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Chapter 1

Introduction

In computer science, the concept of learning stands as a cornerstone, as it forms the very
foundations of intelligent systems, algorithms, and applications. In essence, the concept
of learning is not confined to the conventional human understanding of the term, often
associated with the cognitive processes of acquiring knowledge, skills, or understanding
through study, intuition, or experience. Rather, computer science takes a more systematic
view based on algorithms designed to automate the process of generalization and is often
heavily reliant on data to enable analysis that might be impractical for humans.

Traditional approaches [88] to learning include supervised learning, unsupervised learn-
ing, and reinforcement learning. Techniques such as deep learning and neural networks
have contributed to the large success of artificial intelligence integrated into many other
disciplines.

It is in this context that automata learning emerged as the theoretical lens through which
we seek to understand and enhance the learning processes of intelligent systems. At its core,
automata theory revolves around the study of abstract mathematical models that capture
the behavior and structure of dynamic systems. These models, represented by several
variations of the basic automata model, provide a formal framework for not only analyzing
the behavior of the system but also for studying algorithms that learn from data with temporal
dependencies. The application of automata learning is multifaceted, ranging, for example,
on the field analysis and verification of software systems, discerning patterns in biological
sequences, or optimizing control strategies in autonomous systems [91, 100, 32, 87].

1.1 Automata learning

The problem of inducing, inferring, or learning automata has been an active subject of re-
search in the last 40 years. In this context, the goal of learning is to find a finite representation



2 Introduction

of a (probabilistic, weighted) language in the form of an automaton or a grammar given a
finite amount of sequential data [58, 34].

Depending on whether the learner can interact with her environment or not, we distinguish
between two learning paradigms: active and passive learning [106, 20, 92]. The approaches
based on passive learning automata operate in a more observational and receptive manner.
The learning algorithms are designed to infer an automaton from a finite set of input sequences
from which one needs to deduce the underlying patterns or rules governing the system’s
behavior represented by the learned automaton. This approach often involves leveraging
algorithms that make minimal assumptions about the system at the price of being correct but
almost always incomplete, as one cannot learn more than the data it is presented with. The
passive learning automata approaches are particularly well-suited for scenarios where the
learner lacks the capability to actively query the environment or influence the data generation
process. From a theoretical point of view, the interest lies not only in the efficiency and
capability of the learner to learn with minimal data but also in the minimal set provided by
the teacher to guarantee optimal learning.

In contrast to the passive learning approaches, active learning automata frameworks
consist of algorithms that have the ability to interact with their environment by making
strategic queries or interventions. This interaction provides the capacity to choose which
data instances to query and when, so as to optimally use the data acquisition process and
deduce the structure and behavior of the system. This approach is especially advantageous
when resources are limited, and the system needs to optimize its learning efficiency by
selectively acquiring information that maximizes knowledge gain. An example is Angluin’s
active learning L⇤ algorithm [2], which infers an automaton from two types of interactions:
membership queries and equivalence queries. Using membership queries, the learner tests
whether a certain behavior is allowed by the system to be learned, whereas equivalence
queries are used to check if the learned model is correct and complete (i.e. equivalent to)
with respect to the target system. In the case the system and the model are different, then a
counterexample can be used as additional information.

The success of learning automata is typically measured by assessing its ability to accu-
rately infer a finite automaton from the available data [13, 110]. Experimentally this can
be measured using techniques from machine learning: given a set of strings, accuracy is
then the ratio of correctly identified strings to the total number of strings. Other metrics and
evaluation methods are also employed to determine the effectiveness of the automata learned.

Accuracy is related to the soundness of the learned automaton: all strings belonging to the
language of the learned automata should belong to the language of the model. Completeness
instead refers to the opposite direction: the learned automata should be able to generate every
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string in the language of the model. Active learning approaches seek possible interactions
that guarantee the soundness and completeness of the learned automaton. In passive learning,
instead, one is more interested in how quickly the automaton converges to the correct model
when increasing the size of the data available. This viewpoint is referred to as “identification
in the limit” [46]: a language is said to be identified when the target is found. Which
means the hypothesis is a perfect match with the target. From the teacher’s side, one can be
interested in the robustness and effectiveness of the data provided.

In this thesis, we will focus on both active and passive learning algorithms for probabilistic
and quantum automata, evaluate the goodness of our algorithms experimentally, and provide
a theoretical context using existing results. We will not focus on other evaluation metrics,
such as (1) robustness to noise measuring its performance when exposed to data with varying
degrees of randomness, and (2) information-theoretic metrics, such as entropy or information
gain that assess how well the automaton is capturing the essential information in the data. In
particular, we will not consider complexity issues related to query or sample in relation to
approximation error and confidence parameters that can be assessed, for example, using the
theoretical framework of "Probably Approximately Correct" learning" [118].

1.1.1 Learning probabilistic automata

Probabilistic automata are frameworks for understanding and modeling systems characterized
by inherent uncertainty and stochasticity. In essence, they are ordinary non-deterministic
automata that incorporate probabilistic transitions between states, as well as assigning an
initial and final probability to each state [93] to enable a representation of complex stochastic
phenomena. In fact, unlike ordinary automata, probabilistic automata are capable of modeling
the inherent uncertainty present in various real-world scenarios, making them well-suited for
variable applications, such as natural language processing [68, 7, 60], biological sequence
analysis [41, 8], cybersecurity [86], and beyond. The behavior of a probabilistic automaton
is given by its associated probabilistic language, that is a discrete probabilistic distribution
mapping each string on the alphabet to its probability.

Probabilistic automata are very similar to hidden Markov models, as they both can be used
to generate distributions over complete finite prefix-free sets if we do not consider the final
state distribution of a probabilistic automaton. On the other hand, hidden Markov models
with additional final probabilities and probabilistic automata both generate distributions over
strings of finite length. A probabilistic automaton can be converted into a hidden Markov
model and vice versa [121, 39].

The core challenges in learning probabilistic automata lie in assigning the right probability
to transitions and states given observed sequences of data equipped with associated frequency.
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In the context of active learning, spectral methods such as the eigenvalue decomposition of
matrices can be used to estimate the parameters of probabilistic automata.

While in general regular languages cannot be passively learned in the limit using only
positive examples [46], this is not the case for probabilistic regular languages [3], which can
be identified from positive samples with probability 1. Several passive learning algorithms
have been proposed for passively learning probabilistic automata, but most of them either
assume to know the states of the model or restrict themselves to deterministic probabilistic
automata. In the first category belongs the Baum-Welch algorithm [10], a variant of the
Expectation-Maximization algorithm specifically designed for hidden Markov models by
iteratively updating transition and emission probabilities to maximize the likelihood of the
observed sequences. However, this approach is not practical as it has a very large number of
parameters [84].

Deterministic probabilistic automata are often learned by state merging algorithms,
that initially compactly represent sets of sequences and their probabilities as a tree, and
then merge states in an automaton while minimizing the loss of information [24, 25, 101].
In the context of applying these state-merging algorithms is Flexfringe, a tool designed
to learn state machine models directly from input data [120]. Contrary to ordinary au-
tomata [34], deterministic probabilistic automata are strictly less expressive than probabilistic
automata [121, 35, 39]. As such, it is not immediate how to extend state merging methods to
learn general probabilistic automata.

In this thesis, we propose to learn separately the structure and the probabilities of an au-
tomaton, using, for example, genetic algorithms as an optimization technique to approximate
the parameters needed by the automaton for generating the probabilities of the observed
sequence of data.

1.1.2 Learning quantum automata

Another model of the systems with uncertainty is given by quantum automata. They differ
from probabilistic automata in their underlying computational principles and mechanisms:
quantum automata leverage the principles of quantum mechanics, such as superposition and
entanglement, while probabilistic automata rely on classical probability theory for modeling
uncertainties and random transitions.

Quantum automata have been introduced by Kondacs and Watrous early in 1997 [63].
States are qubits and transitions represent gates (or uniform operators) and are used to
represent and process information in quantum states. States can exist in superposition,
representing a combination of multiple states simultaneously, and their evolution involves
unitary transformations (quantum gates) described by the matrix of all transitions. As dictated
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by quantum mechanics, measurement causes the system to collapse into one of the possible
states with probabilities determined by the coefficients in the superposition. The most basic
model is given by one-way quantum finite automata, that allow the input to be read only
once.

Measurement can be done either only once at the end of the computation (measure-once
one-way quantum automata [83]) or many times in distinct states allowing the computation
to continue after the quantum state has been collapsed[63]. Both models are incomparable in
terms of expressivity between themselves and with respect to ordinary automata. However,
quantum automata can solve certain problems more efficiently than their classical counterparts
for some promise problems [52].

The measure once approach follows the conventional model of quantum computing
where the final result is obtained through a single measurement at the end of the computation,
often applied to problems where a single, precise outcome is enough, such as factoring
large numbers in Shor’s factoring algorithm [108] or searching an unsorted database in
Grover’s algorithm [50]. Measure-many quantum automata, instead often employed in
quantum simulations, is important for understanding the evolution of the quantum state. This
understanding is essential for extracting meaningful information about the evolving quantum
state at different stages of the computation.

More flexible types of quantum automata include the possibility to move on the input
string back and forth, allowing classical and quantum states, or more general quantum states
(in contrast to the pure quantum states) handled by one-way quantum automata. All these
extensions offer greater flexibility and expressivity, making them more suitable for a broader
range of quantum computing applications. However, the simplicity and efficiency of one-way
quantum automata make them interesting in the context of learning.

Quantum learning theory is a field that is still evolving and only in the last 20 years is
receiving more attention. It has primarily focused on developing quantum counterparts to
classical learning theory paradigms, including quantum exact learning [5], quantum PAC
models [23], and quantum agnostic models [6]. Quantum automata learning has seen limited
exploration, with only one notable work on active learning [94] and none on passive learning.
The work on active learning quantum finite automata allows interaction with the environment
by asking for state amplitudes, rather than providing the end probability of a computation.
Furthermore, it assumes that the learner possesses prior knowledge about the automaton’s
structure, including the identity of the accepting state and information about non-halting
states [94].
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1.2 Research questions

When learning ordinary automata using positive samples, other algorithms can be better
suited than state merging methods. For example, learning algorithms based on k-testable
languages offer a more concise representation of certain language classes compared to state
merging methods [44]. This efficiency can lead to more compact and comprehensible models,
especially when dealing with languages that have a significant level of structure and regularity.
Also, they can capture the underlying structure of the language with fewer examples, making
it advantageous when dealing with sparse or incomplete samples, a scenario where state
merging methods may face challenges. Based on this observation, in this thesis, we provide
an algorithm that disentangles the deterministic structural components from the probabilistic
elements within regular distributions to enhance the efficiency of learning algorithms and
gain a better understanding of the interplay between deterministic structure and probabilistic
variability. The key research questions and corresponding contributions of this thesis are as
follows:

Research Question 1 (RQ 1): Can we develop an effective passive learning algorithm
tailored for deterministic probabilistic regular distributions, achieving a separation between
structural information and probabilistic characteristics?

In Chapter 3, we propose an approach for passively learning probabilistic regular lan-
guages using only positive samples and parametric with respect to the length of an observable
window on the strings of the sample. This allows us to separate the structural information
using a technique for learning ordinary testable language from the probabilistic information
that is recovered from the distribution represented by the sample. We show experimentally
that our method learns more compact probabilistic automata than those learned by state
merging methods. Also, it perfectly learns the model with probability 1 as the sample size
tends to infinity.

The above method works well for learning deterministic regular distribution but fails
when, for example, abstraction identifies different actions creating inherent uncertainty.
The failure is due to the fact deterministic probabilistic automata are less expressive than
probabilistic automata as they cannot represent and model probabilistic behaviors with
inherent uncertainty. Also, we know that it is not possible to learn at the limit the structure of
a regular language from a positive sample only, leading to our second research question:
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Research Question 2 (RQ 2): In the context of passive learning, is it possible to learn regular
(not-necessarily deterministic) distributions by learning the structure and the probabilistic
information separately?

We answer this question only partially and by requiring more information than only
positive samples. In fact, in Chapter 4, we address the challenge of efficiently learning
probabilistic automata from positive and negative samples by learning the non-deterministic
structure of the underlying residual language of a distribution. The corresponding residual
automaton is non-deterministic and in some cases, it cannot be approximated efficiently by a
probabilistic deterministic model. The probabilistic information, in the case of nondetermin-
ism, is distributed fairly among the possible choices. This is not correct, but we show that it
behaves better than deterministic methods, including a state merging method and our testable
language method.

We improve the learning of the probabilistic information by solving a constraint optimiza-
tion problem. We learn the parameters of the underlying learned structure of a probabilistic
automaton using precise and approximate methods, such as genetic algorithms. The probabil-
ities in the sample enriched with negative information ensure the accurate modeling of the
learned distribution. To assess the effectiveness of our approach, we conduct experiments
comparing our algorithm with other methods using randomly generated regular distributions
as well as a case study on modeling agent behavior in a maze.

Having introduced learning methods for probabilistic automata that separate the structural
information from the probabilistic characteristics in the previous chapters, our next step
involves investigating the possibility of using a similar separation when learning another
model for systems with uncertainty: quantum automata.

Research Question 3 (RQ 3): Similar to probabilistic automata, quantum automata are
models used to describe systems that exhibit uncertainty or randomness. Can we develop an
algorithm for learning quantum automata in a realistic setting?

Having a realistic setting is important as learning quantum automata may aid in simulating
the behavior of quantum systems as well may facilitate the design and analysis of quantum
computations expressed, for example, as finite sets of observations. In Chapter 6, we explore
the applicability of active learning to approximate the parameters of measure-once quantum
automata. Our approach combines non-linear optimization techniques and Hankel matrix
analysis to learn the number of states and transition weights. The resulting approximation,
although not guaranteed to be a quantum automaton, effectively models complex languages.
By introducing a new method for measuring the proximity between learned and target
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automata, our work contributes to quantum automata learning, paving the way for efficient
language representation in quantum computing applications.

We conclude the thesis with a novel encoding of measure-once one-way quantum finite
automata into quantum optical experiments, something currently possible only with a re-
striction that we have prior knowledge of the length of the input strings. In Chapter 7, we
implement a solution that eliminates the need for this explicit knowledge. By employing a
specialized mechanism that dynamically encodes length information through rotations of
half-wave plates, we successfully achieve the first implementation of a genuine quantum
finite automaton. To close the circle, ideally, we would need to learn quantum automata from
the observations of quantum optical experiments, but this would require a passive learning
scheme for quantum automata that we leave as future work.
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1.3 Underlying Publications

Part of this thesis is based on peer-reviewed publications. The list below shows an overview
of these publications (ordered by date). For each publication we mention in which chapter
the research material is used and the contribution of each author.

• Chapter 3 is based on “Learning Probabilistic Languages by k-Testable Machines",
2020 International Symposium on Theoretical Aspects of Software Engineering (TASE),
2020 [26], by Wenjing Chu, and Marcello Bonsangue.

Contribution of authors

Wenjing Chu: all aspects,
Marcello Bonsangue: supervision and insight.

• Chapter 4 is based on “Learning probabilistic automata using residuals", Theoretical
Aspects of Computing–ICTAC 2021: 18th International Colloquium, Virtual Event, Nur-
Sultan, Kazakhstan, September 8–10, 2021, Proceedings 18, 2021 [27], by Wenjing
Chu, Shuo Chen, and Marcello Bonsangue.

Contribution of authors

Wenjing Chu: all aspects,
Shuo Chen: technical advice,
Marcello Bonsangue: supervision and insight.

• Chapter 4 is also based on “Non-linear optimization methods for learning regular
distributions", International Conference on Formal Engineering Methods, 2022 [28],
by Wenjing Chu, Shuo Chen, and Marcello Bonsangue.

Contribution of authors

Wenjing Chu: all aspects,
Shuo Chen: technical advice,
Marcello Bonsangue: supervision and insight.

• Chapter 6 is based on “Approximately Learning Quantum Automata", International
Symposium on Theoretical Aspects of Software Engineering, 2023 [29], by Wenjing
Chu, Shuo Chen, Marcello Bonsangue, and Zenglin Shi.

Contribution of authors

Wenjing Chu: all aspects,
Shuo Chen: technical advice,
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Zenglin Shi: technical advice,
Marcello Bonsangue: supervision and insight.


