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Fluxons in a superconducting loop can be coherently coupled by quantum phase slips occurring at a weak
link such as a Josephson junction. If Cooper pair tunneling at the junction occurs through a resonant level, then
2π quantum phase slips are suppressed, and fluxons are predominantly coupled by 4π quantum phase slips. We
analyze this scenario by computing the coupling between fluxons as the level is brought into resonance with the
superconducting condensate. The results indicate that the 4π -dominated regime can be observed directly in the
transition spectrum for circuit parameters typical of a fluxonium qubit. We also show that if the inductive energy
of the loop is much smaller than the plasma frequency of the junction, then the low-energy Hamiltonian of the
circuit is dual to that of a topological superconducting island. These findings can inform experiments on bifluxon
qubits as well as the design of novel types of protected qubits.

DOI: 10.1103/PhysRevB.110.045404

I. INTRODUCTION

The inductively shunted Josephson junction plays an im-
portant role in the field of superconducting quantum devices
[1,2]. The inductive link changes the topology of the circuit
from that of an island to that of a loop, removing the 2e
charge quantization associated with a superconducting island.
The charge sensitivity of the device is exchanged for its flux
sensitivity [3], which is exploited in the design and operation
of the fluxonium qubit [4–8]. Furthermore, a large shunting
inductance suppresses the sensitivity to flux noise, as recently
demonstrated in the blochnium qubit [9]. For this reason, the
inductive shunt is a common feature of noise-protected qubit
designs [10].

The minimal circuit that models this class of superconduct-
ing devices is simple: It consists of an inductor, a capacitor,
and a Josephson element connected in parallel [Fig. 1(a)].
The inductor and the Josephson junction form a loop through
which an applied magnetic flux � is threaded. The circuit
supports persistent current states, also known as fluxons, in
which the superconducting phase winds by an integer multiple
m of 2π when circling the loop [11]. Fluxons are coupled by
quantum phase slips occurring at the Josephson junction [12],
which change m by an integer �m (see Fig. 2).

In a typical Josephson element, e.g., in a tunnel junction,
the amplitude of 2π quantum phase slips (�m = 1) is much
larger than that of 4π quantum phase slips (�m = 2). How-
ever, if Cooper pair tunneling across the Josephson element is
resonant—a type of weak link we call the Josephson resonant
level—then 2π quantum phase slips are suppressed [13–16]
and 4π quantum phase slips become the dominant coupling
between fluxons. The bifluxon qubit proposal [17] achieves
resonant tunneling using as a Josephson element a series of

two (almost) identical tunnel junctions separated by a small
superconducting island tuned (close) to a charge degeneracy
point. Alternatively, resonant tunneling can also occur in a
semiconductor junction, via an isolated energy level forming
in a quantum dot [18–20], as represented in Fig. 1(b). In
the latter system, experiments have demonstrated the drastic
suppression of 2π quantum phase slips close to resonance
[21,22], but not yet the occurrence of the regime dominated
by 4π quantum phase slips [16].

In this paper, motivated by these experimental devel-
opments, we study in detail the energy spectrum of an
inductively shunted junction with a Josephson coupling me-
diated by a single energy level [Fig. 1(b)]. We focus on the
avoided crossings between energy levels directly connected
to the quantum phase slip amplitudes, and measurable via
microwave spectroscopy. We provide analytical expressions,
backed by numerics, that capture the entire crossover between
2π - and 4π -dominated regimes near the resonance, as well as
the regime away from resonance.

We also show that, when the inductive energy of the loop
becomes much smaller than the Josephson plasma frequency,
the circuit is well described by a low-energy theory dual to
that of a topological superconducting island. The duality we
uncover is distinct from the known duality between a super-
conducting loop and a superconducting island [23]. Indeed, it
includes an additional degree of freedom: the fluxon parity of
the loop (i.e. the parity of m), which we show to be dual to the
fermion parity of the island. Similar to fermion parity states
encoded nonlocally in Majorana zero modes, states with op-
posite fluxon parity have disjoint support in phase and provide
a twofold quasidegeneracy to the energy spectrum; thus, they
become an attractive degree of freedom to encode qubit states
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FIG. 1. (a) Circuit of the inductively shunted Josephson junction.
(b) A junction realized by a resonant level with a tunable energy εr

and Cooper pair tunneling rates �1 and �2.

[17,24]. We discuss the implications of our findings for the
design of protected qubits [10,24] in the concluding section.

II. MODEL

Given a capacitance C and an inductance L, the inductively
shunted junction of Fig. 1(a) is described by the quantum
Hamiltonian [3]

Ĥ = 4Ecn̂2 + 1
2 EL(φ̂ + φext )

2 + V (φ̂), (1)

where Ec = e2/2C and EL = (�0/2π )2/L. The parameter
φext = 2π�/�0 gives the applied flux � through the inductive
loop in units of the flux quantum �0 = h/2e. The Cooper
pair number n̂ and phase φ̂ are conjugate variables satisfying
[φ̂, n̂] = i.

The potential term V (φ̂) gives the Josephson energy, which
for a tunnel junction would be the familiar −EJ cos φ̂. For
the case in which Josephson coupling is mediated by an iso-
lated energy level, as in Fig. 1(b), a minimal model for the
potential is

V (φ̂) = −� cos(φ̂/2)τx − δ� sin(φ̂/2)τy − εrτz. (2)

Here, the Pauli matrices τx, τy, τz act on the two-level system
corresponding to the resonant level being empty or doubly
occupied; � = �1 + �2 and δ� = �1 − �2 are the sum and
difference of the 2e tunneling rates �1 and �2 between the two
leads and the resonant level; and finally εr is the energy of the
resonant level [see Fig. 1(b)]. This model for the Josephson
resonant level has been discussed in Refs. [16,25,26]. Among
other things, these works discuss the role of a charging en-
ergy of the resonant level, as well as the effect of additional
transport channels and the continuum part of the density of
states; all elements which we do not include in our work for
simplicity.

The potential in Eq. (2) also applies to the bifluxon circuit
deep in the charging regime of the middle island [17], but
parameters have a slightly different meaning: �1 and �2 are
Josepshon energies of two tunnel junctions, and εr is the
energy difference between two even-parity charge states of the
superconducting island.

Fluxonium devices are typically operated in a parameter
regime such that there is approximately one bound state in
each of the local minima of the modulated potential of Eq. (1)
[4]. These bound states are fluxons with a parabolic energy
dispersion ≈ 1

2 EL(2πm + φext )2 [see Fig. 3(a)], and become
degenerate for particular values of φext. At the degeneracy

FIG. 2. Potential landscape of the model of Eq. (1). We depict
the two branches of the potential energy U (φ) = 1

2 EL (φ + φext )2 ±
EA(φ). (a) When the external flux is equal to half a flux quantum,
fluxons are localized around the Josephson potential minima at φ =
0, 2π (wave functions shown in orange). Fluxons can tunnel between
the minima via a 2π quantum phase slip (purple arrow). (b) When the
external flux is zero, fluxons localized around φ = ±2π can tunnel
via 4π quantum phase slips. Because of the second branch of the
potential, the 4π quantum phase slips can follow two interfering
paths labeled a and b (solid and dashed arrows), as described in the
text.

points, quantum phase slips create coherent superpositions of
fluxons.

In particular, at φext = π the potential landscape is a degen-
erate double well for fluxons with m = 0 and m = −1, which
couple via 2π quantum phase slips [see Fig. 2(a)]. At φext =
0, instead, fluxons with m = ±1 occupy degenerate minima
symmetrically placed around φ = 0, and are coupled by 4π

quantum phase slips [see Fig. 2(b)]. When V (φ) = −EJ cos φ,
the 4π quantum phase slips have a much smaller amplitude
than 2π ones, since they are a higher-order process involving
two 2π -slips [3].

This is not necessarily the case for the Josephson resonant
level [Eq. (2)], because of the presence of a second branch
corresponding to an excited Andreev pair in the junction
[27]. Indeed, the matrix-valued potential V (φ̂) has eigenval-
ues ±EA, with

EA = �A

√
cos2(φ/2) + |r|2 sin2(φ/2), (3)

where

�A =
√

�2 + ε2
r , (4)

and

r = εr + iδ�

�A
(5)

is the reflection amplitude of the junction.
The excited energy branch +EA is shown as a black dashed

line in Figs. 2(a) and 2(b). The relevant feature of Eq. (3) is an
avoided crossing of magnitude |r|�A at φ = ±π,±3π, . . . .
In the next section we show that in the limit r → 0, when
the branches cross, the amplitude of 2π phase slips vanishes.
The system thus enters the regime in which 4π phase slips are
dominant.
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FIG. 3. (a) Energy spectrum as a function of flux, φext. The blue and red insets zoom in on the avoided crossings due to 2π and 4π quantum
phase slips, respectively (the vertical span of the insets is 1 GHz). The energies are computed numerically from Eq. (1), with Ec/h = 2.5 GHz,
EL/h = 0.25 GHz, �/h = 5 GHz, and δ�/h = εr = 0.5 GHz. These parameters correspond to a reflection coefficient |r| = 0.14. The dashed
gray lines illustrate the resonant case in which εr = δ� = 0 and so r = 0. (b) Comparison of the avoided crossings �2π and �4π when sweeping
system parameters. For all curves, we fix Ec/h = 2.5 GHz and EL/h = 0.25 GHz. The pink and green data show results obtained approaching
resonance in two different ways. In both cases we set �/h = 10 GHz. In green, εr/h is varied between 0 and 1 GHz, with δ� = 0. In pink,
δ�/h is varied instead between 0 and 1 GHz, with εr = 0. For both curves, |r| ≈ 0.1 on the right side of the plot, and tends toward 0 on the
left side of the plot, where δ� = εr = 0 and �2π vanishes. Dots are computed numerically by diagonalizing Eq. (1), while dashed lines are
obtained from the WKB result of Eqs. (6) and (9). The gray dots show the low-transparency scaling obtained from numerical diagonalization
of Eq. (1) with V (φ̂) = −EJ cos φ̂, varying EJ/h between 10 and 40 GHz. The dashed line corresponds to the T � 1 limit of Eqs. (6) and (9),
with the correspondence EJ = �AT/4.

III. WENTZEL-KRAMERS-BRILLOUIN (WKB) ANALYSIS

An observable consequence of quantum phase slips are
avoided crossings in the flux dependence of the energy spec-
trum of the circuit; see Fig. 3. There, �2π is the splitting
of the crossing between states with m = 0 and m = −1 at
φext = π ; it originates from 2π phase slips. �4π is the splitting
of the crossing between states with m = −1 and m = 1 at
φext = 0; it originates from 4π phase slips. The magnitude
of these avoided crossings can be computed using the WKB
method [28], with calculations similar to the one described in
detail in Ref. [16]. One must perform separate calculations to
determine �2π and �4π , respectively, using the two potential
landscapes at φext = π and φext = 0 [Figs. 2(a) and 2(b)]. In
both cases, the presence of a second branch of the potential
crucially modifies the WKB tunneling amplitude under the
barrier separating different local minima [13–16,29].

In this section, we discuss the implications of this fact
using a WKB calculation appropriate for the parameter regime
typical of fluxonium qubits, in particular with respect to the
value of EL. In the next section, the results are generalized to
arbitrarily low values of the inductive energy.

For the 2π quantum phase slips at φext = π , under validity
conditions discussed at the end of the section, one obtains

�2π = w(r) ωp

(
b2

0ωp

2πEc

)1/2

exp

(
−b1

ωp

Ec
+ b2

EL

ωp

)
, (6)

where

ωp =
√

2T �AEc, T = 1 − |r|2, (7)

and b0, b1, b2 are numerical coefficients which depend
smoothly on the transmission probability T . They are given
in Appendix A. The prefactor w(r) depends on the reflection
coefficient r via an adiabaticity parameter λ:

w(r) =
√

2π

λ

e−λλλ

�(λ)
, λ = |r|2

4

�A

�

√
�A

Ec
, (8)

with �(λ) the γ function evaluated at λ, not to be confused
with tunneling rates. The amplitude w vanishes when r → 0,
making the fluxon bound states degenerate at φext = π . The
parameter λ sets the scale for the crossover into the degenerate
regime: The suppression of �2π takes place when λ � 1,
namely when |r|2 � √

Ec/�, while w ≈ 1 in the opposite
limit λ � 1. The mechanism behind the suppression is the
imaginary-time Landau-Zener transition across the avoided
crossing [13].

The WKB calculation of �4π is more delicate, because
there are two tunneling paths between the minima at φ =
±2π , labeled a and b in Fig. 2(b). They differ by the branch of
the potential that they take between the two avoided crossings
at φ = ±π . Path a takes place via the lower branch of the
potential. It consists of the sequence of two 2π phase slips,
passing through a classically available region around φ = 0.
Path b, instead, takes place via the excited branch of the po-
tential and passes through a single 4π -wide tunneling barrier.

Notably, the two contributions interfere. The interference
phase is that of the reflection amplitude r = |r|eiα , which
distinguishes the path going through the avoided crossings
from the one which does not. The sensitivity of energy levels
to the phase acquired at the avoided crossing is akin to the
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Landau-Zener-Stückelberg interference [30]. The final result
for the energy splitting takes the form

�4π =
√

�2
a + �2

b − 2 �a �b cos(2α). (9)

Here, �a is the contribution due to the sequence of two 2π

phase slips. It takes the form

�a = �2
2π

4π2EL

(
b2

0ωp

2Ec

)2π2EL/ωp

, (10)

where �2π is the same as given in Eq. (6). Note that this
contribution vanishes when r → 0. However, �b is the am-
plitude of a direct 4π quantum phase slip. It does not vanish
at resonance, and is given by

�b = ωp

(
b2

0ωp

2πEc

)1/2

exp

⎛
⎝−b3

√
�A

Ec
+ b4

EL

ωp
+ b5

⎞
⎠,

(11)

with b3, b4, b5 another three coefficients smoothly depending
on T , also given in Appendix A.

The results of Eqs. (6) and (9) are illustrated in Fig. 3.
The parametric plot of �4π versus �2π shows that, close to
resonance, �2π vanishes and �4π remains finite. The 4π -
dominated regime is approached differently depending on
whether the junction is tuned to resonance by varying δ� or
by varying εr . When δ� �= 0, α = π/2 in Eq. (9), and so �a

and �b can never cancel out. When εr �= 0, α = 0, and so
complete cancellation (�4π = 0) occurs at the value of εr such
that �a = �b.

Equations (6) and (9) are valid when Ec � �AT/4, EL �
ωp, and max(�2π ,�4π ) � EL, and apply only to the split-
ting of fluxons belonging to the lowest harmonic level in the
relevant potential minima. The first condition is required for
the validity of the semiclassical WKB approach. The second
condition guarantees that we can disregard fluxons originating
from the other harmonic levels inside the wells. Finally, the
third condition allows us to ignore the presence of the higher-
energy minima of the potential energy. The assumed hierarchy
of energy scales is in line with experimentally reported param-
eters of fluxonium devices [4,31,32], with better accuracy in
the “heavy” regime Ec � �AT/4 [31,32].

In Eqs. (6) and (11) we include contributions to the WKB
exponent proportional to the small parameter EL/ωp. These
contributions originate from the lifting of the energy minima
of the periodic potential V (φ), as well as the change in the
WKB momentum due to the EL term. Although they are sub-
leading contributions to the WKB integrals, and are subtle to
compute, we find that they are important for the agreement
with numerical calculations in the parameter regime of the
aforementioned experiments, such as the parameters used in
Fig. 3.

The analytical results in this Section extend those presented
for the same Hamiltonian in Ref. [17], which focused on
the resonant point r = 0, since they provide the behavior of
�2π and �4π as the system is tuned across the resonance.
Furthermore, as long as Ec � �AT/4, Eqs. (6) and (9) re-
main valid also in the low-transparency regime T � 1, away
from resonance. In fact, in the limit T � 1, Eqs. (6) and (9)

match exactly the results of an equivalent WKB calculation
done with the tunnel junction potential V (φ̂) = −EJ cos φ̂,
provided that one sets EJ = �AT/4 so that ωp = √

8EJEc.
In this off-resonant regime one always has �4π � �2π , as
shown by the gray lines in Fig. 3.

IV. DUALITY WITH A TOPOLOGICAL
SUPERCONDUCTING ISLAND

We now ask what happens to the low energy spec-
trum when EL is lowered, so that the assumption EL �
max(�4π ,�2π ) behind the results from the last section is
violated and the discussed eigenstates are delocalized over
more minima.

The scaling of the energy spectrum of Eq. (1) toward the
limit EL → 0 is shown in Fig. 4. In the limit EL � ωp, as more
and more local minima of the potential appear at energies
below ωp, we observe the condensation of bands of narrowly
spaced energy levels. We now derive an effective Hamiltonian
appropriate to describe this regime, via similar steps as those
described in Ref. [3] for the standard fluxonium Hamiltonian.
The derivation will establish the duality with the topological
superconducting island mentioned in the introduction.

To begin with, when EL � ωp, it becomes convenient to
write the Hamiltonian (1) in the eigenbasis of its EL → 0
limit. The eigenfunctions can be represented in the following
way:

�ns(φ) = e−inφuns(φ) ≡ 〈φ | n, s〉. (12)

Here, s is an integer number that refers to a band index and n is
a continuous variable, n ∈ [0, 1). By substitution into Eq. (1),
the spinor wave functions uns(φ) satisfy a transmonlike
equation:

[4Ec(−i∂φ − n)2 + V (φ)] uns = Es(n) uns, (13)

with the boundary condition that was derived in Ref. [16]:

uns(φ + 2π ) = τzuns(φ). (14)

Note that uns are defined on the circle φ ∈ [0, 2π ) and, at a
fixed n, they form an orthonormal basis with respect to the
band index s. This ensures that �ns(φ), which are functions of
a noncompact phase, form an orthonormal basis with different
s and n.

This eigenvalue problem was analyzed in Ref. [16], where
we showed that the eigenspectrum takes the form

Es(n) = εs + As cos(2πn + αs) + Bs cos(4πn + βs). (15)

Here, As and Bs are the 2π and 4π quantum phase slip tun-
neling amplitudes for the periodic potential V (φ), and αs and
βs are associated phase shifts. The bands are harmonically
spaced, εs ≈ ωp(s + 1

2 ), while As and Bs are exponentially
small in ωp/Ec. Detailed expressions as a function of Ec, �,
δ� and εr are derived in Ref. [16] and restated in Appendix B.
The simple form above for the energy bands was derived via
the WKB method. It is accurate for Ec � �AT/4 and for
low-lying bands.

For the lowest band, the parameters A0 and B0 are closely
connected to the quantities �2π and �4π computed in the
previous section. In particular, A0 can be identified with the
limit EL/ωp → 0 of �2π in Eq. (6), but the same is not true for
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FIG. 4. Energy spectrum as a function of decreasing inductive energy EL . (a) Energy levels determined from direct numerical diagonal-
ization of Eq. (1); the parameters are Ec/h = 2.5 GHz, �/h = 5 GHz, φext = 0, εr/h = 10 MHz and δ� = 0, corresponding to r ≈ 0.002,
very close to resonance. As EL → 0, the energy levels tend to fill the areas shaded in red and green. These correspond to the energy bands
defined in Eq. (15) for s = 0, 1. The bandwidth of the s = 0 band is barely resolvable at about 16 MHz and so it is also indicated by the red
arrow. (b) Result of the numerical diagonalization of the effective Hamiltonian Hs of Eq. (18), separately for s = 0, 1. The quantum phase
slip amplitudes used in the effective Hamiltonian are A0 ≈ 2.8 MHz, B0 ≈ 6.6 MHz; and A1 ≈ 7.8 MHz, B1 ≈ 133 MHz. While the effective
spectrum in (b) faithfully reproduces the clustering of energy levels into bands, it does not capture avoided crossings in (a) that originate
from the inter-band couplings. (c) Low-lying energy levels computed for the s = 0 band at φext = π both on resonance (δ� = ε = 0) and
off-resonance (δ� = εr = 0.5 GHz, i.e., |r| ≈ 0.14). The low-energy effective parameters are A0 = 0 and B0 ≈ 6.6 MHz for the resonant case,
and A0 ≈ 160 MHz and B0 ≈ 7.3 MHz for the off-resonant case. The panel illustrates the different degeneracy of energy levels that is observed
in the two cases: degenerate doublets in the resonant case split off-resonance due to 2π quantum phase slips.

B0, since in Eq. (9) the ratio �2π/EL appears as well (i.e., both
A0 and B0 contribute to �4π ). We have verified numerically
that the low-energy spectrum of the s = 0 band, discussed
in more detail below, matches the expressions for the energy
splittings given in Eqs. (6) and (9). This is true provided EL is
low enough to neglect the sub-leading EL/ωp terms in those
equations, but large enough so that EL � max(�2π ,�4π ) as
required in the previous section.

In the basis |n, s〉, the phase operator is represented as φ̂ =
−i∂n − �̂. It couples different bands only via the connection
matrix elements �ss′ :

〈n, s|�̂|n′, s′〉 = δ(n − n′)�ss′ (n),

�ss′ (n) = i
∫ 2π

0
u†

ns∂nuns′dφ. (16)

These can be evaluated in the same limit where Eq. (15) was
calculated:

�ss′ (n) ≈ −
(

8Ec

�AT

)1/4

(
√

sδs′,s+1 + √
s + 1δs′,s−1). (17)

The interband couplings can be neglected for Ec � �AT/4.
Therefore, the original Hamiltonian of Eq. (1) separates into
blocks labeled by the band index s:

Hs = 1
2 EL(−i∂n + φext )

2 + Es(n). (18)

It must be solved with the periodic boundary conditions
ψs(n + 1) = ψs(n). The eigenvalues of this block-diagonal
Hamiltonian, shown in the right panel of Fig. 4, compare

favorably to the numerical solution of the full Hamiltonian,
Eq. (1), shown in the left panel of Fig. 4.

The fluxon states localized around minima φ = 2πm with
integer m are related to |n, s〉 via the Fourier transform:

|2πm, s〉 =
∫ 1

0
dne2π imn|n, s〉. (19)

It is easy to see that, at resonance, As vanishes and the parity of
m becomes conserved. With this in mind, we introduce in lieu
of |n, s〉 a new basis |n, σ, s〉 endowed with a spinlike degree
of freedom related to the fluxon parity:

|n,↑, s〉 = |n, s〉 + |n + 1/2, s〉√
2

, (20)

|n,↓, s〉 = |n, s〉 − |n + 1/2, s〉√
2

, (21)

with n ∈ [0, 1/2). In terms of these basis states,

|2πm, s〉 =
√

2
∫ 1/2

0
dn|n, σ, s〉e2π imn, (22)

where m is even for σ =↑ and odd for σ =↓.
The Hamiltonian Hs in this doubled space reads

Hs = 1
2 EL(i∂n − φext )

2 + Asσx cos(2πn + αs)

+ Bs cos(4πn + βs) + εs. (23)

The Pauli matrices act on the spinlike degree of freedom and
the boundary conditions in the halved Brillouin zone become
twisted:

ψs
(
n + 1

2

) = σzψn(n). (24)

045404-5



T. VAKHTEL et al. PHYSICAL REVIEW B 110, 045404 (2024)

Although Eq. (23) is just a rewriting of Eq. (18), it illuminates
the fact that the low-energy description is precisely dual to
that of a superconducting island shunted to ground by a topo-
logical Josephson junction with coupled Majorana zero modes
[see Fig. 5(a)]. The Hamiltonian of such an island is [33–40]

HM = 4Ec(i∂φ − ng)2 + EM iγ1γ2 cos(φ/2) − EJ cos φ.

(25)

Here, the first term is the charging energy of the island, ng

is the induced charge in units of 2e, EJ represents standard
Cooper pair tunneling, and the last term represents single-
charge tunneling due to the Majorana zero modes γ1 and γ2

coupled across the topological junction (the fractional Joseph-
son effect). Note that there are four Majorana zero modes in
the model, with γ0 and γ1 located on the island and γ2 and
γ3 located on the ground plane (see Fig. 5). Although only
γ1 and γ2 appear in the Hamiltonian, the boundary condition
for Eq. (25) depends on the fermion parity operator of the
island iγ0γ1:

ψ (φ + 2π ) = (−1)p ψ (φ), (26)

with p = (1 − iγ0γ1)/2 = 0 or 1 if the parity is even or odd.
The operator iγ0γ1 appearing in the boundary condition an-
ticommutes with iγ1γ2 appearing in the Hamiltonian, just
like the fluxon parity σz entering the boundary condition of
Eq. (24) anticommutes with σx.

As illustrated in Figs. 5(a) and 5(b), the duality is estab-
lished via the following correspondences: φ ↔ 4πn, φext ↔
4πng, Ec ↔ 2π2EL, EJ ↔ Bs, EM ↔ As. The operator iγ1γ2

changes the fermion parity of the island, just like the operator
σx changes the fluxon parity. The phase shifts αs and βs can
be included in the correspondence by adding a relative phase
between the EM and EJ terms, which could arise for instance
in a superconducting quantum interference device (SQUID)
configuration.

It follows from the duality that, in the limit of low EL,
the flux dispersion of the energy levels of the circuit is
equivalent to the charge dispersion of the energy levels of
a superconducting island governed by Eq. (25). With due
care, results available in the literature for the latter sys-
tem become therefore applicable to the inductive loop as
well. This includes, for instance, the existence of a su-
persymmetric spectrum at a specific value of the system
parameters [35].

We illustrate the salient aspects of the duality in Fig. 4(c),
focusing on the lowest energy levels of the s = 0 band when
φext = π . In this case, at resonance, fluxon parity provides
a twofold degeneracy to the energy spectrum of the circuit,
which is broken by 2π quantum phase slips away from res-
onance. The flux dispersion of energy levels away from this
point is instead shown in Fig. 5: when 2π2EL � B0, the
circuit is in a “Cooper-pair box regime”: the energy levels are
essentially given by parabolas with small avoided crossings at
degeneracy points [see Fig. 5(b)]. However, when 2π2EL �
B0, the circuit is in a “transmon regime” [see Fig. 5(c)], char-
acterized by a flattening of the dispersion of energy levels as a
function of flux. The spacing between these flat energy levels
depends on the value of A0. If A0 = 0, then the energy levels
become fluxon-parity degenerate doublets at all values of the
flux in the limit EL → 0, with a spacing between doublets

FIG. 5. (a) Schematic illustration of the duality between a su-
percondcting loop (left) with 2π and 4π phase slip elements A0

and B0 and a topological superconducting island (right) with 1e and
2e tunnel couplings EM and EJ . The four gray dots on the right
represent four Majorana zero modes, two on the island and two on
the ground. � and Vg are the flux and voltage applied to the loop
and island, corresponding to the tuning parameters φext = 2π �/�0

and ng = CVg/2e. (b) Dispersion of the three lowest energy levels
of the circuit as a function of flux, obtained from diagonalization of
the s = 0 band Hamiltonian of Eq. (18). We set Ec/h = 2.5 GHz and
�/h = 5 GHz, and εr/h = δ�/h = 10 MHz. In these conditions, the
quantum phase slip parameters of Eq. (18) are A0/h ≈ 3.3 MHz
and B0/h ≈ 6.7 MHz. The dashed parabolas are the energies of un-
coupled fluxons, which are dual to uncoupled charge states. Labels
relate avoided crossings to model parameters on either side of the
duality. (c) Flux dispersion of the energy levels of the circuit for
lower values of EL , illustrating the “transmon” regime. The solid
lines are obtained for the same parameters as in panel (b), while the
dashed lines are obtained at resonance: εr = δ� = 0. In this case,
A0 = 0 and energy levels gather in almost degenerate doublets. In
panel (b), B0/(2π 2EL ) ≈ 0.3, while in panel (c) B0/(2π 2EL ) ≈ 3.3
and 6.6. Note that the vertical energy scale changes between plots,
following the reduction in EL .

∼√
ELB0 [dashed lines in Fig. 5(c)]. A finite but small 2π

quantum phase slip amplitude splits the doublets by an amount
≈ A0 [solid lines in Fig. 5(c)].
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V. DISCUSSION

A. Observability of the 4π-dominated regime

The difficulty of measuring directly the 4π -dominated
regime occurring at resonance lies in the smallness of 4π

quantum phase slips. This was the reason, for instance, that
the effect of 4π quantum phase slips was not detected in the
transmon experiments of Refs. [21,22]. The results of Fig. 3
show that measuring the 4π -dominated regime should be
feasible in circuit with typical fluxonium parameters: Ec/h =
2.5 GHz and EL/h = 0.25 GHz. At perfect resonance, when
�2π vanishes, �4π/h ≈ 5 MHz if �/h ≈ 5 GHz: albeit small,
splittings of this magnitude have been detected and exploited
in heavy fluxonium circuits [31,41]. Larger values of �4π

can be obtained by decreasing �A/Ec (somewhat exiting the
domain of validity of our WKB results).

The 4π -dominated regime is narrow: with the parame-
ters of Fig. 3, one needs εr/� � 10−3 and δ�/� � 10−3 to
achieve �2π � �4π . For bifluxon circuits, it may be difficult
to limit the asymmetry δ�, which is set by the fabrication
of the tunnel junctions [42,43] and cannot be tuned after-
wards, unless SQUIDs are added to the design for the purpose.
For semiconductor junctions, instead, a difficulty would be
to maintain εr and δ� in such narrow ranges in the pres-
ence of charge noise. However, we argue that semiconductor
junctions present a qualitative advantage relative to the bi-
fluxon: stronger coupling between the weak link region and
the superconducting leads can be achieved without sacrificing
anharmonicity, namely without compromising the two-level
approximation used in the model for the weak link [44]. As
we explain below, the possibility to increase � without exiting
the regime of validity of the model may be beneficial to find a
parameter regime which offers more benevolent conditions to
observe the 4π -dominated regime.

B. Relation of the duality with previous work
on protected qubits

The duality of Sec. IV is not the first to establish a connec-
tion between charge-based and flux-based superconducting
circuits. Notably, Mooij and Nazarov established a duality
between the Cooper-pair box and the phase-slip junction [23].
The crucial difference is that, in our case, 2π quantum phase
slips are dual to charge 1e tunneling, rather than 2e tunnel-
ing. This different mapping means that the duality of Mooij
and Nazarov cannot be reobtained simply by disregarding 4π

phase slips. Namely, even if setting EM and As to zero formally
recovers the dual Hamiltonians of Ref. [23], these Hamilto-
nians in our case act on a different Hilbert space, enlarged
by the presence of a degenerate parity degree of freedom. A
conceptually similar duality involving charge and flux degrees
of freedom was discussed in Ref. [45], but it applied to the
case of a topological superconducting loop.

The duality of Sec. IV highlights an equivalence be-
tween different models of protected superconducting qubits.
Namely, models on both sides of the duality can be cast as
a one-dimensional tight-binding model in which the nearest-
neighbor hopping (EM or A0) can become smaller than the
next-nearest neighbor hopping (EJ or B0); the hopping repre-
sents tunneling of charge or flux depending on the side of the

duality. When the nearest-neighbor hopping is set to zero but
the next-nearest neighbor hopping is not, the one-dimensional
lattice disconnects in two separate pieces, corresponding to
“even” and “odd” sites of the lattice. Protected qubits can
then be encoded in the parity degree of freedom: parity states
are degenerate and have disjoint support. The degeneracy is
broken by the inductive or charging energy, which assigns dif-
ferent energies to even and odd sites, but does not couple them
[46]. With this general picture in mind, it becomes intuitive
to see that the duality can be extended to other circuits—
for instance, a transmon with both a cos(φ) and a cos(2φ)
Josephson element [47].

C. Implications for qubit protection

The duality derived in Sec. IV is suggestive for the design
of protected qubits. In the topological superconducting island,
the regime EM = 0 defines a parity-protected qubit [48]: as
long as EJ � Ec, noise acting on the island can neither de-
phase nor flip the qubit encoded in the fermion parity of the
Majorana pair. In our inductive loop, a similar regime cor-
responds to the resonant condition A0 = 0 together with the
condition 2π2EL � B0 [17]. In this regime, noise in the loop
cannot dephase or flip the qubit encoded in the fluxon parity
of the loop. The former process is suppressed exponentially in
the ratio

√
8B0/(2π2EL ).

With the inductive loop also insensitive to charge noise, it
appears that, on the theoretical level, the remaining fragility
of the protected regime is the fine-tuning needed to establish
the resonant condition δ� = εr = 0. Slightly away from res-
onance, 2π quantum phase slips couple fluxons of different
parity and break the parity protection. This fine-tuning is prob-
lematic in the presence of gate-induced noise influencing the
parameters δ� and εr . This fragility was already noted in the
bifluxon proposal of Ref. [17], which discussed possible cir-
cuit extensions mitigating the problem. Similar workarounds
could be applied to semiconductor junctions, which are also
sensitive to this type of noise.

Is there a parameter regime of the model that circumvents
this fragility? The duality suggests a negative answer, as fol-
lows. In the dual model for a topological superconducting
island, the topological protection of a fermion parity qubit is
spoiled by a nonzero EM . However, EM can be pushed toward
zero with exponential accuracy if the junction providing it is
in the tunneling regime, or pinched-off (or even absent). At
the same time, EJ can be kept large by a different junction in
parallel. Thus, the protected regime is available without the
need for fine-tuning circuit parameters.

In the inductive loop, the undesired coupling is the 2π

quantum phase slips amplitude A0 (see Fig. 5). Away from
the resonant condition, A0 cannot be reduced exponentially
while keeping the 4π phase slips amplitude B0 finite and
large, as required by the protected regime. As both parame-
ters are controlled by the WKB integrals under the potential
barrier, reducing A0 (e.g., by increasing the ratio ωp/Ec) will
reduce B0 as well, moving the device away from the protected
regime B0 � 2π2EL. Unlike in the topological island case, the
problem cannot be solved by asking for a second junction to
provide a large B0 and no A0, because the only way to do so
would require fine-tuning this second junction as well.
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Finally, the duality illuminates another aspect of the pro-
tected regime. In the topological superconducting island,
quasiparticle poisoning would spoil the fermion parity qubit
by introducing incoherent bit-flip errors between qubit states
[49–52]. The analog poisoning processes on the fluxon-based
side of the duality are incoherent 2π phase slips occurring
in the inductive loop, e.g., of thermal origin. As this source
of poisoning may be easier to keep under control, on this
point the fluxon-based design seems to have an advantage
with respect to its dual—although quasiparticle poisining of
the resonant level must still be minimized, as discussed below.

D. Experimental perspectives

From a practical point of view, an immediate problem
with the protected regime of our model is the requirement
for extreme smallness of EL: to the best of our knowledge,
the current record in the literature stands at EL/h ≈ 65 MHz
[9], likely higher than what would be needed for the condition
2π2EL � B0. A related issue is that the level spacing would
be in the MHz range, requiring some active cooling to reach
the quantum regime at accessible temperatures (milliKelvin
scale). At low values of EL—often reached via high-kinetic
inductance thin-films with very low Cooper-pair densities—
the occurrence of phase slips across the inductor, neglected
here, may also have to be taken into account.

A common strategy to minimize all the problems men-
tioned so far is to increase the quantum phase slip rates as
well as the plasma frequency, essentially trying to maximize
both �A and Ec while keeping the ratio �A/Ec constant and
of order one. Using superconductors with a larger energy gap
than Al in the resonant level junction would allow more room
to increase �A without exiting the tunneling limit. It is also
essential to minimize the quasiparticle poisoning rate of the
quantum dot (which is an analog of the poisoning events of
the Cooper pair box island in the bifluxon [17]), as our model
(2) assumes even occupation numbers of the Andreev bound
state.

Despite these obstacles, the existence of a protected
regime, corroborated by the duality derived in this work, will
make it interesting and rewarding to reach the hard-to-reach
parameter regime in which the inductive energy becomes
much smaller than the quantum phase slip rates.
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APPENDIX A: DEFINITIONS OF THE COEFFICIENTS

In this Appendix, we give the explicit expressions for the
coefficients b0, b1, b2, b3, b4, b5 used in the paper. We intro-
duce auxiliary definitions first:

u(φ) = EA(φ)/�A =
√

1 − T sin2(φ/2), (A1)

μ(φ) = arcsin

√
u(ϕ) − |r|
u(ϕ) + |r| , (A2)

h = |r|
(1 + |r|) √

1 − |r| , (A3)

k =
√

1 − |r|
1 + |r| . (A4)

Then b0 and b1 are defined in terms of elliptic integrals of the
first and second kind, as follows:

b0 = lim
ψ→0

ψ e
√

2h[2�(μ(ψ ),k−2,k)−(1−|r|)F (μ(0),k)], (A5)

b1 =
√

8h[−F (μ(0), k) + 2�(μ(0), 1, k)]. (A6)

For the rest of the coefficients, we have

b2 =
√

T

8

∫ π

0

(π2 − φ2)dφ√
1 −

√
1 − T cos2 φ/2

, (A7)

FIG. 6. Coefficients b0, b1, b2, b3, b4, b5 versus transparency T .
Their limiting values at T = 0 are b0 → 4, b1 → 1, b2 → 14ζ (3),
b3 → √

2π , and b4 → 8πG + 14ζ (3), where G = 0.915 . . . is Cata-
lan’s constant, and b5 → 0. Their limiting values for T → 1
are b0 → 8(

√
2 − 1), b1 → √

8(
√

2 − 1), b2 → 15.245 . . . , b3 →
4
√

2, b4 → 56ζ (3), and b5 → arctanh(1/
√

2).
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b3 =
√

2T b1 +
∫ π

0

√
1 + u(φ)dφ, (A8)

b4 =
√

T

8

∫ π

0

[
φ(4π − φ)√

1 − u(φ)
+ 4π2 − φ2

√
1 + u(φ)

]
dφ, (A9)

b5 =
√

T

8

∫ π

0

dφ√
1 + u(φ)

. (A10)

The coefficients are plotted against transparency T in Fig. 6.

APPENDIX B: EXPRESSIONS FOR THE LOW-ENERGY
HAMILTONIAN PARAMETERS

The expressions below are given in Ref. [16], where As, Bs

are denoted δ2e
s , δ1e

s and αs, βs are denoted β2e
s , β1e

s , respec-
tively. We state them here for convenience. They have been
derived using parabolic cylinder functions near the minima of
the Josephson potential. The intermediate expressions (B1),
(B3), and (B4) are different from Ref. [16], but the results
for As, αs and Bs, βs are the same after the substitution of
Eq. (B3) into Eqs. (B1) and (B4). The 2π -tunneling amplitude
and phase for a band s are given by

As = wωp

zπ
e−τs , αs = π (s + 1) − α, (B1)

z = s!es+1/2

(s + 1/2)s+1/2
√

2π
, (B2)

with w and α as defined in the main text. Here, τs is some
WKB integral that can be evaluated to

e−τs = z
√

2π

s!

(
b2

0ωp

4Ec

)s+ 1
2

exp

(
−b1

ωp

Ec

)
. (B3)

Note that the expression for As=0 coincides with Eq. (6) when
EL/ωp → 0.

For 4π phase slips, there are two terms contributing to the
overall amplitude Bs and phase βs, which are defined by the
equality:

Bs cos(4πn + βs) = (−1)s+1ωp

πz
e−ρs e−τs cos (4πn)

+ w2ωp

2π2z2
log

[
b2

0ωp

4Ec
(
s + 1

2

)
]

× e−2τs cos (4πn − 2α). (B4)

Here ρs is another WKB integral, this time evaluating to

ρs = (b3 −
√

2T b1)

√
�A

Ec
− b5 (2s + 1). (B5)
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