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Chapter 6

Computational Approaches for De Novo Drug Design: Past,
Present, and Future

Xuhan Liu , Adriaan P. IJzerman , and Gerard J. P. van Westen

Abstract

Drug discovery is time- and resource-consuming. To this end, computational approaches that are applied in
de novo drug design play an important role to improve the efficiency and decrease costs to develop novel
drugs. Over several decades, a variety of methods have been proposed and applied in practice. Traditionally,
drug design problems are always taken as combinational optimization in discrete chemical space. Hence
optimization methods were exploited to search for new drug molecules to meet multiple objectives. With
the accumulation of data and the development of machine learning methods, computational drug design
methods have gradually shifted to a new paradigm. There has been particular interest in the potential
application of deep learning methods to drug design. In this chapter, we will give a brief description of these
two different de novo methods, compare their application scopes and discuss their possible development in
the future.
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1 Introduction

Drug discovery is always considered to have a significant “serendip-
ity” component—researchers need to identify a small fraction of
feasible molecules with desired physicochemical and biological
properties from the vast chemical space, which has been estimated
to be comprised of 1023 to 1060 feasible drug-like molecules
[1]. This number of potential candidate molecules is too large to
screen experimentally [2]. Moreover, drug molecules have a high
promiscuity [3], that is, each drug-like molecule has six protein
targets on average, leading to unexpected toxicity and withdrawal
of some FDA-approved drugs from the market [4]. These problems
have contributed to an increase in the average cost to over one
billion USD for the development of a new drug in a process that
takes about 13 years to reach the market [5].

To this end, computer-aided drug discovery (CADD) aims to
speed up the drug discovery process by integrating chemical and
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biological information about ligands and/or targets [6]. CADD is
a broad field of research that includes de novo drug design and
virtual screening methods (Fig. 1, center). De novo drug design
suggests new molecules as starting points for chemical modifica-
tions that result in novel leads. By contrast, virtual screening meth-
ods try to uncover the hidden relationships between chemical
structure and pharmacological activity. CADD has always been a
combinatorial optimization problem with multiobjective optimiza-
tion. Virtual screening methods provide a scoring function that
mimics bioassays in order to guide the drug design algorithm to
converge on the optimal molecule. Because it is impossible to
enumerate every chemical entity in the chemical universe, CADD
in practice does not lead to a globally optimal solution, but it
narrows down the searching scope of chemical space and converges
on a local or practical optimum [7].

In the past, machine learning methods, such as random forests,
were mainly constructed for virtual screening, that is, given the
structure of a chemical compound predict its biological activity.
With the increased availability of (public) data and development
of computer sciences (e.g., the introduction of GPU computation),
machine learning methods have also found their way to the field of
de novo drug design. Deep learning (DL) methods in particular
have attracted increasing attention as a promising approach for
drug discovery [8]. DLmethods are an extension of artificial neural
networks that add a variety of multiple hidden layers, thus making
the network significantly deeper [9]. In 2012, deep convolutional

Fig. 1 Schematic overview of the interplay of two methods in computational drug discovery: virtual screening
and de novo design. The left of the figure shows ways in which a molecule can be described for computational
methods (see Subheading 2.1). On the right the multiobjective nature of the problem is shown. Properties are
often contrary (orange arrows) and sometimes cooperative (blue arrows), but must be optimized simulta-
neously (see Subheading 2.2)
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neural networks (CNNs) were proposed and became a break-
through in image classification [10]. Subsequently, generative
adversarial networks (GANs) were developed for image generation
and, by 2014, these had significantly improved the quality of gen-
erated images [11]. Based on these achievements, the DL methods
could also provide a series of solutions for prediction, generation,
and decision-making in other data rich fields beyond image recog-
nition and natural language processing [8, 12]. In drug discovery,
DL has catalyzed an explosion of applications for de novo drug
design since Gómez-Bombarelli et al. applied variational autoenco-
ders (VAE) to generate SMILES-based chemical compounds in
2016 [13].

As traditional optimization algorithms and recent DL methods
are quite distinct, it is necessary to make a clear comparison
between both methods. In the following paragraphs, we will give
more theoretical details of these two different methods and their
application in the field of drug design. We will also discuss the
advantages and disadvantages of both of them and possible direc-
tions of their combination in the future.

2 De Novo Drug Design

Due to the discreteness of chemical space, drug design is intuitively
rendered into a combinatorial optimization problem. The solution
of this drug design problem is searching for an optimal combina-
tion of building blocks to find the best solution according to the
required conditions. Based on the difference of the building blocks,
drug design algorithms can be classified into atom-based and
fragment-based methods. The atom-based methods are the more
intuitive approaches and easily construct a variety of novel struc-
tures, but are more time-consuming and less able to converge to
the best solutions. In contrast, fragment-based methods reduce the
chemical space dramatically by predefining the fragment library and
are consequently faster in searching for optimal molecules than
atom-based methods, although the diversity is lower compared to
atom-based methods. However, the drug design problem cannot
be solved completely because an increase in fragments leads to a
combinatorial explosion of chemical space, making an exhaustive
search impossible. Therefore, more efficient molecular representa-
tions need to be developed to suggest novel potential drug-like
molecules efficiently in addition to, or as an alternative for, the
known atomistic and fragment-based representations.

Usually, drug molecules are organic compounds with physio-
chemical properties optimal for drug-like molecules, such as Lipins-
ki’s rule of five. Moreover, sufficient on-target affinity and avoiding
off-target affinity are additional objectives that need to be met.
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Drug de novo design can be further classified into structure-
based and ligand-based methods based on whether 3D structure
information is available and included [7, 14]. In structure-based
drug design, the 3D structure of a protein target is required for
guiding ligand design but prior knowledge of other ligands is
unnecessary. The optimal ligands are commonly obtained by calcu-
lating the binding energy when combining at the protein active site
to interact with the protein. On the contrary, ligand-based
methods do not exploit protein target structure information but
require the prior knowledge comprised of known ligands of given
structures which are used to measure their similarity with generated
molecules.

2.1 Molecular

Representations

Chemical compounds are not a random cluster of atoms and func-
tional groups, but rather have a definite structure represented by
the arrangement of chemical bonds between atoms and informa-
tion on the geometric 3D shape. This information needs to be
represented computationally for algorithms to be able to predict
properties of these molecules (Fig. 1). Ideally, the full 3D shape
geometry is used for construction of a fitness function in structure-
based optimization methods, such as docking or molecular dynam-
ics [15]. However, these 3D approaches always consume more
computational resources and time; they also require the computa-
tional generation of conformers, a process which can be prone to
error.

To circumvent this requirement 2D approaches are used. As the
key to properties of the molecules lies in fragments with a specific
connection pattern of the atoms, molecules can be represented as a
bag of fragments which can be perturbated easily for generating
new molecules (in the form of a binary bit string). This molecular
fingerprint can also be used as input for virtual screening [16]. A
downside to fingerprints is that the connectivity information link-
ing the individual fragments is not available. Hence various differ-
ent molecules can be generated with the same combination of
fragments. Moreover, while each fragment of the molecule can be
mapped to one bit in a fingerprint by a hash function, such as ECFP
[17], the fingerprint is always irreversible. A fingerprint cannot be
reconstructed into a molecule, so it is impossible to use the molec-
ular fingerprint directly for drug design. All in all, there is no single
2D or 3D representation that seems to meet all criteria as all can be
considered to have their advantages and disadvantages [18].

To circumvent the loss of connectivity information, graph
based methods are used. The most natural molecular representa-
tion is an undirected graph where the atoms and bonds are nodes
and edges, respectively [19]. These graphs can be reversibly con-
verted into a text format using a preset grammar such as simplified
molecular-input line-entry specification (SMILES). Analogous to
natural language processing, SMILES is regarded as a chemical
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language and directly used in deep learning models for molecular
generation. However, as SMILES follows a fixed grammar, gener-
ated texts can easily lead to invalid molecules. To solve this prob-
lem, some groups attempted to decompose SMILES into a
sequence of rules from a context free grammar and improved linear
molecular representation, such as DeepSMILES [20], Randomized
SMILES [21], and SELFIES [22]. An advanced representation is
directly storing the graph into multidimensional tensors, including
type of atoms and edges, and connectivity information. This repre-
sentation can make sure the molecular graph can be generated
immediately without considering grammar; however, it is still com-
putationally expensive.

2.2 Multiple

Objectives

As specified above, drug design is always a multiobjective problem
(MOP) and designed compounds need to meet many criteria as
drug candidates (efficacy, selectivity, safety, permeability, solubility,
metabolic stability, synthesizability, etc.). (Fig. 1). Some of these
objectives are not independent but contradictory, meaning that if
an optimum is achieved on one objective it has been at the expense
of making a compromise on other objectives. Unlike single-
objective problems (SOP), where the best solution is on the top
of ranking sorted by the scalar score of each candidate solution, the
ranking of candidates in a MOP is more complicated because of
conflicting objectives [14]. A straightforward method of dealing
with this complication is to convert the multiple objectives into a
single objective by weighted summing of scores for each
objective [23].

f nð Þ ¼
XN
i¼1

wipi

where f(n) is the fitness function and wi is predefined by users as the
weight of ith objective pi. However, it is challenging to determine
these weights because they specify a single pattern of compromise
for these objectives, which can trap an optimization algorithm and
lead to unreasonable solutions (Fig. 2).

In order to strike a better balance between each objective,
MOP algorithms produce a set of solutions representing various
compromises among the objectives. The solutions are mapped out
on a hypersurface in the search space, termed Pareto Front [24]. A
solution dominates another one if it is equivalent or better in all
objectives and better in at least one objective compared with all
other solutions. Solutions with the most appropriate compromise
among the individual objectives can be identified through Pareto
ranking. Several Pareto ranking algorithms have been developed
(e.g., SPEA [25], NSGA [26], SMS-EMOA [27]). However, all of
them are computationally expensive for large numbers of objectives
and data points and lead to nonconvergence of the solutions in
contradiction of the SOP [23].
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3 Optimization Methods

In applications of drug design, the most popular searching algo-
rithms are evolutionary algorithms (EAs), particle swarm optimiza-
tion (PSO), and simulated annealing (SA). In the following
paragraphs, we will briefly introduce their mathematical theories
and their application in drug discovery (Table 1).

3.1 Evolutionary

Algorithms

EAs are population-based metaheuristic optimization algorithms
inspired by biological evolution to mimic the genetic operators,
such as “reproduction,” “mutation,” and “crossover” [44]. In the
population, a pair of individuals is randomly selected for each time
and play the role of parents to “reproduce” the offspring through
“mutation” and “crossover” for population expansion. The scoring
function, also called a fitness function in EAs, determines which
individual can survive and replace the least-fit individual in the
population. The surviving individuals in the updated population
are selected as the new parents for next generation. For each itera-
tion of the evolutionary cycle, the average fitness score of individuals
in the population is considered. The average fitness will only increase
every single generation if there is no mutation, since in this case one
is always throwing away the weakest members of the population.

Fig. 2 Pareto frontier in multiobjective optimization. Take two objectives as an
example, nondominated solutions form a boundary called Pareto frontier which
separates the infeasible solutions in the lower left region from dominated
solutions in the upper right region
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Table 1
Current optimization methods for de novo drug design

Methods Method
Molecule
representation Objectives References

LigBuilder GA 3D geometry Affinity (thrombin and dihydrofolate
reductase) and bioavailability score

Wang et al. [28]

LEA GA SMILES Analogs fitness (retinoid and salicylic acid)
and physicochemical properties

Douguet et al.
[29]

ADAPT GA Fragment Docking score (cathepsin D, dihydrofolate
reductase, and HIV-1 reverse
transcriptase), RO5

Pegg et al. [30]

PEP GA Fragment Force field-based binding energy (Caspase
1, 3, and 8)

Budin et al.
[31]

SYNOPSIS GA, SA Reactivity Electric dipole moment, affinity to binding
site (HIV-1 reverse transcriptase)

Vinkers et al.
[32]

LEA3D GA Fragment Molecular properties, affinity to binding
site (thymidine monophosphate kinase)

Douguet et al.
[33]

GANDI GA Fragment 2D/3D similarities and force field-based
binding energy (cyclin-dependent
kinase 2)

Dey et al. [34]

Molecule
Commander

GA Fragment Adenosine receptor A1 pharmacophore,
off-target selectivity (Adenosine
receptor A2A, A2B and A3), and
ADMET properties

van der Horst
et al. [35]

Molecule
evoluator

GP Tree SMILES QSAR functions, docking, experiments,
similarity to template molecules
(neuraminidase inhibitor)

Lameijer et al.
[36]

MEGA GP Graph Binding affinity score (Estrogen receptor),
similarity score and RO5

Nicolaou et al.
[37]

FLUX ES Fragment Similarity to template molecules (tyrosine
kinase inhibitor, Factor Xa inhibitor)

Fechner et al.
[38]

TOPAS ES Fragment 2D structural/topological
pharmacophore similarity to template
(thrombin inhibitor)

Schneider et al.
[39]

MOLig SA Fragment Force field-based binding energy (RecA),
similarity to template molecules, oral
bioavailability

Sengupta et al.
[40]

CONCERTS SA Fragment Force field-based binding energy (FK506
binding protein, HIV-1 aspartyl
protease)

Pearlman et al.
[41]

SkelGen SA Fragment Binding affinity prediction score (DNA
gyrase and estrogen receptor)

Dean et al. [42]

COLIBREE PSO Fragment Similarity to template molecules (PPAR
ligands)

Hartenfeller
et al. [43]
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However, if “mutation” is part of the algorithm, as it is in Genetic
algorithms (see below), the average fitness may decrease from one
generation to the next and will almost inevitably do so quite fre-
quently as the process homes in on an optimal solution. The process
continues until a termination criterion is reached, that is, the objec-
tive function score of optimal solution is no longer being improved
or number of feasible solutions is sufficient. Currently, EAs are the
most sophisticated algorithm used for drug de novo design in
practice.

There are several major algorithmic techniques in use in EAs,
examples include genetic algorithms, genetic programming, and
evolutionary strategies [45]. Genetic algorithms (GAs) are one of
the most fundamental and widely used EAs. GAs need to encode
the phenotype (molecular structure) by means of a “chromosome”
as the simulation of natural selection [46]. For example, Wang et al.
developed a software named LigBuilder, in which each molecule
was decomposed into a series of fragments from the building-block
library to be used as chromosome [28]. The mutation operator was
defined to allow only carbon, nitrogen, and oxygen atoms of the
molecules with the same hybridization state to mutate to each
other. During the process, fragments were combined to generate
a new population through randomly selecting a growing site on the
seed structure and addition of a fragment from the building-block
library. Each molecule was represented with its SMILES sequence
as the “chromosome.” Similarly, Douguet et al. defined allowable
crossover points and mutation rules were generated for breeding
valid SMILES as the next generation in their method deemed
LEA [29].

In GAs, there are fixed data structures (despite the linearity of
the chromosome) to organize the variables which need to be opti-
mized. But if these variables are interdependent through an explicit
relationship, such as procedural or functional representation,
genetic programming (GP) is a more suitable method to realize
the EA principles [47]. In GP, the chromosomes are always repre-
sented as trees rather than the fixed-length strings of GAs. Cross-
over is implemented as a recombination of subtrees between two
parents, while mutation selects and alters a random node or edge of
the tree depending on its type. Usage of a SMILES representation
as a “chromosome” is troublesome for genetic operators, because
SMILES per se is a grammatically constrained linear string and the
random mutation and crossover will produce a large number of
invalid SMILES. Lameijer et al. solved this problem in their soft-
ware, namedMolecule Evoluator based on a SMILES representation
employing a GP [36]. In Molecule Evoluator, TreeSMILES are
defined as the tree structure being transformed from the SMILES
according to its grammar, in which each node and edge denoted the
atom and bond, respectively. Every node or edge has an operator
function, making mathematical expressions easy to evolve and
evaluate.
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Evolutionary strategies (ES) are a third EA technique using the
concepts of adaptation and evolution. In contrast to GAs, selection
in ES is based on a fitness ranking rather than fitness values,
although mutation and selection also play an important role for
breeding [48]. ES operates on the parent and the result of its
mutants. In ES, a number of mutants are generated which compete
with the parent, wherein the best mutant becomes the parent of the
next generation. For example, Flux implemented a simplistic (1, λ)-
ES without adaptive step-size control and defined the crossover and
mutation generators on the fragment-based “reaction tree” of each
pair of parents [38]. Selection was performed only among the
offspring and the parent died out, which could facilitate escaping
local optima in the fitness landscape. Another method, TOPAS,
used a simple (1, λ)-ES with adaptive parameters [39]. During
the stochastic search process, there were λ¼ 100 variants generated
through virtual synthesis for each iteration. The distribution of
Tanimoto similarity with their parents was controlled by a step-
size parameter, which guaranteed that the chemical space of the
population adapts to the local shape of the fitness landscape. Simi-
larly, only one variant with the best fitness score became the parent
of the next generation while the current parent was discarded.

3.2 Particle Swarm

Optimization (PSO)

PSO solves the optimization problem based on the observation of
collective intelligence in many natural systems that individuals
cooperate with each other to improve not only their collective
performance but also each individual’s performance on a given
task [49]. Similar to EAs, PSO also is a population-based method.
In PSO a population, known as a swarm, contains a series of
candidate solutions (called particles). The swarm needs to be initi-
alized to represent the position in the search space, and the indivi-
duals should have initial velocities. In addition, each particle has its
own memory to record the best fitness of its past for communica-
tion with others. In each iteration, the fitness score of each indivi-
dual’s position is calculated to register the position with highest
fitness. Subsequently the velocity of each particle is randomly influ-
enced by three factors: one is the position of the particle with the
highest fitness (i.e., best match with the fitness function) in its
neighborhood. Secondly, there is the position of highest fitness
ever encountered previously. Finally, there is a random component
in the updated velocities, which is an adjustment to the velocity in a
direction entirely uncorrelated with all other particle properties. If
there were no such random component, and the optimal solution
lay entirely outside the initial bounds of the swarm it is unlikely the
swarm would be able to find it. The new position of each particle is
calculated based on its updated velocity. One of the key points is
how to define the topology of the swarm to determine its neighbors
to avoid being trapped in a local minimum.
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The PSO algorithm was frequently used in continuous search
spaces. In order to be applied in the discrete search space of drug-
like molecules, Hartenfeller et al. replaced the concept of velocity of
each particle with the quality vector and developed COLIBREE for
drug design [43]. In COLIBREE, each molecule is represented as a
combination of building blocks and linkers. The fitness function is
defined as the similarity between reference ligands and generated
molecules under chemically advanced template search (CATS)
descriptors. Each particle stores the current search point
(a molecule) and a quality vector which represents a relative proba-
bility for every fragment in the library to be chosen in the next
search step for constructing the molecule. During the optimization
cycle, each particle created a new molecule and updated its memory
after the fitness was evaluated. The quality vector was incremented
if the fragment had been part of the molecule stored in the memory
of the current particle. In the end, good solutions have a higher
probability to be chosen for molecule construction in subsequent
search steps.

3.3 Simulated

Annealing

For the purpose of estimating a global optimum of an objective
function, Simulated Annealing (SA) is based on the cooling and
crystallizing behavior of chemical substances. This behavior is
affected by both the temperature and the thermodynamic free
energy. In general, SA sets the initial temperature and choses a
random point as the initial solution. It then works iteratively in
steps during which the temperature is progressively decreased from
an initial value to zero. For each iteration, a new point is randomly
selected from the points close to the current one as the solution.
Subsequently, a probability score is calculated based on whether the
quality of the new solution is better than the current solution or
not, and the algorithm decides which solution will be adopted to
replace the current solution. This probability is affected by the
temperature, that is, the temperature controls the balance of explo-
ration/exploitation strategies. If the initial temperature is too low
or cooling is too fast, the algorithm will not effectively explore the
search space. Conversely, when the temperature is set too high, the
algorithm will take too long to converge. The key point of SA is the
strategy about how to choose a new solution, which has a signifi-
cant impact on its performance.

Sengupta et al. developed MOLig with the SA algorithm in
2012 [40]. This method encoded each molecule into a tree-like
representation which was stored as an array of positive integers. In
this array numbers symbolized a molecular fragment and specified
the connectivity pattern. For each iteration, there were several
perturbation operators being defined for generating molecules as
a new solution and it would be determined by temperature related
probability whether this new solution would replace the current
one. The iteration would terminate once the temperature was
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reduced to zero. In addition, CONCERTS [41] and SkelGen [42]
are other structure-based de novo design methods based on the SA
algorithm.

4 Deep Learning Algorithms

The common basic DL architectures used in de novo drug design
are recurrent neural networks (RNNs), variational autoencoder
(VAE), deep reinforcement learning (RL), and generative adversar-
ial networks (GANs) (Fig. 3). Most studies of DL applications
combine two or more models to address specific issues. In the
following paragraphs, we give the details about these architectures
and how these models can be applied in drug design. We also list
and categorize these methods based on these DL architectures in
Table 2.

4.1 Recurrent Neural

Networks (RNNs)

RNNs are formed as directed graph that includes a temporal com-
ponent [81]. Contrary to feedforward networks, the network can
contain cyclic connections that allow them to remember things
from prior inputs when generating output. RNNs can process
sequential data effectively and have shown excellent performance
in the field of natural language processing (NLP) such as handwrit-
ing [82] or speech recognition [83]. RNNs deal with words in text

Fig. 3 Four basic deep learning architectures commonly used in de novo drug design, including recurrent
neural networks (a), variational autoencoder (b), generative adversarial networks (c) and deep reinforcement
learning (d)
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step by step and deliver the current hidden information to the next
step in the network with the same structure simultaneously. By
analogy, the direct application of RNNs in drug design takes the
linear molecular representations as input [53, 60, 61]. For example,
SMILES are always preprocessed by being split into a sequence of
tokens x1:n ¼ [x1, . . ., xn]. The SMILES string is then prefixed with
a start token x0 as input feature and suffixed with the end token
xn + 1 as the output labels. The RNN model πθ parametrized by θ
determines the probability distribution yi of tokens based on x0:
i � 1:

hi ¼ f r hi�1, xi�1ð Þ
yi ¼ f o hið Þ

here, fr denotes recurrent layers and receives the last hidden states
hi � 1 and input features xi � 1 to calculate the current hidden states
hi. In order to avert the problem of long-distance dependencies
caused by gradients vanishing or exploding, many variational ver-
sions have been proposed, including two common implementa-
tions: long short-term memory (LSTM) [84] and gated recurrent
unit (GRU) [85], which contain a memory cell and some different
gates to determine forgotten and reserved information. In the end,
hi are delivered to output layers fo for calculation of output values yi
and commonly, the probability of each word in the vocabulary is
computed by the SoftMax function. For the model training, the
maximum likelihood estimation (MLE) is always chosen to calcu-
late the loss function:

ℒMLE ¼
Xm
j¼1

Xnþ1

i¼1

log πθ xijx0:i�1ð Þ

here, m is the total number of samples with sequence length n in
the training set. The MLE loss function can be optimized with the
backpropagation algorithm commonly used for DLmodel training.

The RNN model always serves as one of the basic components
in the more complicated DL architectures, which will be intro-
duced in the following paragraphs. If used independently, RNN
models are often beneficial for molecular library generation. For
example, Segler et al. pretrained an RNN model on the ChEMBL
database containing 1.4 million molecules and employed “transfer
learning,” also called “fine-tuning” methods to make molecules
focused on the chemical space for the 5-HT2A receptor [60]. To
improve the efficiency of desired molecular generation, Yang et al.
proposed a method they termed ChemTS by combining an RNN
model with Monte Carlo tree search [53]. Subsequently this
method was successfully applied and several molecules were synthe-
sized and confirmed to be desirable chemical compounds [86]. To
balance validity and diversity of molecular generation, Gupta et al.
modified the SoftMax function as follows:
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Pk ¼
exp y=T

� �P
k exp yk=T

� �
by adding a temperature factor T to rescale the probability of each
token k in the vocabulary [61]. If temperature is increased, the
diversity of molecular generation will improve, but the validation
rate will decrease. Arús-Pous et al. studied the performance of an
RNN model for molecular generation on the GPB-13 dataset and
found that it always fails to generate complex molecules with many
rings and heteroatoms due to the syntax of SMILES [87].

4.2 Variational

Autoencoders

Variational autoencoders (VAEs) are a frequently used DL method
aiming to learn representations for dimensionality reduction in an
unsupervised manner [88]. The architecture of autoencoders con-
sists of an DL-based encoder and decoder. The encoder maps the
high-dimensional input data into a latent space with lower dimen-
sional representation, whereas the decoder reconstructs these
representations in the latent space into the original inputs. VAEs
are a probabilistic generative model based on a directed graph with
an autoencoder-like structure, while its mathematical basis, which is
derived from the theory of variational inference, has little to do with
traditional autoencoders [89].

The datapoint z in the latent space can be transformed into
input data x by the decoder which estimates the likelihood pθ(x|z)
with parameters θ. In order to train the model, a straightforward
approach is maximizing the distribution of input data p(x) which is
approximated by p(x) ¼ R

pθ(x| z)p(z)dz [90]. Due to the intracta-
bility of this integral, the encoder is introduced to learn a posterior
qφ(z|x) parameterized by φ; the formula for computing p(x) can be
rewritten as follows:

qφ zjxð Þ log p xð Þ½ � ¼ DKL qφ zjxð Þkpθ zjxð Þ
� �

þ qφ zjxð Þ log pθ x, zð Þ � log qφ zjxð Þ
h i

The first term in the right hand side is Kullback–Leibler
(KL) divergence and the second term is called the evidence lower
bound (ELBO). Because of the nonnegativity of the KL diver-
gence, the ELBO is a lower bound of the log p(x) and is also
rewritten as:

ℒ φ, θð Þ ¼ qφ zjxð Þ log pθ xjzð Þ� ��DKL qφ zjxð Þkp zð Þ
� �

In order to obtain maximization of p(x), ELBO can be
regarded as an objective function and maximized for training
both the encoder and decoder simultaneously. Commonly in
VAEs, p(z) is assumed as a unit normal Gaussian distribution and
qφ(z|x) is chosen as a factorized Gaussian distribution:
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p zð Þ ~N 0, Ið Þ
qφ zjxð Þ ~N μ, diag σ2

� �� �
and the output of the encoder is shifted to output the value of the
mean and the variance for the Gaussian distribution. During the
training process through backpropagation, the reconstruction error
of the decoder is reduced by maximizing the first term of ELBO
and the encoder estimates a more accurate posterior by minimizing
the KL divergence with the true priori of latent variables.

In 2016, Gómez-Bombarelli et al. proposed ChemVAE which
made the molecules and its descriptors reversible, that is, descrip-
tors can not only be extracted in the continuous latent space by the
encoder for prediction, but also be restored to the molecules by
decoder for generation [13]. In addition, VAEs can also be
extended for conditional generation to design molecules with
desired properties [54, 64]. However, with a CNN encoder and
an RNN decoder, the validation rate of SMILES generated by
ChemVAE oscillated around 75%, which was far below the perfor-
mance of pure RNN models (94–98%). To address this issue,
Kusner et al. represented the grammar-based SMILES in a parsing
tree form with context-free grammar. They introduced the gram-
mar VAE (GVAE) model which directly encodes to and from the
parsing tree to ensure the validation of generated SMILES
[71]. Similarly, Dai et al. also proposed a syntax-directed variational
autoencoder (SD-VAE) inspired by syntax-directed translation for
syntax and semantics check [70]. In addition, Bjerrum et al. com-
bined multiple different encoders to improve the diversity of gen-
erated molecules [63].

4.3 Deep

Reinforcement

Learning

Reinforcement learning (RL) is modeled as a Markov decision
process for the interplay between an agent and an environment
[91]. The goal of RL is optimizing the agent to maximize the
accumulated rewards obtained from the environment by choosing
effective actions. After the agent takes an action at the current step,
the environment will adapt to this step by forming a new state. For
the agent, a DL model can be employed to mimic the value, which
predicts expected rewards of each action or each state/action pair,
or policy function, which directly provides the probability of each
action. For the SMILES-based drug design problem, an RNN is
commonly used to model the policy function after being pretrained
with an MLE loss function. At each step i, the action ai is introduc-
tion of a token from the vocabulary chosen by the policy function
based on the current state si, which contains all the tokens gener-
ated so far si ¼ [a1, ..., ai � 1]. The accumulated rewardsGT are the
simple sum of rewards over the total steps T. The aim of RL is to
maximize the expected accumulated rewards:

J θð Þ ¼  GT js0, θ½ � ¼
XT
i¼1

πθ at jsið Þ �Ri
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Usually, the end reward RT can be obtained immediately by the
environment after the generation of SMILES has completed, the
intermediate reward for the action at each step is estimated by
Monte Carlo (MC) search with roll-out policy:

Ri ¼ R sið Þ ¼
1
N

XN
n¼1

R bsnT� �
, bsnT∈MC sið Þ, for t < T

R sTð Þ, for t ¼ T

8><>:
Because of the certainty of states after the action taken by the

agent, the MC search is always removed and Ri is simplified as the
end reward RT. The expected accumulated rewards have a simple
form:

J θð Þ ¼  GT js0, θ½ � ¼ RT

XT
i¼1

πθ at jsið Þ

With the REINFORCE algorithm [92], parameters θ in the
RNN policy function can be derived as follows:

∇θJ θð Þ ¼
XT
i¼1

at ~πθ ∇θ logπθ at jsið Þ �Ri½ �

Popova et al. developed a method ReLeaSE in which a stack-
augmented RNN model was used as the policy function trained
with the REINFORCE algorithm. It was shown to work effectively
for the generation of inhibitors toward Janus protein kinase
2 (JAK2) [58].

In addition to the policy gradient to train the policy function,
Zhou et al. proposed another method MolDQN based on deep
Q-learning to fit the Q-value function rather than the policy func-
tion [67]. Mathematically, for a policy π, the value of an action a on
a state s can be defined as follows:

Q π s, að Þ ¼ π

XT
i¼t

Ri

" #
This action-value function calculates the future rewards of

taking action a on state s, and subsequent actions decided by policy
π. The optimal policy is defined as follows:

π∗ ¼ argmax aQ π∗ s, að Þ
and an RNN model parameterized by θ is introduced to approxi-
mate the value function

V s; θð Þ ¼ max aQ s, a; θð Þ
This approximator can be trained by minimizing the loss func-

tion of the following:

ℒ θð Þ ¼ R sið Þ þ γV s iþ1, θð Þ �Q st , at ; θð Þ½ �2
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where γ is the discount factor. By comparing with other policy-
based RL methods, Zhou et al. argued that deep Q-learning did
not need any pretrained model and performed better than the
policy gradient methods.

In order to improve the stability of RL training, Olivecrona
et al. proposed a method named REINVENT [66], in which a new
loss function was introduced based on the Bayesian formula for RL:

ℒ θð Þ ¼ logPPrior sTð Þ þ σR sTð Þ � logPAgent sTð Þ� �2
The authors used all molecules in the ChEMBL database to

pretrain an RNN model as the Priori. With the parameter σ, they
integrated the reward R of each SMILES into the loss function.
The final Agent model was regarded as the Posteriori and trained
with the policy gradient. Finally, they successfully identified a pleth-
ora of active ligands against the dopamine D2 receptor (DRD2).

Subsequently, in order to improve the diversity of generated
molecules, Liu et al. proposed a method DrugEx in which the
action was not only determined by the agent policy Gθ, but also
by a fixed exploration policy Gφ which had an identical network
architecture. During the training process an “exploring rate” (ε,
from 0.0 to 1.0) was defined to control which policy would take
actions. At each step a random number in [0.0, 1.0] was generated.
If the value was smaller than ε, the Gφ would determine which
token would be chosen, and vice versa. This method was success-
fully applied to the design of ligands toward the adenosine A2A

receptor [65]. DrugEx was shown to better explore the chemical
space for the A2A receptors and produce ligands with similar physi-
cochemical properties to known ligands which included complex
ring systems that the other methods it was compared to could not
produce.

4.4 Generative

Adversarial Networks

GAN models were proposed as a great breakthrough method and
have been extensively applied in image generation. A GAN contains
two neural networks: the generator (G) and the discriminator (D),
which contest with each other under game theory [11]. G commits
to generating fake data to the point of confusingD to mistake them
for real samples in the training set. The discriminator on the other
hand is responsible for distinguishing between the generated fake
data and the real samples. During the training loop, a batch of fake
data is generated byG, which is used subsequently for training both
G and D accompanied with real data. The objective functions were
originally defined as two parts for G and D, respectively:

min
G

V Gð Þ ¼ x ~pz zð Þ log 1�D G zð Þð Þð Þ½ �

max
D

V Dð Þ ¼ x ~pd xð Þ logD xð Þ½ � þ x ~pg xð Þ log 1�D xð Þð Þ½ �
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here, pz(z) is the noise distribution, pd(x) is the data distribution in
the training set and pg(x) is the data distribution in the generated
set. These two objective functions can be joined together as a
minmax game in which G wants to minimize V while D wants to
maximize it. In order to provide a strong gradient signal to obtain
the global optimality, the objective function for D is rewritten as
follows:

max
D

V D,Gð Þ ¼ � log 4ð Þ þ 2 �DJS pdkpg
� �

where DJS (pd || pg) is the Jensen–Shannon divergence defined as
follows:

DJS pdkpg
� �

¼ 1
2
DKL pdk

pd þ pg
2

� 	
þ 1
2
DKL pgk

pd þ pg
2

� 	
here, the DKL is the KL divergence.

To overcome several difficulties of GANs, such as mode col-
lapse or lack of informative convergence metrics, the Wasserstein
GAN (WGAN) was proposed to ensure faster and more stable
training [93]. This model replaces the Jenson–Shannon divergence
with the Earth-Mover distance:

W p, qð Þ ¼ inf
γ∈Π p, qð Þ

 x,yð Þ~γ x � yk k

where Π( p, q) denotes the set of all joint distributions γ(x, y) whose
marginals are p and q, respectively. This distance results in a more
reliable gradient signal which does not vanish during the training
process. Besides the abovementioned GAN models, there are vary-
ing forms being proposed which have been collected in the GAN
ZOO [94].

For drug design, a GAN model is commonly used. To ensure
that the generated molecules have similar physiochemical proper-
ties to molecules in the training set, the GAN is combined with
other neural networks to construct a hybrid DL model, such as the
RL model and the VAE model. The first application of GANs for
drug design was proposed in 2017, named ORGAN, in which a
GAN model was trained under the RL framework for multiobjec-
tive optimization [68]. ORGAN contained one RNN generator for
SMILES generation and a CNN discriminator to optimize the
chemical space of generated molecules. They used linear combina-
tion methods to integrate the reward function given by discrimina-
tor (Rd) and objective function (Rc) into the final rewards (R):

R xð Þ ¼ λRd xð Þ þ 1� λð ÞRc xð Þ
Here λ∈[0, 1] is a weight hyperparameter for balancing these

two rewards. ORGAN has been demonstrated to dramatically
improve the percentage of generated desired drug-like molecules
compared to molecules in the training set based on properties,
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including solubility and synthesizability. In addition, there are some
other groups that also exploit the GAN model to develop their
methods for molecular design, such asMolGAN [95],RANC [51],
and ATNC [69].

Another GAN-based hybrid model is a combination with an
adversarial autoencoder (AAE) by combining multiple VAEs
[96]. Instead of minimizing KL divergence to decrease the gap
between the latent distribution of output by the generator and
the prespecified priori (e.g., a normal distribution), AAE uses
adversarial training by introducing a DL-based model as discrimi-
nator D to tell the difference between the descriptors mapped by
generated molecules and molecules in the training set, respectively.
The objective function of the discriminator is written as follows:

max
D

V Dð Þ ¼ x ~pd xð Þ logD xð Þ½ � þ x ~pg xð Þ log 1�D xð Þð Þ½ �

and the loss function for the VAE based generator is revised as
follows:

ℒ φ, θð Þ ¼ V Dð Þ � qφ zjxð Þ log pθ xjzð Þ� �
Blaschke et al. applied the AAE model for designing active

ligands toward the dopamine D2 receptor [52]. In addition, Poly-
kovskiy et al. also successfully applied this model for generating
several novel inhibitors of Janus kinase 3 (JAK3) [59].

5 Competition or Cooperation?

Optimization methods and DLmethods are different categories for
drug design. Optimization methods search for the global minimum
(or maximum) of the objective functions, which are always a non-
convex function and have many local optima (Fig. 4a). In contrast,
DL models obtain the optimal parameters with a backpropagation
algorithm by minimizing the loss function; these are usually con-
structed as convex functions to ensure a unique minimum to be
sought by gradient descent algorithms (Fig. 4b). Traditionally,
there have been many successful cases in which drug candidates
were found through optimization methods. But these methods do
not share a unified framework and users need to define some
procedures manually case by case based on their experience. In
recent years deep learning methods have come to the attention of
researchers who have shown interest in applying them in drug
design. Based on similar basic DL architectures, more and more
promising methods have been proposed to learn knowledge from
the training set efficiently and generate novel molecules automati-
cally. By comparison, optimization methods are usually population-
based, meaning each individual can be manipulated directly and
conveniently to construct a Pareto frontier for multiple objectives.
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Deep learning methods, however, are typically model-based, which
can be used anywhere and the learned information can be passed on
to other models through transfer learning. However, current DL
methods are still comparatively poor at handling the multiple
objectives relevant for drug discovery; weighted summation is a
common approach to tackle competitive objectives.

The paradigm shift from the optimization methods to machine
learning methods is mainly caused by the availability of large public
databases and breakthroughs made in the field of deep learning in
image and text generation. When optimization methods domi-
nated the field of de novo drug design, there was little public data
available as prior knowledge. Optimization methods focused on the
objective functions, which were summarized based on a limited
number of ligands, and the data was only used to provide the initial
states or form the rules as constraints for molecule generation. In
the age of big data public online databases (Table 3) such as
ChEMBL [97, 98], PubChem [99], ZINC [100], and DrugBank
[101, 102], provide massive amounts of training data. Machine
learning methods are now commonly used to extract useful infor-
mation from this “big data” of drugs. Despite the current popular-
ity of DL methods, it is worth noting that some researchers have
questioned the performance of DL and benchmarked the perfor-
mance different between DL and other optimization methods. For
example, Yoshikawa et al. employed a grammatical evolution to
develop a SMILES-based drug design algorithm, called ChemGE,
which generated molecules with high binding affinity. They com-
pared their method with three other DL methods, including
CVAE, GVAE, and ChemTS. They found that with eight hours
compute time, their method performed better than, or was com-
parable to DL methods. Similarly, Jensen proposed a graph-based

Fig. 4 Objective functions for optimization methods (A) and deep learning methods (B). Usually, objective
functions in optimization methods contain many local minima/maxima, while nonconvex objective functions
(also called loss functions) are deliberately constructed in deep learning methods to ensure that a local
minimum, if present, can be found by gradient descent algorithms
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GA approach for drug design which was shown to perform better
than a SMILES-based RNN, the ChemTS, CVAE, and GVAE with
much lower computational cost.

Despite the differences in their mode of operation, some
groups have tried to combine these two classes of methods for
drug design. For example, an end-to-end model can map each
molecule from discrete chemical space into a continuous latent
space, that is, the chemical structure can be converted into a
numerical vector by the encoder. Such continuous representations
are convenient for use in optimization and the resulting optima are
subsequently reconstructed into the expected molecules by the
decoder. For example, Sattarov et al. applied a generative topo-
graphic mapping (GTM) technique, the probabilistic counterpart
of self-organizing maps based on Bayesian learning, in the continu-
ous space constructed by a VAE model [57]. GTM was convenient
for visualization of the latent space in which target zones can be
used for generating novel molecular structures by sampling. They
succeeded in generating focused libraries of potential ligands
toward the adenosine A2A receptor. In addition, Winter et al.

Table 3
Publicly and freely available data sources related to drug molecules

Name Descriptions URL

ChEMBL Curated database of bioactive molecules with drug-like
properties.

https://www.ebi.ac.uk/
chembl/

PubChem Collection of freely accessible chemical information,
including chemical and physical properties, biological
activities, safety and toxicity information, patents, etc.

https://pubchem.ncbi.
nlm.nih.gov/

DrugBank Bioinformatics and cheminformatics resource that combines
detailed drug data with comprehensive drug target
information

https://www.drugbank.
ca/

SureChEMBL Database for chemical compounds in patents https://www.
surechembl.org

GDB Combinatorically generated drug-like small molecule library http://gdb.unibe.ch/

PDB 3D structure of Macromolecular Structures (including
ligands binding to active site of targets)

https://www.rcsb.org/

QM9 Small organic molecules subset out of the GDB-17 with
quantum chemical properties

http://www.quantum-
machine.org/
datasets/

ExCAPE-DB An integrated chemogenomic dataset collected from publicly
available databases including structure, target information
and activity annotations

https://solr.ideaconsult.
net/search/excape/

ZINC Curated collection of commercially available chemical
compounds

https://zinc15.docking.
org/
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constructed another end-to-end deep learning framework to con-
struct a continuous space and exploited a PSO algorithm on this
latent space. They were able to successfully generate ligands with a
predicted high affinity to both EGFR and BACE1 [62].

6 Conclusion and Perspective

In this review, we give a brief description of algorithms used in drug
de novo design, divided in optimization methods on the one hand
and DL methods on the other hand. Traditionally, the drug design
problem was always addressed as a combinatorial optimization
problem. Hence optimization methods were dominant in drug
design. With the rise of DL, more and more researchers shifted
their interests from optimization algorithms to DL-based methods.
The application of deep learning in drug de novo design caused a
revolutionary pattern shift in drug discovery. However, DL meth-
ods have still a long way to go and traditional optimization algo-
rithms still provide inspiration to improve the capability of drug de
novo design. Currently, it is hard to say which kind of methods are
dominant for all cases of drug design. Users should select methods
based on their own conditions in practice. We also expect more
sophisticated AI algorithms being proposed in the future to accel-
erate drug discovery.
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