
Automata learning: from probabilistic to quantum
Chu, W.

Citation
Chu, W. (2024, December 4). Automata learning: from probabilistic to quantum. Retrieved
from https://hdl.handle.net/1887/4170915

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170915

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170915

Chapter 2

Probabilistic automata

This chapter introduces the basics of finite automata, a simple type of machine that can be
used to recognize patterns. In particular, we discuss deterministic and non-deterministic
finite automata and the corresponding probabilistic versions. We cover their definitions, how
they work, their applications, and the relationship between the two models. Probabilistic
finite automata are related to Hidden Markov Models, which are widely used models for
probabilistic sequences. We also discuss the relationship between Hidden Markov Models
(HMMs) and probabilistic automata (PAs). HMMs and PAs are particularly significant
in speech recognition [7, 68], natural language processing [62], bioinformatics [8], and
many other domains involving discrete time-series analysis. They allow us to predict,
understand, and model sequential data, aiding in decision-making, pattern recognition, and
forecasting [66, 98, 17, 1].

When working with probabilistic models, it is essential to provide a quantitative measure
to assess, for example, the model performance or to select the appropriate model among many.
There are several distances intended to measure how similar or dissimilar two probability
distributions are. Here, we focus on two distances: the Euclidean distance L2 and another
distance based on the confusion matrix, a tabular representation commonly used in machine
learning to evaluate the accuracy of a classification algorithm based on the counts of the
predicted true positive, true negative, false positive, and false negative. Both distances are
used in the next chapter to compare the distributions generated by probabilistic automata.

While all concepts we treat in this chapter are standard, we also present a novel algorithm
to compute the Euclidean distance between two regular distributions using weighted graphs.

12 Probabilistic automata

2.1 Finite automata

Finite automata are a fundamental concept in the field of theoretical computer science.
They are used to recognize whether a given string belongs to a given language, making
them an essential tool for language recognition and processing. As such, they play a
crucial role in many areas, including biological sequences representation [32], aural pattern
recognition [100], sequences classification [113], and image recognition [77].

In this section, we recall the two most basic automata models: deterministic finite
automata (DFAs) and nondeterministic finite automata (NFAs). We will provide their formal
definitions and for the sake of completeness, we show how they are related to each other.

2.1.1 Nondeterministic and deterministic finite automata

An NFA consists of a finite set of states, a finite set of input symbols, a transition function, a
set of initial states, and a set of final states. In an NFA, the transition function maps a state
and an input symbol to a set of possible next states. This non-determinism allows the NFA
to explore multiple paths simultaneously, branching out and potentially backtracking as it
processes the input.

Definition 1. Nondeterministic finite automaton A nondeterministic finite automaton (NFA)
is a 5-tuple A = hS,Q, I,F,d i, where

• S is a finite alphabet,

• Q is a finite set of states,

• I : Q ! {0,1} maps to 1 all states that are initial,

• F : Q ! {0,1} maps to 1 all states that are final,

• d : Q⇥S ! {0,1}Q is the transition function.

To check if a given string x 2 S⇤ is accepted by an NFA we need to calculate the set of
states that can be reached by all possible paths that can be taken by following one action of x
at the time. To this purpose, we use the extension d ⇤ of d that takes as input a state, a string,
and returns the set of states that can be reached from them. Formally, the extended transition
function d ⇤is defined recursively, for all q 2 Q, as follows:

• d ⇤(q,e)(q) = 1

• d ⇤(q,ax)(q00) = 1 if there exist q0 such that d (q,a)(q0) = 1 and d ⇤(q0,x)(q00) = 1.

2.1 Finite automata 13

Here e is the empty string, a 2 S and x 2 S⇤. The acceptance of a string by an NFA is
determined by whether there exists at least one computation path that leads to a final state
when the entire input is consumed. More formally, given an NFA A and a state q 2 Q, we
say that the language L(A,q) consists of all strings for which there exists a state q0 such
that d ⇤(q,x)(q0) = 1, and F(q0) = 1. The language L(A) accepted by an NFA A is the union
of all L(A,q) for states q such that I(q) = 1. A language L is said to be regular if there
exists an NFA A that accepts exactly the language L. A path p for an accepting string
x = a1 . . .an 2 L(A) is a sequence of states q0 . . .qn on Q⇤ such that d (qi,ai+1)(qi+1) = 1 for
all 0 6 i 6 n�1, starting from an initial state, i.e. I(q0) = 1, and ending in a final state i.e.
F(qn) = 1. We use Paths(x) to denote the set of all accepting paths for a given string x. Note
that the set Paths(x) is necessarily finite. An accepting path contains a cycle if it contains the
same state twice, that is, there exists different i and j such that qi = q j.

Unlike an NFA, a deterministic finite automaton (DFA) has a unique next state for each
input symbol in each state. Accordingly, we say that an NFA A is deterministic (DFA) when
the following holds:

• |{q|I(q) = 1}|= 1 (one single initial state),

• 8q 2 Q and a 2 S, |{q0|d (q,a)(q0)}= 1|6 1 (at most one next state).

Typically, we denote by q0 the unique initial state of a DFA. This deterministic (and com-
plete) behavior of a DFA makes it easier to implement, at cost, however, of flexibility and
conciseness when compared to equivalent NFAs. Note that, for a DFA, |Paths(x)|= 1 for
every accepted string x.

Every DFA is an NFA. Conversely, for any NFA we can construct a DFA that accepts
the same language [96]. However, NFAs are always smaller than or equal to their equivalent
DFAs in terms of the number of states. The construction involves creating a DFA where each
state represents a subset of the original NFA’s states. The transitions in the new DFA are
determined by the transitions of the original NFA, considering the set of states that can be
reached by following those transitions. The final states correspond to subsets of the original
NFAs containing at least one final state.

For example, consider the language L over S = {a,b} for which the 2nd symbol before
the end is an a. This language can be recognized by an NFA with 3 states, whereas a DFA
needs at least 4 states. See Fig. 2.1 for the two automata. This example can be generalized to
the nth symbol before the last one to notice that the DFA will need exponentially more states
than an NFA.

An advantage of DFAs over NFAs is that for a DFA it is possible to effectively construct
another DFA that is minimal [57], meaning that (1) it has the fewest number of states among

14 Probabilistic automata

all DFAs that recognize the same language, and (2) each state is essential, that is, reachable
from the initial state and leading to a final state.

q0 q1 q2
a,ba

a,b

(a) An NFA.

q0 q1 q2

q3

a
a

b

a

b

a b
b

(b) A DFA.

Fig. 2.1 Automata accepting strings over S = {a,b} for which the 2nd symbol before the end
is an a.

2.2 Probabilistic finite automata

Unlike ordinary languages that classify strings based on whether they belong or not to the
language, a probabilistic language associates probabilities to strings enabling the represen-
tation of uncertain or stochastic processes. As such, a probabilistic language is a (discrete)
distribution D : S⇤ ! [0,1] mapping each string x 2 S⇤ a probability P(x) that satisfies the
following constraint:

Â
x2S⇤

P(x) = 1

By allowing transitions of an NFA to have probabilities on each input, and considering
the choice of an initial and final state to be probabilistic, one obtains probabilistic finite
automata:

Definition 2. Probabilistic finite automaton A probabilistic finite automaton (PFA) is a
5�tuple A = hS,Q, Ip,Fp,dpi, where:

• S is a finite alphabet,

• Q is a finite set of states,

• Ip : Q ! (Q\ [0,1]) is the initial probability,

• Fp : Q ! (Q\ [0,1]) is the final probability,

• dp : Q⇥S ! (Q\ [0,1])Q is the transition function.

2.2 Probabilistic finite automata 15

Where Ip, Fp and dp must satisfy the following two conditions:

Â
q2Q

Ip(q) = 1,

8q 2 Q,Fp(q)+ Â
a2S,q02Q

dp(q,a)(q0) = 1.

The first condition requires to have a distribution of initial states, while the second
condition says that the selection of either finishing or proceeding to the next state for any
possible symbol is probabilistic. Technically, these two conditions are necessary to guarantee
that the language accepted by a PFA is a distribution.

q0|0

q1|0.4

q2|0.2

1
a 0.5

b 0.5

a 0.6

b 0.8

Fig. 2.2 A PFA

By adding probabilities to transitions, PFAs offer a natural way to capture and represent
uncertainty. They serve as building blocks for various machine learning algorithms handling
uncertain and noisy data or that make informed decisions under uncertainty.

The support of a PFA A = hS,Q, Ip,Fp,dpi is the NFA supp(A) = hS,Q, I,F,d i, where
I(q) = 1 if and only Ip(q)> 0, F(q) = 1 if and only if Fp(q)> 0, and d (q,x)(q0) = 1 if and
only if dp(q,x)(q0)> 0. An accepting path p of A for a string x = a1 . . .an is a sequence of
n+1 states q0 . . .qn such that:

• Ip(q0)> 0,

• dp(qi,ai+1)(qi+1)> 0, where 0 6 i < n,

• Fp(qn)> 0.

In other words, a path is accepted by a PFA if and only if it is accepted by the NFA of its
support.

16 Probabilistic automata

The probability generated by a probabilistic automaton for a string x is calculated by
considering each accepting path for x as independent, thus summing up their probabilities.
For a given accepting path, the probability is determined by starting with the probability of
the initial state, and for each transition taken, multiplying the probability of reaching the
current state by the probability of the transition until all string is consumed, and thus finally
we can multiply with the probability of ending in a final state.

More precisely, given a PFA A and a path p = q0 . . .qn for an accepting string x = a1 . . .an

in supp(A), we denote the probability Ip(q0) of its initial state q0 by ip(p), the probability
Fp(qn) of the final state qn by ep(p), and the product of all probabilities of transitions along
this path by dp(p). That is, inductively, if x is an empty string then p consists of one state
only, say p = q0 and then dp(p) = 1. Otherwise,

dp(p) = Pn�1
i=0 dp(qi,ai+1)(qi+1)

Notably, ip(p), ep(p), and dp(p) are all strictly positive and smaller than or equal to 1
for every accepting path p of supp(A). The probability of an accepting path p 2 Paths(x)
for string x is ip(p) ·dp(p) · ep(p), while the probability of a string x is defined by:

PA(x) = Â
p2Paths(x)

ip(p) ·dp(p) · ep(p).

We call PA the probability distribution on S⇤ generated by A. If a PFA A is consistent then it
is easy to show [39] that PA is indeed a distribution on S⇤, that is Âx2S⇤ PA(x) = 1. Here a
PFA A is said to be consistent if all its states are essential in supp(A), that is, they appear in
at least one accepting path. We say that a distribution on s⇤ is regular if generated by a PFA
A. In general, not all distributions on regular languages are regular [95].

Note that if we do not consider the final probability e(p) when computing PA(x) for a
string x 2 S⇤, we are then computing the probability of A generating an infinite string with
prefix x:

P̄A(x) = Â
|p|=|x|+1,p2Q⇤

ip(p)dp(p).

Note that we consider all paths here of length |x|+1 instead of only accepting paths. This is
useful for non-terminating PFAs, i.e. PFA with Fp(q) = 0 for all states q. Note that for these
automata the probability PA(x) accepting x is 0, but P̄A(x) needs not, as x is seen as only a
prefix of an infinite string.

2.2 Probabilistic finite automata 17

Example 1. Given S= {a,b}, the distribution P(an) = 0.4 ·0.6n�1 ·0.5,P(bn) = 0.2 ·0.8n�1 ·
0.5 assigning 0 to all other strings is regular. It can be generated by the PFA shown in
Figure 2.2.

Note that we used only rational numbers as probabilities so to work with computable
algorithms. As a consequence, even distribution with finite support such as P(a) = p

4 ,
P(b) = 1� p

4 is not regular.

2.2.1 The forward and backward algorithms

There are several algorithms commonly used to compute the probability of a string given a
PFA. Here we describe two classical ones: the forward and the backward algorithms [10].

The forward algorithm calculates the forward probabilities, representing the probability
of being in a particular state at each position in the string. The final probability is obtained by
summing the forward probabilities of the final states at the last position. More specifically,
assuming the states of a PFA are Q = {q1, . . . ,qn} then given a string x = a0 · · ·am, the
algorithm computes a table of values F [i][j], which represents the probability of reaching
state q j after processing the i-th symbol of the string. The algorithm works as follows: first,
initialize F [0][j] to Ip(q j) for all 1 j n (lines 1-2), then for each i m , and for each
1 j n, compute the F [i][j] (lines 7-13). Finally, by multiplying F [n][j] by the final
probability of the state q j and summing up all alternatives, we get the actual probability of
the string x (lines 15-17).

A complementary approach is taken by the backward algorithm, which computes the
probabilities of being in each state at each position in the string from right to left, starting
from the final position.

While the forward algorithm computes the probability of being in a particular state at
a given position in a string, given the symbols observed up to that position, the backward
algorithm focuses on the probability of generating the remaining symbols of the string, given
a specific position. This is called smoothing and plays an important role in the Baum-Welch
algorithm to learn the parameter probabilities of a PFA.

Given a string x, the algorithm computes a table of values B[i][j], which represents the
probability of reaching state q j after processing the suffix ai + 1 · am of the string x. The
algorithm works as follows: first, it initializes B[m][j] to Fp(q j) for all 1 j n (line 2-4).
Then in reverse order for each m � i � 0, and for each 1 j n, it computes the backward
probability B[i][j] as the sum of all B[i+1][k] weighted by the probability of the transition
from q j to state qk labeled by ai (line 7-13). Finally, the sum of backward all probabilities
B[0][j] multiplied by the initial ones gives the actual probability of the string (line 15-17).

18 Probabilistic automata

Algorithm 1 Forward Algorithm
Input: A PFA A = hS,Q, Ip,Fp,dpi and a string x = a1 . . .an
Output: the probability PA(x) of string x
1: for 1 6 j 6 |Q| do
2: F [0][j] = Ip(q j)
3: for 1 6 i 6 n do
4: F [i][j] = 0
5: end for
6: end for
7: for 1 6 i 6 n do
8: for 1 6 j 6 |Q| do
9: for 1 6 k 6 |Q| do

10: F [i][j] = F [i][j]+F [i�1][k] ·dp(qk,ai)(q j)
11: end for
12: end for
13: end for
14: PA(x) = 0
15: for 1 6 j 6 |Q| do
16: PA(x) = PA(x)+F [n][j] ·Fp(q j)
17: end for
18: return the probability PA(x)

Algorithm 2 Backward Algorithm
Input: A PFA A = hS,Q, Ip,Fp,dpi and a string x = a1 . . .an
Output: the probability PA(x) of string x
1: for 1 6 j 6 |Q| do
2: B[n][j] = Fp(q j)
3: for i : 1 6 i 6 n do
4: B[i][j] = 0
5: end for
6: end for
7: for 0 6 i 6 n�1 do
8: for 1 6 j 6 |Q| do
9: for 1 6 k 6 |Q| do

10: B[i][j] = B[i][j]+B[i+1][k] ·d (q j,ai)(qk)
11: end for
12: end for
13: end for
14: PA(x) = 0
15: for 1 6 j 6 |Q| do
16: PA(x) = PA(x)+B[0][j] · Ip(q j)
17: end for
18: return the probability PA(x)

2.2 Probabilistic finite automata 19

The time complexity of both the forward and backward algorithms is O(|x| · |dp|), where
|dp| is the size of the transition function. This is a significant improvement over the brute-force
approach of enumerating all possible paths, which has exponential complexity O(|Q||x|) [10].

2.2.2 Deterministic probabilistic finite automata

As a special case of PFAs, a deterministic probabilistic finite automaton (DPFA) satisfies the
additional constraints that its support is a DFA:

• |{q|Ip(q)> 0}|6 1,

• 8q 2 Q,8a 2 S, |{q0 | dp(q,a)(q0)> 0}| 1.

Differently from PFAs, a DPFA has at most one initial state, and for each state there is at most
one transition to the next state labeled by an alphabet symbol and with nonzero probability.
These constraints ensure that, given any string, there is at most one accepting path through
the automaton.

The probabilistic choice of PFA introduces uncertainty as different transitions may be
taken for the same symbol with different probabilities. While we have seen that this non-
determinism in an NFA can be eliminated, we show next that not every regular distribution
can be generated by a DPFA.

Theorem 1. [39] The class of distributions generated by DPFAs is a proper subclass of
regular distributions.

Proof. Let A be a probabilistic automaton and define r(x) as follows:

8x 2 S⇤, r(x) =

(
PA(x)/P̄A(x) i f P̄A(x)> 0,
0 otherwise.

If A is a DPFA, then the set {r(x)|x 2 S⇤} is necessarily finite as it is bounded by the
number of states with the final probability strictly positive.

Consider now the PFA described in Figure 2.3. We have:

r(an) = P(an)/P̄(an)

=
0.5 ·0.6n ·0.4+0.5 ·0.8n ·0.2

0.5 ·0.6n +0.5 ·0.8n

= 0.2+
0.4

(1+2n)
,

which is a strictly decreasing series for strictly increasing values of n. Therefore the set
{r(x) | x 2 S⇤} cannot be finite.

20 Probabilistic automata

q0|0.4 q1|0.2
0.5 0.5

a 0.6 a 0.8

Fig. 2.3 A PFA that cannot be represented by a DPFA.

2.3 Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model alternative to PFA to model and
analyze sequential data. An HMM is composed of two main components: a set of observable
symbols or emissions and a set of hidden states. The hidden states cannot be directly observed,
but they emit observable symbols with certain probabilities. These emissions are dependent
on the current hidden state but not on the previous history of states[74]. Transitions between
hidden states indicate the likelihood of moving from one state to another. HMMs are used
in the field of machine learning, with applications in computational biology [8, 41], speech
recognition [7, 60, 68, 97], and information extraction [107].

Definition 3. A discrete HMM (with state emission) is a 5�tuple M = hS,Q,A,B, ii, where

• S is a finite alphabet,

• Q is a finite set of states,

• A : Q⇥Q ! (Q\ [0,1]) is the probability of each transition such that

8q 2 Q, Â
q02Q

A(q,q0) = 1,

• B : Q⇥S ! (Q\ [0,1]) is the emission probability of each letter on each state such
that

8q 2 Q, Â
a2S

B(q,a) = 1,

• i : Q ! (Q\ [0,1]) is the initial probability such that

Â
q2Q

i(q) = 1.

2.3 Hidden Markov Models 21

Given an HMM M = hS,Q,A,B, ii, a path p is a sequence defined on Q⇤. For any
path p , qi denotes the ith state of p , and |p| denotes the length of path. For any string
x = a1 · · ·an 2 S⇤ and any path p 2 Q⇤, the probabilities PM(x,p) and PM(x) are defined as
follows:

PM(x,p) =

8
><

>:

i(q0)’n�2
i=0 [B(qi,ai+1)A(qi,qi+1)]B(qn�1,an) i f |x|= |p|> 0,

1 i f |x|= |p|= 0,
0 otherwise.

PM(x) = Âp2Q⇤ PM(x,p).

Sometimes in an HMM the emission probability B of a current state q is given dependent not
only on the symbol of the alphabet but also on the next state, that is, B : Q⇥S ! (Q\ [0,1])Q

such that

8q,q0 2 Q, Â
a2S

B(q,a)(q0) =

(
1 i f A(q,q0)> 0,
0 otherwise,

These models are called HMM with transition emission (HMMT). For a HMMT, string
x = a1 · · ·an 2 S⇤ and any path p = q0 · · ·qn 2 Q⇤, the probability PM(x,p) is now defined as
follows:

PM(x,p) =

(
i(q0)’|x|�1

i=0 [B(qi,ai+1)(qi+1)A(qi,qi+1)] i f |p|= |x|+1,
0 otherwise.

No changes are needed in computing the probability PM(x) given the above PM(x,p).

Proposition 1. [39] HMMs, HMMTs, and non-terminating PFAs (i.e. with no final state
probabilities) are all equivalent in the sense that they recognize the same class of distributions.

Proof. We will prove this proposition in three steps. First, we show that every HMMT can be
transformed into an equivalent HMM. Second, we show that a PFA with no final probabilities
is equivalent to an HMMT, and finally, we give a construction transforming an HMM to a
PFA.

Let M = hS,Q,A,B, ii be an HMMT, and define M0 = hS,Q0,A0,B0, i0i to be an HMM,
where:

• Q0 = {(q,q0) 2 Q⇥Q|A(q,q0)> 0}.

• A0((q,q0)(q00,q000)) =

(
A(q00,q000) q0 = q00

0 otherwise.

• B0((q,q0),a) = B(q,a)(q0)

22 Probabilistic automata

• i0((q,q0)) = i(q) ·A(q,q0).

The idea is that the states of M0 represent pairs of states in Q that are connected by a strictly
positive transition probability. Following the definition of A0 the only interesting paths to
considers in calculating PM0(x) are of the form p 0 = (q0,q1)(q1,q2) . . .(qn�1,qn) that are
in one-to-on correspondence with path p = q0q1 . . .qn�1qn in M. Note that p 0 has length
n while p has length n+ 1. We then have for any non-empty string x = a1 · · ·an and path
p = q0 . . .qn we have

PM(x,p) = i(q0)
|x|�1

’
i=0

[B(qi,ai+1)(qi+1)A(qi,qi+1)]

= i(q0)A(q0,q1)
|x|�2

’
i=0

[B(qi,ai+1)(qi+1)A(qi+1,qi+2)]B(qn�1,an)(qn)

= i0((q,q1))
|x|�2

’
i=0

[B0(qi,qi+1,ai+1)A0(qi,qi+1)(qi+1,qi+2)]B0((qn�1,qn),an)

= PM0(x,p 0)

We thus have that every HMMT can be transformed into an equivalent HMM.
Next, we will show that for every non-terminating PFA M = hS,Q, Ip,Fp,dpi we can

define an equivalent HMMT M = hS,Q,A,B, ii, where, for all q,q0 2 Q and a 2 S

• i(q) = Ip(q),

• A(q,q0) = Âa2S dp(q,a)(q0), and

• B(q,a)(q) =

(dp(q,a)(q0)
Âa2S d (q,a)(q0) i f Âa2S dq(q,a)(q0)> 0,
0 otherwise.

It is easily shown that M0 is a HMMT. Furthermore M and M0 generate the same distribution
because for any string non-empty string x = a1 · · ·an and path p = q0 . . .qn we have

P̄M(x,p) = Ip(q0)
n�1

’
i=0

dp(qi,ai+1(qi+1)

= Ip(q0)
n�1

’
i=0

B(qi,ai+1)A(qi,qi+1)

= i(q0)
n�1

’
i=0

B(qi,ai+1)A(qi,qi+1)

= PM0(x).

2.3 Hidden Markov Models 23

For the last step, given an HMM M = hS,Q,A,B, ii we can construct a non-terminating
PFA M0 = hS,Q, Ip,Fp,dpi by setting 8q,q0 2 Q and a 2 S:

• Ip(q) = i(q),

• Fp(q) = 0

• dp(q,a)(q0) = B(q,a) ·A(q,q0)

It is easily shown that M0 is a PFA and that M and M0 generate the same distribution.

Example 2. Fig. 2.4a presents a HMMT M = hS,Q,A,B, ii defined as follows:

• S = {a,b},

• Q = {1,2},

• A(1,1) = 0.2, A(1,2) = 0.8, A(2,1) = 0.3, A(2,2) = 0.7,

• B(1,a)(1) = 0.4, B(1,b)(1) = 0.6, B(1,a)(2) = 0.4, B(1,b)(1) = 0.6, B(2,a)(1) =
0.8, B(2,b)(1) = 0.2, B(2,a)(2) = 0.1, B(2,b)(2) = 0.9,

• i(1) = 0.7, i(2) = 0.3.

There exists an equivalent HMM M0 = hS0,Q0,A0,B0, i0i shown in Fig. 2.4b, which defines as
follows:

• S0 = S,

• Q0 = {(1,1),(1,2),(2,1),(2,2)},

• A0((1,1),(1,1)) = 0.2, A0((1,1),(1,2)) = 0.8, A0((1,2)(2,1)) = 0.3,
A0((1,2)(2,2)) = 0.7, A0((2,1)(1,1)) = 0.2, A0((2,1)(1,2)) = 0.8,
A0((2,2)(2,1)) = 0.3, A0((2,2)(2,2)) = 0.7,

• B0((1,1),a) = 0.4, B0((1,1),b) = 0.6, B0((1,2),a) = 0.4,
B0((1,2),b) = 0.6, B0((2,1),a) = 0.8, B0((2,1),b) = 0.2,
B0((2,2),a) = 0.1, B0((2,2),b) = 0.9,

• i(1,1) = 0.14, i(1,2) = 0.56, i(2,1) = 0.09, i(2,2) = 0.21.

Correspondingly, there is an equivalent non-terminating PFA M00= hS00,Q00, Ip,dpi shown
in Fig. 2.4c, which is defined as:

• S00 = S,

24 Probabilistic automata

• Q00 = Q,

• Ip(1) = 0.7, Ip(2) = 0.3,

• dp(1,a)(1) = 0.08, dp(1,b)(1) = 0.12, dp(1,a)(2) = 0.32,
dp(1,b)(2) = 0.48, dp(2,a)(1) = 0.24, dp(2,b)(1) = 0.06,
dp(2,a)(2) = 0.07, dp(2,b)(2) = 0.63.

1 2

0.7 0.3

[a 0.4]
[b 0.6]

0.8

0.3
[a 0.8]
[b 0.2]

0.2
[a 0.4]
[b 0.6]

0.7
[a 0.1]
[b 0.9]

(a) An HMMT. This subfigure illustrates
the graphical representation of an HMMT,
showcasing its two states (labeled 1 and
2) and their associated transition probabil-
ities.

21

11

22

12
[a 0.4]
[b 0.6]

[a 0.4]
[b 0.6]

[a 0.8]
[b 0.2]

[a 0.1]
[b 0.9]

0.14 0.56

0.09 0.21

0.2

0.7

0.8

0.3

0.2
0.8

0.7
0.3

(b) An equivalent HMM. Presented here is
an equivalent HMM that captures the same
probabilistic behavior as the HMMT.

1 2

0.7 0.3
a 0.32
b 0.48

a 0.24
b 0.06

a 0.08
b 0.12

a 0.07
b 0.63

(c) An equivalent PFA. The subfigure displays a
PFA equivalent to the previously shown HMM
and HMMT. It maintains the essential two-state
structure and transition probabilities.

Fig. 2.4 An HMMT with its equivalent HMM and PFA.

2.4 Distances between two distributions

There are several ways to define the distance between two discrete probability distributions,
depending on the reason why we want to know how close two distributions are. Important
measures used in machine learning algorithms include the Kullback-Leibler divergence,

2.4 Distances between two distributions 25

the Lp distance, the Hellinger distance, and the triangle distance [31, 117, 71, 30]. In this
chapter, we concentrate on regular distributions and discussed two methods for computing
the distances between discrete probability distributions on strings. One method relies on the
presentation of the two distributions via PFAs. For this case, we present a novel variation of
the algorithm presented in [30] for stochastic weighted automata to calculate the Lp distance.
The other method compares a probability distribution presented by a PFA only with respect
to a finite set of strings that is taken as ground truth. In this case, we use a probabilistic
version of accuracy, precision, and recall.

2.4.1 Computing the Euclidean distance between regular distributions

For any integer p > 1, the Lp distance between two distributions D1 and D2 on S⇤ is defined
as:

Lp(D1,D2) = (Â
x2S⇤

|D1(x)�D2(x)|p)1/p. (2.1)

While the above distances are commonly used to compare vectors, they can also be applied
to compare distributions by treating them as multidimensional vectors. Examples include the
Euclidean distance L2 and the "Manhattan" distance L1. In general, the problem of computing
L2p+1 given two probabilistic finite automata is known to be NP-hard even for automata
without cycles [30, 71]. The same holds also for L•, a distance adapted from the L1 by
substituting the sum with the supremum. Therefore we restrict to the distance L2p for any p
and present a novel algorithm to compute the L2 distance between two regular distributions
given two probabilistic automata that generate them. Generalizing the algorithm to any other
even number 2p is trivial. For simplicity we compute (L2(A1,A2))2, and then we can obtain
the L2 distance between A1 and A2 straightforwardly by taking square root:

L2(A1,A2) = (L2(A1,A2)
2)

1
2

= (Â
x2S⇤

|PA1(x)�PA2(x)|
2)

1
2

= (Â
x2S⇤

(PA1(x)�PA2(x))
2)

1
2

= (Â
x2S⇤

PA1(x)
2 �2PA1(x)PA2(x)+PA2(x))

2)
1
2

= (Â
x2S⇤

PA1(x)
2 �2 Â

x2S⇤
PA1(x)PA2(x)+ Â

x2S⇤
PA2(x)

2)
1
2 .

(2.2)

26 Probabilistic automata

In the second equality, the absolute values can be removed since they are squared. The
last three summations can be computed separately via a shortest-distance algorithm for
weighted graphs. In general, we consider three different situations.

First, when A1 and A2 are acyclic, those summations are finite and can be computed
directly.

Second, when both A1 and A2 are deterministic probabilistic automata, we compute their
intersection automaton A using the product construction. In short, each state corresponds to
a pair of states, one from each original automaton. The initial and final probability on the
Cartesian product of the states is the product of the respective probabilities in both automata.
Similarly, the transition probabilities for a pair of states are obtained by multiplying the
probabilities of the corresponding transitions in the original automata for the same symbol.
The resulting state is the product of the resulting state of each transition.

To avoid computing three intersections, we keep the probability labeling each transition
dp((q1,q2),a)(q01,q

0
2) as a pair (dp1(q1,a)(q01),dp2(q2,a)(q02)), where dp1 is the transition

function of A1 and dp2 is the one of A2. When calculating PAi(x)
2, we only need to square the

i�th component of the pair, while we multiply the two components to calculate PA1(x)PA2(x).
This is possible because, for any string x 2 S⇤, there is at most one accepting path in A1

and A2. Finally, we use the shortest distance algorithm over the intersection automaton with
weight modified as described above to compute Âx2S⇤(PA1(x))

i(PA2(x))
2�i for i = 0,1 and 2.

The third and last situation is when A1 and A2 are arbitrary PFAs. In this case, there
may be multiple paths with the same label, which means we cannot avoid performing three
different intersection automata: one of A1 with itself, another of A1 with A2, and the last
of A2 with itself. As before, we use the shortest distance algorithm over the intersection
automaton to compute Âx2S⇤(PA1(x))

i(PA2(x))
2�i for i = 0,1 and 2.

A shortest distance algorithm for weighted graphs

The classical shortest paths problems compute the shortest paths from one set of source
vertices to all other vertices in the graph. This problem has been generalized to the weighted
graph [80]: The shortest distance from a set of vertices I to a vertex F is the sum of the weights
of all paths from nodes in I to nodes in F . In [80], a generic algorithm is given to compute
single-source shortest distances for a directed graph with weight in a semiring. Termination
of the algorithm depends on the graph being k�closed, a condition that unfortunately is not
satisfied by probabilistic automata (or by their intersection). Therefore, we must adapt the
algorithm to work with a weaker condition, namely boundness.

A weighted graph hS,Q, I,F,d i consists of an alphabet S, a finite set of states Q, an initial
weight I : Q !Q, a final weight F : Q !Q, and a transition function d : Q⇥S !Q

Q. It is

2.4 Distances between two distributions 27

similar to a PFA but does not need to satisfy its restrictions. Every probabilistic automaton is
a weighted graph, and the intersection of two PFAs, as sketched above, is a weighted graph
(but, in general, not a PFA).

Definition 4. A weighted graph hS,Q, I,F,d i is bounded, if for any cycle p there exists a
k 2Q such that Â•

n=1 d (p)n = k.

For example, every PFA hS,Q, Ip,Fp,dpi is bounded because the probability of a path with
a cycle is always strictly less than 1. It follows that Â•

n=1 dp(p) = r
1�r , where dp(p) = r < 1.

Also, the intersection of two PFAs is a bounded weighted graph, but not necessarily a PFA
because weights are not normalized.

Next, we provide a shortest-distance algorithm for bounded weighted graphs. The pseudo-
code is given in Algorithm 3. The algorithm uses a set S to maintain the states after transitions
and M to store the sequence of transitions visited. S is initialized as a set of initial states.
d[q] is the total weight from an initial state to the current state q and r[q] is the weight of the
current transition from an initial state to state q.

In the while loop from line 10 to 31, each time we extract a state q from set S, then store
the value of r[q] in r0 and set r[q] to 0. Lines 13� 31 calculate the distance. First, for all
transitions starting from state q, if the following state q0 does not exist in M[q], update M[q0]
and the value of d[q0] and r[q0]. If next state q0 is not in S, add q0 into S. If the next state q0

exists in M[q], find path p of the repetition part, then update d[q]. When q is the last state in
set S, and there are no more transitions, the while loop ends. In the end, for each state q, d[q]
is multiplied by the final weight of the state.

2.4.2 Metrics based on a probabilistic confusion matrix

The above Euclidean distance assumes the availability of two probabilistic automata gener-
ating the distributions we want to measure. In many cases, however, we only have a PFA
representation of one distribution to be compared against a finite distribution. This is the
case, for example, when we want to learn a PFA and we want to compare its predictions with
the given probabilities in a finite dataset.

In a similar binary classification situation but without probabilities, we can use the
confusion matrix as a summary to evaluate the performance of a model. It organizes the
evaluation into four categories [109]: true positives (TP) are the instances that are correctly
predicted as positive by the model. True negatives (TN) are the instances that are correctly
predicted as negative by the model. False positives (FP) are the instances incorrectly predicted
as positive by the model and false negatives (FN) are the instances incorrectly predicted as
negative by the model. In general, we are not interested in the specific instances, but only in

28 Probabilistic automata

how many there are, so we let T P,T N,FP, and FN denote the number of instances in each
of these sets.

The confusion matrix allows for the derivation of various performance metrics, including:

• Accuracy: The overall correctness of the model’s predictions against a finite set of
data, calculated as (T P+T N)/(T P+T N +FP+FN);

• Precision: The ability of the model to correctly predict positive instances, calculated
as T P/(T P+FP);

• Recall (also called Sensitivity): The ability of the model to identify all positive
instances, calculated as T P/(T P+FN).

For a more balanced measure combining both precision and recall, one often uses the F1
score, calculated as 2 · (Precision ·Recall)/(Precision+Recall).

The above confusion matrix consists of counting predicted and true instances. However,
when working with PFAs, predictions provide probabilities or confidence scores for string.
We, therefore, extend the confusion matrix to take into account these probabilities instead
of a binary classification. Our probabilistic confusion matrix expands the concept of true
positives, true negatives, false positives, and false negatives to incorporate probabilities using
the L1 distance between the probability of the true instances Ps and the one predicted by a
PFA PA automaton.

Confidence on True Positives (cTP): a measure of the global error between the proba-
bility of the correctly classified instances, calculated as Âx2T P 1� |Ps(x)�PA(x)|;

Confidence on False Positive (cFP): a measure of the global error of all instances that
are incorrectly classified as negative, calculated as Âx2FP PA(x).

Confidence on False Negatives (cFN): a measure of the global error of all instances
that are incorrectly classified as negative, calculated as Âx2FN Ps(x).

We do not have a confidence variant of true negative instances, as the probability of not
belonging to language is 0. An interesting extension would be to consider probabilistic
languages with a certain probability threshold [95].

The above probabilistic confusion matrix provides a more detailed and nuanced analysis
of a PFA in terms of its generated distribution but takes into account its NFA support. This
generalization leads to a new definition of precision, sensitivity, and specificity for PFAs:

Precision =
cT P

T P+ cFP
, (2.3)

2.5 Summary 29

Sensitivity =
cT P

T P+ cFN
, (2.4)

Speci f icity =
T N

T N + cFP
(2.5)

Note the asymmetry between T P and cFP in the denominator of Precision and Sensitivity
(T P does not use the confident value) because T P refers to the total number of corrected
instances needed to average confidence cT P.

The closer the predicted distribution of a PFA is to that of the grounded truth test set, the
closer will precision, and sensitivity be to 1. On the other hand, when the less true positive
the more precision, the sensitivity will be closer to 0.

2.5 Summary

In this chapter, we introduced finite automata, probabilistic automata, and Hidden Markov
Models, and studied their relationships. In particular, we have seen that probabilistic automata
are strictly more general than their deterministic version and that they are very similar to the
Hidden Markov Model. Our focus is on probabilistic automata, and therefore we presented
two classical algorithms to compute the probability of string in a given PFA and a novel
way to compute the Euclidean distance between two regular distributions presented by
probabilistic automata.

30 Probabilistic automata

Algorithm 3 A shortest distance algorithm for weighted graphs
Input: A bounded weighted graph hS,Q, I,F,d i
Output: A rational number d, the shortest distance between I and F

1: Let S and M be an empty set
2: for q 2 Q do
3: if Ip(q) 6= 0 then
4: d[q] = Ip(q) ; r[q] = Ip(q) ; M[q] = {q};
5: add state q to S
6: else
7: d[q] = 0;r[q] = 0
8: end if
9: end for

10: while S 6= /0 do
11: remove an element q from S and add it to P;
12: r0 = r[q] ; r[q] = 0
13: for all a 2 S,q0 2 Q do
14: if dp(q,a)(q0) 6= 0 then
15: if q0 is not in M[q] then
16: M[q0] = M[q]+aq0;
17: d[q0] = d[q0]+ (r0 ⇥dp(q,a)(q0)) ; r[q0] = r[q0]+ (r0 ⇥dp(q,a)(q0))
18: if q0 /2 S then
19: add q0 to S
20: end if
21: else
22: find cyclic subsequence q0xq0 in M[q] and store it in Re;
23: remove alphabet symbols from q0xq0 and store the resulting path in p
24: if Re /2 M[q0] then
25: l = dp(p) ; k = l

1�l
26: d[q0] = d[q0]+ (r0 ⇥ k) ; r[q0] = r[q0]+ (r0 ⇥ k)
27: end if
28: end if
29: end if
30: end for
31: end while
32: for q 2 Q do
33: d[q] = d[q]⇥Fp[q]
34: end for
35: return d

