
Automata learning: from probabilistic to quantum
Chu, W.

Citation
Chu, W. (2024, December 4). Automata learning: from probabilistic to quantum. Retrieved
from https://hdl.handle.net/1887/4170915

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170915

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170915

Chapter 5

Active learning

In this chapter, we explore the concept of active learning and its significance in the context of
automata learning. We begin with an introduction to active learning, highlighting its benefits
and applications in various domains. Then we focus on the L⇤ algorithm [2], a famous active
learning algorithm for DFA. We present an overview of the L⇤ algorithm, discussing its
key components such as observation tables, membership queries, and equivalence queries.
Through an example, we illustrate the process of learning DFA using the L⇤ algorithm.

By actively selecting informative queries the L⇤ algorithm has shown to be very flexible,
and adaptable to different types of automata maintaining efficiency and accuracy among
automata learning techniques [34]. In particular, our focus is on active learning weighted finite
automata (WFA), which are automata equipped with weights. We discuss the modifications
and adaptations required for the L⇤ to handle learning of weighted automata effectively.
Additionally, we present a detailed example to illustrate the process of learning WFA.

5.1 Active learning

In the previous chapters, our learning process was subject to no control by the learner. At
best, we could expect the data to be correctly labeled and compliant with some completeness
conditions. However, having control over the data we receive has at least two advantages.
First, if we cannot learn even in the most favorable conditions, we can draw negative
results for the general case. Second, in some realistic situations, we have the opportunity
to choose the data we receive, such as in testing, exploration, or interaction with robots, or
when there is an abundance of data and interactive data selection is required for effective
learning [70, 53, 59]. As a result, active learning has become a popular approach for
maximizing the information gained from the data while minimizing the time and resources
required for learning. Consequently, lots of researchers have investigated ways of learning

5.1 Active learning 69

through more active interactions between the oracle and the learner. The oracle is an abstract
machine that knows the target and responds to queries. Typically, the oracle is considered
to be flawless and capable of responding to any specific queries even those that a concrete
machine cannot handle, thereby solving undecidable problems. The oracle’s capacity is
established by the learning framework [112, 111].

In certain situations, the oracle may have multiple possible answers, and in such cases,
any permissible answer should be allowed. Since the objective of learning is to consider the
worst-case scenarios, it is always assumed that the oracle will provide the least informative
answer out of all the available answers. This guarantees that, in the learning process, the
learner can still effectively learn the target, even under the most unfavorable conditions.

5.1.1 Interacting with the oracle

There are many types of queries one can make to an oracle [4, 34]. Some are natural in
the sense that there is at least some application with a biological, mechanical, or cognitive
instantiation of these queries; others are defined to build negative results only.

• Membership queries: MQ. A membership query is made by asking the oracle if a
string belongs to the target language, to which the oracle responds with either Yes
or No. Correction queries are an extension of MQs, where the oracle could return a
similar string in the language in the case of a response. Extended membership queries
return, for example, the probability of a given string belonging to the language, or the
weight assigned by the language to a given string.

• Equivalence queries (weak): WEQ. This approach is used to determine the correctness
of a hypothesis about the target language. A hypothesis is proposed to the oracle
using some finite representation. The oracle answers with either Yes or No, indicating
whether the hypothesis is correct or not.

• Equivalence queries (strong): EQ. This approach is also used to determine the cor-
rectness of a hypothesis about the target language. In contrast to the weak query, the
oracle provides either a Yes or, in the case of a negative response, a counter-example.
A counter-example is a string in the symmetric difference between the target language
and the submitted hypothesis.

• Subset queries: SSQ. To evaluate its correctness a hypothesis language is submitted
to the oracle. If the hypothesis language is included in the target language, the
oracle responds with Yes. However, if the hypothesis language is not included in the

70 Active learning

target language, the oracle provides a counter-example that belongs to the hypothesis
language but not to the target language.

In the case of equivalence or subset queries, the hypothesis language is submitted via a finite
representation, as an automaton for example.

5.1.2 The L* algorithm

The most important active learning algorithm to learn DFAs from membership and equiva-
lence queries is L⇤ [2]. It triggered a lot of subsequent research on active automata learning,
with notable contributions from Bergadano and Varricchio, who used a similar model to
learn weighted finite automata [14], and Bollig et al. who provided an NFA version of the
L⇤ algorithm [18]. In 2022, Muškardin et al. presented AALpy, a library with extensions to
the L⇤ algorithm to efficiently learn deterministic, non-deterministic, and stochastic systems
[85].

The general idea behind the L⇤ algorithm is to use MQs to construct a consistent table
that represents a partial DFA. MQs are submitted one after the other to make the table closed
and complete. When this is the case, then the table represents a DFA and it is submitted as an
EQ. If the hypothesis is correct the learning process terminates, and otherwise the received
counter-example is used to update the table. This process is iterated until the oracle confirms
via an EQ that the DFA recognizes the target language.

The data structure representing an automaton in the L⇤ algorithm is the observation table.
It consists of two parts: a top part containing rows over a finite set S ✓ S⇤, and a bottom
part containing rows over S ·S (where · represents pointwise concatenation). The columns
range over a finite set E ✓ S⇤. For each u 2 S[S ·S and v 2 E, the corresponding cell
in the table contains 1 if and only if uv 2 L and it contains 0 if and only if uv /2 L, which
can be determined using an MQ. Intuitively, each row u provides an approximation of the
Myhill–Nerode equivalence class of u for the target language. Rows with the same content are
considered members of the same equivalence class. That is, the content in each row informs
us whether, when this string u is concatenated with different input strings v, it produces results
that belong to the target language. In other words, each row provides information about how
string u influences the target language. If two rows have the same content, it signifies that
they have similar effects in the target language, and they are considered to belong to the same
equivalence class. Recall that the Myhill-Nerode right congruence ⌘L of L is defined for
all strings u1,u2 2 S⇤ by u1 ⌘L u2 , [8v 2 S⇤, u1v 2 L , u2v 2 L]. The functions row and
srow are used to describe the top and bottom parts of the table, respectively:

• row : S ! 2E

5.1 Active learning 71

• row(u)(v) = 1 when uv 2 L

• srow : S ·S ! 2E

• srow(ua)(v) = 1 when uav 2 L

Note that the S and S ·S may intersect. For the sake of conciseness, when depicting tables,
elements in the intersection are only shown in the top part.

The key idea of the algorithm is that we can reconstruct a hypothesis DFA from the rows
of the table. The rows with the same content are considered equivalent. In other words,
the state space of the hypothesis DFA corresponds to the set H = {row(s)|s 2 S}. The
construction is analogous to that of the minimal DFA from the Myhill-Nerode equivalence.
In the L⇤ algorithm, each state is associated with a specific observation result vector, such
as row(s). This observation result vector captures the state’s response to input sequences
and the equivalence information related to the state. Therefore, row(s) is essentially a
representation of the state s, containing information about its behavior under specific input
conditions. By comparing the observation result vectors of different states, the L⇤ algorithm
can deduce equivalence relationships between states and subsequently construct a model
of the automaton. The initial state is row(l). Further, the l column determines whether a
state is accepting: s is accepting whenever row(s)(l) = 1. A state s advances on a transition
with a 2 S to the state sa given by srow(sa). This describes the progression of a transition
within an automaton. It means that when a specific input a is encountered while in state s, it
leads to a new state defined by the function srow(sa). For this hypothesis automaton to be
well-defined, l must be in S and E, and the table must satisfy two properties:

• Closedness: the table is considered closed if, for every t in S and a in S, there exist s2 S
such that row(s) = srow(ta). In other words, closedness ensures that every transition
in the table leads to a state in the hypothesis.

• Consistency: the table is considered consistent if, for any s1 and s2 in S such that
row(s1) = row(s2), we have srow(s1a) = srow(s2a) for all a in S. In other words,
consistency ensures no ambiguities in determining the transitions.

The algorithm iteratively updates the sets S and E to ensure the properties of closedness
and consistency. It constructs a hypothesis based on the updated table, submits it as an
equivalence query, and refines the hypothesis based on any counterexample provided by the
oracle. This iterative process continues until the hypothesis is correct.

To be more specific, we illustrate the L⇤ algorithm in two procedures: Algorithm 11
ensures a table is closed and consistent, and Algorithm 12 handles the learning iterations.

72 Active learning

The latter algorithm works in the following manner: Initially, the table is constructed with
S=E = {l} to ensure closure and consistency (line 1). Then, if the corresponding hypothesis
H(S,E) is found to be incorrect via an EQ that yields a counterexample c 2 S⇤ (line 2), the
prefixes of c are added to S (line 3). The table is updated to maintain closure and consistency
(line 4). This iterative process continues until an EQ yields a positive answer, at which point
the hypothesis is returned (line 6).

Algorithm 11 A closed and consistent table
Input: S,E
Output: S,E

1: Function Fix(S,E)
2: while (S,E) is not closed or not consistent do
3: if (S,E) is not closed then
4: find s 2 S, a 2 S such that 8t 2 S. srow(sa) 6= row(t)
5: S = S[{sa}
6: else if (S,E) is not consistent then
7: find s1,s2 2 S, a 2 S and e 2 E such that
8: row(s1) = row(s2) and srow(s1a)(e) 6= srow(s2a)(e)
9: E = E [{ae}

10: end if
11: end while
12: return (S,E)

Algorithm 12 L⇤ algorithm
Input: S,E
Output: H(S,E)

1: S,E = Fix({l},{l})
2: while EQ(H(S,E)) = c 2 S⇤ do
3: S = S[PREF(c)
4: S,E = Fix(S,E)
5: end while
6: return H(S,E)

Let us consider an example run of the L⇤ algorithm to further illustrate its usage.

Example 11. Given a target language L = {w 2 a⇤||w| 6= 1}, we run the algorithm. Initially,
S = E = {l}. We construct the observation table as shown in Table 5.1a. However, this
table is not closed because the a row, which has a 0 in the only column, does not appear in
the top part of the table. To fix this, we ask a membership query for string aa then add the
word a to the set S. Now Table 5.1b is both closed and consistent. Therefore, we construct

5.2 Active learning weighted finite automata 73

the hypothesis shown in Figure 5.1a and submit an equivalence query. The response from the
oracle is negative and returns the counterexample aaa which should have been accepted as
it is part of the language L. To resolve this, we add all its prefixes aa and aaa to the set S.
The resulting Table 5.1c is closed but not consistent because both the rows l and aa have
value 1, but their extensions a and aaa differ. Therefore, we prepend the continuation a to
the column l , where they differ, and add a to E. This distinguishes row(l) from row(aa), as
shown in the Table 5.1d. The table is now closed and consistent, and the resulting hypothesis
automaton in Figure 5.1b is correct.

Table 5.1 Example run of L = {w 2 a⇤||w| 6= 1}.

(a)

l
l 1
a 0

(b)

l
l 1
a 0

aa 1

(c)

l
l 1
a 0

aa 1
aaa 1

aaaa 1

(d)

l a
l 1 0
a 0 1

aa 1 1
aaa 1 1
aaaa 1 1

l a
a

a

(a) The first hypothesis.

l a aaa a

a

(b) The correct hypothesis.

Fig. 5.1 Figures depicting two hypotheses

5.2 Active learning weighted finite automata

Our goal is to learn probabilistic automata using active learning. To this end, we first recall
the extension of the L⇤ algorithm for learning weighted finite automata (WFA) [9] so that
we can combine it with optimization techniques as in the previous chapters for learning
probabilistic automata.

A WFA is a finite automaton that incorporates weights within its transitions and states.
These automata find their roots in the mathematical theory of rational power series, and
they are widely applied. Notably, image processing and speech recognition have greatly
contributed to the popularity and widespread use of weighted automata [61, 79, 81, 82, 42]
The significance of these applications, along with several theoretical questions, has strongly

74 Active learning

motivated the challenge of learning WFAs. This challenge revolves around the task of
constructing a WFA that closely approximates a semiring-valued target function. This
involves training the WFA using a finite sample of strings labeled with their corresponding
target values. Before exploring the algorithm for learning WFAs, we briefly introduce some
fundamental notions related to semirings and weighted automata needed for the discussion
in the following sections.

The algebraic structure (S,�,⌦, 0̄, 1̄) is a semiring if (S,�, 0̄) is a commutative monoid
with identity element 0̄, (S,⌦, 1̄) is a monoid with identity element 1̄, ⌦ distributes over �,
and 0̄ is an annihilator for ⌦. At its core, a WFA is a finite automaton where the transitions
and states are equipped with weights that, like probabilities, allow for a richer representation
and modeling capability.

Definition 11. Weighted finite automaton A weighted finite automaton (WFA) A= hQ,S, I,F,d i
defined over a semiring (S,⌦,�, 0̄, 1̄) is:

• Q is a finite set of states,

• S is a finite alphabet,

• I : Q ! S is initial weight,

• F : Q ! S is final weight,

• d : Q⇥S ! S
Q.

We denote by w[p] the weight of a path p = q0 · · ·qn of string x = a1 · · ·an accepted by
a WFA A, which is w[p] = d (q0,a1)(q1) · · ·d (qn�1,an�1)(qn). Let P denote the set of all
accepting paths. The weighted language over S is a function S⇤ ! S. A language accepted
by a WFA A is the function LA : S⇤ ! S given by

8x 2 S⇤, W (x) =
M

p2P
(I(q0)⌦w[p]⌦F(qn)) (5.1)

To simplify notation, we introduce vectors and matrices for weights. aaa 2 S
Q⇥1 denotes

the vector of initial weights, bbb 2 S
Q⇥1 denotes the vector of final weights. For any a 2 S,

let WWW a 2 S
Q⇥Q be the matrix, where [WWW aaa]qq0 = d (q,a)(q0) is the weight of transition labeled

with a from q to q0. Then we also write the weight of string x with matrix:

8x = x1 · · ·xn 2 S⇤, LA(x) = aaa|WWW x1 · · ·WWW xnbbb (5.2)

5.2 Active learning weighted finite automata 75

This matrix representation provides a concise way to compute the weight of a string
by performing matrix multiplications and taking the inner product with the initial and final
weight vectors.

Let us illustrate the concept of WFA and their weight calculations with an example.
Consider a WFA A as shown in Figure 5.2a, where weights are from the semiring of natural
numbers with the usual multiplication and addition. The detailed computation of the weights
assigned to the strings a and ab using the matrix representation is in the example below. The
initial weight vector, the transition matrices, and the final weight vector are combined to
determine the overall weight of a string.

Example 12. Given a WFA A shown in Fig. 5.2a the weights assigned to the strings a and
ab are, respectively:

LA(a) = aaa|WWW abbb

=
⇣

1 3 2
⌘
0

B@
0 1 0
2 0 0
0 0 4

1

CA

0

B@
2
1
1

1

CA

= 1⇥1⇥1+3⇥2⇥2+2⇥4⇥1

= 21.

(5.3)

LA(ab) = aaa|WWW aWWW bbbb

=
⇣

1 3 2
⌘
0

B@
0 1 0
2 0 0
0 0 4

1

CA

0

B@
0 0 3
0 0 3
1 0 0

1

CA

0

B@
2
1
1

1

CA

= 1⇥1⇥3⇥1+3⇥2⇥3⇥1+2⇥4⇥1⇥2

= 27 .

(5.4)

For a given field S, a function f : S⇤ ! S is said to be rational if it can be represented by
a weighted finite automaton A [102, 65], meaning that LA = f . Rational functions are strictly
related to Hankel matrices.

Definition 12. Hankel matrix of a function. The Hankel matrix HHH f of a function f : S⇤ ! S

is defined by HHH f (u,v) = f (uv), for all u,v 2 S⇤.

The following theorem introduces an interesting relationship between the Hankel matrix
of a function and WFA [43].

76 Active learning

0/1/2

1/3/1

2/2/1

a/2
a/1

b/3

b/1

b/3

a/4

(a) Example of WFA A.

aaa =

0

@
1
3
2

1

A ,WWW a =

0

@
0 1 0
2 0 0
0 0 4

1

A

bbb =

0

@
2
1
1

1

A ,WWW b =

0

@
0 0 3
0 0 3
1 0 0

1

A

(b) Corresponding initial vector aaa , final vector bbb ,
and transition matrices WWW a and WWW b

Fig. 5.2 An example of a WFA.

Theorem 2. Given a field S and a Hankel matrix HHH f of the function f : S⇤ ! S. The rank of
HHH f is finite if and only if f is rational. There exists a WFA A generating f with rank(HHH f)

states and no WFA can represent f with fewer states.

Proof. Given a WFA A representing f . For any u,v 2 S⇤ and all final states, we have:

f (uv) = LA(uv) = aaa|WWW uWWW vbbb . (5.5)

Where aaa|WWW u is a row vector in S
1⇥Q and WWW vbbb is a column vector in S

Q⇥1. Let PPP and SSS be
matrices in S

S⇤⇥Q which PPP(u, ·) = aaa|WWW u for all u 2 S⇤ and SSS(v, ·) = (WWW vbbb)| for all v 2 S⇤.
Then, we could get

f (uv) = aaa|WWW uWWW vbbb = (PPPSSS|)(u,v). (5.6)

Which means HHH f = PPPSSS|. Since PPP and SSS are in S
S⇤⇥Q, the rank of HHH f is upper bounded by

the number of states in A.
Next, assume that the rank(HHH f) = n. We use HHH f (·,v) to denote the v�indexed column

in HHH f . Let (HHH f (·,v1), · · · ,HHH f (·,vn)) be a basis in S
S⇤⇥n. Hence, there exist b1, · · · ,bn 2 S

such that HHH f (·,l) = Ân
i=1 biHHH f (·,vi). So for w 2 S⇤, we have f (w) = HHH(l ,w) = HHH(w,l) =

Âi=1
n biHHH f (w,vi).

Now for i 2 [1,n] and a 2 S, there exist ga
1i · · ·ga

ni, we have HHH f (·,vi) = Ân
j=1(ga

ji)HHH f (·,v j).
Let AAAa be a matrix where (AAAa) ji = ga

ji. Then for string w = a1 · · ·ak 2 S⇤, HHH f (·,wvi) =

Ân
j=1(AAAw) jiHHH f (·,v j), where AAAw = AAAa1 · · ·AAAak .

Indeed, if w = w1w2 2 S⇤ and u 2 S⇤, we have HHH f (u,wvi) = HHH f (uw1,w2vi) and:

5.3 Active learning WFAs from queries 77

HHH f (uw1) =
n

Â
j=1

(AAAw2) jiHHH f (uw1,v j)

=
n

Â
j=1

(AAAw2) jiHHH f (u,w1v j)

=
n

Â
j=1

(AAAw2) ji

n

Â
k=1

(AAAw1)k jHHH f (u,vk)

=
n

Â
k=1

(AAAw1AAAw2)kiHHH f (u,vk).

(5.7)

Furthermore, for any w = a1 · · ·ak 2 S⇤, we could get:

f (w) =
n

Â
i=1

biHHH f (l ,wvi)

= Â
j=1

bi

n

Â
j=1

(AAAw) jiHHH f (l ,v j)

= aaa|AAAa1 · · ·AAAakbbb ,

(5.8)

where aaa j = HHH f (l ,v j) is a column vector and bbb j = b j for j 2 [1,n] is also a column vector.
Therefore, we have that that f can be represented by a WFA with rank(HHH f) states.

5.3 Active learning WFAs from queries

In this section, we recall an algorithm for learning WFAs over an arbitrary field S [119]. It is
an extension of Angluin’s algorithm for learning DFAs through membership and equivalence
queries, and its applicability can be extended to various other learning problems [11, 12].

The learning scenario for this algorithm corresponds to the active learning scenario
introduced and adopted by Angluin for learning unweighted automata [2]. To learn a target
rational function f : S⇤ ! S, the learner can make two types of queries, both of which are
responded to by the oracle:

• Weighted membership queries: MQ f s. the learner asks for the weight value f (w) of
the string w 2 S⇤;

• Weighted equivalence queries: EQ f s. the learner gives the oracle a weighted finite
automaton A and the oracle answers yes if f = LA. Otherwise, the oracle gives a
counter-example f (w) with f (w) 6= LA(w).

78 Active learning

Fig. 5.3 An observation table.

As for the classical case, membership queries are used to build an observation table. An
observation table with two parts: rows range over a finite set S ✓ S⇤ and S ·S; columns range
over a finite set E ✓ S⇤. For each u 2 S[S ·S and v 2 E, the cell uv in the table contains the
weight f (uv).

• row: S ! R
E such that row(u)(v) = f (uv),

• srow: S ·S ! R
E such that srow(ua)(v) = f (uav).

Example 13. The observation table, depicted in Figure 5.3, illustrates a rational function
over the fields of the real numbers that assigns 0 to l , 1 to a, 2 to aa, 1 to aaa and 5 to aaaa.
Notably, we observe that row(a)(a) = srow(a)(a) = 2. Since the function row and srow are
determined by the weighted language L to be learned, we can refer to the observation table
as a pair (S,E), leaving L implicitly represented.

In the weighted setting, a table is closed if for all x 2 S ·S, there exists as 2 S for all s 2 S
such that:

srow(x) = Â
s2S

as · row(s). (5.9)

If the observation table (S,E) is closed, it represents the WFA hS,S, I,F,d i with

• I : S ! S is the initial weight map defined as I(l) = 1 and I(x) = 0 for x 6= l ,

• F : S ! S is the final weight map defined as F(s) = row(s)(l),

• d : S⇥S ! S
S is the weighted transition weight defined as d (x,s)(y) = ay for all

xs 2 S ·S and y 2 S such that srow(xs) = Âs2S as · row(s) by Eq. 5.9.

This algorithm for learning a weighted automaton [119] is given below. It starts with
both S and E only containing the empty word. The while loop from line 5 to line 7 repeatedly
checks whether the current table is closed. If the table is not closed, then it adds new rows.
Once the table is closed, we could build a hypothesis according to line 8 to line 14. Then, we

5.3 Active learning WFAs from queries 79

Algorithm 13 Learning algorithm for a WFA over S
Input: strings with weights
Output: a WFA hS,Q, I,F,d i

1: S = {l}
2: E = {l}
3: I(l) = 1
4: while true do
5: while table is not closed for some t 2 S ·S do
6: S = S[{t}
7: end while
8: for s 2 S do
9: Q = Q[{s}

10: F(s) = row(s)(l)
11: for a 2 S do
12: d (x,a)(s) = as
13: end for
14: end for
15: if the equivalence check is not right then
16: the oracle returns a counterexample w with weight f (w)
17: E = E [SUFF(w)
18: else
19: return the WFA hS,Q, I,F,d i
20: end if
21: end while

80 Active learning

give this hypothesis to the oracle for an equivalence check. If our hypothesis is not correct,
the oracle gives a counterexample w 2 S⇤. The suffixes of w are added to E, then we restart
from line 4. Otherwise, if the hypothesis is correct, the algorithm returns the correct WFA
(line 19).

Example 14. We begin with the sets S = E = l and fill the entries on the left table in
Figure 5.4 by conducting weighted membership queries for l and a. However, since the
table is not closed, we proceed to construct the right table below by adding the membership
result for aa. Upon completing this step, we observe that the table is now closed, as
srow(aa) = 3 ·row(a). Consequently, we can construct the hypothesis A1 shown in Figure 5.4
based on this closed table.

l
l 0
a 1

l
l 0
a 1
aa 3

l/0 a/11 a 1
a 3

Fig. 5.4 Example of learning a WFA (Part I).

The oracle checks the weighted equivalence and, as it does not hold, provides the
counterexample aaa, which the hypothesis automaton above assigns a weight of 9, while the
target language assigns it a weight of 7. Consequently, we extend the set E to E[{a,aa,aaa}.
The resulting table is displayed in Figure 5.5. Notably, it is closed since srow(aa) =
3 ·row(a)�2 ·row(l). Hence, we proceed to construct a new hypothesis shown in Figure 5.5.
Then the oracle replies yes, so this is the target WFA.

l a aa aaa
l 0 1 3 7
a 1 3 7 15
aa 3 7 15 31

l/0 a/11
a �2

a 1

a 3

Fig. 5.5 Example of learning a WFA (Part II).

5.4 Active learning probabilistic finite automata

In the previous sections, we discussed the process of active learning a WFA. Next, we show
how to extend this methodology to learn a PFA. To begin, we can treat a PFA as a WFA with
weights defined in the field of rational numbers. The weighted language LA of a probabilistic
automaton A seen as a weighted automaton is exactly the probability distribution PA generated

5.4 Active learning probabilistic finite automata 81

by A. However, when learning a probabilistic automaton A that is seen as a weighted one
using the above algorithm, the resulting automaton will not be, in general, a probabilistic one,
even if the distribution represented by the learned automaton is a probability distribution.

Example 15. Starting with a target PFA, as depicted in 5.6a, our initial step involves
initializing the sets S = E = l . We populate the entries in the table below through weighted
membership queries for both the empty string l and the symbol a. However, since this initial
table is not closed, we proceed to expand and complete it by incorporating the membership
query result for the string aa. Upon this inclusion, we notice that the table becomes closed.
As a result, we can confidently formulate the hypothesis A, as illustrated in 5.6d, based on
the information in this table.

l/0 a/0.51 a 1
a 0.5

(a) The target PFA.

l
l 0
a 0.5

(b) The initial observation table.

l
l 0
a 0.5

aa 0.25

(c) The closed observation table.

l/0 a/11 a 0.5
a 0.5

(d) The hypothesis A.

Fig. 5.6 Example of active learning a PFA.

Note that the learned automaton is not a probabilistic one as in both states the sum of
the probability of the outgoing transition with that of acceptance is not 1. Nevertheless,
the oracle finds the learned automaton equivalent to the target one, as their generated
distributions are identical.

What is needed is a way to transform a WFA A into a PFA, knowing that the weighted
language LA it recognizes is a regular distribution. To achieve this, we can treat probabilities
in transitions and states as variables and employ two types of constraints to enforce the
automata to be probabilistic. The first set of constraints is based on the PFA’s structure, while
the second set encompasses the weight/probabilities of the strings we already know.

Example 16. Continuing from the previous example, we designate all probabilities of the
learned automaton as variables. Subsequently, we establish two sets of equations:

(
0+ xa

l ,a = 1
fa + xa

a,a = 1

(
xa

l ,a fa = 0.5
xa

l ,axa
a,a fa = 0.25

82 Active learning

l/0 a/ fa
1 a xa

l ,a
a xa

a,a

Fig. 5.7 The learned automaton with all probabilities as variables.

Here x’s are probabilities on transition and f ’s probabilities of final states. Subsequently, we
solve this system of equations, resulting in a PFA that perfectly matches the target PFA.

5.5 Summary

In this chapter, we introduced active learning and showed how it is applied to learning DFA
and weighted automata. In particular, we emphasized the key role played by the Hankel
matrix in this learning algorithm. Finally, we briefly showed how to extend this method to
learn PFA. We will use these two techniques to learn quantum automata in the next chapter.

A different approach but also grounded in the L⇤ algorithm is presented in [114] for
deterministic Markov Decision Processes (MDPs). The authors give two learning algorithms,
an exact learning approach assuming perfect knowledge of system trace distribution, and
a sampling-based approach that relaxes this assumption by estimating trace distributions
through sampling. It would be interesting to experimentally compare our approach with the
precise one proposed in [114].

