
Automata learning: from probabilistic to quantum
Chu, W.

Citation
Chu, W. (2024, December 4). Automata learning: from probabilistic to quantum. Retrieved
from https://hdl.handle.net/1887/4170915

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170915

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170915

Chapter 4

Passive Learning PFAs with
Counterexamples

In the previous chapter, given a finite alphabet S, we have seen that we can learn a subset of
the regular distribution on S⇤ based on a finite set of strings, each equipped with a positive
frequency, and a parameter k determining how many symbols one can remember. Next, we
continue our investigation on passive learning regular distributions on S⇤ by enlarging the
class of distributions that we can learn and by removing the input parameter k. To do this,
we will use a learning technique based on both positive and negative samples. A negative
sample is a string that occurs with probability 0, or below a certain fixed threshold. Since
the string does not belong to the language support of the distribution to be learned, it can be
considered as a counterexample. Samples with zero probabilities reflect our prior knowledge
about the system or the problem and are not a result of statistical estimation. For example,
certain events are impossible or explicitly excluded based on our domain knowledge, physical
constraints, or the nature of the problem being modeled.

Learning from examples and counterexamples is a common approach in machine learning,
where counterexamples are used in refining and improving the learned model by explicitly
indicating what the model should not do or predict. In binary classification tasks, where
the goal is to learn to differentiate between two classes, counterexamples belonging to the
negative class are used in defining the rules that separate the two classes. For example, the
task of a Support Vector Machine (SVM) is to find a hyperplane that best separates the
positive and negative examples in a high-dimensional space [72]. Also, while the Naive
Bayes algorithm does not typically use counterexamples as distinct elements, the algorithm
can benefit from a training dataset that includes both positive and negative instances [15, 48].

Given a regular language L over an alphabet S, we have seen that a positive sample
is simply a finite subset of L, representing strings that need to be recognized. A negative

4.1 Learning from positive and negative samples 47

sample, instead, is a finite set that has no string in common with L and thus should be not
accepted by the automaton to be learned. When moving from regular languages to regular
distributions over S, a positive sample is a finite set of strings with associated frequencies
that conform to the distribution. Strings with explicit 0 frequency cannot occur in the set of
positive samples, as they have a probability of zero of occurring, an impossible event that
cannot happen in any circumstances. However, these impossible events might be known
a priori and therefore included in the process of learning a distribution to emphasize the
distinction between possible and impossible outcomes. Therefore they form a set of negative
samples. In practice, one can also consider strings with low counts (relative to the other
strings in the sample) of observed frequencies as part of the negative sample.

4.1 Learning from positive and negative samples

When learning a regular language, positive data alone is not sufficient in the deterministic
case [46]. Labelling strings as either being in the language (positive samples) or not in the
language (negative samples) may help. For example, learning an automaton may start with
an initial representation that strictly recognizes only the positive samples and then tries to
merge its states. The merging occurs only when there is no evidence that the associated
language is different from the one to be learned, that is, it does not accept any string in the
negative sample.

4.1.1 Characteristic Sample

This section introduces important concepts and terminology related to DFA and their behavior
on sets of positive and negative examples.

In a DFA A, a state q0 is considered live if it belongs to a path of an accepting string, that is
there exist strings a , b and state q00 such that ab 2 L(A), d ⇤(q0,a)(q0) = 1, d ⇤(q0,b)(q00) =
1, and F(q00)> 0. Conversely, a state that is not live is called dead. Additionally, a state q0

is considered reachable if there exists a string a such that d ⇤(q0,a) = q0. Note that all live
states are also reachable, but not all reachable states are necessarily live.

Given a sample (S,Fr), we use S+ to denote the set of positive samples of S, that is, a set
of strings such that S+ = {x|Fr(x)> 0}. Similarly, we use S� to denote the set of negative
examples of S, meaning that S� = {x|Fr(x) = 0}. A sample S is then defined as the union of
positive strings in S+ and negative ones in S�, that is, S = S+[S�. A finite automaton is
consistent with a sample S if it accepts all strings in S+ and rejects all strings in S�.

48 Passive Learning PFAs with Counterexamples

For a DFA A, the set S+ is said to be structurally complete with respect to A, if it includes
strings that cover each transition of A and use every element of the set of final states of A
as an accepting state [40]. In general, a structurally complete set of positive strings is not
unique for a given DFA. Any set of positive samples of a DFA A that includes a structurally
complete set of strings is also structurally complete.

Given a language L ✓ S⇤, the set PREF(L) is the set of prefixes of L, and La = {b |ab 2
L} is the set of all strings beginning with a in L. The length-lexicographic order of strings
over the alphabet S is denoted by <. For example, the enumeration of strings over S = {a,b}
in length-lexicographic order is e,a,b,aa,ab,ba,bb,aaa,

The set of short prefixes Sp(L) of a language L is defined as Sp(L)= {a 2PREF(L)|8b 2
S⇤ if La = Lb then a < b}. The kernel N(L) of a language L is defined as N(L) = {e}[
{aa|a 2 Sp(L), a 2 S, aa 2 PREF(L)}.

Consider a regular language L accepted by a DFA A. A sample CSL =CS+L [CS�L is said
to be characteristic with respect to the language L if it satisfies the following two conditions:

• 8a 2 N(L), if a 2 L then a 2CS+L else 9b 2 S⇤ such that ab 2CS+L

• 8a 2 Sp(L),8b 2 N(L), if La 6= Lb then 9g 2 S⇤ such that (ag 2CS+L and bg 2CS�L)
or (bg 2CS+L and ag 2CS�L)

Intuitively, the set of short prefixes Sp(L), is a live complete set with respect to A: if two
strings are distinguishable then they are distinguishable also by the sample CSL. Since the
kernel N(L) includes the set of short prefixes as a subset it is a live complete set as well.
Moreover, The first condition says that N(L) covers every transition between each pair of live
states of A. For instance, given the language L corresponding to the DFA A in Fig. 4.1. Here,
the set of short prefixes is Sp(L) = {e,a,b,bb} and the kernel is N(L) = {e,a,b,bb,bbb}.
Additionally, the set S = S+[S� where S+ = {a,bb,bbbb} and S� = {e,b,bbb,abb} is a
characteristic sample for L.

4.1.2 Identification in the limit from polynomial time and data

The concept of identification in the limit from polynomial time and data has been introduced
by Gold in her seminal work [47]. She proved that regular languages represented by DFAs
can be learned within this framework.

Definition 7. We say that a regular language L is identifiable in the limit from polynomial
time and data using the representation scheme R if there exist two algorithms T and L such
that, for any target language L and any representation r of L in the representation scheme R:

4.1 Learning from positive and negative samples 49

q0

q1 q3

q2 q4

a

a,b

a,b

b b

b

a a

Fig. 4.1 A deterministic finite automaton

• T , given input r, computes a characteristic sample CSL whose size is polynomial in
the size of r,

• for any sample S, L computes a representation in R compatible with S in time
polynomial in the size of S,

• if a sample S contains CSL, L with input S computes a representation r0 equivalent to
r, which is r0(L) = r(L).

Gold showed that the regular language L is identifiable in the limit from polynomial time
and data using the representation scheme of DFA [47]. To infer DFAs in this framework,
several algorithms have been proposed, including the Greedy Russian algorithm [67] and the
Regular Positive and Negative Inference (RPNI) algorithm [89].

However, all these algorithms fail to efficiently infer languages as simple as S⇤0Sn for
fixed n and S = {0,1} because these languages have exponentially long DFA representations.
So the question of whether regular languages are identifiable in the limit from polynomial
time and data by using more concise representations arises naturally.

Definition 8. A regular language is polynomially characterizable using the representation
scheme R if there exists a function T such that for any target language L 2 Reg(S⇤) and any
representation r of L in the representation scheme R:

• for any sample S, L computes a representation in R compatible with S in time
polynomial in the size of S,

• T with input r computes a characteristic sample SL whose size is polynomial in the
size of r,

• if a sample S contains SL, L with input S computes a representation r0 equivalent to r.

50 Passive Learning PFAs with Counterexamples

4.2 Residual languages and residual finite state automata

For any language L and string u 2 S⇤, the residual language of L associated with u is defined
by the u-derivative Lu = {x 2 S⇤|ux 2 L}, and we call u a characterizing word for Lu. A
language L0 ✓ S⇤ is a residual language of L if a string u 2 S⇤ exists, such as L0 = Lu. The
number of distinct residual languages of a language L is finite if and only if L is regular [38].
This implies that there exists a finite set of strings B(L) such that x 2 B(L) if Lx is a
residual language of a regular language L. The set B(L) can be constructed depending on
the representation of the language L. For example, suppose L is the language accepted by
a trimmed NFA A (i.e., minimal and with all states reachable from an initial state). In that
case, B(L) can be constructed as a finite set of minimal length strings reaching all states of
A from some initial state.

Definition 9. Residual finite state automaton [33] A residual finite state automaton (RFSA)
is an NFA A = hS,Q, I,F,d i such that, for each state q 2 Q, L(A,q) is a residual language of
L(A).

In other words, an RFSA A is a non-deterministic automaton whose states correspond
precisely to the residual languages of the language recognized by A. This concept means
that the states of the RFSA are intricately linked to the residual languages generated by the
automaton.

The regular languages are not identifiable in the limit in polynomial time and data using
RFSAs [37]. However, this does not mean that an inference algorithm must not look for an
RFSA representation of the target language. This representation may not necessarily be the
smallest, but the pursuit of such an RFSA can offer valuable insights into the underlying
structure of the target language.

Moreover, extending from non-deterministic automata like RFSAs, there exist general-
izations to frequency and probabilistic automata. Frequency finite automata, for instance,
associate positive rational numbers with transitions, initial states, and final states, signify-
ing the ’number of occurrences’ of a transition or state in the language recognized by the
automaton.

4.3 Learning Probabilistic Automata using Residuals

In the previous sections, we have introduced DFFA, and now we delve into the Non-
deterministic Frequency Finite Automaton (NFFA). A crucial difference between these
two lies in the fact that NFFA operates with rational numbers. This is because, in the case of

4.3 Learning Probabilistic Automata using Residuals 51

a nondeterministic automaton, it implies that for an accepting string, there can be multiple
accepting paths. In the forthcoming learning algorithm, we will distribute the frequencies of
strings based on the number of paths they have. This approach will yield rational numbers.
Furthermore, the application of rational numbers is theoretically viable. By proportionally
scaling all the values, we can eventually transform the automaton into one that solely utilizes
natural numbers.

Definition 10. Nondeterministic frequency finite automaton An nondeterministic frequency
finite automaton (NFFA) is a 5-tuple A = hS,Q, I f ,Ff ,d f i, where:

• S is a finite alphabet,

• Q is a finite set of states,

• I f : Q !Q�0,

• Ff : Q !Q
+,

• d f : Q⇥S !Q
+Q

such that for every state q 2 Q the weight of the incoming transitions is equal to the weight
of the outgoing transitions:

I f (q)+ Â
q02Q,a2S

d f (q0,a)(q) = Ff (q)+ Â
q02Q,a2S

d f (q,a)(q0).

Intuitively, the above condition says frequency is preserved by passing through states.
Note that we allowed weights to be positive rational numbers instead of positive integers.
This is for technical convenience but does not affect the definition. Frequency automata are
strictly related to probabilistic automata.

The following lemma will be helpful to later state that if an accepting path contains a
cycle, then we can pump that cycle to obtain infinitely many other accepting paths.

Lemma 1. For a probabilistic automaton A, the probability of an accepting path p with a
cycle is strictly smaller than 1.

4.3.1 Learning structure of probabilistic languages using residuals

An NFA A = hS,Q, I,F,d i is consistent concerning a sample (S,Fr), if every positive sample
is accepted by A, and every negative sample is not, i.e. S+ ✓ L(A) and S�\L(A) = /0.

A sample (S,Fr) is complete with respect to a regular language L if there exists a finite
characteristic set B(L) 2 S⇤ such that

52 Passive Learning PFAs with Counterexamples

• the positive samples cover the language, that is, both x and xa are in Pre f (S+) for
every x 2 B(L) and a 2 S,

• the positive samples contain enough strings of L, that is, Pre f (S+)\L ✓ S+,

• distinguishable strings in the language are distinguishable in the sample too, that is,
for every u,v 2 Pre f (S+), if Lu * Lv then there exists x 2 S⇤ such that ux 2 S+ but
vx 2 S�.

The first condition guarantees that prefixes of strings in S+ are enough to reach all residual
languages of L and to cover all possible transitions from it. The second condition is about
requiring all characteristic strings of the residual languages to be in S+. The third condition
ensures that S� is large enough to distinguish different residual languages.

Learning a regular language L from a sample (S,Fr) means building a non-deterministic
finite automaton A consistent with the sample and such that if the sample is complete with
respect to L, then L(A) = L. Of course, one should consider time and space complexity
bounded by the two steps above, which are typically required to be polynomial on the number
of strings in the sample and of the model representing the language L [33]

Learning a regular distribution D from a sample (S,Fr) of finite strings independently
drawn with a frequency Fr according to the distribution D means building a probabilistic
finite automaton A with a support learning the language of the support of D and with a
distribution associated with A that gets arbitrarily closer to D when the size of the sample
(S,Fr) increases. In general, we cannot realistically expect to get exact information on the
learned distribution with respect to the target one.

Next, we present our algorithm to learn an unknown regular distribution D from a
sample (S,Fr). The idea is first to learn the non-deterministic structure of the automaton
underlying D using residual languages and then label the transitions consistently with the
sample frequency using a fair distribution when needed.

In our first step, we use Algorithm 8 below to build an RFSA from a simple sample (S,Fr).
The algorithm is similar to that presented in [37] but approximates the inclusion relation
between residual languages by calculating on the fly the transitivity and right-invariant (with
respect to concatenation) closure �tr of the following relation. For u,v 2 Pre f (S+), we
define:

• u � v if there is no string x such that ux 2 S+ and vx 2 S�,

• u ' v if u � v and v � u.

4.3 Learning Probabilistic Automata using Residuals 53

The idea is to characterize all distinguishable states (seen as prefixes of the positive
samples). Intuitively, u �tr v is an estimate for the inclusion between the residuals Lu ✓ Lv,
and if the sample is complete concerning the unknown language L, this is indeed the case.

Initially, the set of states Q of the automaton is empty. All prefixes of S+ are explored,
and only those distinguishable are added to Q. States below e concerning � are set to be
initial states, while states that belong to S+ are final ones. Finally, a transition d (u,a) = v is
added when v � ua, where a 2 S. The algorithm ends when u is the last string in Pre f or
when the learned automaton is consistent with the sample.

4.3.2 Learning the probabilities with the flip-coin algorithm

Once we have learned the structure of an RFSA from a sample (S,Fr), the next step is adding
frequencies to get an FFA based on the frequency information of the sample. This step will
not change the structure of the automaton, so S and Q are the same as the ones resulting
from Algorithm 8. Frequency is distributed fairly by dividing it among non-deterministic
transitions.

It is not hard to prove that the resulting automaton is indeed an NFFA, satisfying the
frequency preservation condition when passing through states.

Example 7. Continuing from the previous example, let us consider the case of ba 2 S+. Two
paths are accepting this string, namely e a e and e b e . As they both start from and end in
the same state, I f (e) and Ff (e) are incremented by 2, respectively. However, the frequency
f (ba) = 2 is divided equally between the two b-transitions from state e , incrementing each
of them by 1. After all strings in S+ are treated, we get the NFFA shown in Fig.4.2b.

e a

b

b

a,b

a

b

a

a,b

(a) RFSA

e|10 a|0

b|0

10

b 3

a 3
b 1

a 3

b 1

a 1

a 1
b 3

(b) NFFA

e|0.588 a|0

b|0

1

b 0.176

a 0.176
b 0.06

a 0.75

b 0.25

a 0.2

a 0.2
b 0.6

(c) PFA

Fig. 4.2 Three automata learned from the sample (S,Fr), with Fr(e) = 3,Fr(aa) = Fr(ba) =
2,Fr(bb) = Fr(abb) = Fr(bab) = 1, and Fr(a) = Fr(b) = Fr(ab) = Fr(abb) = 0.

The last step is the standard for building a PFA from a given NFFA. Again, the structure
is not modified, but frequencies labeling the transitions and the states are used to calculate

54 Passive Learning PFAs with Counterexamples

Algorithm 8 Building an RFSA from a simple sample
Input: A simple sample (S,Fr)
Output: An RFSA hS,Q, I,F,d i

1: Pref = PREF(S+) ordered by length-lexicographic order
2: Q = I = F = d = /0
3: u = e
4: loop
5: if 9u0 2 Q such that u 'tr u0 then
6: Pref = Pref \uS⇤

7: else
8: Q = Q[{u}
9: if u �tr e then

10: I = I [{u}
11: end if
12: if u 2 S+ then
13: F = F [{u}
14: end if
15: for u0 2 Q and a 2 S do
16: if u0a 2 Pref and u �tr u0a then
17: d = d [{d (u0,a) = u}
18: end if
19: if ua 2 Pref and u0 �tr ua then
20: d = d [{d (u,a) = u0)}
21: end if
22: end for
23: end if
24: if u is the last string of Pref or hS,Q, I,F,d i is consistent with S then
25: exit loop
26: else
27: u = next string in Pref
28: end if
29: end loop
30: return hS,Q, I,F,d i

4.3 Learning Probabilistic Automata using Residuals 55

Algorithm 9 Building an NFFA from an RFSA
Input: A RFSA hS,Q, I,F,d i consistent with a sample (S,Fr)
Output: An NFFA hS,Q, I f ,Ff ,d f i

1: I f (q) = 0 for all q 2 Q
2: Ff (q) = 0 for all q 2 Q
3: d f (q,a) = 0 for all q 2 Q and a 2 S.
4: for a1 · · ·an 2 S+ do
5: compute Paths(x)
6: for every p = q0 . . .qn 2 Paths(x) do
7: I f (q0) = I f (q0)+

Fr(x)
|Paths(x)|

8: Ff (qn) = Ff (qn)+
Fr(x)

|Paths(x)|
9: for i = 0, i = i+1, i n�1 do

10: d f (qi,ai+1)(qi+1) = d f (qi,ai+1)(qi+1)+
Fr(x)

|Paths(x)|
11: end for
12: end for
13: end for
14: return hS,Q, I f ,Ff ,d f i

the probabilities. In the algorithm 8, FREQ(q) denotes the number of both strings either
passing through a state q or ending in it, and SUMI denotes the number of strings entering
all initial states. For every state q in Q, the probability of being initial state is I f (q)

SUMI
and of

being final state is Ff (q)
FREQ(q) , while the probability associated to each transition from q to q0

with input a is d f (q,a)(q0)
FREQ(q) . (same as the last chapter)

The algorithm 9 returns a probabilistic automaton when the input is an NFFA.

Example 8. The probabilistic automaton A resulting from the NFFA in Fig.4.2b is shown in
Fig.4.2c. The support automaton is consistent with the sample (S, f).

4.3.3 Experimental results

We use the metrics introduced in the Chapter 3 to study the performance of our algorithm
for learning probabilistic languages. We selected different sizes of samples independently
drawn according to a distribution presented by four different probabilistic automata depicted
in Figure 4.3: one DPFA, one PFA, one RFSA, and one PFA that cannot be expressed as a
DPFA. First, we generate a set S of size n of strings from the alphabet by length-lexicographic
order and assign the probability of each string according to the target automaton. Given a
fixed number of total occurrences m, we then calculate the frequency of each string in the
sample based on its assigned probability. Note that samples generated in this way need not

56 Passive Learning PFAs with Counterexamples

Algorithm 10 Building a PFA from an NFFA
Input: An NFFA hS,Q, I f ,Ff ,d f i
Output: A PFA hS,Q, Ip,Fp,dpi

1: for q 2 Q do
2: FREQ(q) = Ff (q)+Âa2S,q02Q d f (q,a)(q0)

3: Fp(q) =
Ff (q)

FREQ(q)
4: for a 2 S1,q0 2 Q do
5: dp(q,a)(q0) =

d f (q,a)(q0)
FREQ(q)

6: end for
7: end for
8: SUMI = Âq2Q If (q)
9: for q 2 Q do

10: Ip(q) =
I f (q)
SUMI

11: end for
12: return hS,Q, Ip,Fp,dpi

be complete. All target automata we consider have 3 to 5 states, for which we generate a
sample set of size n < 50 and the total number of occurrences m varying between 10 to 200.

We compare our algorithm to ALERGIA [24] and k-testable algorithms [26]. Contrary to
our algorithm presented here, the performance of these other algorithms may be impacted by
a parameter setup. For ALERGIA we choose two different parameters a = 0.9 and a = 0.1.
For k-testable algorithms, we set k to be 2,3,4 and 5.

For the case of the DPFA A1, the distribution found by all algorithms converges concern-
ing the L2 distance rather quickly towards the original one. The 5-testable algorithm has the
highest precision and sensitivity and the smallest L2 distance, but it needs 19 states to learn
an automaton of 3. Our algorithm has the best accuracy and is the only one learning the same
structure as the original automata.

A similar situation happens when learning the RFSA A3. In this case, our algorithm
learns a distribution that cannot be described by any DPFA.

Considering the PFA A2, our algorithm, ALERGIA, and the 5-testable algorithm outper-
form all the others. See Figure 4.5. Only our algorithm can learn the same number of states
but with a few more transitions. Accuracy is one again. Some errors are introduced because
of the fair distribution among non-deterministic transitions.

Finally, we considered the PFA A4 that cannot be expressed by any DPFA and does not
have an equivalent RFSA as support. All algorithms cannot learn the same structure as
the target automaton. Nevertheless, our algorithm achieves the best performance. The L2

distance is smallest, precision is highest, sensitivity is second highest, and accuracy is always

4.3 Learning Probabilistic Automata using Residuals 57

q1|0 q2|0.1

q3|0.3

1

b 0.4

a 0.6

b 0.9

a 0.2

b 0.5

(a) A DPFA A1

q0|0

q1|0

q2|0 q3|0

q4|1
1

a 0.2 a 1

b 0.5

a 0.3 b 1

a 1

(b) A PFA A2

q0|0.75 q1|0

q2|0

1

b 0.1

a 0.15

a 0.2

a 0.5

b 0.3

a 0.2
b 0.1

0 0.3
b 0.4

(c) A RFSA A3

q0|0.1

q1|0

q3|0

q2|0.4

q4|0.2

1

a 0.4

a 0.5

a 1

a 0.6

a 1

a 0.8

(d) A PFA A4 not equivalent to a DPFA

Fig. 4.3 The four target automata for our experiments

1 (something not true for all other algorithms). Even if we perform better because the RFSA
we learn has the same structure as the support of target distribution, our algorithms will never
be able to identify it.

4.3.4 Learning the probabilities with non-linear optimization methods

Once we have learned the structure of the RFSA needed to represent the language underlying
the sample (S, f), we need to label it with weights representing the probabilities of a PFA.
We will treat the probabilities for the initial states, the final states, and the transitions as
parameters, that will be used as variables in the solution of a non-linear optimization problem.

Given an NFA A, we first construct a system of equations depending on the structure
of the automaton and the probabilities induced by the sample for each string in it. For
each state q 2 Q, we have variables iq and eq to denote the unknown values of I(q) and
F(q), respectively. We also use variables xa

q,q0 for denoting the unknown probability of the
transition d (q,a)(q0). We add a few structural equations which are dictated by the structure
PFA definition:

Âq iq = 1, and for all q 2 Q, fq +Âa,q0 xa
q,q0 = 1

Besides the above structural equations, we have equations depending on the sample
and the automaton. For each string u = a0 · · ·an 2 S we define E(u) to be the polynomial

58 Passive Learning PFAs with Counterexamples

0

0.05

0.1

0.15

0.2

0.25

0.3

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 50 70 100 200

A_0.9 A_0.1 k=2 k=3 k=4 k=5 RFSA

(d) Accuracy

Fig. 4.4 Results of learning A1

0

0.1

0.2

0.3

0.4

0.5

0.6

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.78

0.83

0.88

0.93

0.98

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.78

0.83

0.88

0.93

0.98

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10 50 70 100 200

A_0.9 RFSA A_0.1 k=2 k=3 k=4 k=5

(d) Accuracy

Fig. 4.5 Results of learning A2

4.3 Learning Probabilistic Automata using Residuals 59

0

0.05

0.1

0.15

0.2

0.25

10 50 70 100 200
RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 50 70 100 200

A_0.9 A_0.1 k=2 k=3 k=4 k=5 RFSA

(d) Accuracy

Fig. 4.6 Results of learning A3

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(a) L2 distance

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(b) Precision

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(c) Sensitivity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 50 70 100 200

RFSA A_0.9 A_0.1 k=2 k=3 k=4 k=5

(d) Accuracy

Fig. 4.7 Results of learning A4

60 Passive Learning PFAs with Counterexamples

equation:

Â
q0···qn+12Pathsp(u)

iq0 · x
a0
q0,q1

· · ·xan
qn,qn+1

· eqn+1(p) = p(u).

where p(u) is the probability of u induced by the frequency f in the sample. In other words,
equations like E(u) above represent the symbolic calculation of the probability of u in the
automaton A with weights as parameters.

To guarantee linear independence between the equations, we consider prime strings in S.
A string u is said to be prime if there exists at least one path in Pathp(u) without repeated
loops, that is, without occurrence of the same part (at least two states) twice. If we have more
prime strings in S than variable, we consider only prime strings u to build our equations E(u).
Otherwise, we consider strings from S+, prioritizing them in lexicographic order. If we have
a small sample with more variables than strings in S the result may be very poor, as expected.

We rewrite the system of equations as a function with some constraints. The function is
derived from the structural equations while the constraints stem from the sample. We use
three different methods to solve the optimization problem with constraints. The first one
is via the solver module in SymPy [76]. SymPy is a Python library for solving equations
symbolically to find algebraic solutions.

In our experiments below, in most cases, SymPy is not able to find the exact algebraic
solution, because the structure of the learned automaton is not always equal to the target
one. The second method uses a genetic algorithm (GA). GAs are computational models ideal
for searching for optimal solutions by imitating natural evolutionary processes. GAs take
individuals in a population and use randomization techniques to guide an efficient search
of an encoded parameter space [78]. The third method is based on Sequential Quadratic
Programming (SQP), one of the most widely-used methods for solving nonlinear constrained
optimization problems [19]. It is an iteration method with a sound mathematical foundation
that can be applied to large-scale optimization problems.

The solutions from the GA and SQP methods are an approximation of the results, and in
general, will need a light adaptation via normalization to satisfy the structural rules of a PFA.

Example 9. Given the RFSA in 4.8a constructed from the sample (S, f) with f (l) = 0.3,
f (aa) = 0.03, f (ba) = 0.039, f (bb) = 0.036, f (abb) = 0.0045, f (a) = f (b) = f (ab) = 0,

4.3 Learning Probabilistic Automata using Residuals 61

we obtain the PFA with variables as in 4.8b. From that we derive the system of equations

8
>>>><

>>>>:

il = 1
fl + xa

l ,a + xb
l ,a + xb

l ,b = 1
xa

a,l + xb
a,b = 1

xa
b,l + xb

b,l + xa
b,b = 1

8
>>>>>><

>>>>>>:

il fl = 0.3
il xa

l ,axa
a,l fl = 0.03

il xb
l ,axa

a,l fl + il xb
l ,bxa

b,l fl = 0.039
il xb

l ,bxb
b,l fl = 0.036

il xa
l ,axb

a,bxb
b,l fl = 0.0045

The corresponding function to be optimized is

(il �1)2 +(fl + xa
l ,a + xb

l ,a + xb
l ,b �1)2 +(xa

a,l + xb
a,b �1)2 +(xa

b,l + xb
b,l + xa

b,b �1)2 = 0

with as constraints all variables ranging between 0 and 1 and :

(il fl �0.3)2 = 0 (il xb
l ,bxb

b,l fl �0.036)2 = 0
(il xa

l ,axa
a,l fl �0.03)2 = 0 (il xa

l ,axb
a,bxb

b,l fl �0.0045)2 = 0
(il xb

l ,axa
a,l fl + il xb

l ,bxa
b,l fl �0.039)2 = 0 .

Then we use the GA and SQP to approximate the solution, the results are shown in Figure 4.8c
and Figure 4.8d. The learned PFAs approximate to the given sample closely.

4.3.5 Experimental results

In this section, we summarize some experiments to compare the performance of our new
learning method with other existing algorithms using some distributions generated from a
random set of PFAs. In particular, we consider ALERGIA, the most well-known probabilis-
tic language learning algorithm, k-testable algorithm, and RFSA algorithm with flip-coin
distribution. ALERGIA and k-testable can identify only deterministic distributions. We use
999 different parameters setup for ALERGIA and 14 different values for k for the k-testable
method. We avoid too large values for k to not make the learning model overfitting. In both
cases we only consider the parameter achieving the best performance. For RFSA-GA and
RFSA-SQP, we choose 1000 different start points at random. Also here we choose the start
point with the best result for each algorithm.

4.3.6 Learning randomly generated probabilistic automata

Target automata are generated by a PFA generator according to the number of states, symbols,
and transitions for each state. We generate three sets of 20 automata each with 3, 5, and 10

62 Passive Learning PFAs with Counterexamples

l a

b

b

a,b

a

b

a

a,b

(a) A given NFA.

l | fl a

b

il

b xb
l ,b

a xa
l ,a

b xb
l ,a

a xa
a,l

b xb
a,b

a xa
b,b

a xa
b,l

b xb
b,l

(b) A PFA with parameters.

l |0.3021 a

b

1

b 0.3604

a 0.1560
b 0.1825

a 0.6550

b 0.3450

a 0.6142

a 0.0569
b 0.3289

(c) A learned PFA by GA.

l |0.3027 a

b

1

b 0.4412

a 0.1546
b 0.1014

a 0.6450

b 0.3550

a 0.5811

a 0.1463
b 0.2726

(d) A learned PFA by SQP.

Fig. 4.8 The RFSA and PFA automata from Example 1.

4.3 Learning Probabilistic Automata using Residuals 63

states. All automata are over a 2 symbols alphabet and with at most 3 transitions for each
state. The probabilities of initial states, final states, and transitions are chosen randomly.
There are both DPFAs and PFAs.

From each of these 60 automata, we generate a sample of 248 strings over a two-
symbol alphabet uniformly and use the automaton to compute a probability for each string,
including strings with probability 0. We generate samples with frequencies by scaling up
the probabilities. For each sample, we learn an automaton with six different algorithms. We
compute the L2 distance between each learned automaton and the respective target PFA [27],
considering the smallest L2 distance for each algorithm. We repeat this experimental setup
20 times for different target automata, give the average variance of results, and then calculate
the improvement between the best of our new methods and the best of the others. The results
are reported in the table below. There are no results of RFSA with solver algorithm in this
table since we cannot find the exact algebraic solutions in 75% of the cases for the set of
3-states automata.

For 3�states automata, our method combining RFSA learning with genetic algorithms
(RFSA-GA) has on average the smallest distance from the target distribution and the smallest
variance too, with an improvement on the learning via k-testable algorithm of 90%. The
combination of RFSA with SQP scores is the second-best on average. The average size
of the automata learned by RFSA-GA is 3.05 states on average, a significant improvement
compared to 12.95 for ALERGIA and 66.65 for k-testable. This means that the RFSA
learned automata structure is much simpler and closer to the target model.

As for 5-states automata, the situation is similar, with RFSA-GA scoring as the best,
followed by RFSA-SQP and the k-testable algorithm. Our RFSA-GA algorithm learns 4.6
states on average, compared with 13.15 states by ALERGIA and 54.55 states by k-testable.

When the target automata have 10 states, the RFSA-GA still has the smallest average and
variance with an improvement of 86% when compared to ALERGIA. The RFSA learns 8.1
states on average, while ALERGIA and k-testable get 20.1 and 59.4 states, respectively.

Only when the algebraic solver can find the solution, we have that the learned automaton
is closer to the target one than RFSA-GA. In some cases the distance is even 0, meaning that
the distribution learned is precisely the target one. In a few other cases, the distance is almost
0 due to the approximate structure given by the RFSA. In the table, we see the results of
RFSA combined with a flip-coin method, assigning probabilities by equally distributing them
among the transition. This naive strategy has the largest distance on average from the target
automata but is not extremely far from ALERGIA and k-testable, underlying the importance
of a simple and as close as the possible structure of the learned automata with respect to the
target ones.

64 Passive Learning PFAs with Counterexamples

Table 4.1 Averages, variances and improvements of L2 distance between target 3-state, 5-state,
10-state automata and learned automata respectively.

Algorithms 3-states 5-states 10-states

Average Variance Average Variance Average Variance

ALERGIA 0.1874 0.0208 0.1462 0.0238 0.2121 0.0310
k-testable 0.1729 0.0202 0.1065 0.0095 0.2128 0.0317
Flip-coin 0.2229 0.02147 0.1593 0.0112 0.2807 0.0324

RFSA-SQP 0.0213 0.0013 0.0348 0.0034 0.0301 0.0031
RFSA-GA 0.0171 0.0006 0.0289 0.0017 0.0264 0.0007

Improvement 90%# 97%# 67%# 82%# 86%# 98%#

4.3.7 Learning a model of an agent’s traces in a maze

Next, we compare our optimization-based approaches using a model for which we do not
know apriori the target regular distribution, but we only have a sample with frequency, as
often happens in a real-world situation.

The idea is to build a model for an intelligent agent in a two-dimensional space with
the agent’s goal of arriving at target endpoints. For simplicity, the space is represented as a
matrix of possible positions, and the agent in any position can take four actions representing
a move up, down, left, or right to the current position. We model the agent as a PFA
A = hS,Q, Ip,Fp,dpi. Here S = {U,D,L,R} is the set of the four actions that the agent can
perform, and strings over S represent possible consecutive actions taken by the agent. The
set of states Q contains all possible positions of the agent in the space. Ip is the set of
probabilities of being at a certain starting state, Fp is assigning 1 only to those states that are
the target endpoints, and dp is the set of probabilities of executing one of the four actions in
a state. We assume given several sequences of possible consecutive that are obtained, for
example, in a training phase, when the agent uniformly selects an action to try to find the
target endpoint. Differently from ordinary reinforcement learning methods, we assume that
the size and shape of space are not known a-priory, that, moreover, may have insurmountable
obstacles.

Training an automaton from a sample is therefore to find the set of states Q, and the
right structure where the agent determines the probabilities of each transition d (q,a)(q0), the
initial probabilities Ip and the final one Fp in accordance to the space structure.

We generated 20 different 10⇥10 rectangle maps of the space, all of them surrounded
by obstacles (walls) that an agent cannot trespass. We differentiate those spaces randomly

4.3 Learning Probabilistic Automata using Residuals 65

0 1 1
0 1 1
0 0 0

start point

end point

Fig. 4.9 A 3⇥ 3 maze, where 0 means available, 1 is an obstacle. (0,0) is the start point,
(2,2) is the end point.

generating obstacles inside. For simplicity, for each map we choose only one start state (say
with coordinates (0,0)) and only one target end state that is randomly chosen among the
allowed positions. Here we show a simple example of the positive and negative samples
under a certain agent’s moving memoryless strategy.

Example 10. Fig. 4.9 shows a 3⇥3 maze where 0 is a path and 1 is an obstacle. The start
point is (0,0), and the endpoint is (2,2). The agent’s movement strategy is {U : 0.1,D :
0.4,L : 0.1,R : 0.4}. Traces that reach the endpoint are positive samples, while those that hit
walls or obstacles are negative samples. Sample (S, f) trace instances: f (DDLL) = 0.0256,
f (DUDDLL) = 0.001024, f (DDLRLL) = 0.001024, f (DUDUDDLL) = 0.00004108,
f (U) = 0, f (UUDD) = 0, f (DLRLU) = 0, and f (DRLDD) = 0.

We simulate a training phase for the agent by using a uniform strategy, that is, we generate
a trace by uniformly selecting the next action among the set of allowed ones (thus avoiding
obstacles). Note that this is a deterministic strategy and can therefore be approximated by
all other methods for learning PFA we have considered in the previous section. The traces
successfully reaching the target endpoint are our positive samples, with associated frequency
(or probability) as calculated based on the probability of each action taken.

To balance the data, we consider it as negative samples all prefixes of the positive one
(we assume that the agent once arriving at a target end state stops) and concatenation of
prefixes with suffixes that do not occur as positive samples. We use 90 percent of the resulting
traces for training, and 10 percent for evaluating the learned automaton and compare the
performance with other PFA learning methods. As we do not have the full distribution to
be learned in advance, to compare the different methods we use the F1 score and optimized
precision OP. Both methods are based on a probabilistic version of precision, sensitivity,
specificity, and accuracy, where the number of true positive T P and false negative FN is
weighted by the L1 distance between the finite sample (S, fp) and the regular distribution
D(A) of the automaton A learned using one of the methods we consider. In particular, we
consider:

66 Passive Learning PFAs with Counterexamples

The F1 score [103] is used to measure the method’s accuracy. It is computed in terms of
both the precision and sensitivity and basically, is the harmonic average of them.

F1 = 2 · Precision ·Sensitivity
Precision+Sensitivity

(4.1)

The optimized precision (OP) [99, 21] is a hybrid threshold metric combining accuracy,
sensitivity, and specificity, where the last two are used for stabilizing and optimizing the
accuracy when dealing with possibly imbalanced data.

OP = Accuracy� |Specificity�Sensitivity|
|Specificity+Sensitivity| (4.2)

When the distribution of the learned automaton coincides with that of the sample, pre-
cision, sensitivity, and accuracy will all be 1, and thus both F1 and OP will be equal to 1
too. However, the more the distribution of the learned automaton is distant from that of the
sample, the more precision, sensitivity, and accuracy will be closer to 0, setting both the
scores F1 and OP closer to 0 too.

Table 4.2 shows the summary of the results taking the average and the variance when
learning with different methods the 20 mazes from the randomly generated samples. As in
the case of learning the randomly generated automata, the RFSA method enhanced with
an algebraic solver does not work in general because of the too many variables involved.
RFSA-SQP is the most stable method as it has the lowest variance across the different mazes
when compared using the F1 score. In general, all algorithms perform well with respect to
the F1 score. However, when considering the OP score we see that RFSA-GA has the highest
OP score on average and also has the lowest variance. This means that RFSA-GA has a low
probability of false positives and false negatives. When compared with the second best given
by learning using the k-testable algorithm, we see that RFSA-GA has an improvement of
21% on the average OP score.

4.4 Summary

In this chapter, we learn regular distributions by combining the learning of the structure via
RFSA with the learning of the probabilities using three different optimization methods: an
algebraic solver, a genetic algorithm, and sequential quadratic programming. We use some
randomly generated PFAs and model an agent’s traces in a maze to compare these methods
with existing ones. While theoretically, the algebraic solver method is the best, in practice, it
often fails to provide a solution even for three-state automata. The other two optimization

4.4 Summary 67

Table 4.2 Average, variance and improvement of F1 and OP

Algorithms F1 OP

Average Variance Average Variance

ALERGIA 0.9933 0.0003 0.3431 0.0107
k-testable 0.9997 1.68e-08 0.7990 0.0050
Flip-coin 0.9998 1.28e-08 0.9679 0.0005

RFSA-SQP 0.9998 9.47e-09 0.9586 0.0012
RFSA-GA 0.9998 9.94e-09 0.9683 0.0004

Improvement 0.003%" 43%" 21%" 91%"

methods are iterative and always find an approximate solution. In practice, we have seen that
the solution is very close to the target distribution, order of magnitudes more than existing
algorithms. Because the structure learned via RFSA is a non-deterministic automaton, our
method behaves well even for regular distributions that are not deterministic, showing that
one of the disadvantages of learning regular languages by RFSA has been turned into an
advantage in the context of learning regular distribution. Besides, compared with the k-
testable and ALERGIA algorithms, which could only learn positive samples well, our method
can model both positive and negative samples well. Important in learning the structure is the
presence of both examples and counterexamples, i.e. strings with 0 frequency/probability,
and to have a fair balance between them. The scalability of our algorithm depends very much
on the scalability of the non-linearity optimization method used to solve the constrained
equations. Algebraic solver becomes impractical already with 5 states automata. In contrast,
GA and the SQP method seem to be more appropriate for larger ones. Many works investigate
concurrency to improve the scalability of the GA and SQP algorithms. Specifically, the
evolutionary algorithm we used in our experiments is capable of learning in reasonable time
automata up to 62 states and hundreds of transitions, resulting in a system with more than
110 variables. Our algorithm could be used for speech recognition, and biological modeling
depending on how large the samples and target automata are. Next, we plan to investigate
how our algorithm performs in these practical situations.

