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Abstract
We study the role of size effects on atomic collapse of charged impurity in the flat band system.
The tight-binding simulations are made for the dice lattice with circular quantum dot shapes. It
is shown that the mixing of in-gap edge states with bound states in impurity potential leads to
increasing the critical charge value. This effect, together with enhancement of gap due to spatial
quantization, makes it more difficult to observe the dive-into-continuum phenomenon in small
quantum dots. At the same time, we show that if in-gap states are filled, the resonant tunneling
to bound state in the impurity potential might occur at much smaller charge, which
demonstrates non-monotonous dependence with the size of sample lattice. In addition, we study
the possibility of creating supercritical localized potential well on different sublattices, and
show that it is possible only on rim sites, but not on hub site. The predicted effects are expected
to naturally occur in artificial flat band lattices.

Keywords: coulomb impurity, atomic collapse, flat band, dice lattice, quantum dot

1. Introduction

The phenomenon of atomic collapse was firstly discussed
in connection with Dirac equation describing electrons near
super-heavy nuclei [1, 2]. If the charge of such nuclei exceeds
the critical value Z> 170, the lowest energy state in Coulomb
field reaches lower continuum and creation of electron–
positron pair becomes possible [3]. With the discovery of two-
dimensionalmaterials withDirac cones in spectrum the atomic
collapse again attracted attention [4–7]. The main reason was
that critical charge required for creation of electron–hole pair
was estimated to be Zcr/κ= 1/2 with κ being a dielectric
constant. Later studies has shown that the presence of gap
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induced by a gate [8] or by a spatial quantization due to finite
size [4, 9], as well as polarization effects [5] make the crit-
ical charge a bit larger, slightly exceeding Zcr/κ≳ 1. A num-
ber of experiments [10–12] were performed in graphene to
analyze the effects that appear when the charge of impur-
ity becomes supercritical. Firstly the collapse states were
observed in experiments with impurities made as clusters of
atoms [10], and later the realizations as vacancy or induced by
scanning tunneling microscope (STM) tip appeared [11, 12].

After these experiments appeared, a number of properties
of atomic collapse states were studied. In particular, atomic
collapse and formation of bound states was analyzed for
graphene in external perpendicular magnetic field in [13, 14]
due to effect of dimensional reduction. The much smaller crit-
ical charge values were predicted for bilayer graphene as a res-
ult of more flat dispersion of quasiparticles [15, 16]. Notably,
the supercritical impurity in bilayer graphene does not lead to a
collapse of wave functions in analytic description. In addition,
it was predicted that atomic collapse effect may happen in
another material, a donor cluster in SrTiO3 [17] and might

1 © 2023 The Author(s). Published by IOP Publishing Ltd
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be controlled by a size of a cluster. Another way to control
the critical charge is a tilt of Dirac cones in 2D materials
[18]. Theoretical studies has also shown that the supercrit-
ical instability can be induced dynamically by charged ions
passing through graphene samples [19].

The new generation of two-dimensional materials that host
flat bands in addition to Dirac cones [20] again posed a ques-
tion on which effects the Coulomb impurity will produce. In
[21–23] it was shown by analytical and numerical calcula-
tions for dice lattice that the bound states decouple also from
the flat band. In the case of infinite lattice model the flat
band fully decomposes into a continuous spectrum in the field
of Coulomb impurity because the pure Coulomb potential is
long-range [21, 23]. Additional simulations on a finite lattice
model with large sample size have shown that the bound states
decoupled from flat band anticross with atomic collapse states
coming from the upper dispersive band [24].

The present study is motivated by the experiments with
electronic lattices such as Lieb [25] and honeycomb with s-
p hybridization [26, 27], which might serve as potential plat-
form to realize also the dice lattice. The artificial lattices of
such kind have approximately ten times larger lattice constant
that atomically-thin materials and thus much weaker electron–
electron interactions. Thus, the effects of single-particle phys-
ics in external field might be easier to observe than in strongly-
correlated flat band systems. In addition, one should note the
typical sample size difference between atomic samples and
electronic artificial lattices. The latter have a size of order of 10
sites along each side [25–27], making the role of edges signi-
ficant in any studied effect. To analyze the role of size effects
on the possibility of observation of atomic collapse we con-
sider quantum dots of circular shape made of dice lattice. The
shape of quantum dot and potential well might be controlled
by the techniques developed in [12] with a circular p–n junc-
tions, that is created by a deep potential well created by the
tip-induced charge.

From the classification of the dice lattice terminations [28]
it is known that particular boundary conditions lead to the gap-
less spectrum. In the case of gapped model [29, 30] the num-
ber of in-gap states is formed. In the circular shape of quantum
dot all such terminations appear, thus leading to the existence
of in-gap edge states. The electrons from such energy levels,
if filled, may tunnel to the bound state near Coulomb impur-
ity, leading to the atomic collapse. Such effects will screen
Coulomb impurity much earlier than the actual critical charge
of infinite lattice is reached. In the present paper we study how
the critical charge of impurity depends on potential localiza-
tion as well as modified by in-gap edge states.

A number of properties of finite size dice lattice quantum
dots were studied in recent years. Among them are the descrip-
tion of distributions of edge currents in quantum dots [31], pre-
diction appearance of Majorana corner states in the presence
of Rashba coupling [32], size dependence of Landau levels
formed in the ring made of α−T3 lattice [33], analysis of the
role of atomic effects in narrow zigzag ribbons [34], valley
filtering [35, 36] and dynamical formation of bound states
by external driving [37] in α−T3 lattice quantum dots. The

formation of pseudo-Landau levels in nonuniform strain for
triangular shaped quantum dots was discussed in [38]. As an
additional tool, the polarized light with its dressing electro-
magnetic field can be used to create finite-sized potential wells
in dice lattice, generate different type of gaps and study the
transport properties [39–43]. The study of the effect of edges
on atomic collapse in graphene nanoribbons was made in [44].
In addition, the role of graphene quantum dot size on atomic
collapse in magnetic field was done in [45].

The paper is organized as follows: in section 2 we describe
the models of quantum dots used in tight-binding simulations.
In section 3 we describe the simulation technique and perform
the brief analysis of atomic collapse in large quantum dots for
the usual and screened Coulomb potential modeled via faster
decaying coordinate dependence. In section 4 we analyze the
atomic collapse for the same potentials in a small quantum
wells. The presence of edge states modifies the results com-
paring to large systems. In addition, we study a possibility of
creating supercritical impurity by localized potential well in
the center of the system. Different positions of such well are
analyzed in section 5. Finally, we compare all results to those
obtained for large [24] and infinite systems [21, 23] in section 6
and make the conclusions about expected observable signa-
tures of atomic collapse in experiments with small artificial
lattices.

2. Quantum dots made of dice lattice

In the present paper we consider a dice lattice as a represent-
ative example of flat band model which hosts pseudospin-1
fermions. The previous extensive theoretical studies of atomic
collapse in dice lattice allow one to distinguish effects that
appear due to finite size from those that was characteristic
to infinite model. The geometry is shown in figure 1(a). It
contains three sublattices, two of which (A,B) are connected
only with third one (C) by corresponding hopping paramet-
ers tAC and tBC. The basis vectors of underlying Bravais lat-
tice are a1 = (1,0)a and a2 = (1/2,

√
3/2)a. The tight-binding

equations describing this system are [46–48]:

εΨA (r) = mAΨA (r)− tAC
∑
j

ΨC (r+ δj) ,

εΨB (r) = mBΨB (r)− tBC
∑
j

ΨC (r+ δj) ,

εΨC (r) = mCΨC (r)− tAC
∑
j

ΨA (r+ δj)

− tBC
∑
j

ΨB (r− δj) . (1)

Here the vectors δj connect neighboring A atoms with C atom
and are defined as [28] δ1 =

a1+a2
3 , δ2 =

a3+a1
3 , δ3 =

a2+a3
3

with a3 = a2 − a1. Below we use the equal hopping paramet-
ers tAC = tBC = t that correspond to the dice model. It is pos-
sible to open a gap in spectrum and separate the flat band
from others by adding onsite potentials of opposite signs to
A and B sublattices: mA =−mB = m and mC = 0. Below we
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Figure 1. (a) Schematic plot of the dice lattice for quantum dot of
radius R= 3a. The spectrum of quantum dot appearing for several
values of radius are shown in (b) for gap parameter m= 0.5t. The
appearance of in-gap edge states is marked by arrows on the right,
that denote gapped regions of the bulk. For the small quantum dot
sizes (R= 5a and R= 8a in the plot) the extension of a spectral gap
coming from size quantization is clearly visible.

select m= 0.5t as a values of mass parameter for all calcu-
lations. Such selection of mass term out of many discussed in
the literature [21, 24, 39, 48, 49] is motivated by the possibility
of separating flat band from others and clear way of realizing
the band gap in experiment by applying the same onsite poten-
tial with alternating sign. In addition, such band gap keeps the
structure of the spectrum similar to what is obtained for differ-
ent insulator-type boundary conditions [28, 29]. The spectrum
of suchmodel consists of three bands separated by gaps, which
have the following dispersion in k-space:

ε± (k) =±
√
m2 + 2|f(k)2 |, ε0 = 0,

f(k) =−t
(
1+ e−ika2 + e−ika3

)
. (2)

In addition, one should expect the appearance of in-gap edge
states that would be specific for the type of lattice termination
chosen. The examples of spectrum for several sizes of circular
quantum dot are shown in panel (b) of figure 1. The atomic
collapse in the infinite lattice with such gap term was studied
in [21, 23]. The presence of gap term in spectrum allows one
to distinguish the level repulsion related to the atomic collapse
in the bulk of sample from the mixing with in-gap edge states
that makes the state less localized. In addition, the mixing with
edge states becomes suppressed as the gap term enforces their
localization closer to the boundaries, thus leading to smaller
overlap with bound state near impurity.

2.1. Description of model potentials and tight-binding
simulations

The approach used in the simulations is similar to that
described in [24, 44] and the code for all presented results can
be found at [50]. We start with the lattice model of quantum
dot implement with the help of Kwant code [51]. The spec-
trum of finite size system contains all levels coming from bulk
and edge states. They evolve differently with growing charge
of impurity, in particular the far-away placed edge states stay

nearly at the same energy. In order to avoid complicated pro-
cedures of distinguishing atomic collapse states from such
edge states, we calculate a energy-resolved local density of
states (LDOS) in the central unit cell of the quantum dot. The
calculation is performed by using kernel polynomial method
with a high number of moments (typically of the order of 104)
that ensures precise energy resolution of the plots [52]. The
calculation of LDOS also guarantees that the shown states are
only those that contribute into physics in the vicinity of impur-
ity and are possible to measure via STM-type techniques.

The model potentials used to describe a normal and
screened Coulomb impurity made as adatom on top of the
lattice are:

V(r) =−V an(
|r|2 + r20

)n/2 . (3)

Here r0 is the regularization radius of impurity and n= 1
corresponds to the pure Coulomb potential. Below in the
numerical calculations we fix the depth of potentials with dif-
ferent n to be the same at r= 0. This is done by setting r0 = a
for all potentials. Another choice would be to set different
r0 depending on powers n and keep the constant (a/r0)n the
same. That would result in effective normalization of V para-
meter and produce qualitatively the same results. As a motiv-
ation for such model of long- and short-range potentials we
note that the n= 3 power case describes the Coulomb impur-
ity with dynamical one-loop polarization screening in mono-
layer graphene [53]. The comparison of bound state picture
that decouple from flat band in such potentials in a lattice
model would highlight the effect of localized structure of a
flat band states. Indeed, to prove that flat band decomposes
into continuum-type spectrum in Coulomb potential, a special
convergence-checking technique was used in effective low-
energy model [23]. Below we show that lattice calculations
support that conclusion with correction to finite state number
in the system,while the short-range potentials demonstrate dif-
ferent behavior.

3. Atomic collapse in Coulomb and power-law
potentials

In this section we analyze how the bound states evolve with
potential strength V of impurity for a large system size.
Specifically, we take the quantum dot of radius R= 50a
centered at C atom and place impurity at the center of a disk.
The results of simulation are shown in figure 2 for powers
n= 1 to n= 4 of model potential (3). The results presented
in this section for a Coulomb potential are in agreement with
results of [24]. In addition we tested the parameters of [24] to
check the convergence of the simulations. In the next section
we analyze the smaller system sizes to uncover effects of edge
states on atomic collapse in quantum dots.

Before proceeding to the description of main results, let
us briefly recall the description of long-studied phenomena
of atomic collapse in relativistic systems. Mathematically it
appears that in a pure Coulomb potential the energy of a first

3
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Figure 2. LDOS in central unit cell as a function of potential strength for power n= 1,2 upper row and n= 3,4 lower row. Quantum dot
size is R= 50a. Regularization radius was taken r0 = a. The gap size it m= 0.5t. The (a) n= 1 power corresponds to bare Coulomb
potential and demonstrates the largest density of bound states decoupled from flat band.

bound state of relativistic particle has a form of [1, 2] ε=
m
√
1− (αZ)2, with α being a fine structure constant. Such

energy becomes imaginary after critical charge value Z> 1/α,
manifesting the instability of a ground state [1, 2, 6, 7]. In the
regularized potential the mathematical ‘collapse’ is replaced
by a dive-into-continuum phenomena, where the lowest bound
state reaches the lower conducting band and the electrons tun-
nel from there, creating a hole that moves away from charge
impurity [8]. Such tunneling results in an effective screening of
impurity by electron filling a bound state, reducing its charge
by one. Below in all tight-binding simulations we analyze the
presence and properties of dive-into-continuum phenomena in
small-sized lattices. The detailed structure of the bound states
for near-critical charges of impurity was studied for very large
dice lattice ribbons in [24].

From the spectral plots shown in figure 2 the following con-
clusions can be made: the critical charge for the first bound
state decoupled from the upper band is larger than for the
second only for Coulomb potential with n= 1. For the infin-
ite system such structure in spectrum appeared for states with
angular momentum j= 0 and j= 1 with j= 1 firstly decoup-
ling from continuum [21]. For the large system size the in-gap
states do not influence atomic collapse happening in the bulk.

For the flat band the density of bound states that decouple at
small charges becomes lower with increasing power of poten-
tial n. The energy separation of such states also becomes lar-
ger with n. This agrees with the prediction of [21, 23] that flat
band decomposes into continuum of states in the long-range
potential, but only a discrete set of bound states decouples in

short-range potential. The localized structure of flat band states
leads to approximately linear behavior with growing charge
parameter of impurity V. The slope is defined by the distance
from the localization point to the potential center.

4. Atomic collapse in small quantum dots: the role
of edge states

In this section we perform the simulations for much smaller
system sizes where the edge states contribute to the LDOS
at the central unit cell. As was shown in figure 1, the pos-
sible energies of in-gap edge states strongly depend on the
size. We analyze a set of different radius values to describe
the qualitative role of edge states on critical charge value. One
should note that to obtain precise numerical values a simula-
tion should be made for a sample geometry available in exper-
iment. However, a number of conclusions can be made from
analysis of a set of different samples.

Firstly we present the results of calculations for the sys-
tem with radius R= 10a, that are shown in figure 3 for the
powers n= 1 to n= 4 of model potential (3). Due to the small
size of the system all levels in spectrum decrease in energy
with increasing charge of impurity. The in-gap edge states
demonstrate nearly linear dependence of energy on potential
strength V, which follows from their localization and nearly
zero kinetic energy. But, the resonant anticrossing of bound
states decoupled from the bands with such in-gap states lead to
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Figure 3. LDOS in central unit cell as a function of potential strength for n= 1,2 upper row and n= 3,4 lower row. Disk size is R= 10a.
Note that these results are for intermediate disk size, which would describe the artificial lattices made of a set of individual sites (atoms or
clusters). Regularization radius was taken r0 = 1a. The gap size it m= 0.5t. A number of level repulsions with in-gap edge states are clearly
visible in all plots. Several edge states also decrease in energy in a bare Coulomb potential in panel (a).

the appearance of nontrivial dependence onV for both. In addi-
tion, such anticrossings modify the value of critical charge for
the dive-into-continuum type problem. We define such charge
as the position of the first intersection between levels origin-
ating from different bands in infinite model (e.g. upper band
levels to flat band, and flat-to-lower band). In the case when
in-gap states are filled, one may expect much lower values
of critical charge required to screen the impurity by electron
tunneled to bound state.

4.1. Size effect on a critical charge value

Next we analyze the role of radius of quantum dot on the crit-
ical charge values as well as first level repulsion with in-gap
state in Coulomb potential. The figure 4 shows results for the
levels decoupled from upper band in panel (a) and from the flat
band in panel (b). Both plots show that the critical charge for
dive-into-continuum charge grows with decreasing radius of
quantum dot. The first effect that should be taken into account
for understanding these results is a gap size growing due to the
spatial discretization of momentum. Taking the dispersion (2)
and linearizing near one of the K-points, one finds

ε+ =
√
m2 + vF 2k2, vF =

√
3ta/2. (4)

The uncertainty relation leads to the minimal value of
momentum k∼ 1/R, that leads to the following increase of
the gap value

δm ∼ t2

m

(√
3a
2R

)2

, (5)

where we used series expansion of (4). In addition to such
increase of gap, two other effects play a role. As was discussed
above, in small-scale finite system all levels decrease in energy
in external long-range potential. Consequently, the first levels
of lower continuum appear below effective gap energy when
potential strength is nonzero, making the required Vcrit slightly
larger. In addition, the nontrivial role is played by the pres-
ence of one or several resonant anti-crossings with in-gap edge
states, that result in a change of the critical charge value. Such
anti-crossings are a result of finite overlap between bound state
and in-gap edge state wave functions. This overlap leads to
an existence of two eigenstates of a Hamiltonian of the sys-
tem nearly at the same energy, that have a form of superposi-
tion of bound state and edge state wave functions. To separate
the bound state back from superposition a further increase of
potential is needed. These are the main qualitative reasons on
why for the flat band we observe non-monotonous behavior of
dive-into-continuum Vcrit values.

5. Supercritical localized potential well

In this section we analyze the possibility of forming the dive-
into-continuum bound states by a localized potential well. As
an example of experimental implementation one can consider
setup from [12] where the atomic collapse in graphene was
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Figure 4. Size dependence of potential values at which the first repulsion with bound in-gap state happens and when the
dive-into-continuum phenomenon between states originating from different bands is happening. Panel (a) shows the results for states
originating from upper band, and panel (b) for the states from flat band.

observed in potential well of circular p–n junction. We invest-
igate the potential wells that are centered at single sublattice.
Other potential wells that cover several sites are very close to
model potentials (3) with large n (already n= 4 is close to loc-
alized potential well) and would not lead to qualitatively new
results.

The results of calculation of LDOS are presented in upper
row of figure 5. The localized potential well decouples bound
states from the flat band much earlier than from upper band. In
the plots shown in figure 5 we focus on the evolution of energy
for such bound states with increasing charge. Only single state
is decoupled as there is only single state in flat band localized
exactly at the position of potential well. Notably, for the C-
localized potential well the bound state approaches the lower
band asymptotically with growing V. Also this bound state has
the largest value of occurred level repulsions inside the gap,
which leads to the largest delocalization of its wave function.

The lower row in figure 5 shows the distribution of wave
function for a bound state at such values of potential that the
energy level is placed inside the gap. For all cases the distri-
bution shows C3-symmetric pattern keeping the discrete sym-
metry of the lattice. The notable difference between A-, B-
localized and C-localized potential wells is that in the first two

cases the highest density is placed exactly at potential well
site. Instead, for the C-localized well the maximum density
values are distributed symmetrically around C site. The state
itself is not as localized as two other examples, and has a small
density at the site with potential. Indeed, by calculating density
|ΨC(r= 0)|2 at central C atom with potential well for differ-
ent values of V, we find that it decreases with growing V (see
figure 6). As was shown in [21], the C-component of a wave
function in a free continuum model is given by the middle
component of a momentum k dependent spinor

ψ±,0 (k) = N−1 (k)


(m+ε±,0)√

2
(kx− i ky)

ε2±,0 −m2

− (m−ε±,0)√
2

(kx+ i ky)

 , (6)

where N is a normalization constant. It behaves as ΨC ∼
(ε2 −m2), tending to zero when ε→±m. Such dependence
on energy compensates the potential strength and leads to
asymptotic approaching of lower band by a bound state (see
figure 5(c)). The small dip at V= 8t in figure 6 is related to
the repulsion with in-gap energy level and does not affect the
general qualitative picture.
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Figure 5. Upper row: LDOS in central unit cell as a function of potential strength for potential well localized at single site (a) A, (b) B and
(c) C respectively. Quantum dot size is R= 10a and the gap size is m= 0.5t. The bound state for C-localized well asymptotically reaches
the lower continuum. Lower row: wave function distribution for a bound state at potential values (d), (e) V= 0.6t, and (f) V= 10t with
localizations at A, B and C corresponding to upper row.

Figure 6. Dependence of C-component of wave function density
|ΨC(r= 0)|2 on the central atom for the potential well localized at
C-atom. The decreasing value of wave function compensates the
growing potential value, leading to the asymptotic approaching of
the lower continuum by a bound state decoupled from a flat band.

In addition, we note that the bound states decoupled from
the flat band for the A- and B-localized potential demon-
strate near linear behavior of energy dependence with growing
potential. The level repulsion with in-gap state for B-localized
quantum well leads to the larger critical charge. The asym-
metry between A- and B-localized well cases appears due to
the gap that takes +m value at A site and −m at B site, while
potential has the same sign −V.

6. Conclusions

In the present paper we analyzed the role of size effect on the
possibility of observing atomic collapse phenomenon in the
quantum dots made of dice lattice. Depending on whether in-
gap edge states are filled, the critical charge takes different

values for the same system size. The size dependence itself
of critical charge for dive-into-continuum problem demon-
strates non-monotonous behavior due to a number of level-
repulsion events happeningwith the bound state inside the gap.
These level repulsions in spectrum show the appearance of
superposition-type states, localized partially on the interior of
the system, where the potential is weak. That makes the effect
of potential weaker and requires larger charge to put bound
state energy below the gap value.

In addition to the size effect happening due to finite radius
of quantum dot, we analyzed the role of the effective range of
potential in decoupling bound states from flat band. It is shown
that while the long-range potential decomposes flat band into
a dense set of bound states, more short-range potentials res-
ult in large gap separations between lowest bound states. Such
effects might occur when the Coulomb impurity is dynamic-
ally screened. In addition, this result supports the conclusion
about full decomposition of a flat band by long-range poten-
tial, found earlier in a continuum model by solving problem
exactly at zero energy [21] and showing the convergence to
continuum spectrum of bound states numerically [23].

Next we analyzed the possibility of creating supercritical
localized potential well on a single site. The structure of wave
functions in the dice model allows the formation of bound
state decoupled from the flat band, but makes the threshold
potential very large for the decoupling of bound state from
the upper band. The dive-into-continuum situation occurs only
to rim-placed potential wells, but not for hub-centered. This
can be explained by the fact that wave functions has zero hub
component exactly at the gap edge, thus making it impossible
to cross by a bound state localized only on a hub site. In
conclusion we note that these results describe the potential
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possibility of finding atomic collapse in artificial electronic flat
band lattices, where the single-particle physics might be easier
to study due to the larger lattice constant [25] and weaker
electron-electron interactions.
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