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CHAPTER 6

Modeling Group Behaviour via
Spatio-temporal Data

The contents of this chapter are based on the following publications (with permission
from Springer Nature):

= M. Nasri, Z. Fang, M. Baratchi, G. Englebienne, S. Wang, A. Koutamanis,
and C. Rieffe, "A gnn-based architecture for group detection from spatio-

temporal trajectory data,” in International Symposium on Intelligent Data
Analysis, pp. 327-339, Springer, 2023 DOI: 10.1007,/978-3-031-30047-9_26.

= M. Nasri, T. Maliappis, C. Rieffe, and M. Baratchi, “T-dante: Detecting group
behaviour in spatio-temporal trajectories using context information,” in Inter-
national Symposium on Intelligent Data Analysis, pp. 28-39, Springer, 2024
DOI: 10.1007/978-3-031-58553-1_3.
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Abstract

Modeling group behavior can be used in schoolyards to understand children’s so-
cial behavior and their interactions with the social environment. Several studies
have addressed the problem of identifying group behavior through modeling spatio-
temporal trajectories. In this chapter, we revisit this problem by conducting two
parallel studies using dyad-based models and context-based models. In this con-
text, children are modeled as nodes in a graph. Such a graph representation in-
dicates, for example, the social network of children in a class or playgroup. Our
proposed dyad-based model, i.e., WavenetNRI, models interactions between each
pair of nodes (i.e., dyadic nodes) using their spatio-temporal trajectories. Whereas
our proposed context-based model, i.e., T-DANTE, includes the context informa-
tion, i.e., it models interactions of dyadic nodes by additionally considering the
spatio-temporal trajectories of surrounding nodes. We conducted our experiments
using two collections of datasets, namely Opentraj datasets (with five real-world
pedestrian datasets) and spring simulation dataset (with five simulation datasets),
and two evaluation metrics, i.e., group mitre and group correctness. Our experi-
ments compare the performance of these two models with two other baselines. The
results demonstrate that including context information can improve the accuracy
of group behavior modeling in Opentraj datasets. Meanwhile, in the simulation
dataset, which includes groups with larger sizes, the dyad-based model performs
better than other models.

6.1 Introduction

Children constantly interact with their social environment (i.e., peer groups and
teachers) in schoolyards through different games and activities [1]. The social en-
vironment provides opportunities for children to develop their social skills. Yet,
these environments may include barriers (e.g., environments in which children expe-
rience ostracism by their peers) that hinder social development for certain children.
Addressing the existing barriers in the social environment is crucial to prevent prob-
lems such as bullying and social exclusion and promote emotional well-being in
children [216].

The primary step in identifying these barriers is understanding children's social
behavior and their group formations in schoolyards. The main challenge in ob-
taining this understanding is the variability of children's interactions over time and
space. For instance, children often change their interacting partners or groups over
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recess time [35], or they often use several areas of schoolyards during group interac-
tions [217]. Thus, accurately capturing children’s group behavior in schoolyards is
only possible when both spatial and temporal elements are considered in the design
of the modeling framework [2].

Excessive literature in children’s research has studied social behavior by mea-
suring face-to-face interactions [218,219]. In this form of interaction, children are
physically present with one another within close proximity [77]. Similarly, in the con-
text of the present thesis, proximity tags were initially adopted to capture children’s
face-to-face interactions in schoolyards (see Chapters 2 - 4). Although capturing
face-to-face interactions provides an informative and straightforward measure to
understand children’s social behavior, it overlooks other forms of interactions that
commonly happen in schoolyards. In order to create a clearer picture of children’s
social behavior, in addition to face-to-face interactions, we also captured parallel
interactions, e.g., walking and running side-by-side, in schoolyards (see Chapter 5).

Yet, the complex nature of schoolyard activities might involve more complicated
forms of interactions not captured in face-to-face contact or parallel movements.
Understanding these complex group interactions requires analyzing children’s be-
havior in their social networks in schoolyards. From the data science perspective,
analyzing group behavior in a social network can turn into a mathematical problem:
how to identify sub-groups (or sub-graphs) in a given community (or graph). To
this end, various studies in social network analysis focused on designing community
detection algorithms that identify sub-communities based on pairwise relationships
among individuals [220-222]. Despite their great performance in identifying static
groups, these algorithms might not be able to identify groups in scenarios where
group formation dynamically changes over time and space. For example, when a
group of children is playing hide and seek, depending on their role, they might be
involved in social interactions that can only be revealed by analyzing the spatio-
temporal dynamics of children in forming a group, i.e., how children move in space
over time compared with their peers. Including these spatio-temporal dynamics is
essential to analyze social interactions and group formations in a higher resolution,
going beyond face-to-face interaction and parallel play.

The first attempts to address this challenge focused on classical machine learning
models, which incorporate a manual feature extraction process to find the most sig-
nificant features [223,224]. Although the results show promise, the manual feature
extraction and selection process is often time-consuming and might potentially intro-
duce bias to the model. Recent studies in the field of artificial intelligence focused
on developing neural network models to automatically extract features and iden-
tify sub-groups based on individual interaction graphs [225-228]. These pipelines
typically incorporate spatio-temporal data to train a neural network model and re-
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construct an affinity graph, i.e., a graph that represents the pairwise relationship
of individuals. Applying a community detection algorithm or clustering method can
identify sub-communities within this reconstructed graph. Previous studies focused
specifically on spatial features by adopting multi-layer perception MLP layers [225]
or 1-dimensional convolutional layers [226] to model group behavior, overlooking
the temporal dependencies that might contribute to modeling group formations.

To address this gap, the current chapter revisits the problem of group behavior
modeling in spatio-temporal data via neural network models by conducting two
parallel studies: (1) WavenetNRI [3], built upon NRI [226], and (2) T-DANTE [4],
building upon DANTE [225], to create an affinity graph via a neural network model
that can be used by a community detection algorithm to identify groups in a given
community. Overall, this chapter includes the following subjects:

= Discussing two novel neural network frameworks, i.e., WavenetNRI [3] and
T-DANTE [4], to address group modeling tasks using spatio-temporal data.

= Discussing a trajectory simulation framework, built upon spring simulation
framework [226,229], to stimulate group and non-group interactions among
particles in a physical system. This framework uniquely simulates attraction
points (i.e., points where group members often mingle around) to stimulate
group movements.

= Evaluating the performance of the two models, i.e., WavenetNRI and T-
DANTE, using two sets of datasets, namely Opentraj dataset (includes five
pedestrian datasets) and spring simulation dataset (with five simulation datasets)
against two baselines (i.e., NRI [226], and DANTE [225]) via two evaluation
metrics, i.e., Group Mitre and Group correctness.

The present study is organized as follows. The related literature is presented in
Section 6.2. The group modeling problem is defined in Section 6.3. Section 6.4
presents the details of the proposed approach in pairwise information and context
information. Section 6.5 presents the datasets, the evaluation metrics, baselines,
and implementation details adopted in our experiments. Moreover, this section
discusses the results of our experiments. Finally, Section 6.6 summarizes the study
and points out the limitations and directions for future research.

6.2 Related Work

The spatio-temporal data adopted in modeling group behavior can be categorized
into two areas: Dyad-based modeling and Context-based modeling. In dyad-
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based modeling studies, the spatio-temporal data per pair of nodes in the interaction
graph focuses on training their model and predicting the affinity score. Studies in
context-based modeling included the spatio-temporal data of the surrounding nodes,
i.e., social context, in addition to the pairwise interaction data to predict the affinity
score. The following section discusses the existing literature on adopting these two
strategies.

6.2.1 Dyad-based Modeling

Various studies in this area adopted graph-based neural networks (GNN) to estimate
pairwise interactions among agents [226—-228]. Thompson et al. [230] modeled a
scene as an interaction graph, where nodes and edges represent individuals and
their dyadic relationship, respectively. GNN is used afterward to predict the pair-
wise affinity, indicating the likelihood of pairwise interactions. In another attempt,
Kipf et al. [226] proposed Neural Relational Inference (NRI), which predicts interac-
tions between moving particles using spatio-temporal data. Both studies assumed
interactions among specific pairs of agents remain constant throughout the entire
timeframe. Yet, in real-world social settings, individuals often change their interac-
tion partners.

Moreover, they both overlook the symmetric group relationships among pairs in
the affinity graph. Implementing this feature satisfies the following condition in the
embedding space (where the affinity graph is reconstructed): if A is in a group with
B, B is also in the same group with A, to account for bidirectional relations in group
memberships. The dyad-based model, WavenetNRI, adopts the dilated residual
causal convolutional (GD-RCC) block [231] to capture short and long dependencies
in spatio-temporal dynamics. Moreover, it uses symmetric temporal edge features
and a symmetric edge updating process to address the symmetric property of group
relationships.

6.2.2 Context-based Modeling

This line of research incorporates the context information, i.e., the surrounding
agents, in addition to the dyad information, into the model’s design. The underlying
reason is that determining whether two individuals belong to the same group does
not solely depend on the behavior of those two individuals. Additionally, the behavior
of surrounding individuals could also impact this determination, e.g., in the context
of the schoolyard, identifying two children running together as a group will be
easier by including the fact that other children are playing in the sandpit as it
suggests significant spatio-temporal differences between the two groups. In line
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with this idea, Swofford et al. [225] introduced DANTE, a neural network model
that incorporates MLP layers. DANTE adopts the information of surrounding agents
in addition to the pairwise interactions to learn graph representation for a single-
frame scene. In another attempt, Lu et al. [232] introduced VGDTN, which adopts
1-dimensional convolutional layers to identify group behavior using both dyad and
context information in a single-frame scene. Yet, the focus of both studies on a
single-frame scene might overlook the temporal features that occur over multiple
timeframes. Moreover, MLP models and 1-dimensional convolutionals are known
to be incapable of effectively modeling time-series data such as spatio-temporal
trajectories compared with recurrent neural network (RNN) models. To address
this, the context-based model, T-DANTE, enhances the context information by
including scenes with multiple timeframes instead of a single scene. Moreover, by
implementing RNN layers, T-DANTE aims to capture short and long dependencies
in the spatio-temporal data.

6.3 Problem Formulation

Consider a dataset D that includes the movement trajectories of M agents. Each
movement trajectory X,,, = {1, ..., ¢, ..., o7 } indicates a consecutive sequence of
spatio-temporal features x; of agent m, m € (1, M) over a timeframe with 7" time
steps, t € (1,T). Each dyadic agent may interact with the others over the given
timeframe.

Firstly, we are interested in estimating the pair-wise relationships between dyadic
agents by learning the affinity score h2i~. between all dyadic agents ¢ and j and
assembling all scores to form an affinity graph. Secondly, we are interested in
identifying groups C' = {¢;|j € [1, K]} of agents in the created affinity graph
(1 £ K < N is the number of groups) under three main assumptions: (1) the
group relationships are constant in a time window, while agents could interact with
other agents from a different group. (2) Agents of the same group share similar
spatial behavior over a timeframe. (3) The size of the timeframe is fixed across the
measurements.

The present chapter discusses two approaches to address this problem: (1) the
dyad-based modeling and (2) the context-based modeling. The dyad-based model
learns interactions between dyadic nodes using their spatio-temporal trajectories.
Meanwhile, the context-based model learns dyadic node interactions by considering
surrounding nodes’ spatio-temporal trajectories.
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Figure 6.1: An overview of WavenetNRI framework. (1) The symmetric edge feature will
be created based on the spatio-temporal of nodes ¢ and j. (2) The edge embeddings will
be created by applying a GD-RCC block to the symmetric edge feature sequences. (3) All
edge embeddings will be aggregated per node j to obtain the node representation. (4)
The node embedding and edge embeddings will be used in this block to create the final
edge embeddings, i.e., affinity score, between node ¢ and j.

6.4 Methodology

This section presents the design of two models, i.e., WavenetNRI and T-DANTE.
These models identify group behavior by learning the affinity graph from spatio-
temporal data of nodes (nodes can be agents or individuals depending on the con-
text). While WavenetNRI focuses on extracting complex spatio-temporal depen-
dencies based on dyad information, T-DANTE adopts an RNN model to identify
group behavior using both dyad and context information. The details of these two
models are described as follows:

6.4.1 WavenetNRI Framework

The WavenetNRI models group behavior solely based on dyad information. The de-
sign of this model is inspired by NRI framework [226] and Wavenet framework [231].
To satisfy the symmetric feature of group membership, WavenetNRI implements
symmetric edge features and symmetric edge updating functions to account for the
bidirectional nature of group memberships. Moreover, WavenetNRI adopts GD-RCC
to learn short and long-term spatio-temporal dependencies in the edge feature. The
overview of the WavenetNRI framework is depicted in Figure 6.1. This framework
consists of four blocks, each representing one step in the training process as follows:
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Step 1. Symmetric Edge Features. In the first step, the symmetric edge
feature sequences eti . will be created using the spatio-temporal data of dyad nodes
i and j. The origin’al NRI implements this by simply concatenating the spatio-
temporal data of dyad nodes i and j (i.e., ef, ;; = [X{, X}]). Built on this idea,
WavenetNRI implements symmetric edge sequences to satisfy the symmetric nature
of group relationships. The edge feature sequences in WavenetNRI are constructed
by concatenating the pairwise distances and temporal increments in spatio-temporal
data per dyad as follows:

ey = IIX{ = Xj|l,AX; 0 AX]], tel,..,T—1, AX{=X""—X] (6.1)

Where || X} — X}|| denotes the Euclidean distance between dyad nodes i and j
and AX!® AX;- denotes the element-wise production of the increments of dyads.
Thus, edge feature sequence efi’j) captures both spatial and temporal differences
between each dyad. Moreover, the edge features are symmetric, i.e., efi)j) = efj’i),
corresponding to the symmetric properties of pairwise group relationships.

Step 2. GD-RCCC Block. The edge feature sequences efi,j) obtained in
the previous step will be given to the GD-RCC block to extract spatio-temporal
features of the given edge (i.e., edge embeddings). The original NRI adopts one
convolutional layer that may not efficiently capture the long-term interactions of
edge feature sequences. In the WavenetNRI, a GD-RCC block [231] inspired by
Wavenet [231] is used to transform the edge feature sequences efw.) into the edge
embedding h(lm.) as formulated in Equation 6.2. The use of GD-RCC block has
several advantages for the design of WavenetNRI: (1) The causal convolution main-
tains the order of the timely ordered edge sequences, (2) the dilated convolutional
kernels exponentially expand the receptive fields, (3) the skip connection (i.e., 1D
CNN) tackles the gradient vanishing problem, and (4) the gating activation function
regulates the information flow.

hiig) = faproo(es, ) (6:2)
Step 3. Node Updating Function. This step sums up all edge embeddings
h%i,j) for dyadic nodes i and j and gives them to the node updating function f, (as

proposed in the original NRI). This function generates higher level node embedding
hi (or h}) for dyadic nodes i and j as formulated in Equation 6.3.

hy = £ bt ) (6.3)

i#]
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Figure 6.2: An overview of T-DANTE framework: The dyad branch extracts the spatio-
temporal data of the pair of nodes of interest. The context branch extracts the spatio-
temporal data of surrounding nodes, i.e., social context. The extracted features from the
dyad branch and context branch will be merged in the combined branch. The output of
this branch, i.e., the affinity score h%i,j)' will be calculated per dyads to create the affinity
graph.

Step 4. Symmetric Edge Updating Function. The element-wise production
of the obtained node embeddings will be concatenated by the feature embeddings
h%i’j) obtained in Step 2 and fed to the neural network f. to get final edge embedding

h%ij) between dyadic node i and j, represented as the affinity score between the

two nodes (See Equation 6.4). Through this process, the final affinity score h%i,j)

captures interactions between dyadic nodes ¢ and j and their interactions with other
nodes [226].

his gy = fe([hii gy hi © B3)) (6.4)

During the supervised training phase, the ground-truth pairwise group relationships
G ;5 are used as labels. Since the datasets include an imbalanced distribution
of the labels, the weighted cross-entropy is adopted as a loss function. This loss
function assigns higher weights to the rare labels to compensate for their lower
distribution. By minimizing the weighted cross-entropy, WavenetNRI is optimized
to identify the “interaction” versus “no interaction” relation between nodes. After
supervised training, the affinity graph will be constructed by assembling all the
obtained affinity scores between pairs of nodes. The Louvain community detection
algorithm [222] is applied afterward to the obtained affinity graph to find sub-groups
among given nodes.
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6.4.2 T-DANTE Framework

While the previous approach, WavenetNRI, solely focuses on the spatio-temporal
data of the dyadic nodes, the T-DANTE framework additionally includes the spatio-
temporal data of the surrounding nodes, i.e., social context. This section presents
the details of T-DANTE, inspired by the DANTE framework [225]. T-DANTE
extends DANTE by utilizing RNN blocks to retain temporal information and spa-
tial features. During the training process, first, these spatio-temporal features will
be extracted from the data to estimate the affinity score between pairs of nodes.
Then, this affinity score will be compared with the pairwise group membership (i.e.,
ground truth G; ;) using the log loss function. Assembling the estimated affinity
score between all pairs of nodes creates an affinity graph, which can be used after-
ward in a community detection algorithm to detect sub-groups in the given data.
The proposed T-DANTE consists of three branches: (1) Dyad Branch, (2) Context
Branch, and (3) Combined Branch (See Figure 6.2). The dyad branch, similar to
the WavenetNRI framework, captures local spatio-temporal information from the
dyadic nodes. The context branch captures the spatio-temporal information from
surrounding nodes (i.e., social context). The combined branch combines the output
of these two branches and estimates the affinity score between the pair of nodes
that are given in the dyad branch. The details of these branches are explained as
follows:

1. Dyad Branch. The Dyad Branch extracts the spatio-temporal features of
dyadic nodes using RNN layers, i.e., LSTM layers. The LSTM includes memory
cells and gating mechanisms, to selectively store and retrieve information over long
sequences, e.g., time series data such as movement trajectories. A series of convolu-
tional layers are then applied to concatenate the spatio-temporal features extracted
from RNN layers. Lastly, the dyad branch is followed by a Dropout layer to reduce
overfitting and a Batch Normalisation layer to avoid the covariate shift and enhance
the model’s generalizability.

2. Context Branch. Context Branch follows the same identical design as the
Dyad Branch. Yet, its given input data and role in the overall framework are differ-
ent. The Context Branch extracts the spatio-temporal features of the surrounding
nodes to account for context information. The number of surrounding nodes is a
hyperparameter of the model (i.e., context size).

3. Combined Branch. The Combined Branch merges the extracted spatio-
temporal features obtained from the Dyad Branch and Context Branch together.
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Specifically, the extracted features are first flattened and passed through a series of
fully connected layers, dropout layers, and batch normalization layers. Their specifi-
cations (e.g., number of layers, kernels, and filter size) depend on the characteristics
of the dataset, such as the number of frames, the maximum number of nodes, and
the data size. The last layer of this branch is a fully connected layer with a Sigmoid
activation function to constrain the single output to the [0, 1] range. This output
is the affinity score for the dyadic nodes.

Assembling all the affinity values between all dyadic nodes creates the affinity
graph. The group structures in the affinity graph will be identified afterward using
the Dominant Sets (DS) community detection algorithm [233].

6.5 Experiments

We conducted several experiments to evaluate the models’ performance. The fol-
lowing sections describe the datasets and evaluation metrics we used in our exper-
iments. Furthermore, the baselines used to compare with the performance of the
WavenetNRI and T-DANTE models are explained. Lastly, the implementation de-
tails of our experiments and the obtained results are presented. Our results compare
the performance of the proposed frameworks, WavenetNRI and T-DANTE, with two
other baselines using two evaluation metrics on two collections of datasets. The
goal of this experiment is to address the following research questions:

= RQ. 1. Can symmetric edge features and GD-RCC block improve the perfor-
mance of WavenetNRI compared with the original NRI model?

= RQ. 2. Can RNN block and including multiple timeframes per scene improve
the performance of T-DANTE compared with the original DANTE model?

= RQ. 3. Which of the dyad-based or context-based models can perform better
in identifying group behavior?

6.5.1 Datasets

In order to evaluate the performance of the models, we conducted our experiments
using two publicly available datasets, i.e., Opentraj Dataset and Spring Simulation
Dataset. Table 6.1 presents the characteristics of these datasets.
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= Opentraj Dataset. Opentraj dataset [234]" is extensively used in human tra-

jectory prediction literature. This dataset includes the trajectories of pedes-
trians, location, and velocity in multiple timeframes, captured via static cam-
era. Five pedestrian datasets, eth, hotel [209], and zara0l, zara02 and stu-
dents03 [210], which include the ground truth of the group membership, have
been used in our experiments. This ground truth is created by annotating the
pedestrians who seemed to walk in groups. The original dataset includes
location data relative to the world reference W. In order to enhance the gen-
eralizability of our approach across different datasets, the trajectory of each
pedestrian is transformed to a local coordinate system L;;, defined as the
middle point between pedestrian i and j.

Spring Simulation Dataset. The spring simulation framework, built upon
previous studies [226, 229], is developed to simulate group and non-group
interactions among particles in a physical system. In line with the original
studies, our spring simulation framework simulates the movements of groups
of particles in a 2-D space. In their movements, those from the same group
attract each other and distract from particles from another group. The lo-
cations, velocities, and the group membership (i.e., ground truth) of the
particles are included in this simulation. Our proposed framework has made
two improvements to the original framework: (1) defining group size as a
simulation parameter that can be controlled over different experiments and
(2) designing attraction points that stimulate particles from the same group
toward certain pre-defined spots. In the proposed framework, pre-defined
forces stimulate particles toward attraction points. All forces have the same
strength, but their direction is different to point a particle towards a certain
attraction point.

6.5.2 Evaluation Metrics

In order to evaluate the performance of the proposed model, we used two evaluation
metrics, i.e., Group Mitre [235], Group Correctness [225,233], in our experiments.
In both evaluation metrics, due to the higher number of pairs from different groups
compared to those from the same group, we adopted an F-1 score as it is more
suitable for evaluating imbalanced datasets.

= Group Mitre (Gjs) [235] is an evaluation metric, built upon the Mitre

loss [236], has been used by several studies [229, 237, 238] to measure the

Thttps://github.com/crowdbotp/OpenTraj
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Table 6.1: Characteristics of five Opentraj datasets and five spring simulation datasets used
in both models, regarding the duration of measurements, pedestrian dataset in seconds
and spring simulation dataset in timeframes, the number of agents, and the number of
groups.

Dataset Duration | Agents# | Groups#
‘@ | eth 773.4 360 58
£ | hotel 722.4 390 41
& | zara01 360.4 148 45
zara(02 420.4 204 58
students03 | 215.6 428 101
- stma 50 8 2
2 | sima 50 9 2
= | sims 50 9 3
£ | simy 50 10 2
D sims 50 10 4

quality of the identified groups. Mitre loss adopts spanning trees to represent
groups. This form of representation overlooks singletons, i.e., a group with
only one node. Group Mitre solves this problem by adding a fake counterpart
to each node. This fake node is considered in the same group as the original
node only if the original node was singleton. The detailed implementation of
G is presented by Solera et al. [235].

» Group Correctness (G.) [225,233] considers a group as correctly identified
if at least P * |c;| of its members are correctly classified in the group, where
P € [0,1] is a threshold and |c;| indicates the size of the original group j.
The P =1 requires all agents in ground truth group membership data to be
correctly identified in group j. Accordingly, P < 1 applies a milder metric in
evaluating the quality of the identified groups.

6.5.3 Baselines

In the comparative study, we compared the performance of our proposed methods
with two other baseline methods, namely NRI [226] as a dyad-based model and
DANTE [225] as a context-based model. These baseline methods are described in
Section 6.2 and are implemented based on their available source code. The original
studies [4, 229] include extensive experiments where more baselines and dataset
configurations have been presented. In this chapter, the most relevant approaches
has been selected and presented in the result section for consistency and improving
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Table 6.2: The results of Group Correctness G¢ and Group Mitre Gy for WavenetNRI
and T-DANTE compared with baselines using Opentraj datasets and simulation datasets.
The * sign shows that this result is significantly different compared with other cases under
the same evaluation metric and dataset.

Pedestrain Dataset
eth hotel zara0l zara02 students03
Gc Gum Gc Gum Gc Gum Gc Gu Ge Gu

DANTE 0.319 0.548 0.431 0.586 0.731 0.793 0.633 0.705 0.024 0.502
+0.047 | +0.019 | +0.043 | +0.035 | +0.051 | +0.028 | +0.038 | +0.026 | +0.012 | +0.013

NRI 0.201 0.571 0.169 0.540 0.285 0.597 0.106 0.417 0.006 0.280
+0.062 | +0.074 | +0.054 | +0.097 | +0.067 | +0.053 | +0.035 | +0.019 | +0.010 | +0.026

WavenetNRI 0.242 0.553 0.202 0.455 0.361 0.627 0.184 0.462 0.001 0.280
+0.059 | +0.057 | +0.048 | +0.080 | +0.091 | +0.066 | +0.065 | +0.040 | +0.004 | +0.024

T-DANTE 0.590* 0.665 0.508* 0.542 0.821* | 0.838* | 0.870* | 0.873* | 0.696* | 0.780*
+0.030 | £0.017 | +0.043 | +0.023 | +0.015 | +0.015 | +0.011 | +0.011 | +0.056 | +0.028
Simulation Dataset
simy Sima sims Sima sims
Go Gum Go Gm Go Gm Go Gu Ge Gu

DANTE 0.215 0.717 0.198 0.701 0.095 0.518 0.199 0.712 0.041 0.425
+0.007 | +0.004 | +0.008 | +0.003 | +0.011 | +0.011 | 4+0.011 | +0.005 | +0.007 | +0.009

NRI 0.984 0.991 0.983 0.993 0.988* | 0.995* 0.996 0.999 0.988* 0.995
+0.004 | £+0.002 | +0.007 | +0.002 | +0.004 | +0.002 | +0.003 | +0.001 | +0.007 | +0.003

WavenetNRI 0.996 0.998 0.995* | 0.998* 0.977 0.988 0.998* 0.999 0.953 0.968
+0.006 | +0.002 | +0.004 | +0.001 | +0.008 | +0.004 | +0.004 | +0.001 | +0.011 | +0.009

T-DANTE 0.969 0.983 0.980 0.989 0.982 0.988 0.971 0.987 0.945 0.976
+0.002 | £+0.002 | +0.002 | +0.001 | +0.006 | +0.003 | +0.006 | +0.002 | +0.011 | +0.003

the readability.

6.5.4 Implementation Details

Our experiments were implemented via the Python programming language. The
details of the implementation of WavenetNRI? and T-DANTE (with the spring sim-
ulation framework)* are available in the GitHub repository. We split each Opentraj
dataset into 5 folds and evaluated the performance of each method across 5 times
experiments per fold (i.e., 25 runs in total per method). Since spring simulation
datasets were generated under controlled conditions, they have not been split into
folds. Each spring simulation dataset was randomly split into train, test, and valida-
tion datasets. The performance of each method has been evaluated across 25 times
experiments per simulation dataset. We investigated the significant differences be-
tween the top two performing models by implementing the Wilcoxon signed rank
test [239]. In the following sections, the performance of the proposed models against
three state-of-the-art baseline methods is presented.

2https://github.com /fatcatZF /WavenetNRI
3https://github.com/ADA-research /context-group-detection
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6.5.5 Results

In this section, the performance of WavenetNRI and T-DANTE is compared with the
baselines. The results of the experiments for the simulation dataset and Opentraj
dataset are presented in Table 6.2.

6.5.5.1 Opentraj Datasets

According to Table 6.2, WavenetNRI has outperformed NRI in most of the cases
across different Opentraj datasets. This answers RQ. 1, indicating that overall,
including symmetric edge features and GD-RCC block to capture more complex
dependencies in the spatio-temporal data has improved the performance of the
WavenetNRI.

In order to answer RQ. 2, we compared the performance of DANTE with T-
DANTE. Our results show that T-DANTE is the superior model using the Group
Mitre metric in all datasets, except in the hotel dataset, in which DANTE performs
better. Yet, this result is not statistically significant. The superiority of T-DANTE
against DANTE in most cases demonstrates that including temporal dependencies
via the LSTM layers and further enriching with multiple timeframes per scene has
enhanced the performance of T-DANTE. Thus, implementing LSTM layers is more
suitable compared with MLPs when using the Opentraj datasets.

Finally, RQ. 3 compares the two dyad-based models, i.e., NRI and WavenetNRI,
with context-based models, i.e., DANTE and T-DANTE. The result shows that
T-DANTE outperforms all baselines, i.e., DANTE, NRI, and WavenetNRI, for all
Opentraj datasets using the Group Correctness metric. This shows that, indeed,
including context data is beneficial for modeling group behavior.

6.5.5.2 Spring simulation datasets

According to Table 6.2, inline with the result of Opentraj datasets, the capability
of WavenetNRI in learning symmetric edge features and capturing complex depen-
dencies via GD-RCC has enhanced its performance compared with NRI, addressing
RQ. 1).

To address RQ. 2, we compared the performance of DANTE with T-DANTE.
The results show that similar to the findings in the Opentraj datasets, including the
LSTM layers and multiple timeframes in T-DANTE, have significantly improved its
performance compared with DANTE across different simulation datasets using both
metrics.

Finally, to address RQ. 3, we compared the performance of dyad-based models,
i.e., NRI and WavenetNRI, with context-based models, i.e., DANTE and T-DANTE.
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The result of this comparison shows the superiority of dyad-based models over
context-based models across all simulation datasets. This contrast with the result
of Opentraj datasets can be explained by the differences in the characteristics of
the Opentraj and simulation datasets. Compared with Opentraj datasets, spring
simulation datasets have more scenes with group sizes larger than 3 particles. This
feature makes it suitable for dyad-based models, i.e., NRI and Wavenet, to extract
contextual information without being limited to the number of surrounding nodes.

Overall, the results in both dyad-based and context-based models demonstrate
the positive impact of capturing temporal dynamics in the data, either with GD-
RCC block or LSTM layers. Moreover, the context-based models were able to more
accurately model datasets with smaller group sizes, which are mainly included in the
Opentraj datasets. Whereas the dyad-based models were able to more effectively
extract spatio-temporal features in larger group sizes that are mainly included in the
simulation datasets. Additionally, in the Opentraj dataset, pedestrians often come
to the scene from one of the two ends (of streets) and leave the scene from the
other end. This structured movement might create overshared trajectories between
different groups and pose challenges to modeling group behaviors. Thus, including
context information has enhanced the performance of these models. In the spring
simulation dataset, particles freely move in a physical box, and their movement is
only directed by pre-defined attraction points. This is similar to scenarios where
individuals have unstructured movements with relatively mild restrictions. In these
types of scenarios, dyad information provided sufficient information to model group
behaviors, and adding context information did not improve the performance. For
example, on university campuses or on urban pavements where individuals appear
in smaller group sizes with structured movements, context-based models can more
accurately identify group behavior. Whereas in the context of individuals with
unstructured movements in larger groups, such as athletes on a soccer field or chil-
dren in schoolyards, dyad-based models can more accurately identify group behavior.
Thus, either of these models might be useful for a specific scenario, depending on
its characteristics. This leads us to the necessity of implementing dynamic context
size in our model to automatically define context size based on the characteristics
of the given dataset or even the specific scene.

6.6 Conclusion

Analyzing children's group behavior in schoolyards enables us to identify limitations
and possibilities in social environments around the child. In dynamic social settings,
such as children in schoolyards, individuals constantly change their interaction part-
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ners and activities, which poses extra challenges to modeling group behavior. In
these scenarios, analyzing group behavior requires including both spatial and tempo-
ral elements in individuals’ movements. To address this challenge, the present study
aims at modeling group behavior using spatio-temporal data by conducting two par-
allel studies, dyad-based modeling and context-based modeling. The first study, i.e.,
WavenetNRI as a dyad-based model, is built up on NRI [226] and Wavenet [231]
frameworks. WavenetNRI implements two features: (1) symmetric edge features
with symmetric edge updating processes to account for the symmetric nature of
group membership and (2) GD-RCC block to capture complex spatio-temporal de-
pendencies in data. This model solely adopts spatio-temporal data between dyadic
nodes to train the neural network model and reconstruct the affinity graph. The
second study, i.e., T-DANTE as a context-based model, is built on the DANTE
framework. T-DANTE adopts LSTM layers to estimate the affinity scores using the
spatio-temporal data of the surrounding nodes, i.e., context information, in addition
to the data of dyadic nodes. Moreover, this framework includes multiple timeframes
per scene to enrich the context data.

Our comparative study against state-of-the-art baselines demonstrates that T-
DANTE is the superior model for modeling group behavior using real-world Opentraj
datasets. Whilst WavenetNRI outperformed other baselines in simulation datasets.
The superiority of T-DANTE versus other dyad-based models, e.g., WavenetNRI
and NRI, in Opentraj datasets shows that including context information has en-
hanced the performance of group behavior modeling in Opentraj datasets where
group sizes are relatively small. Moreover, the superiority of T-DANTE over the
original DANTE shows that including RNN layers can better capture spatio-temporal
dependencies compared with MLP models. On the other hand, WavenetNRI has
outperformed the baselines in spring simulation datasets where larger group sizes
are available. The superiority of WavenetNRI over the original NRI shows that
including the symmetric edge features and GD-RCC block can better capture the
spatio-temporal dependencies for modeling group behavior in larger social settings
via dyad information.

This finding shows that our proposed method is capable of modeling group
behavior using spatio-temporal data. Moreover, the design of our models is not
limited to certain from of interactions, e.g., face-to-face interactions or parallel plays.
This feature enables modeling complex group behavior in higher resolution. While in
small social settings with structured movements, such as pedestrians’ movement on
pavements, including context information is beneficial for identifying group behavior,
in larger social settings with relatively unstructured movements, such as children in
schoolyards, focusing on dyad interactions is sufficient to model group behavior.

Due to the limited access to group membership data for children in schoolyards,
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we have only tested the performance of our proposed models on Opentraj benchmark
datasets and spring simulating datasets and not on actual schoolyards. However,
the Opentraj dataset has been collected from pedestrian movements in constrained
environments, e.g., university campuses, which to some degree is comparable to
schoolyard scenarios where children freely move in a constrained environment. Vet,
applying our proposed method to children’s datasets might require further investi-
gation. For example, since children’s group dynamics constantly change over time.
Thus, the implementation of dynamic context size and dynamic group membership
might be required in the design of the models.

Future research can explore the incorporation of dynamic context size (based
on the presented number of nodes) and dynamic group membership per scene to
enhance the generalization of the proposed approach across different datasets. An-
other future approach could be extending the proposed models in real-time applica-
tions with online data streaming. Various applications, such as analyzing students’
social behavior in schoolyards, monitoring tourists’ behaviors in touristic sights, and
analyzing sports teams' performances, may benefit from the presented work.



