
Automata learning: from probabilistic to quantum
Chu, W.

Citation
Chu, W. (2024, December 4). Automata learning: from probabilistic to quantum. Retrieved
from https://hdl.handle.net/1887/4170915

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170915

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170915

Chapter 6

Active Learning Quantum Automata

Quantum computing has emerged as a rapidly advancing field that uses the properties
of quantum mechanics, such as superposition, interference, and entanglement, to enable
powerful computational operations. The integration of finite automata with quantum elements
has given rise to the quantum finite automaton (QFA) model initially introduced in the
foundational work of Kondacs and Watrous in 1997 [63].

The combination of elements from quantum mechanics into finite automata opens up
a new fundamental way for the development of quantum computing algorithms. Notably,
research has shown that QFA holds the potential to outperform classical systems in solving
certain computational problems [52]. There are several types of quantum automata, depend-
ing on which quantum state they operate, on how many time measurements are allowed,
and on whether a string can be read only once or not. For example, one-way quantum finite
automata (1QFA) operate using only pure quantum states and read the input string only
once from left to right. Depending on the number of possible measurements allowed, 1QFA
can be further categorized into two types: the measure-once one-way QFA (MO-1QFA)
initially introduced by Moore and Crutchfield [83], and the measure-many one-way QFA
(MM-1QFA) pioneered by Kondacs and Watrous [63].

Also in the field of quantum learning theory, efforts have been made to establish quantum
analogs of classical learning frameworks. These include quantum exact learning [5], the
quantum PAC model [23], and the quantum agnostic model [6]. However, despite the
substantial interest, there is limited research on quantum automata learning. To the best of
our knowledge, only one work has been published on this topic [94]. The presented algorithm
focuses on learning quantum finite automata with queries. Notably, the oracle’s responses
in this algorithm consist of state amplitudes rather than the probabilities associated with
string acceptance. Furthermore, the learner is assumed to possess prior knowledge of the
automaton’s structure, including the identification of accepting and non-halting states [94].

84 Active Learning Quantum Automata

In this chapter, we provide a different approach combining active learning and non-linear
optimization methods for learning measure-once quantum automata. Our method consists of
two steps: In the first step, we use a Hankel matrix to learn the number of states. Then we
use two state-of-the-art optimization methods to learn the weights labeling the transitions
of the automaton. The resulting approximation is not necessarily a quantum automaton, as
the learned operators need not be unitary. The second step starts after orthonormalizing the
operators and consists of checking if the learned automaton is close enough to the target
one. To this end, we define a new method to compute the L1 distance between two quantum
automata based on the language recognized by a suitable combination of the two automata.

6.1 Basics of quantum computing

A (finite) Hilbert space Hn is an n�dimension complex vector space equipped with an inner
product. The inner product of two vectors |fi= (a1 . . .an)| and |yi= (b1 . . .bn)| is defined
as hf |yi= Ân

i=1 a⇤
i bi, where hf | is the conjugate transpose of the vector |fi and a⇤

i is the
conjugate of the complex number ai. Vectors |fi and |yi are said to be orthogonal if their
inner product is zero. For example, the qubits |0i= (1,0)| and |1i= (0,1)| are orthogonal
as h0|1i= 0.

We use Bn = {q1, . . . ,qn} to denote the standard bases of Hn. A pure quantum state is a
column vector |fi in Hn, that is, a linear combination

|fi= a1|q1i+ · · ·+an|qni,

such that its norm |||fi||= 1, that is the positive square root
p
hf |fi= 1 (or equivalently,

|a1|2 + · · ·+ |an|2 = 1). For a pure quantum state, we call ai 2 C the probability amplitude,
for any i 2 {1, . . . ,n}. Without loss of generality, and at the cost of exponentially larger
space, we could consider only real numbers as amplitude. In fact, every complex number

c = a+bi can be represented by 2⇥2 real matrices ccc =

a b
�b a

!
, and, similarly, any n⇥n

complex matrix can be simulated by a 2n⇥2n real-valued matrix. Notably, this matrix is
unitary if the original matrix is unitary.

The evolution of a closed quantum system is expressed by the multiplication of the pure
quantum state vector by a unitary matrix. A matrix UUU 2 C

n⇥n is unitary if its conjugate
transpose UUU† is also its inverse, that is:

UUU†UUU =UUUUUU† =UUUUUU�1 = I

6.1 Basics of quantum computing 85

Any unitary operator on complex numbers is norm-preserving, thus |f 0i =UUU |fi is also a
pure quantum state with norm 1 if |fi is.

A quantum projective measurement is a projection of a pure quantum state |fi in a
perpendicular manner on a subspace of Hn. Formally, a projective measurement is a positive
n⇥n matrix MMM that is idempotent (i.e. MMM2 = MMM) and Hermitian (i.e. MMM† = MMM). A projection
matrix MMM is in a one-to-one correspondence with the subspace of the Hilbert space Hn that
consists of all |fi such that |fi = MMM|fi. Given a system in a pure quantum state |fi, the
probability to be in the subspace characterized by a measurement MMM is:

P(|fi,MMM) = ||MMM|fi||2 = (MMM|fi)†MMM|fi= hf |MMM†MMM|fxi= hf |MMM|fi .

After measurement, the new state |f 0i of the system is normalized to:

|f 0i= MMM|fip
hf |MMM|fi

.

6.1.1 Measure-once one-way quantum finite automata

A Measure-Once One-Way Quantum Finite Automaton (MO-1QFA) is a theoretical model
of computation that combines principles from quantum computing and finite automata theory.
It focuses on the evolution of pure quantum states in a unidirectional fashion using unitary
transformations and a single measurement at the end of the computation.

Definition 13. A measure-once one-way quantum finite automaton (MO-1QFA) is a 5�tuple
hQ,S,{UUUs |s 2 S},q1,Ai where:

• Q is a finite set of n states,

• S is a finite alphabet,

• q1 2 Q is the initial state,

• A ✓ Q is a set of accepting states,

• {UUUs}s2S is a set of unitary matrices in C
n⇥n describing the evolution of the system

when reading an input symbol in S.

The computation of a MO-1QFA M on an input x = s1 · · ·sn 2 S⇤ proceeds as follows.
Intuitively, the automaton starts from the quantum state |q1i = (1,0, . . . ,0)|. The system
evolves from a state |fi to a state UUUs |fi when the symbol s is read. After reading a string
x 2 S⇤, the state of the automata is measured using the diagonal projector matrix MMM having 1

86 Active Learning Quantum Automata

on the diagonal in position i, i if qi 2 A and 0 otherwise. This assigns to every string x 2 S⇤ a
probability P(x) of being in an accepting state. Formally, let |q0i be the vector representing
the initial state, and x = s1 . . .sn 2 S⇤. After reading x the system will be in the quantum
state:

|fxi=UUUsn · · ·UUUs1 |q1i .

The probability P(x) assigned by the automaton M to the string x is then the probability that
the state fx is in the subspace characterized by a measurement MMM:

P(x) = P(|fxi,MMM) = hfx|MMM|fxi .

The language L ✓ S⇤ is said to be recognized by M with unbounded error if there exists a
cutpoint l such that

L = {x 2 S⇤|PM(x)> l}

The language L ✓ S⇤ is said to be accepted by M with error bound e (0 6 e < 1
2) if

(i) PM(x)> 1� e when w 2 L and (ii) PM(x)6 e when x /2 L.

Example 17. Let S = {a,b} and consider the MO-1QFA M with 2 states Q = {q1,q2}, where
q1 is the initial state and q2 is the only accepting state. The evolution matrices UUU for a and b
are as follows:

UUUa =

cospq �sinpq
sinpq cospq

!
and UUUb =

cospq sinpq
�sinpq cospq

!
,

where q = (
p

5�1)/2. Note that UUUa is the counterclockwise rotation of the angle pq in
the q1, q2 plane. The matrix UUUb is the inverse of UUUa and represents the clockwise rotation of
the angle pq in the same plane. Since q is an irrational multiple of p , then UUUa and UUUb are
aperiodic and dense on the unit circle, which means the quantum state would never visit the
same position twice on the unit circle.

The language L accepted by the automaton M with unbounded probability error is

LM = {x 2 S⇤ | |x|a 6= |x|b},

where |x|s denotes the number of s in string x. If M reads a string x with an equal number of
a and b, the automaton returns its initial state |q0i, so the accepting probability PM(x) = 0,
and thus x not accepted by this automaton. For all other strings, the quantum state ends at a

6.1 Basics of quantum computing 87

point of the unit circle excluding the main axes, hence the accepting probability will never be
zero, and the string is thus accepted.

Note that this language LM is not regular. Let UMO be the class of languages accepted
by an MO-1QFA with unbounded error probability. The above example shows that UMO
contains non-regular languages [16]. Rabin proved a similar result for probabilistic finite
automata [95]. However, Brodsky and Pippenger showed that UMO doesn’t contain any finite
language [22], and therefore MO-1QFA are incomparable with classical finite automata.

When considering acceptance by bounded error, then the situation changes. More
precisely, let RMOe be the set of languages accepted by a MO-1QFA with bounded error
0 6 e < 1

2 , and define RMO =
S

e RMOe to be the class of languages accepted by a MO-
1QFA with a bounded error probability. The class RMO is a proper subset of the regular
languages [83]. In other words, restricting MO-1QFAs to accept with bounded error greatly
reduces their accepting power.

In the next subsection, we show how the accepting power of MO-1QFA can be extended
by allowing measurements at any step of the computation. This will not yet give the full power
of regular languages, which can be obtained by further allowing arbitrary movements on the
input. The resulting automata are called measure many two-way QFAs and are strictly more
powerful than their one-way counterpart. They not only accept all regular languages [51] but
can also accept some context-free languages and even some non-context-free languages with
bounded probability error [63].

6.1.2 Measure-many one-way quantum finite automata

The measure-many one-way quantum finite automaton (MM-1QFA) was first introduced by
Kondacs and Watrous [63]. It is defined as follows:

Definition 14. Measure-many one-way quantum finite automaton (MM-1QFA) is a 6�tuple
hQ,S,{UUUs |s 2 G},q1,A,Ri where:

• Q is a finite set of states,

• S is a finite alphabet,

• q1 is the initial state,

• A ✓ Q is a set of accepting states,

• R ✓ Q\A is a set of rejecting states disjoint from the accepting ones, and

88 Active Learning Quantum Automata

• {UUUs}s2G is a set of unitary matrices describing the evolution of the system when
reading an input symbol in G = S[{#[$}, where # and $ are the initial and end-
markers, respectively.

Note that A\R = /0. A state in either A or R is called a halting state, whereas a state in
Q\ (A[R) is non-halting. Elements in UUUs represent transition with weight in the unitary
circle of the complex numbers.

As for an MO-1QFA, the computation of an MM-1QFA is performed in the Hilbert space.
The evolution of the automaton is described by unitary matrices {UUUs |s 2 S}. The system
evolves from a state |fi to UUUs |fi when the symbol s is read. A measurement is performed
after every step using the orthogonal decomposition:

H (Q) = Ea �Er �En,

where Ea = span{|qi|q 2 A}, Er = span{|qi|q 2 R}, and En = (Ea �Er)? is the orthogonal
complement of Ea �Er. The projection operator MMMp for p 2 {a,r,n} projects UUUs |fi into a
vector |f 0i= MMMpUUUs |fi of one of subspaces Ea, Er, En with the probability |||f 0i||2.

Given an input x = s1 · · ·sk 2 S⇤, an MM-1QFA starts from the initial state |q1i. It
proceeds by reading the starting leftmost input symbol #, moves to a new state at every
input, and performs a measurement for a non-halting state MMMn until it reaches the end symbol
$, from which the resulting state is measured to obtain the probability of acceptance and
rejection by the measurement MMMa and MMMr, respectively:

|fxi= MMMnUUUskMMMnUUUsk�1 · · ·MMMnUUUs1MMMnUUU#|q1i.

Note that after each projection, the computation continues only if a projection into a non-
halting state in En occurs, whereas if the state is projected into the accept subspace Ea or
the reject subspace Er then the automaton halts. The computation continues until the whole
string x is read, or the automaton halts. In the former case, the current state of the automaton
|fxi evolves to UUU$|fxi.

To formally define the overall probability of input acceptance or rejection by the MM-
1QFA M, we say that an automaton M is in the configuration (|fi, pa, pr) if f , is the current
unnormalized quantum state of a computation in M that accepts the input with probability pa,
rejects it with probability pr and does neither of the two with probability 1� pa� pr = |||fi||.
For each s 2 S the evolution of M, with respect to the total state, on an input s is given by
the operator Ts defined by:

Ts (|fi, pa, pr) = (MMMnUUUs |fi, pa + ||MMMaUUUs |fi||2, pr + ||MMMrUUUs |fi||2).

6.2 Learning quantum automata 89

For x = s1 · · ·sn 2 S⇤, let T#x$ = T$TskTsk�1 · · ·Ts1T#. If T#x$(|q1i,0,0) = (f , pa, pr), then
M accepts x with probability pa and rejects x with probability pr.

The language of strings accepted or rejected by an MM-1QFA with bounded and un-
bounded probability error is defined like for MO-1QFA. In both cases, the class of languages
accepted by MM-1QFA includes that of MO-1QFA. The class of languages accepted by MM-
1QFA with bounded error is a proper subset of the regular languages, but with unbounded
error, MM-1QFA can recognize some non-regular language [63].

6.2 Learning quantum automata

We have seen in the previous chapter that in active automata learning, contrary to passive one,
the learning algorithm can query the target system for additional information. For example,
Angluin’s L⇤ algorithm [2], learns a minimal deterministic finite automaton recognizing a
target regular language using two types of queries: membership queries and equivalence
queries.

When learning quantum automata, a variation of the L⇤ algorithm should implement both
queries. First of all, we need to be able to compute whether two automata are equivalent.
For measure-once (and also measure many) one-way quantum finite automata equivalence is
decidable [64, 69].

As for probabilistic automata, however, constructing a quantum automaton from mem-
bership queries is not easy. With a membership query, the learner asks the oracle for the
target probability of a string x. For a measure once quantum automaton, this value represents
the probability that the automaton is in the superposition of accepting states after reading
the string x. While this information will be enough to extract the structural information of
the automaton, it does not tell us how the automaton evolves at each step. Our approach
will be to learn the unitary matrices representing the evolution of the system by solving a
non-linear (but polynomial) system of equations in real values variables. Such a solution,
however, can only be approximate, and we will use two different optimization algorithms for
that. Consequently, we will only approximately learn quantum automata, and the equivalence
queries will be replaced by measuring how close the learned automaton is to the target.

Our goal is to find a quantum automaton that assigns probabilities arbitrarily close to
those assigned by the target language for each string in the membership queries so that they
are identified in the limit [122]. Furthermore, similar to the approximately correct version
of the L⇤ algorithm [90], we substitute the equivalence query with a large enough set of
strings that are used to measure the distance from the target. When this distance is greater
than a fixed threshold parameter d , the algorithm will offer a new string with an associated

90 Active Learning Quantum Automata

probability that will be used to improve the resulting automaton. In this context, we use two
novel ways to calculate the distance between the learned automaton and the target one, as
will be shown in Section 6.3.

Next, we present our approximate learning algorithm for quantum automata. We first
learn the structure, assuming that the target automaton has only one accepting state. We will
relax this assumption to more accepting states later, but it requires the oracle to associate as
many probabilities to each string as the accepting states of the target automaton. We also
show how to define the unitary operators for the automaton given the strings received from
the membership queries so far.

6.2.1 Learning the structure

To learn the structure of a quantum automaton, we need to learn how many states it has. To
this aim, we will use a novel application of the Hankel matrix for measure-once one-way
quantum finite automata. After we know how many states the automaton has, we will learn
the unitary matrices regulating the evolutions and check our hypothesis with the oracle.

6.2.1.1 The Hankel matrix of a measure-once QFA

Structurally, a MO-1QFA hQ,S,{UUUs |s 2 S},q1,Ai, can be seen as a weighted finite automa-
ton over the semiring (R,+,⇥,0,1), assigning a ‘weight’ w(x) to each string x = s1 . . .sn 2
S⇤ as follows:

w(x) = Â
q2A

w(x,q)

where
w(x,q) = hq|UUUx|q1i= hq|UUUsn · · ·UUUs1 |q1i .

Note that if the string x is the empty string, its weight is 1 if and only if q1 2 A. In the sequel
we denote by bbb|

A = Âq2Ahq| and by UUUx the matrix obtained by the product UUUsn · · ·UUUs1 . This
way, w(x) = bbb|

AUUUx|q1i.
Differently from P(x), the weight w(x) of a string x is the sum of the weight of the paths

with input x from the initial state to each accepting state in A. This will be useful for learning
the number of states of a quantum automaton, that is related to the rank of its Hankel matrix.
Here recall that the rank of a matrix is the maximal number of linearly independent rows
(or, equivalently, columns). Furthermore, in the context of matrices indexed by strings in
S⇤, recall that a Hankel matrix is a square matrix HHH such that its element au,v = au0,v0 for all
u,u0,v,v0 2 S⇤ with uv = u0v0. For example, the Hankel matrix HHH f of a function f : S⇤ ! R

is defined by setting au,v = f (uv), for all u,v 2 S⇤.

6.2 Learning quantum automata 91

Theorem 3. Given a MO-1QFA hQ,S,{UUUs |s 2 S},q1,Ai, and its associated weight func-
tion w : S⇤ ! R then the rank of HHHw is smaller or equal than the number of states |Q|.
Furthermore, this rank is minimal, meaning that no other MO-1QFA has the same weight
function w with fewer states than the rank of HHHw.

Proof. Given a MO-1QFA hQ,S,{UUUs |s 2 S},q1,Ai with a weight function w and u,v 2 S⇤,
we have:

w(uv) = (bbb|
AUUUv)(UUUu|q1i), (6.1)

where bbb|
AUUUv is a row vector in R

1⇥Q and UUUu|q1i is a column vector in R
Q⇥1. Define two

matrices PPP and SSS in R
S⇤⇥Q, by setting PPP(v, ·) = bbb|

AUUUv for all v 2 S⇤ and SSSA(u, ·) = (UUUu|q1i)|

for all u 2 S⇤. We then have:

w(uv) = (bbb|
AUUUv)(UUUu|q1i) = (PPPSSS|)(v,u). (6.2)

This means that HHHw = PPPSSS|. Since the rank of PPP and SSS is bounded by the number of states
|Q|, we have that rank(HHHw) |Q|.

Next, assume rank(HHHw) = n and consider a MO-1QFA A = hS,S,{VVV s |s 2 S},s0,Ai,
assigning a weight f (x) = w(x) to strings x 2 S⇤. We need to prove that rank(HHHw) |S|.
Using the same reasoning as before, we get that rank(HHH f) |S|. But since f = w, we have
rank(HHHw) |S|.

More specifically, given HHHw, one can construct a weighted finite automaton (not nec-
essarily a MO-1QFA) with exactly n states such that the weight f (x) associated with each
string x is w(x). To this end we need to give an initial vector a and an accepting vector b
both in R

n⇥1, and transition matrices UUUs in R
n⇥n, for every s 2 S. Since rank(HHHw) = n,

let HHHw(·,vi) be the n linear independent v�indexed column vectors in HHHw. There exist
a1, · · · ,an 2R such that HHHw(·,e) = Ân

i=1 aiHHHw(·,vi). Together they define the weight vector
aaa of the initial state. Note that this need not be of the form (1,0, · · · ,0) for a MO-1QFA.

Similarly, for all 1 i n and s 2 S we have HHHw(·,svi) = Ân
j=1 b s

j,iHHHw(·,vi). For
all s , all b s

j,i define the weight of the transition matrix UUUs , that in general needs not
to be unitary. As usual, for a string x = s1 · · ·sk 2 S⇤ we let UUUx = UUUsk · · ·UUUs1 and get
HHHw(·,xvi) = Ân

j=1(UUUx) j,iHHHw(·,v j). Thus,

w(x) = HHHw(e,x) = HHHw(x,e) =
n

Â
i=1

aiHHHw(x,vi)

=
n

Â
i=1

ai

n

Â
j=1

(UUUx) jiHHHw(e,v j) = bbb|UUUxaaa = f (x) ,

92 Active Learning Quantum Automata

where bbb j = HHH f (e,v j) and aaa = (a1, . . . ,an).

6.2.1.2 Learning the states

Because of Theorem 3, the number of states of a MO-1QFA is given by the rank of the
Hankel matrix that we build using membership queries. We start by assuming that the target
MO-1QFA has exactly one final state. If it has no accepting state then the language is empty,
and that can be easily checked. We generalize the case of a target MO-1QFA with more than
one final state later at the end of this section.

We start by asking the oracle the probability P(x1), where x1 is the empty string e ,
and build the 1⇥1 Hankel matrix (p1). Because of the way probabilities are calculated in
quantum automata, here p1 is the amplitude of the unique final state, and thus p1 =±

p
P(x1).

Recall that an n⇥n Hankel matrix is defined by only 2n�1 elements since the Hankel matrix
is symmetric, thus given an n⇥n Hankel matrix, if it has rank r = n, then to extend its size by
1 we need to ask the probabilities P(x2n) and P(x2n+1) of the next two strings x2n and x2n+1

with respect to the length-lexicographic order. The example below shows a 3⇥ 3 Hankel
matrix that is extended to a 4⇥4 one by adding the two elements p6 and p7 (here in red):

0

B@
p1 p2 p3

p2 p3 p4

p3 p4 p5

1

CA!

0

BBB@

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

p4 p5 p6 p7

1

CCCA

In the matrices above, pi =±
p

P(xi) is the possible amplitude of the final state after reading
the string xi, for all i. Extending the current matrix using membership queries is repeated
until the rank r of the current Hankel matrix is strictly smaller than its size n. In this case,
1, . . . ,r are the states of the proposed learned automaton, with 1 the initial state. If p1 6= 0,
then 1 is also the accepting state. Otherwise, we set 2 to be the accepting one. This choice is
arbitrary but does not influence the result because of the symmetry of the transitions of the
automaton.

Each element pi above can have two values, namely
p

P(xi) or �
p

P(xi). This implies
that we have 2(2n�1) different Hankel matrices given the first 2n�1 membership queries. To
avoid an exponential explosion in the number of matrices that we have to treat in parallel,
we organize all variations of the above Hankel matrix as two binary trees, where each node
is either the positive or negative value of pi, having as children the two values of pi+1. We
have two trees instead of one because of the two values of p1 at the root. Each tree has depth
2n�1, and a path in the tree represents a Hankel matrix. We have in total (2n�1)2 paths.

6.2 Learning quantum automata 93

We use a few heuristics to be more efficient in exploring these trees by cutting some of
the paths. First, we can remove the tree with the negative value at the first node because any
path of that tree can be obtained by one starting from the positive root by multiplying it by
�1. So any matrix represented by a path in the tree with the negative root will have the same
rank as one represented in the other tree. Second, if the root p1 = 0, then we can prune the
subtree rooted in its child �

p
P(x2) with a negative value because any path passing through

this subtree can be obtained as one from the remaining part of tree multiplying it by �1.
Third, for any other node with value 0, there is no need to calculate the subtree starting from
the sibling since, for each represented matrix, we can find one with the same rank in the
remaining tree.

We implemented a binary search based on these three heuristics in Algorithm 14 (lines
16 to 18). The algorithm stops when the rank of the Hankel matrix is smaller than its size.
We can start directly by building a 3 Hankel matrix using 5 membership queries (lines 1 to 4)
because the size 1 Hankel matrix can only have rank 1. If the rank is smaller than a Hankel
Matrix of size 2, then it must be equal to 1, meaning that we have only a one-state finite
automaton. We can immediately notice this when asking the first |S|+1 membership queries
because all those strings will need to have probability 1. We first build the heuristic binary
tree (lines 2 to 26), and then we construct one Hankel matrix at a time for each path until the
rank of this matrix is strictly smaller than its size (line 28 to line 33). If this is not the case
for all paths in the tree, then we repeat the process by increasing the size of the matrix by 1.
The worst-case time complexity of the algorithm is O(n⇤ (2n�1)), where n = nmax and is
the maximal number of states allowed for the automaton.

The next example shows an example where we learn the number of states of a quantum
finite automaton over a single letter alphabet S = {a}:

Example 18. We start by constructing a 3⇥3 Hankel matrix asking the oracle for the proba-
bility of being in the unique final state when reading the strings e,a,aa,aaa,aaaa. Assume
the oracle returns P(e) = 0, P(a) = 0.23, P(aa) = 0.13, P(aaa) = 0.97 and P(aaaa) = 0.06.
We use the positive and negative values of the square root of all these probabilities as elements
of our Hankel matrices. All paths of our heuristic binary tree denote the following 8 Hankel
matrices: 0

B@
0 0.48 ±0.36

0.48 ±0.36 ±0.98
±0.36 ±0.98 ±0.25

1

CA . (6.3)

Simple calculations show that the rank of all these 8 matrices is 3 as the rank is not smaller
than the size. We continue with two membership queries: the probability of aaaaa and
aaaaaa. Let us assume the oracle returns P(aaaaa) = 0.25 and P(aaaaaa) = 0.01. Next,

94 Active Learning Quantum Automata

Algorithm 14 Heuristic binary tree to find the number of states in MO-1QFA
Input: S: the probabilities of strings and nmax
Output: the Hankel matrix and the number of states

1: n = 3
2: while n < nmax do
3: T is an empty tree
4: A = S[: 2n�1]
5: root = Node(A[0]) {Use the first element as the root of T }
6: queue is a First-In-First-Out queue
7: i = 0
8: queue = root
9: while queue is not empty do

10: i = i+1
11: if i � len(A) then
12: break
13: end if
14: for j = 0 to len(queue) do
15: node = Pop queue
16: if A[i] == 0 or (A[0] == 0 and i == 1) then
17: node.le f t = Node(

p
A[i])

18: Add node.le f t to queue
19: else
20: node.le f t = Node(

p
A[i])

21: node.right = Node(�
p

A[i])
22: Add node.le f t to queue
23: Add node.right to queue
24: end if
25: end for
26: end while
27: for path in T do
28: construct Hankel matrix H using path
29: r = rank(H)
30: if r < n then
31: return H, r
32: end if
33: remove path
34: end for
35: n = n + 1
36: end while

6.2 Learning quantum automata 95

we construct a heuristic binary tree representing the following 32 Hankel matrices:

0

BBB@

0 0.48 ±0.36 ±0.98
0.48 ±0.36 ±0.98 ±0.25
±0.36 ±0.98 ±0.25 ±0.50
±0.98 ±0.25 ±0.50 ±0.11

1

CCCA
. (6.4)

Among them there are four 4⇥4 matrices having rank 3, including the following one:

0

BBB@

0 0.48 �0.36 �0.98
0.48 �0.36 �0.98 �0.25
�0.36 �0.98 �0.25 0.50
�0.98 �0.25 0.50 �0.11

1

CCCA
.

This one can be used to construct a 3 states quantum automaton with 1 as the initial state
and 2 as the final one.

6.2.2 Learning the operators

Once we know the number of states of the quantum automaton, we construct a n⇥n symbolic
matrix UUUs for each s 2 S with variables xs

qi,q j
as elements. Here n is the number of states of

the automaton and qi,q j are states of the automaton for i and j ranging between 1 and n. We
will use all those variables in a non-linear system of equations that we will then solve using
two different optimization methods.

The system of equations includes constraints about the property of the matrices UUUs to be
unitary for each s 2 S. To this end, we add for each qi,q j 2 Q the following equation:

Âq2Q (xs
qi,q)

⇤xs
q j,q =

(
1 qi = q j

0 qi 6= q j

where (xs
qi,q j

)⇤ is the complex conjugate of xs
qi,q j

.
Next, for each string w=s0 . . .sm used for the membership queries, we write the equation

E(w), which represents the symbolic calculation of the probability of being assigned to the
string w:

MMM

0

B@
xsm

q1,q1
· · · xsm

qn,q1
...

xsm
q1,qn · · · xsm

qn,qn

1

CA · · ·

0

B@
xs0

q1,q1 · · · xs0
qn,q1

...
xs0

q1,qn · · · xs0
qn,qn

1

CA

0

B@
1
...
0

1

CA= pw, (6.5)

where pw is one of the 2k�1 elements in the Hankel matrix of rank n we used to find the
number of states of the automaton, and MMM is the projector matrix associated with the set of

96 Active Learning Quantum Automata

accepting states (i.e., with all zero elements except for either the element at position 1,1 or
2,2 that is set to 1).

To use optimization methods, we rewrite the system of equations as a set of functions for
which we want to find its zero values. We use two different existing optimization methods.
The first one is based on a genetic algorithm (GA) [49, 56], whereas the second one uses the
covariance matrix adaptation evolution strategy (CMA-ES). The latter is a stochastic method
for real-valued parameter optimization of non-linear, non-convex functions. Adaptation of
the covariance matrix amounts to learning a second-order model of the underlying objective
function similar to the approximation of the inverse Hessian matrix in the quasi-Newton
method in classical optimization [55, 36].

Since the solution resulting from both the GA and CMA-ES methods is only an approxi-
mation, the values we find for the operators will, in general, not satisfy the unitary condition
but will be close to that. Therefore, we must adapt the operators via the Gram–Schmidt
process to orthonormalize them.

The Gram-Schmidt process

For two vectors uuu and vvv of the same size, let pro juuu(vvv) be the projection operator defined as:

pro juuu(vvv) =
huuu,vvvi
huuu,uuuiuuu,

where huuu,vvvi is the inner product of the two vectors. Assume vvv1, · · · ,vvvn are the columns of
an n⇥n matrix that we want to orthonormalize. Define uuu1 = vvv1 and for all 2 i n and
1 k n let

uuui = vvvi �
n�1

Â
j=1

pro juuu j(vvvi), and eeei =
uuui

||uuui||
.

Where ||uuu|| is the norm of vector uuu. Then the vectors eeei will form the column of an n⇥n
orthogonal matrix with the property that each vector eeei generate the same subspace as the
original vector vvvi. Moreover, if the original matrix is unitary, then it is not changed by the
Gram-Schmidt process [105].

Example 19. Assume the target automaton we want to learn is the one given in Figure 6.1a.
When asking the membership queries for the strings e , a, aa, aaa and aaaa the oracle returns
P(e) = 0, P(a) = 0.96884649, P(aa) = 0, P(aaa) = 0.968981 and P(aaaa) = 0. These

6.2 Learning quantum automata 97

values form the following 3⇥3 Hankel matrix:

0

B@
0 0.9843 0

0.9843 0 0.984368
0 0.984368 0

1

CA .

The rank of this matrix is 2, so we can construct a 2-state automaton with q1 as the initial
state and the other state q2 as the accepting (because P(e) = 0). To calculate the unitary
operator UUUa, we associate variables to each transition as shown in Figure 6.1b.

From the unitary constraints on UUUa we derive four equations of degree two:
8
>>>>>><

>>>>>>:

(xa
q1,q1

)⇤xa
q1,q1

+(xa
q1,q2

)⇤xa
q1,q2

= 1

(xa
q2,q1

)⇤xa
q2,q1

+(xa
q2,q2

)⇤xa
q2,q2

= 1

(xa
q1,q1

)⇤xa
q1,q2

+(xa
q2,q1

)⇤xa
q2,q2

= 0

(xa
q1,q2

)⇤xa
q1,q1

+(xa
q2,q2

)⇤xa
q2,q1

= 0

The non-empty strings used in the membership query give four more equations, with a degree
smaller or equal to the length of the longest string:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

1 · xa
q1,q2

·1 = 0.9843

1 · (xa
q1,q2

xa
q2,q2

+ xa
q1,q1

xa
q1,q2

) ·1 = 0

1 · (xa
q1,q1

xa
q1,q1

xa
q1,q2

+ xa
q1,q1

xa
q1,q2

xa
q2,q2

+ xa
q1,q2

xa
q2,q1

xa
q1,q2

+ xa
q1,q2

xa
q2,q2

xa
q2,q2

) ·1 = 0.984368

1 · (xa
q1,q1

xa
q1,q1

xa
q1,q1

xa
q1,q2

+ xa
q1,q1

xa
q1,q1

xa
q1,q2

xa
q2,q2

+ xa
q1,q1

xa
q1,q2

xa
q2,q1

xa
q1,q2

+ xa
q1,q1

xa
q1,q2

xa
q2,q2

xa
q2,q2

+ xa
q1,q2

xa
q2,q1

xa
q1,q1

xa
q1,q2

+ xa
q1,q2

xa
q2,q1

xa
q1,q2

xa
q2,q2

+ xa
q1,q2

xa
q2,q2

xa
q2,q1

xa
q1,q2

+ xa
q1,q2

xa
q2,q2

xa
q2,q2

xa
q2,q2

) ·1 = 0

We find an approximation to the solution of this system of 8 equations in 4 variables using
the GA and CMA-ES methods and by choosing 0.1 as the threshold value for the equivalence
query (see below). The result after the Gram-Schmit process for each method is shown in
Figures 6.1c and d, respectively.

98 Active Learning Quantum Automata

q1 q21
a 0.9843

a 0.9843

a 0.1767 a �0.1767

(a) The target MO-1QFA

q1 q21
a xa

q1,q2

a xa
q2,q1

a xa
q1,q1

a xa
q2,q2

(b) The MO-1QFA with variables

q1 q21
a 0.99226192

a 0.99226192

a �0.12416232 a 0.12416232

(c) The learned MO-1QFA using GA

q1 q21
a 0.98432083

a 0.98432083

a 0.17638737 a �0.17638737

(d) The learned MO-1QFA using CMA-ES

Fig. 6.1 An example of learning an MO-1QFA.

6.2.3 Learning MO-1QFA with more accepting states

In the framework above, we assumed to learn a measure-once one-way quantum automaton
having only one accepting state. If there is more than one accepting state when asking
membership queries, we need the oracle to answer with a fixed number of probabilities,
one for each accepting state separately. This is reasonable and physically realizable, as the
probability of the automata accepting a string is the sum of all probabilities of accepting
the string in each accepting state, meaning that we can (and physically must by the third
postulate of quantum mechanics) measure this probability independently on each accepting
state. Of course, this way, the oracle indirectly reveals a minimum number of states needed
by the automaton, i.e., the number of accepting states. This information can be used when
constructing the starting Hankel matrix that can now be of a size equal to the number of
accepting states. Furthermore, the variants of Hankel matrices we have to consider will
increase exponentially with the number of accepting states. For example, given a quantum
automaton with two accepting states, when asking the membership query for a string x, the
oracle should give probabilities P1(x) and P2(x), such that P(x) = P1(x)+P2(x). As a result,
there are now 4 entries instead of 2 in the Hankel matrix, namely i)

p
P1(x)+

p
P2(x), ii)p

P1(x)�
p

P2(x), iii) �
p

P1(x)+
p

P2(x), and iv) �
p

P1(x)�
p

P2(x).
As before, once we find a Hankel matrix with a rank smaller than its size, then the

rank r is the number of states of our automaton. If P(e) = 0, then the initial state is one of
the accepting states, and the next r�1 states are the others. Otherwise, P(e) > 0 and the
accepting states are q2, ...qr.

6.3 Distance between quantum automata 99

6.3 Distance between quantum automata

In the previous section, we concentrated on constructing a quantum automaton from mem-
bership queries. Such an automaton is then given to the oracle to check for equivalence.
Even if the equivalence of measure-once quantum automata is decidable [64], the learned
automata is an approximation of the target one. So we need to substitute the equivalence
query with a set of strings to measure the distance of the learned automata from the target.
The algorithm terminates when this distance is smaller than a given threshold parameter d .
Otherwise, a new sequence of strings with associated probabilities is used to improve the
resulting automaton.

In this section, we present two methods to calculate the distance between the learned and
the target automata: one based on the two automata and another based on a testing sample.

Computing the L1 distance based on the automata

Let A1 = hQ1,S,{UUU1,s |s 2 S},q1,F1i and A2 = hQ2,S,{UUU2,s |s 2 S},q2,F2i be two quan-
tum finite automata. Let L(A1) and L(A2) be the languages accepted by A1 and A2, respec-
tively, with probability greater than 0. Since these two languages are infinite, it is impossible
to calculate the L1 distance between them. Therefore, our strategy is to calculate the distance
only between those strings that form a base of the language recognized by the combination
of the two automata.

We define, for each string x 2 S⇤, the matrix

WWW A1�A2(x) =

WWW 1(x) O

O WWW 2(x)

!
.

where WWW i(x) =UUU⇤
i,x ⌦UUUi,x for i = 1,2, respectively. Further, let

DDDA1�A2(x) =WWW A1�A2(x)

qqq1 ⌦qqq1

qqq2 ⌦qqq2

!
,

where qqqi is the vector of dimension |Qi| with 1 in the first position and the rest all 0’s
representing the initial state qi for i = 1,2. Finally, for q 2 Fi, let qqq be the vector of size |Qi|
with 1 at the q-th position and zero in all other. We define hhh i = Âq2Fi qqq⇤ ⌦qqq for i = 1,2. By
the above definitions, we then have that

|(hhhF1
,�hhhF2

)|DDDA1�A2(x)|= |PA1(x)�PA2(x)| .

100 Active Learning Quantum Automata

Let H(A1,A2) = {DDDA1�A2(x) : x 2 S⇤} and V be a basis for span(H(A1,A2)). Note that the
dimension of the vector space span(H(A1,A2)) is at most 2|Q1|+ 2|Q2|. We can finally
calculate the normalized L1 distance using only vectors from the basis V by:

d1(A1,A2) =
Âx2V |PA1(x)�PA2(x)|

dim(V)
=

Âvvv2V |[(hhhF1
,�hhhF2

)|]vvv|
dim(V)

,

where dim(V) is the number of columns of V . This distance can be calculated in polynomial
time using the pseudo-code shown in Algorithm 15.

In the beginning, we set V to be the empty set. In order to find a basis V of H(A1,A2) =

{DDDA1�A2(x) : x 2 S⇤} we use a breadth-first search on a tree T with strings in S⇤ as nodes.
The root node is e . For any string x 2 S⇤, every s 2 S, the node x has |S| children, namely
all strings xs for s 2 S. Then, we visit the tree T in breadth-first order from the root node.
When visiting each node x, we check whether DDDA1�A2(x) is linear-independent of V . If
it is linear-independent, we add DDDA1�A2(x) to set V and continue to search the tree T . If
it is not, we truncate all children nodes of node (x). (line 2 - line 8). We stop searching
when every node in T is visited or pruned. Note that the vectors in the set V are all linearly
independent and lexicographically minima. In the worst case, the time complexity of this
algorithm is O(m ⇤ dim(V)3) using Gaussian elimination, where m is the length of the
queue (bounded by dim(V)⇤ |S|) and dim(V) is bounded by the size of automaton, which is
dim(V)6 2|Q1|+2|Q2|.

Algorithm 15 Normalized L1 distance on the base of two quantum automata
Input: A1 = hQ1,S,{UUU1,s |s 2 S},q1,F1i and A2 = hQ2,S,{UUU2,s |s 2 S},q2,F2i
Output: d1(A1,A2)

1: V = /0
2: queue = Node(e)
3: while queue is not empty do
4: take a Node(x) from queue
5: if DDDA1�A2(x) /2 span(V) then
6: 8s 2 S, queue = Node(xs)
7: V = DDDA1�A2(x)
8: end if
9: end while

10: 8vvv 2V , d1(A1,A2) =
Âvvv |[(hhhF1

,hhhF2
)|]vvv|

dim(V)

11: return d1(A1,A2)

6.4 Experimental results 101

Optimization method 2 states 3 states 4 states 5 states 6 states 7 states

Avg Var Avg Var Avg Var Avg Var Avg Var Avg Var

GA 0.0068 9.98e-05 0.0699 0.0015 0.1254 0.0069 0.1615 0.0046 0.1857 0.0042 0.1518 0.0014
CMA-ES 0.0003 1.05e-07 0.0003 5.63e-07 0.0003 3.58e-07 0.0021 3.76e-05 0.0181 0.0014 0.0885 0.0035

Table 6.1 Average and variance of distances on samples between target and learned automata.

Computing the L1 distance over a testing sample

Instead of using the target quantum automata, we could calculate the L1 distance between
the learned automaton A and a finite testing sample T of strings in S⇤. In this case, the
normalized L1 distance is given by

d1(T,A) =
Âx2T |PT (x)�PA(x)|

|T | ,

where PT (x) is the probability of string x given by the oracle and PA(x) is the probability of
string x calculated using the learned automaton A.

6.4 Experimental results

In this section, we conclude with some experiments on the performance of our algorithm
when we consider the different optimization methods GA and CMA-ES and the two different
distances described above. We use randomly generated quantum automata varying from 2 to
7 states. For each size of the state, we generate 10 automata on one letter alphabet and 10 on
a two letters alphabet. For simplicity, we only generate one single accepting state. We use
either 0.1 or 0.2 as the threshold for accepting distance. For calculating the normalized L1

distance using a testing sample, the oracle returns a sample of strings in lexicographic order
that is 5 times bigger than what has already been asked for the membership queries. In our
experiments, we use Hankel matrices to determine the number of states for each symbol in
the alphabet of the automata under consideration. The largest number of states found across
all symbols is then chosen as the final structure for the automata.

Table 6.1 shows the average normalized L1 distance calculated using the testing sample
method and the variances with respect to using GA or CMA-ES as an optimization method.
The latter has, on average, the smallest distance from the target automaton and the smallest
variance, too (except for the case of 7�state automata that has a greater variance). Inter-
estingly, the CMA-ES-based algorithm is up to 30 times quicker than the one based on
GA.

102 Active Learning Quantum Automata

Table 6.2 gives the results of a similar experiment but with the oracle using a normalized
L1 distance calculated using the target and the learned automata. Also, in this case, CMA-ES
has the smallest average distance and variance, confirming the results of the previous table.

Optimization method 2 states 3 states 4 states 5 states 6 states 7 states

Avg Var Avg Var Avg Var Avg Var Avg Var Avg Var

GA 0.0028 8.81e-06 0.0775 0.0104 0.1262 0.0106 0.1751 0.0040 0.1878 0.0058 0.1454 0.0033
CMA-ES 5.28e-05 1.98e-09 7.03e-05 3.83e-09 0.0007 4.81e-06 0.0052 0.0003 0.0290 0.0020 0.1093 0.0032

Table 6.2 Average and variance of distances between bases of target and learned automata.

When considering only the CMA-ES method, we note that the distance calculated using
the two automata is better for a small number of states (2 and 3), while the testing sample
is better for a larger number of states. However, this is not the case when we use the GA
method, as the automata-based distance is better for the 7�state case.

6.5 Summary

In this chapter, we presented a novel technique to learn measure-once one-way quantum
automata using a combination of active learning and two non-linear optimization methods
based on genetic and evolutionary algorithms.

We experimentally compared the results from these two methods using randomly gen-
erated automata. The evolutionary CMA-ES method seems to give the closest results from
the target automata and has the smallest variance in general. Computationally, it is also
much faster when compared to the genetic algorithm. The scalability of our algorithm may
be problematic, as it depends very much on the scalability of the non-linear optimization
method we use.

Besides measure-once, we also introduced measure-many one-way quantum automata.
While it should not be too complicated to reconstruct the structure of the automaton, it is a
challenge to reconstruct the unitary operators from membership queries. As for equivalence
queries, we already know how to compute them [69].

As far as we know, there is no work on passive learning quantum automata. If we know
that the automaton has a single final state then we could use similar techniques as for passive
learning probabilistic automata, but it is unclear how to proceed in the general case.

