is useful in a field such as healthcare, where gathering large 
datasets can be challenging.

In the studies performing the entity extraction task, the error analyses showed 
that often, symptoms, medications, or properties are hard to interpret even by 
human annotators. This result is in line with the concerns discussed in the intro-
duction, questioning if a model would accurately extract all relevant information 
from a non-linear, fragmented conversation. However, this takes the concern 
one step further, namely how the “gold standard” will be determined if there 
is ambiguity between human annotators. More research is needed to define 
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methods for developing gold standards. Shafran et al.[27] have taken an exciting 
first step towards such a method by publishing an article about the development 
of their corpus, including how they dealt with ambiguity and labeling errors.

The studies investigating summarization of the clinical conversation used both 
extractive and abstractive summarization techniques. However, the extractive 
techniques resulted in a list of the most important utterances instead of a new, 
full summary. Therefore, the studies performing abstractive summarization are 
more interesting to discuss. All four studies used the same model, the pointer 
generator network[28,29,31,37]. This network’s advantage, especially with the 
studies’ additions, makes sure it copies more words than it generates, keeping 
the summary as close to the conversation as possible. Two studies also included 
a quality check by physicians, which gives more insight into the possibility of 
implementation[24,28]. However, it would have been interesting to include 
error analyses to investigate the models’ blind spots.

Future work

First of all, we believe it is vital to improve the ASR for clinical conversations fur-
ther and use them as input for NLP models. A remarkable finding was that most 
studies used manually transcribed conversations as input to their NLP model. 
These manual transcripts may outperform automatically transcribed conver-
sations regarding data quality, leading to an overestimation of the results. NLP 
models that require manual transcription may increase administrative burden 
when implemented in clinical practice.

Secondly, the current body of research is mostly focused on improving the per-
formance of different models. Although some studies performed error analyses 
and qualitative analyses of the model’s output, most did not. Moreover, most 
studies did not fully cover the technical validity phase because of insufficient 
reporting on the setting, data, and situations in which the model succeeded and 
failed. This information is essential to describe for a model that could potentially 
be implemented in clinical practice. The proposed models might contain bias or 
lead to unintended results, as Ferracane and Konam[34,37] show. This study is 
an inspirational example of how researchers can investigate the strengths and 
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weaknesses of their model. A recent paper by Hernandez-Boussard et al.[50] 
proposes reporting standards for AI in healthcare, which should be the basis for 
reporting on digital scribes as well.

Although most studies are in an early development phase, including qualitative 
analyses of the model’s output is necessary to know if the solution researchers or 
developers are working on is applicable in practice. The lack of implementation 
following the development of an AI model is common in healthcare[51], which 
can be limited by investigating clinical validity and usability while working on 
technical validity. A good example is the study by Joshi et al.[28], where physi-
cians qualitatively analyze the model’s output. These results lead to new insights 
for improving technical validity. Studying these two research phases iteratively 
leads to a solution that is well-suited for clinical practice.

Most of the presented models need to be technically and clinically validated 
before moving on to the clinical utility phase. However, the companies already 
offering digital scribes seem to have skipped all four research phases, including 
clinical utility. We urge these companies to publish data on their digital scribes’ 
technical validity, clinical validity and usability, and clinical utility. Not only is 
transparency in the model and its performance crucial for clinical practice, but it 
also helps the community better understand the models and enables researchers 
to build on past work[52].

The suitability phase falls outside the scope of this review but is nevertheless 
vital for developing and implementing the digital scribe. One research group has 
published several studies investigating which parts of a clinical conversation are 
relevant for creating a summary and how physicians see the potential role of a 
digital scribe[53,54]. These studies should be the starting point for researchers 
and developers working on a digital scribe.

Strengths and limitations

The current work is the first effort to review all available literature on develop-
ing a digital scribe. We believe our search strategy was complete, leading to a 
comprehensive and focused scope of the digital scribe’s current research body. 
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By adding the company’s data, we create a broader overview than just the digital 
scribe’s scientific status. However, this data is unpublished, which means we 
have to trust the company in providing us with legitimate data. We hope this 
review is an encouragement for other companies to study their digital scribes 
scientifically.

One limitation is the small number of journal papers included in this review, as 
opposed to the amount of Arxiv preprints and workshop proceedings. These 
types of papers are often refereed very loosely. However, only including journal 
papers would not lead to a complete scope of this quickly evolving field.

Contacting various digital scribe companies was a first step towards gaining 
insight into implemented digital scribes and their performance on the different 
ASR and NLP tasks. Although only one company replied, we believe it is a valu-
able addition to this review. It indicates that their implemented digital scribe 
does not differ significantly in techniques or performance from the included 
studies’ models while already saving physicians’ time. Nevertheless, it highlights 
the gap between research and practice. The studies published by companies all 
describe techniques that are not part of a fully functional digital scribe (yet). 
However, none of the companies offering digital scribes have published about 
the technical validity, clinical validity and usability, or clinical utility of their sys-
tems.

Conclusion

Although the digital scribe field has only recently started to accelerate, the pre-
sented techniques achieve promising results. The most promising models use 
context-sensitive word embeddings in combination with attention-based neural 
networks. However, the studies on digital scribes only focus on technical validity, 
while companies offering digital scribes do not publish on any of the research 
phases. Future research should focus on more extensive reporting, iteratively 
studying technical validity and clinical validity and usability, and investigating the 
clinical utility of digital scribes.
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