Universiteit

4 Leiden
The Netherlands

Automata learning: from probabilistic to quantum
Chu, W.

Citation
Chu, W. (2024, December 4). Automata learning: from probabilistic to quantum. Retrieved
from https://hdl.handle.net/1887/4170915

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170915

License:

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170915

Chapter 3
Passive Learning Probabilistic Automata

Automata learning techniques aim to automatically infer automata models from observations.
We can distinguish two different types of algorithms: active and passive learning. Active
learning involves interactions between the learner and the system being learned. Typically
this is done via queries to gather information that helps in learning an automaton. Passive
learning, in contrast, refers to the process of learning an automaton by observing its behavior
passively. In this setting, the learner is not allowed to interact with the system but uses a finite
subset available of the observable behavior of the system to infer the underlying automaton.
Passive learning is particularly useful when the system under study is inaccessible or difficult
to interact with actively. It has applications in various domains, including protocol analysis,
language recognition, and software verification.

In this chapter, we focus on passive learning probabilistic automata. The goal is to
construct a PFA as a representation of an unknown regular distribution D over £* by observing
only a finite number of strings independently drawn from X* according to D. A sample
considering only strings with a strictly positive probability (or above a fixed cut point) is
called positive. Selecting the string according to a uniform distribution over £* allows us
to consider strings with a null probability according to D. Every such finite set is called a
negative sample, and the strings can be considered counterexamples, as they do not belong to
the language of the underlying NFA.

Regular languages (and distributions) cannot be learned from positive samples only, even
if we let the size of the sample increase [46]. The way out is to look for subclasses of
regular languages or to have some extra information available besides the positive sample [3].
Here we look at both cases and present a novel technique for passive learning PFAs based
on a finite set of strings, each associated with a frequency, and a parameter k determining
the length of the history or context that one remembers. Specifically, we look at k-testable

machines that can remember only the last k£ symbols of the input sequence it has encountered.

32 Passive Learning Probabilistic Automata

This restriction makes it possible to infer (an approximation of) a subclass of DPFA from a
finite sample of its distribution and a fixed parameter k. The larger the sample, the closer is
the learned DPFA to the original system, for a correct guess of the parameter k. In the next
chapter, we will abandon the guess for the parameter k and use positive and negative samples
to learn an even larger class of PFAs.

We compare our algorithm with ALERGIA [24] another popular method used for learning
DPFAss that focuses solely on positive samples. ALERGIA is an incremental algorithm that
starts from a tree-like automaton accepting exactly the sample and iteratively merges states
to create a more general and compact model. The probabilities of the transitions are updated
based on the information in the positive sample. Different than our algorithms, ALERGIA

uses statistical tests to decide which states to merge.

3.1 From k-testable machines to deterministic automata

Our learning approach is based on a probabilistic extension of learning k-testable languages,
a proper subclass of the regular languages. Intuitively, a k-testable language is a language
that can be recognized or generated by a machine, which has limited memory allowing it to
observe only no more than k consecutive symbols, either as a prefix, suffix, or substring of
the input sequence.

To fix the notation, for any string u and any language L, we define PREF (u) = {v €
I*|3w € £¥,vw = u} to be the set of prefixes of u and PREF (L) = J,c; PREF (u) to be the
prefix set of L, and the suffix set of L is denoted by SUF F (L) = {v € X*|3u such that uv € L}.
To characterize formally the class of k-testable languages, [44] introduced a special type of

machine:

Definition 5. k-testable machine Given k > 0, a k-testable machine (k-TM) is a 5-tuple
Z = (X,1,F,T,C) where:

* Y is a finite set, the alphabet,

o I,F C XX are the sets of prefixes of length k — 1 and of suffixes (or finals) of length
k—1),

o C C X<k is the set short strings, and

o T C XK is the set of allowed segments.

3.1 From k-testable machines to deterministic automata 33

Given a k-testable machine Z; = (X,1,F,T,C), the k-testable language recognized by it
which can be defined by:

L(Z) = (IZ*NZ*F —2*(ZF—T)Z*)uC

Informally, a k-testable language is a set of strings starting with strings in /, finishing
with strings in F', and containing strings in 7 if their lengths are greater than or equal to k.
Otherwise, they must belong to set C. Thus, there are two types of strings in L(Z): strings
of length less than £, that are defined by C, and strings of length greater than or equal to k,
which must contain substrings in the other sets I, 7', and F. Note that if k = 1, the language
accepted by any 1-testable machine is either @ or X*. This is because /, F' and C are subsets
of {A} and T equals X. See the Example 3 for an illustration.

A k-testable language is a regular language whose memory (i.e., the minimal number
of states needed by a DFA to recognize it) can be bounded a priori. This follows from
Definition 5 because the size of the window of visible symbols of a k-testable language is
exactly k. The following symbol in a string depends on the previous k — 1 characters. In
other words, k-testable languages are causal.

Even if all k-testable languages are regular, the converse is incorrect for any k. For
instance, consider the language defined by the regular expression aX*a + b¥*b, which is not

a k-testable language for any £, as the last symbol may depend on more than k previous one.

a,b

Fig. 3.1 A 1-testable language.

Example 3. The 1-testable language recognized by the 1-testable machine Z; = (X =
{a,b}, 1 ={A},F ={A},T ={a,b},C = {A}) is the one recognized by the deterministic

finite automaton in Figure 3.1 which accepts all strings.

Example 4. The DFA from Figure 3.2 recognises the language {ba,bb}{b}*. This lan-
guage is 3-testable language because it can be recognized by the 3-testable machine
Z3 = ({a,b},I = {bb,ba},F = {ab,bb,ba},T = {bbb,bab,abb},C = {ba,bb}). It is, how-
ever, not a 2-testable language, because, with a window of size two, any 2-testable machine

would accept the set of strings {b}*.

34 Passive Learning Probabilistic Automata

Fig. 3.2 A deterministic automaton for the language {ba,bb}{b}".

To construct a DFA from a k-testable machine Z;, each state in the DFA represents a
unique history of at most k-symbols observable in Z;, and transitions between states are
determined based on the observed input symbols and the previous history, resulting in a DFA
that captures exactly the deterministic behavior of the k-testable machine.

Given a k-testable machine, Algorithm 4 converts all the prefix x of strings in / and C
into states g, € Q of the DFA. For every string pau, there is an a-transition to link two states
qp and q,,. Similarly, all prefixes and suffixes of strings in 7" are converted into states of the
automaton. For every string aub, there is a b-transition to link the states g, and g, where
the first symbol a is forgotten because it is outside the range k of history visibility of the
automaton. The final states of the DFA correspond to the states indexed by strings in F in the

k-TM. Note that the state space size of the automaton is at most k — 1.

Example 5. Let X = {a,b,c} and consider the 3-testable machine Z3 = (X,1,F,T,C) with
I ={ab}, F = {ba}, T = {abb,bba,bbb}, and C = {a,c}. Using Algorithm 4, we can build
the deterministic automaton of Figure 3.5. It is now easy to see that 3-testable language
recognized by both machines is {a,c} U{ab}{b}*{a}.

The following proposition is not hard to prove. It shows that the above construction is
correct in the sense that for every k-TM the constructed DFA recognizes the same language.
Since we already know that not all regular languages are k-testable, it is not obvious how to
find syntactic restrictions for DFAs so that they correspond exactly to k-TMs, for a given k.

Proposition 2. For any fixed value k > 0 let A be DFA returned by Algorithm 6 given a k-TM
Zy as input. Then L(A) = L(Zy).

3.2 From frequency automata to probabilistic ones 35

Algorithm 4 Building a DFA from a k-testable machine

Input: A k-TM (X,1,F,T,C)
Output: A DFA (X,0,Ip,Fp,9d)
1: 0=0

2: FD =0

3: ifk =1 then

4 O={qr}
Fp(q;) =1
Ip(qr) =1
forac X do

8(gr.a)(qx) =1

9: end for
10: else
11: for puclUC,p,uc X do
12: 0=0U{q.}
13: end for
14: forauc T,acX,ucX do
15 0=0U{q)
16: end for
17: foruacT,acX,uc X do

18: Q:Qu{qu}

19: end for

20: for pau e IUC,a € X, p,u € ¥* do
21 6(qp,a)(qpa) =1

22: end for

23: foraube T,a,be X, uc X do
24: S(Qauvb)(qw)) =1

25: end for

26: foru e FUC do

27: Fp(qu) =1

28: end for

29: end if

30: return (X,Q.Ip,Fp,d)

3.2 From frequency automata to probabilistic ones

Our goal is to learn deterministic regular distributions represented by probability automata
based on the number of times that each string in a sample occurs. This frequency deals
with the observed occurrences in a sample and it differs from the probability assigned to
the string a PFA to be learned because the latter quantifies the likelihood of the string to be
generated based on the underlying distribution represented by the PFA. For this purpose,
instead of learning directly a PFA from a sample with frequency, it will be easier to first build
a deterministic frequency finite automaton (DFFA) and then transform it into a PFA [34].

Definition 6. Deterministic frequency finite automaton A deterministic frequency finite
automaton (DFFA) is a tuple F = (¥,Q,1y,Fy, dy) where

» Y is a finite set representing the alphabet,

36 Passive Learning Probabilistic Automata

* Q is a finite set of states,

Iy : QO — N is the initial-state frequency map with exactly one state q; € Q for with
Iy(qa) #0,

Fy : Q — N is the final-state frequency map,

o 8y : O x X — N is the transition frequency function, such that

{q' € Q| 8v(q,a)(d) >0} <1

forallqge Qandac X

The transition function 8y (g,a)(q’) = n can be interpreted as the number of occurrences
of a needed when taking a transition from state ¢ to state ¢'.

A DFFA is said to be consistent if the frequencies of the transitions leading to a state are
related to those leaving it, that is, Vg € Q, the following equation holds:

Lo+ Y, &(d.a)@=F@+ Y lga)d) 3.1)

q€Q,acx q'€Q,acxr

The above constraint ensures the preservation of flow, meaning that the number of strings
entering and leaving a given state must be identical: any string that enters or starts in a state
has to leave it or end there. For any state ¢ € Q, we denote by FREQ[qg] either the left or
right-hand side of the above constraints. Figure 3.3 shows an example of a consistent DFFA.

b 600

Fig. 3.3 A consistent DFFA

Consistent DFFAs are important because they can be easily translated into DPFA, as
shown in Algorithm 5 where frequencies are mapped to corresponding probabilities. Al-
gorithm 5 computes FREQ|q, the frequency of each state in a DFFA, by summing up the

frequencies of all transitions that leave the state and enter it. It follows that the positive

K (q)

probability assigned to each state is REQ[q]

. Similarly, the probability associated with each

3.2 From frequency automata to probabilistic ones 37

transition from state g to state ¢’ labeled by symbol a is %“Q)%). It is important to realize

that the loop at line 3 can be optimized if we remember the state ¢’ such that dy(g,a)(q") >0

because all other states do not add anything to the frequency.

Algorithm 5 Constructing a DPFA from a consistent DFFA

Input: A consistent DFFA A = (X,0,1,,F,,)
Output: ADPFA B = (X,0,1,,F),6,)

1: forge Qdo

2: FREQI[q] = Fv(q)

3 foracX, 4 c€Qdo
4 FREQ[q] = FREQ[q] + 6y(¢,a)(¢)
5 if FREQ[q] > O then
. _ _hiq)
6: Fp(9) = trE01g
7 else
8: Fp(q) =0
9: end if
10: end for
11: for a € X do
12: if FREQ[q] > O then
Sv(q,a)(q’
13 8,(¢.a)(¢) = 2eloala)
14: else
15: 6p(q,a)(q') =0
16: end if
17: end for
18: end for

19: return (X,0,1,,F,,5,)

Note that the structure of the DFFA (states, strictly positive transition, initial state,
accepting ones) are the same as the ones in the resulting DPFA, which is thus deterministic.
Because of consistency, it is not hard to see that the automata resulting from Algorithm 5
are indeed probabilistic. Given the consistent DFFA in Figure 3.3, we have, for example,
that FREQ[qp,] = 600+ 950 = 1550 and thus 6, (gpp,b)(gp») = 600/1550 = 12/31 and
Op(gpp,a)(qpp) =950/1550 = 19/31. Since Fy,(q+bb) = 0sois F,,. The full DPFA resulting
from this DFFA is given in Figure 3.4.

b12/31

Fig. 3.4 The DPFA resulting from the DFFA in Figure 3.3

38 Passive Learning Probabilistic Automata

3.3 Learning DPFAs using k-testable machines

We can finally present our algorithm for learning a DPFA from a sample (S, Fr), where S
is a finite subset of strings in £* and Fr: S — N is a function associating to each element
in S a strictly positive number representing its frequency. To find the distribution on £* of
which we only have a sample (S, Fr), we proceed as follows. For a given parameter &, first,
we learn a k-testable machine from the set S. Then we build a DFA that recognizes the same
language used as the structure of a DFFA with frequency built following the sample. We
finally translate the DFFA into a DPFA.

Given a finite set of strings S C X* and a parameter k > 1, we construct a k-testable
machine Z; using an algorithm similar to [45]:

Algorithm 6 Building a k-testable machine from a sample

Input: A finite set S C £*, a positive integer k
Output: A k-testable machine Z;

: X is the alphabet used in S
[=31NPREF(S)

c=x<kns

F=X1NSUFF(S)
T=Xn{v:uvw € S,u,v,w € £*}
return (X I, F,T,C)

AN S e

Learning k-testable languages involves identifying all the prefixes, substrings, and suffixes
of length k — 1 that appear in the sample S. In fact, in Algorithm 6 the strings in the sample
S that are shorter than k define the set C of short strings of Z;. For strings that are longer
than or equal to k, we extract all the prefixes of length exactly k — 1 and place them in set /.
Similarly, we extract all the suffixes of length k£ — 1 and place them in set F'. Additionally,

we extract all substrings of length k and place them in 7.

Example 6. Let us consider the set of strings S = {a,aa,abba,ababa,ababab} over the
alphabet ¥ = {a,b}. By applying Algorithm 6, with k = 1, we get a machine Z, = (¥,I =
{A},C={A},F ={A},T ={a,b}) recognizing every string in . However, for k = 2, we
get the more interesting machine Zy = (X,1 ={a},C ={a},F ={a,b},T = {aa,ab,ba,bb})

which recognizes all strings starting with 'a’.

By using Algorithm 4 immediately after Algorithm 6 we can construct a deterministic
finite automaton from a set of strings. For example, let S = {a,c,abba,abbbba} and assume
we choose k = 3 as the learning parameter. Then Algorithm 6, returns the 3-testable machine
Z3 from Example 5 that we have seen corresponding to the DFA given in Figure 3.5. Note
that for any & the set S is always included in the language recognized by the resulting DFA,
as it should be.

3.3 Learning DPFAs using k-testable machines 39

Fig. 3.5 The DFA generated from the S = {a, c,abba,abbbba}.

The next step is to add frequencies to the transitions of a DFA generated from a sample
(S, Fr) for a certain learning parameter k > 0. The idea is to associate to the initial state ¢,
the sum of the frequencies of all strings in S. For any other states g, € Q, if the length of the
string p is shorter than kK — 1 then the frequency of transition labeled by a leaving g, is equal
to the sum of all frequencies of the strings in S with pa as a prefix. Otherwise, the length
of p is k — 1 and the frequency of a transition labeled by a leaving g, is equal to the sum of
all frequencies of the strings n S having pa as a substring. Finally, each state g in the final
set F' gets as frequency the sum of the frequencies of all strings in S that ended in that state.

Algorithm 7 presents the code for generating a DFFA from a sample.

Algorithm 7 Building a DFFA from a sample (S, Fr)

Input: A finite sample (S,Fr) and k >0
Output: A DFFA (X,0,1,,F,,)

1: Build a k-testable machine Z; using Algorithm 6

2: Build the DFA (X, 0,1, F,) from Z; using Algorithm 4
3 1y(q1) = Lyes Fr(x)

4: for Vg, € Q,Ya € X,u,p,x,p' € £*,8(qp,a)(qy) =1do
5: if|p| <k—1 then

6: Sy (QIHa) (Qp’) = ZpaxESFr<pax)

7. else

8: Sy (qp,a) (qP’> = ZupaxeSFr(upax)

9: endif
10: end for
11: forVge F,x € Sdo

120 Fy(q) = Lx.5(qy x)(q)=1 Fr(x)
13: end for

_
b

: return (X,0.1,,F,,8y)

Proposition 3. For any sample (S,Fr) and k > 0, the deterministic frequency finite automaton

resulting from Algorithm 7 is consistent.

40 Passive Learning Probabilistic Automata

Proof. For the initial state g, , the left-hand side of Equation (3.1) is the sum of the fre-
quencies of all strings in S. The right-hand side, in turn, is the sum of the frequencies of
strings with A as a prefix, thus all strings in S, and the equation holds. For any other state g,

Iy (‘]p) =0,
Consider a state g, with p # A and with shorter than k — 1. Then

Z 5vqaqp ZFrpx

q'€Q,acxr pxes

Fy(gp) = Z Fr(x),

x€S,8(qx %) (gp)=1

Z Sv(gp.a)(q) = Z Fr(pax).

q'€Q,acL paxesS

That is to say, the left-hand side of the equation equals the sum of the frequencies of all
strings in § which have p as a prefix, while the right-hand side of the equation equals the
sum of the frequency of the string p and the frequencies of all strings in S having pa as a
prefix. Therefore, the equation is true.

Similarly, if the length of pis equal to k—1then ¥y 4ex Ov(q',a)(qp) = Lypres Fr(upx),
Fy(gp) = YxeS,8(q5 x)=a, Fr(x) and ¥yre acx 8v(4p,a)(d") = Lupaxes Friupax).

In this case, the left-hand side of the equation equals the sum of the frequencies of all
strings in § starting with upa, and the right-hand side equals the sum of the frequencies of all
strings ending with p and the frequencies of all strings starting with upab. Therefore, the
two sides are equal, from which it follows that the DFFA is consistent. O]

The final step is to transform the learned DFFA into a PDFA using Algorithm 5. Con-
sider for a sample (S,Fr) of 1000 strings, with S = {a,aa,abba,abbbba,abbabba} and
Fr(a) =200, Fr(aa) = 100, Fr(abba) = 150, Fr(abbbba) = 300 and Fr(abbabba) =
250. If we set our learning parameter k = 3, Algorithm 6 returns the 3-testable machine
(X={a,b},1={ab,aa},F = {aa,ba},T = {abb,bab,bba,bbb},C = {a,aa}). Using Al-
gorithm 4, Algorithm 7, and Algorithm 5, then we can build the corresponding DFA, DFFA,
and DPFA from the above sample S. These machines are shown in Figure 3.3 and Figure 3.4,

respectively.

3.4 An analysis of the algorithm

The k-testable machine constructed from a finite set of string S recognizes the smallest k-

testable language, including the sample[34]. If there were a smaller one, then some prefixes,

3.4 An analysis of the algorithm 41

suffixes, or substrings should be absent. As a consequence, if the target language is itself k-
testable, the larger is the size of the sample the closer is the learned language to the target one
in terms of subset inclusion. In the limit thus, one can learn precisely the target language. In
general, however, one does not know if the target language is k-testable. Since not all regular
languages are k-testable for any k, it follows that some languages will never be learned exactly,
but only over-approximating it. As such, the learning framework we described is different
from the probably approximately correct (PAC) learning framework [118] which guarantees
the learned language is likely correct within a certain probability and approximation bound.

Another problem comes from the selection of the parameter k. For a given set of finite
string S, the smallest k-testable language L; including it is itself included in the smallest
k 4 1-testable language Ly including S, thatis S C L, C L;. As an extreme case, for k
larger than the largest string in sample S, the learned k-testable language is exactly S. While
if we choose k = 1 then every string is accepted by the learned language. The choice of the
learning parameter k is not always straightforward and depends on the size of the strings in
S, the memory available, and the required efficiency in learning. In general, it may require
some experimentation.

The way we add frequencies to the learned DFFA implies that, for strings shorter than
k, the probability assigned by the resulting PDFA converges to that of the distribution to be
learned when we increase the size of the sample, under the assumption that the distribution
to be learned is regular and deterministic. However, for strings with a length greater than £,
the probabilities may differ because the learned probabilistic automaton will contain loops
that may not exist in the PDFA to be learned. Even if we normalize the probabilities of all
strings in the sample given their frequencies, the learned DPFA will not necessarily get the
exact probabilities as those in the sample. However, if the underlying language is k-testable
and the distribution to be learned is regular and deterministic, then the learned distribution
will converge to the one to be learned for larger samples.

3.4.1 Comparison with ALERGIA algorithm

Next, we compare our learning algorithm with the ALERGIA algorithm [24] that starts with
constructing a frequency prefix tree acceptor (FPTA) as the first basic approximation of the
model of the language to be learned and then keeps refining the current model by merging
states that can be considered close enough in the distribution they recognize. ALERGIA’s
complexity depends on the merging of equivalent states. This problem is known to have
polynomial time complexity [115]. Instead, our algorithm is linear in the number of states
and the sample size. In general, for a fixed k, the number of states of our generated automaton

1|5}
is 5y

42 Passive Learning Probabilistic Automata

Similar to our algorithm, given an infinite sequence of positive samples generated by
a DPFA, ALERGIA will converge to the distribution generated by that PDFA [73]. How-
ever, differently than our algorithm, for ALERGIA this holds for all regular deterministic
distributions instead of only those with an underlying k-testable language. Next, we present
two small examples where, for a fixed sample (S, Fr) originated from a regular distribution
with an underlying k-testable language for which our algorithm gives better results than
ALERGIA.

Let the target distribution be the one generated by DPFA in Figure 3.6. Note that
the underlying language is a 3-testable language. Consider the sample (S, Fr) with § =
{a,ab,abab,aaab,aabab} and a frequency Fr such that Fr(a) =522, Fr(ab) = 174, Fr(abab) =
86, Fr(aaab) = 109 and Fr(aabab) = 109.

The automata generated by our algorithm for k = 3 and ALERGIA are shown in Figure 3.7
and Figure 3.8, respectively. The structure of the target DPFA and the automaton resulting
from our algorithm are the same because the sample S is a characteristic set for the target
language (i.e. there are enough strings in S to cover all transitions of the target automaton).
This is not the case for the automaton learned by ALERGIA. The string aaba is not in the
underlying target language (L7) but belongs to the underlying language learned by ALERGIA
(La). Conversely, the string aab is in the L7, but not in Ls. If we extend the sample by
adding the string aaa to S with some positive frequency, the result from ALERGIA would be
consistent with the target.

a0.5

Fig. 3.6 A DPFA which can recognize a 3-testable language.

We conclude by showing a more complex example. Consider the probabilistic automaton
shown in Figure 3.9 which accepts strings in {aa,aab}* U{b} with probability strictly greater
than 0. Let S = {b,aab,aabb,aaaab,aabaab,aabaabb} be a sample with frequency Fr
given by Fr(b) = 188, Fr(aab) = 188, Fr(aabb) =471, Fr(aaaab) = 94, Fr(aabaab) = 47,
Fr(aabaabb) = 12. Figures 3.10 and 3.11 show the automata learned by our algorithm with

3.4 An analysis of the algorithm 43

Fig. 3.8 The DPFA returned by the ALERGIA algorithm.

k = 3 and k = 4, respectively. Fig. 3.12 shows the automaton learned by the ALERGIA
algorithm. All three accept the sample strings with a probability greater than 0. In Table 3.1,
we can see that the string aabaabaab is in the target language, but the automaton learned by
ALERGTIA cannot accept it. Both automata learned by our algorithm accept it. On the other
hand, the string aaab is not in the target language, but all three automata accept it even if the

automaton with k = 4 accepts it with a very low probability.

Fig. 3.9 Another target DPFA.

44

Passive Learning Probabilistic Automata

a0.18

Fig. 3.10 The DPFA constructed by our algorithm for k = 3.

a0.5

Fig. 3.11 The DPFA returned by our algorithm for £ = 4.

a 0.64
Yaabaa ‘0

Fig. 3.12 The DPFA returned by the ALERGIA algorithm with oc = 0.5.

3.5 Summary 45

strings Target k=3 k=4 ALERGIA

b 0.17 0.19 0.19 0.169
aab 0.166 0.249 0.271 0.069
aabb 0.042 0.365 0.392 0.147
aabaabb 0.01 0.021 0.027 0.007
aabaabaab | 0.01 0.001 0.001 0
aaab 0 0.045 0.018 0.044
aaaab 0.083 0.008 0.009 0.044

Table 3.1 Comparing the probabilities for a few strings

The Table. 3.1 displays the probabilities for each string under different automata. The
“Target” column represents the anticipated probabilities, while the “k = 3” and “k = 4”
columns detail our experimentally determined probabilities. Additionally, a comparison with
the “ALERGIA” column highlights noteworthy results.

3.5 Summary

In this chapter, we introduced passive learning of probabilistic finite automata based on
positive samples. We presented a novel method for passive learning that is based on learning
the structure of automata via k-testable machines and then adding the probabilities using
frequency automata. The algorithm guarantees convergence to the distribution to be learned
under the assumption it is regular, deterministic and its underlying language is k-testable,

with k£ known.

