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Summary

Playgrounds help children develop essential physical and social skills through play-
ing and socializing with their peers and supervisors. However, playgrounds may also
include obstacles that hinder children’s development, specifically for those with com-
munication difficulties. Addressing these challenges requires a deep understanding
of children’s needs in playground settings.

By adopting wearable sensing technology, we aimed to design a data analysis
framework and deepen our knowledge of children’'s behavior in playgrounds. De-
veloping a practical playground analysis framework requires addressing three main
characteristics of playgrounds: multiple interconnected environments, differences
in individual experiences, and spatio-temporal dynamics. Through various research
questions, we have addressed these features as follows.

» Feature 1: Multiple Environments.

In playgrounds, children interact with three interconnected environments:
physical environment, social environment, and cultural environment. To in-
corporate these multiple environments in our data analysis framework, we
used modern sensing technologies, i.e., proximity tags, GPS loggers, and ac-
celerometers, to capture children's behavior in schoolyards. This method
further enabled us to identify three affordances, i.e., physical, social, and cul-
tural, which a child interacts with according to its capacities and needs, i.e.,
effectivities. We further developed a spatio-temporal metric that measures
the impact of the physical environment on children’s social networks in the
playground context.

» Feature 2: Individual Experiences.
Children have different capacities and needs in their interactions with their
environments. We specifically studied these differences in individual experi-
ences by focusing on children with and without autism. Individual experiences
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are included through self-report data and peer nomination reports alongside
sensor measurements to obtain children’s perspectives on their behavior in
playgrounds. Our results show the importance of addressing differences in
effectivities either at the group level or at the individual level in relation to
the affordances of the environment.

Feature 3: Spatio-temporal Dynamics.

Children’s activities constantly change in playgrounds during play. Analyzing
these spatio-temporal dynamics enables a deeper understanding of children's
behavior in their social environment. We specifically focused on capturing
complex interactions beyond face-to-face contact by utilizing artificial intel-
ligence models to model group behavior. Our proposed method identifies
group behaviors using spatio-temporal data in constrained environments such
as university campuses or schoolyards.

The present dissertation integrates cutting-edge technological advancements with
multidisciplinary collaboration to design a framework for analyzing children’s behav-
ior in playgrounds. This framework offers stakeholders a valuable tool for analyzing
individual and group-level challenges in micro-communities, such as schoolyards,
nursing homes, and sports clubs.



Samenvatting

Speeltuinen helpen kinderen essentiéle fysieke en sociale vaardigheden te ontwikkelen
door te spelen en te socialiseren met hun leeftijdsgenoten en begeleiders. Speeltu-
inen kunnen echter ook obstakels bevatten die de ontwikkeling van kinderen belem-
meren, met name voor kinderen met communicatieproblemen. Om deze uitdagingen
aan te pakken, is een diepgaand begrip van de behoeften van kinderen in speeltu-
inomgevingen vereist.

Door draagbare sensortechnologie te gebruiken, wilden we een data-analysekader
ontwerpen en onze kennis van het gedrag van kinderen op speeltuinen verdiepen.
Om een praktisch analysekader voor speeltuinen te ontwikkelen, moeten we drie
hoofdkenmerken van speeltuinen aanpakken: meerdere onderling verbonden omgevin-
gen, verschillen in individuele ervaringen en ruimtelijk-temporele dynamiek. Via
verschillende onderzoeksvragen hebben we deze kenmerken als volgt aangepakt.

= Kenmerk 1: Meerdere omgevingen.

Op speeltuinen interacteren kinderen met drie onderling verbonden omgevin-
gen: fysieke omgeving, sociale omgeving en culturele omgeving. Om deze
meerdere omgevingen in ons data-analysekader op te nemen, hebben we
moderne sensortechnologie gebruikt, d.w.z. nabijheidstags, GPS-loggers en
accelerometers, om het gedrag van kinderen op schoolpleinen vast te leggen.
Deze methode stelde ons verder in staat om drie affordances te identificeren,
namelijk fysiek, sociaal en cultureel, waarmee een kind omgaat op basis van
zijn capaciteiten en behoeften, oftewel effectiviteit. We ontwikkelden verder
een spatiotemporele metriek die de impact van de fysieke omgeving op de
sociale netwerken van kinderen in de context van de speeltuin meet.

= Kenmerk 2: Individuele ervaringen.
Kinderen hebben verschillende capaciteiten en behoeften in hun interacties
met hun omgeving. We bestudeerden specifiek deze verschillen in individuele
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ervaringen door ons te richten op kinderen met en zonder autisme. Indi-
viduele ervaringen worden opgenomen via zelfrapportagegegevens en peer-
nominatierapporten naast sensormetingen om de perspectieven van kinderen
op hun gedrag op speeltuinen te verkrijgen. Onze resultaten tonen het belang
aan van het aanpakken van verschillen in effectiviteit, hetzij op groepsniveau
of op individueel niveau, in relatie tot de affordances van de omgeving.

= Kenmerk 3: Spatiotemporele dynamiek.

De activiteiten van kinderen veranderen voortdurend op speeltuinen tijdens
het spelen. Door deze spatiotemporele dynamiek te analyseren, krijgen we
een dieper inzicht in het gedrag van kinderen in hun sociale omgeving. We
hebben ons specifiek gericht op het vastleggen van complexe interacties die
verder gaan dan face-to-face contact door gebruik te maken van modellen voor
kunstmatige intelligentie om groepsgedrag te modelleren. Onze voorgestelde
methode identificeert groepsgedrag met behulp van spatio-temporele gegevens
in beperkte omgevingen zoals universiteitscampussen of schoolpleinen.

Het huidige proefschrift integreert geavanceerde technologische ontwikkelingen
met multidisciplinaire samenwerking om een raamwerk te ontwerpen voor het anal-
yseren van het gedrag van kinderen op speelplaatsen. Dit raamwerk biedt be-
langhebbenden een waardevolle tool voor het analyseren van uitdagingen op indi-
vidueel en groepsniveau in microgemeenschappen, zoals schoolpleinen, verpleeghuizen
en sportclubs.
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CHAPTER 1

General Introduction



2 General Introduction

1.1 Background

The rapid growth of technology in wearable devices, such as smartphones and smart-
watches, has created huge amounts of data. The availability of wearable data has
impacted our daily lives in different ways. We might not have been interested in
physiological metrics such as step counts or heart rate a few years ago, but now,
many people regularly check health applications on their smartphones to track these
measures. We have become our personal data experts, looking at a bar chart and
figuring out why we walked more some days than others. Yet, the use of data is
not limited only to personal applications. The availability of wearable data creates
various possibilities for us and society to address fundamental challenges.

This is particularly evident in micro-communities, i.e., small, localized groups of
individuals with common interests, such as athletes in sports clubs, the elderly in
nursing homes, and children in playgrounds. In sports clubs, for example, athletes
use wearable technology to analyze their sports resilience [10]. In nursing homes,
wearable data captures elderly conditions, such as detecting fall behavior [11]. Sim-
ilarly, children’s physical activity levels in playgrounds can be registered through
wearable data to assess their physical health condition [12].

Besides individual physical health applications, micro-communities might also
be beneficial in other areas. From a psychological point of view, micro-communities
provide opportunities for socialization, forming friendships, and feeling a sense of
belonging [13-15]. Yet, micro-communities may include barriers that hinder indi-
viduals' social and physical development [16-18]. Thus, collecting and processing
data from these communities could play a key role in addressing these barriers and
creating a positive environment that promotes equity among all children.

From the perspective of data science, the challenge is how to effectively collect,
process, and interpret data from individuals in micro-communities as objectively and
comprehensively as possible and derive meaningful insights. The obtained knowledge
can facilitate various stakeholders, such as schools, psychologists, architects, and
policymakers, to address fundamental challenges in micro-communities.

1.1.1 Children in Playgrounds

Children in playgrounds, as an instance of a micro-community, is particularly in-
teresting. In playgrounds, children develop their social skills through play and
socializing [19, 20], and enhance their physical skills by engaging in different ac-
tive games [21-23]. Yet, playgrounds may contain unexpected barriers that hinder
children’s social and physical development, particularly for those with communica-
tion difficulties, such as children with cochlear implants or autistic children. For
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instance, several studies reported higher sensory sensitivities perceived by autistic
children [24-26]. This higher level of sensitivity can increase discomfort in autistic
children in noisy and unstructured environments. As a result, crowded areas around
popular play structures in playgrounds might overwhelm autistic children and exclude
them from interacting with their peer groups. This exclusion can result in loneli-
ness, which ultimately affects children's quality of life [27-29]. Playgrounds should
become environments where all children feel welcome, accepted, and included.

Creating such an environment starts with understanding children's capacities and
needs, on the one hand, and identifying playgrounds’ limitations and possibilities, on
the other hand. Hereby, the challenge becomes how to collect, process, and interpret
data from children (on an interpersonal level) and their interactions with playground
environments (on environmental levels) to obtain this understanding as accurately as
possible. Our understanding of playground dynamics, including interactions with the
design features, peer groups, and cultural constraints, provides valuable knowledge
for various stakeholders, such as schools, designers, and policymakers, to address
fundamental challenges and limitations in playgrounds.

1.2 Playground Analysis Framework

To achieve this, there is a need to develop a data analysis framework that can ex-
amine individuals’ behaviors at interpersonal (i.e., children) and environmental (i.e.,
playground) levels. This data analysis framework addresses differences in individual
needs in playgrounds, which serves as a compass for equity in the playground con-
text. To design such a framework, we first need to understand the characteristics
of playgrounds, especially those that might introduce unique challenges to our data
analysis framework. For this purpose, the three characteristics of playgrounds are
identified as follows:

= Multiple Environments. Children are not isolated in playgrounds. Instead,
they constantly interact with multiple environments, including the physical de-
sign (e.g., play structures, layout, and materials in playgrounds), peer groups
(e.g., interactions with peers), and local rules and constraints (e.g., restric-
tions on the use of certain areas). Our framework must comprehensively and
unobtrusively incorporate these environments surrounding children.

» Individual Experiences. Capturing children’s actual behaviors in playgrounds
and identifying their social networks does not tell us how they feel or what they
want. For example, as an outsider, we might interpret a child's experience
who is sitting on their own differently from what that child is experiencing.
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Thus, another crucial element is understanding individual differences in their
personal perspectives and experiences. These individual differences must ac-
curately and unbiasedly be included in our framework.

= Spatio-temporal Dynamics. Children often participate in various activities
across different areas in playgrounds. For example, a child might spend the
first few minutes playing with swings, then join a group to play soccer, and
then walk on their own in the last minutes of recess time. A record of these dy-
namic changes, both spatially and temporally, should be consistently assessed
in our framework to make an accurate picture of a playground.

To address these unique characteristics, our analysis framework should include
a data acquisition tool that captures individuals' interactions within multiple en-
vironments in playgrounds over time and space, coupled with their experiences.
Additionally, the analysis framework should be able to process and interpret such
multidimensional data to create understandings and insights of limitations and pos-
sibilities in playgrounds. Providing this knowledge enables us to propose practical
interventions to address the limitations and promote equity for all children.

1.3 This Thesis

The main goal of this thesis is to develop a framework for analyzing children's
behavior in playgrounds. The proposed framework has addressed the three main
characteristics of playgrounds, i.e., multiple environments, individual experiences,
and spatio-temporal dynamics, as depicted in Figure 1.1, as follows:
Feature 1. Multiple Environments.

The primary step in designing the analysis framework is identifying environments
that may impact children’s behavior and experiences. This exploratory phase en-
ables us to define essential variables for capturing the identified environments and
choose proper data acquisition tools to measure the defined variables. In fact, the
foundation of the analysis framework lies in a data acquisition methodology to com-
prehensively, unobtrusively, and consistently collect data from children’s behavior in
multiple environments. Previous studies often relied on qualitative data such as
observations and self-reports [30-32]. However, these methods are not capable of
effectively capturing all contributing elements over recess time. To address this,
some studies have utilized sensing technologies, e.g., wearables, to examine one
specific behavior, such as examining physical activity levels [33, 34] or face-to-face
contacts [7,35,36]. Yet, a gap remains in designing a data-driven approach based
on sensors to collectively capture children’s behavior in all related environments
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Chapter 2 Chapter 5

Chapter 6
Chapter 3

Multiple
Environments

Playgrounds

Spatio-
temporal
Dynamics

Individual
Experiences

Chapter 4

Figure 1.1: An overview of characteristics of playgrounds including (1) Interconnected
Environments, (2) Individual Experiences, and (3) Spatio-Temporal Dynamics, that pose
challenges to our data analysis framework.
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surrounding them over recess time in playgrounds. Therefore, the first research
question of this dissertation is:

RQ. 1. (Chapter 2): To what extent can modern sensing technologies
capture an individual's behavior in playgrounds?

This chapter introduced a novel sensor data-driven approach for capturing
children's behaviors. Furthermore, analyzing the sensor data enabled us to
identify the environmental aspects the child interacts with in playgrounds.

The next step is quantifying and measuring the impact of these identified en-
vironments on children's behavior. For example, installing various play structures
in playgrounds might impact children’s social behavior differently. One might stay
in one crowded area around a popular play structure and interact with peers, while
the other might mingle around different spots and make interactions. How can we
measure such micro-behavior in the data and analyze their impact over time and
space? This has shaped the second research question as follows:

RQ. 2. (Chapter 3): To what extent does the physical environment
around the child impact the child's social behavior in playgrounds during
recess?

This study explores the impact of spatial features, such as play structures
and physical features in playgrounds, on children's interactions with peers.
The goals of this study are (1) to introduce a novel spatio-temporal metric
to facilitate this investigation and (2) to apply this metric in a case study
to obtain a comprehensive understanding of children’s social networks in
playgrounds.

Feature 2. Individual Experiences.
Including individual experiences enriches the psychological understanding of chil-
dren’s behavior in playgrounds. While sensor data provides multimodal information
about children, examining how these measures are aligned with self-report data is
crucial. For instance, if sensor data indicates frequent interactions between a child
and their peers, does this also suggest that the child experiences a lowered level of
loneliness? Thus, the third research question is formulated as follows:
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RQ. 3. (Chapter 4): To what extent does including individual differences
in experiencing playgrounds facilitate a more accurate interpretation of data?

This chapter aims to include individual experiences, in the form of a self-
report, to the sensor measurements to create a clearer picture of children’s
behavior in playgrounds. Specifically, we use the loneliness measure via
self-reports, peer acceptance via peer nomination report, and sensor data
to see how children’s connectedness in sensor data relates to their level of
loneliness.

Feature 3. Spatio-temporal Dynamics.

Analyzing spatio-temporal dynamics enables us to understand an individual's social
behavior in space and over time. Previous chapters focused only on face-to-face
contacts in playground datasets to capture social interactions, discarding interac-
tions that might happen in other settings, e.g., parallel play. In the next two
chapters, we focus on capturing more complex interaction patterns in group set-
tings using artificial intelligence (Al). Due to the necessity of access to ground truth
data (i.e., group membership information of individuals over time) to design, train,
and evaluate these models, all studies experimented on the Opentraj dataset [37].
This dataset has been collected from pedestrian movements in constrained environ-
ments, e.g., university campuses, which to some extent, is comparable to children’s
movements in playgrounds. In Chapter 5, we are interested in interactions occurring
in parallel play, such as running and walking side by side. We have addressed this
gap in the next research question:

RQ. 4. (Chapter 5): To what extent can spatio-temporal data identify
parallel movements as one specific form of social interaction?

In order to address this research question, we incorporated an Al model to
capture similar movement trajectories. Such an Al model provides valuable
insights into children’s social behavior during play by identifying parallel
movements in the playground.

Yet, human social behavior includes complex spatio-temporal patterns that can
not be easily modeled via pre-defined forms of interactions such as face-to-face con-
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tacts or parallel movements. For example, children’s interactions during hide and
seek do not include these forms of interactions. Thus, it is important to include
both spatial and temporal elements of human interactions in the design of the Al
model to capture children’s complex social behavior in playgrounds. We specifically
addressed this challenge in our next research question as follows:

RQ. 5. (Chapter 6): To what extent does spatio-temporal data of indi-
viduals enable us to model group interactions as one form of social behavior?

Chapter 6 aims to adopt Al models to analyze spatio-temporal features in
movement trajectories and identify group interactions. By conducting two
parallel studies, we examined the use of spatio-temporal data in the form of
dyad interactions as well as the inclusion of context information alongside
dyad interactions to model group behavior.

Overall, our analysis framework thoroughly addresses the unique characteristics
of playgrounds by combining cutting-edge technological advancements with multi-
disciplinary collaboration involving psychology, architecture, and computer science
experts. Implementing this framework offers a valuable tool for schools, sports
clubs, policymakers, and designers, enabling them to identify individual and group-
level challenges and barriers in micro-communities.

1.3.1 Organization of Thesis

The organization of the thesis is illustrated in Figure 1.1. In Chapter 2, we introduce
our sensor data-driven approach that can be used for collecting spatio-temporal
data from children in the playground. Introducing a new metric to measure spatio-
temporal proximity is discussed in Chapter 3. Chapter 4 discusses the inclusion
of children’s experiences in our framework. Chapter 5 presents an Al model to
capture similar movements. In Chapter 6, we tackle the problem of identifying
group behavior via spatio-temporal data. Finally, several remarks are presented in
Chapter 7 to conclude this thesis.
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Abstract

Social participation in schoolyards is crucial for children’s development. Yet, school-
yard environments contain features that can hinder children’s social participation.
In this paper, we empirically examine schoolyards to identify existing obstacles. Tra-
ditionally, this type of study requires huge amounts of detailed information about
children in a given environment. Collecting such data is exceedingly difficult and ex-
pensive. In this study, we present a novel sensor data-driven approach for gathering
this information and examining the effect of schoolyard environments on children's
behaviours in light of schoolyard affordances and individual effectivities. Sensor
data is collected from 150 children at two primary schools, using location trackers,
proximity tags, and Multi-Motion receivers to measure locations, face-to-face con-
tacts, and activities. Results show strong potential for this data-driven approach,
as it allows collecting data from individuals and their interactions with schoolyard
environments, examining the triad of physical, social, and cultural affordances in
schoolyards, and identifying factors that significantly impact children’s behaviours.
Based on this approach, we further obtain better knowledge on the impact of these
factors and identify limitations in schoolyard designs, which can inform schools,
designers, and policymakers about current problems and practical solutions.

2.1 Introduction

Children spend a considerable amount of time in schoolyards, engaging in loosely
structured activities under relatively mild supervision. The schoolyard environment,
therefore, presents unique opportunities for children to play and develop their physi-
cal and social skills. Unfortunately, schoolyards may also pose unexpected obstacles
that limit social play in various ways. For example, poor acoustics might hinder
children who face barriers to communication, including children with hearing loss
or autistic children. Examining children’s behaviour in the context of the particular
environment where it occurs could aid in identifying existing limitations and pos-
sibilities for schoolyard design. It could also inform the development of methods
for improving schoolyards, and make it possible to tailor designs for sensitivity to
differences in children’s needs, desires, and capacities. This, in turn, could help max-
imise opportunities for social learning for all children, including those who belong
to vulnerable populations.

However, making this picture clearer requires a huge amount of data: precise
information gathered over time, pertaining to not only different aspects of children’s
behaviour, but also to the specific environment in which the behaviour occurs. This
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study, therefore, presents a sensor data-driven approach for gathering the informa-
tion necessary for examining the effects of the schoolyard environment on children’s
movements and social behaviours.

2.1.1 Affordances and Effectivities in Physical, Social, and
Cultural Environments in Schoolyards

When children are in a schoolyard, they are constantly confronted with at least three
layers of the schoolyard environment: the physical/built environment (physical lay-
out and features) [38,39], the social environment (people to interact with) [40,41],
and the cultural environment (rules and constraints set by schools) [42—44]. All three
layers present different affordances to the children (see Box 2.1.1). Affordances are
the actionable properties an environment presents to a child (e.g., a sand-pit affords
building a sandcastle), in relation to the children’s individual desires, needs, and ca-
pacities [45]. That is, an environment’s affordances are relative to specific actions.
For example, a sand-pit that is empty (without any sand) makes no difference in
affording opportunities to a child who wants to be running around. Yet, it stops
those who want to build a sandcastle from doing so. Certain interactions require an
appropriate setting: a quiet, secluded corner for confidential talks, or a wide-open
area for a large game involving physical activity. Certain settings stimulate certain
activities and behaviours, as one can observe around any piece of schoolyard equip-
ment; and certain activities are subject to school rules and conditions, e.g., football
or cycling may be permitted only at specific places and in particular times.

Several studies incorporated a perspective on affordances to focus on interac-
tions of children in general with their physical, social, and/or cultural environment.
Many affordance studies concerning children, schoolyards, and schools depart from
Heft's categorizations [45]. Heft distinguished between ten types of outdoor en-
vironments, such as “flat, relatively smooth surfaces” (which may afford walking,
running, cycling, skating, skateboarding) or “attached objects” (which may afford
sitting-on, jumping-on/over/down-from), and further extends affordances to include
social and emotional behaviours [46,47]. Physical affordances are mostly studied
in children-oriented research, including studies on how different environments (e.g.,
home, school, sport, leisure, neighbourhood, outdoor play) either promote or hinder
various motor activities [48-50], and how physical, social, and cultural affordances
influence physical activity levels in schoolyards [51,52].
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Box 2.1.1. Affordances in schoolyards

For the purposes of our research, we distinguish between three levels
of affordances:

= Physical affordances: what the physical layout and features of the
schoolyard afford to children and their activities. These are critical
for many vulnerable children, to the extent that they may even ex-
clude themselves from what takes place in the schoolyard. For ex-
ample, what most humans tolerate as mild background noise can be
insufferable to children with cochlear implants, who, consequently,
tend to refrain from entering schoolyard areas where exposed to such
noise [53, 54].

= Social affordances: These refer to two complementary matters:

— What features in the schoolyard afford social interaction, i.e.,
social interactions in our case, should be accommodated and fa-
cilitated by the environment. For example, having a chat with
a classmate requires some sitting furniture in a quiet part of the
schoolyard. This involves not only the need for a suitable envi-
ronment for social interactions but also the features in the envi-
ronment that stimulate social interactions (such as the presence
of a seesaw, which invites play with another child).

— How the presence of others adds to or detracts from the affor-
dances of the physical environment. For example, if a swing
is already occupied by another person, then the child is unable
to sit on it. However, a new affordance becomes available: for
example, pushing the person sitting on the swing.

= Cultural affordances: Free play and schoolyard use are normally sub-
ject to constraints, where, for example, some intensive or hazardous
activities (such as football or cycling) are allowed only in certain parts
of the schoolyard, or for a specific period of time.

Yet, when studying how schoolyard environments afford opportunities for chil-
dren to play, it is important to consider all three layers of the environment: physical,
social, and cultural. These are closely intertwined, and ignoring any layer could bias
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any data analyses and interpretations. For example, if a play area is too small, chil-
dren who come late to the game may be excluded simply because there is no room
for them. Such an outcome due to capacity issues may not necessarily reflect social
exclusion. However, this example illustrates restrictions imposed by the design and
operation of a schoolyard. Moreover, if the social environment is not taken into
account when considering the physical and cultural characteristics of a particular
schoolyard, then schools, designers, and policymakers could be kept unaware of
the limitations and possibilities of that schoolyard. Consequently, opportunities for
improvement could be missed.

Of particular interest are vulnerable children (e.g., children with a clinical diag-
nosis or disability) who might have different desires, needs, and capacities (“effectiv-
ities”) in their use of space as compared to other children in the same environment.
For example, autistic children may be sensitive to certain ambient triggers (sounds,
light, or touch) or avoid being in crowded areas [55-57]. They often prefer repetitive
games with predictable results, such as spinning, twirling, and illuminating [58, 59]
and fixed routines, with clear instructions and rules to follow [60]. Autistic children
can also find initiating or maintaining social contact with other peers quite challeng-
ing [61]. Children with attention deficit hyperactivity disorder (ADHD) are observed
to often change activities during break time, and many ADHD children have difficul-
ties sustaining interactions with peers [62—64]. Thus, for vulnerable children, it may
be especially critical to unravel the relationship between their individual interactions
and their environment.

By identifying affordances, we can be explicit and transparent in two critical
aspects that are especially relevant to the inclusion of vulnerable children in school-
yards. First, working through a lens of affordances makes an explicit definition
about vulnerable children’s capacity, so as to know what they expect, want or can
do. This, consequently, facilitates awareness of special needs. This is notable be-
cause although special needs are usually considered in the teaching activities in the
classroom, they may be ignored in the design and use of the schoolyard. Second,
taking affordances into consideration clarifies the influences of the physical envi-
ronment on children’s activities. Consequently, making affordances for vulnerable
children explicit can help identify existing limitations, and develop methods for the
analysis and evaluation of school environments.

Taken together, we see a need to understand individual interactions at the micro-
level of peripersonal space, while still taking into account the physical, social and
cultural layers of the children’s direct environment, and the challenges they may pose
for vulnerable children. To the best of our knowledge, there are no prior studies that
examine how the environmental triad of physical, social, and cultural affordances
interact with children’s behaviours and movements in the schoolyard. Moreover, in
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available affordance studies, vulnerable children have never been considered. While a
large body of literature has reported on vulnerable children’s physical activity levels,
forms of play, and social connectedness in the schoolyard [29,65-67], outcomes that
were reported were not linked to any environmental factors.

2.1.2 Present Study

How do we identify a schoolyard’s affordances in relation to the effectivities of the
children who use it? Most of the previous affordance studies relied on qualitative
data, such as observations and self-reports. Although informative, these methods
might not examine different interconnected aspects in a cost-effective way, nor give
the detailed level of information necessary to draw reliable conclusions. Yet these
objectives might be achieved by using the newly available sensor technologies. Sen-
sor data promise comprehensive coverage of what takes place in a schoolyard at a
low cost. They make continuous, objective monitoring of activities and interactions
feasible. They provide reliable reports on schoolyard performance and enable schools
to identify problems as soon as they emerge. Some recent studies applied Global
Positioning System (GPS) trackers and accelerometers. This new data-driven ap-
proach has been used, for example, to examine physical activity levels [68], and
to compare active outdoor play in schoolyards and in natural environments, taking
into account personal characteristics (e.g., age) as well as the physical and social
environment [69-72].

The main challenge is to collect such precise information from different layers and
unravel the complex relationship between environmental affordances in schoolyards
and children’s effectivities. To deal with this, we designed a data-driven approach
for collecting data that would feature enough detail and precision to inform us about
relations among three different environmental layers (physical, social, and cultural)
and the children’s role in these. We, then, examined the extent to which children's
movements and social behaviours were affected by the physical, social, and cultural
affordances of a schoolyard by identifying three successive aims.

First, we aimed to develop a novel sensor data-driven approach by integrating
unobtrusive data collection. This technology included GPS loggers to obtain chil-
dren’s location, their trajectory and speed of movements, Bluetooth-based proxim-
ity tags to examine face-to-face contacts of individuals, and multi-motion receivers
(MMR) to obtain the physical activity level of children. This approach enabled
the monitoring of children’s activities in the schoolyard, their contacts with peers,
and their movements within the environment during unstructured breaks at school.
Multimodal analyses of sensor data yielded a detailed, precise picture of children's
interactions with peers and their direct environment. Data and results obtained
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through these new methods based on sensor data were validated using video obser-
vations of these schoolyard events.

Second, we aimed to distinguish between three interconnected types of affor-
dances (physical, social, and cultural) and gave each of these explicit and measurable
definitions (see Box 2.1.1). By operationalizing these terms, the data could be in-
terpreted with greater precision and less bias. To illustrate the value that these
data can have, we analyzed data collected from two schoolyards. Integrating the
sensor data based on the triad of affordances, in addition to providing extensive in-
formation on each individual aspect, provided extensive interdisciplinary knowledge
on how the physical environmental features affected children’s social participation
and movements. In addition, it highlighted how the presence of other individuals
affected children's behavior and movement in the physical space. It also revealed
how the rules set by schools and supervisors affected children’s social participation
and use of space.

Third, by considering the relevance of these data, we aimed to better understand
how the collected data and their analyses could inform schools, designers, and
policymakers about the possibilities and limitations a schoolyard presents, and plan
for practical solutions and improvements, particularly with respect to the individual
differences in effectivities of vulnerable children.

2.2 Methodology

Our methodology addressed two main goals simultaneously. On the one hand, we
developed a setup of sensors to gather data in the schoolyards, and an approach to
work with these, in the context of two schools. On the other hand, we also carried
out a simultaneous study where we gathered data from children in these schoolyards
and analysed them to gain insight on children's behaviour, and their relation to the
three environmental layers (physical, social and cultural). This section presents this
integrated methodology.

2.2.1 Selection

We developed our data-driven approach and applied our approach in the context
of two primary special-needs schools that were geographically located in the centre
of the Netherlands. The schools and parents were informed about the purpose and
planning of the study, and supplied written consent for the children to participate
in it. Approval for the study was obtained from the Leiden University Ethical
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Committee. The data-management procedures were registered and approved by
the Leiden University Research Data Management Plan.

All sensor belts were prepared and handed over to the teachers in a box 15
minutes before the break. Due to the COVID-19 restrictions, the examiners were
not allowed to be in the classrooms to help children with their sensors. Instead,
prior to data collection, a video presentation was shown to children that explained
the research in simple words, to prepare them for participating in this study and
instruct them on the use of sensor belts during the break. Teachers further helped
children to put on the sensors since they were fully aware of the instructions for
the sensors and each child's specific preferences or capacity. During this process
or during the break, children could refuse to wear the sensor belt, if they were not
comfortable with it, which occurred in 2% of the breaks among 1-2 children.

2.2.2 Reconnaissance

Prior to data collection, the researchers visited each school for a reconnaissance
visit (i.e., to explore the situation with an aim to define a strategy) for investigating
the physical, social, and cultural environment. This first contact gave them the
opportunity to familiarise themselves with the schoolyard, explore its environmental
features, and conduct informal interviews with the school director, teachers, and
caretaker during a tour of the school building and its surroundings. This go-along
approach is common at the exploratory stage of similar research [72, 73].

Interviews included questions about school customs, teacher and pupil prefer-
ences, habits, the organisation of breaks, and schoolyard activities. In combination
with the visual inspection of the schoolyard, these provided an initial impression of
physical, social, and cultural affordances, and led to hypotheses about the social
and cultural context of school breaks, as well as to the selection of locations where
sensor facilities should be positioned. Ultimately, the reconnaissance visit informed
us about: (1) the proper locations for installing the sensor equipment and for video
observers, (2) general rules about breaks (e.g., that children were not allowed to
stay in classrooms except on special occasions), (3) and general rules on the use of
the schoolyard, such as soft boundaries and area allocation during breaks.

2.2.3 Participants

A total of 150 children aged between 5 and 15 years old participated, from 21
different classes from two schools (schools A and B). Data collection took place
over a period of two weeks at each school, respectively, split between two recess
times on consecutive days for each class. Each measurement lasted between 15-50
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minutes, depending on the playgroup (younger children usually have longer breaks
than older children).

Many students at school A came from mainstream education, without a specific
diagnosis, because they needed extra care and support and their well-being was often
under pressure due to learning pace, large-size classes, or overwhelming contact
with others. The school, therefore, offers more structure, predictability, personal
attention, and specialist support to improve their well-being. The majority of pupils
were undiagnosed, or their diagnoses were unknown to us (63%). Of the rest,
most had ADHD (20%) and autism (14%) as their primary or secondary diagnosis.
In total, fifteen measurements were conducted in seven days in the period of two
weeks.

This school is located in an urban residential area where streets abutted the
school on three sides and the backyards of single-family homes abutted school
property on the fourth side. Hard borders (e.g., fences or walls) separated the school
area from its neighbours. As shown in Figure 2.1, schoolyard use is separated into
two parts, with junior classes being allocated a different part (sub-areas I, Il, and
I11) from that of the senior classes (sub-areas IV and V).

—— Hard boundaries (fences)
=77 Green Area
N Neighbours
[ School Building

e Video observer + Base station
: Football field
2: Bench
3: Funnel ball
4: Climbing structure
5: Sandpit
6
7
8

-
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: Barfix (poles)
: Rolling frame
: Table tennis

Latitude

Figure 2.1: Layout of school A.

School B offers education to children whose development is disrupted or at risk
of disruption due to reasons such as behavioural problems, emotional problems,
or psychiatric issues. Seventy-six percent of students were autistic, and 34% with
ADHD as their primary or secondary diagnosis. Therefore, these two conditions
accounted for the majority of students in School B.

The school is located in a rural area, in close proximity to green spaces. It is
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located on the site of a larger complex of special-needs facilities. In the first part
of our study (Figure 2.2a), the school shared some outdoor areas of the complex,
notably a football field. On the south side, the school bordered residential proper-
ties with green areas in between. The schoolyard was therefore demarcated by soft
borders on practically all sides. During our study, the schoolyard was renovated.
The new layout included a harder yet penetrable separation from the complex, and
a higher degree of self-sufficiency, primarily thanks to its own football field (Fig-
ure 2.2b). Data collection was conducted in three waves: (1) before the renovation,
(2) after renovation, and (3) following minor, local improvements in the renovated
schoolyard (6 months after the renovation). In total, eighteen measurements were
conducted in six days in the period of two to three weeks per data collection wave.

m
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Figure 2.2: Layout of school B: a) before renovation, b) after renovation.

2.2.4 Validation of Measures Obtained through Sensor Tech-
niques

Two video recorders were present to supply validation for the data collected dur-
ing the breaks using sensor techniques. Locations for video observers and sensor
equipment were determined during reconnaissance visits. In the current study, video
recordings were used for visually verifying the sensor data analysis and supporting
the observations presented in the result section. Specifically, video recordings were
used along with data analysis to ensure that the obtained results and interpreta-
tions aligned with what actually happened during the break. For this purpose, all
video recordings were stamped with the date and time of the measurements per
second. This enabled us to extract a particular period from the sensor data and the
corresponding video recordings to verify the results obtained by the data analysis.
For example, the presence of children around the ping pong table, the frequent use
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Figure 2.3: The proposed sensing system: GPS logger, proximity tag, MMR sensor (from
left to right) mounted on a belt.

of the icy slide, and the popularity of the new multi-functional structure were all
verified via the video recordings.

2.2.5 Variables and Measures

As shown in Figure 2.3, the GPS tracker, proximity tags, and MMR sensors were
used to measure and analyse children’s behaviour in different aspects and their inter-
actions with schoolyard environments. As interactions depend on the context (i.e.,
the physical and social setting, and user activity in both spatial and temporal dimen-
sions), our study requires multimodal analysis to examine the highly interconnected
and sophisticated layers of physical, social and cultural affordances in schoolyards.
In this concept, affordances were used as means to interpret and illuminate the
result of data analysis. We further identified the main variables per sensor device
that were used in the identification of each affordances layer as follows:

2.2.5.1 GPS Loggers

GPS loggers record the location of the wearer, allowing us to track the movement
of each child in the schoolyard, i.e., the trajectories they follow and the places they
visit. The GPS loggers used were of the i-gotU GT-120 USB type. Noise in the
GPS data was removed by keeping only sequences where at least five successive
points were situated within a distance of 10 metres of the schoolyard outline, to
account for the positional accuracy of GPS loggers. We excluded data points with
unrealistic speed (10 m/s cut-off point) [74,75]. The remaining data points were
used for further analysis. In schoolyard affordances, GPS locations were adopted in
two directions:

= Trajectories of children contained the longitude and latitude of movements,
through which the speed of movements was calculated (speed = displacements
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over time).

= A kernel density estimate (KDE) estimated the distribution of GPS locations
in a playgroup and assessed the most visited areas.

2.2.5.2 Proximity Tags

Proximity tags used in the research were OpenBeacon, with two base stations
(Beagle-Bone Black minicomputer augmented with custom OpenBeacon hardware).
Proximity tags registered each other via Bluetooth at a distance of up to 1.5 metres.
They wirelessly sent data on these sightings to the base stations, which received
signals 4 times per second [36,76] and registered information broadcast by tags up
to 25 metres away. The proximity tags were used to detect face-to-face contacts
between subjects during recess. Since most children were involved in active play,
their body movements, or interfering objects, such as other individuals passing by
and toys, may have interrupted the signal. To compensate for this error, the raw
proximity data was interpolated by joining two successive contacts between the same
peers, if the time gap between the two contacts was less than a certain threshold
(35 seconds in our study) [77]. The obtained variable was defined as follows:

= Spatial contacts were calculated by taking the face-to-face contacts from the
proximity tag and fusing it with GPS locations. This gave crucial information
on where contacts took place in the schoolyard.

2.2.5.3 MMR sensors

The MMR sensor is a wearable device that includes a BMI160 6-axis Accelerometer
and Gyroscope, a BMM150 3-axis Magnetometer, and allows continuous monitoring
of activities along three axes. In schoolyard affordances, MMR data is used as the
following variable:

= Spatial Activity Level is determined based on cut-off points proposed by Puyau
et al. [78], who validated accelerometer-based activity against energy expen-
diture (EE) in children within a 15-second time frame. We were able to adopt
Puyau's setpoints because: (1) The average participants’ age was similar to
our study (6-16 years old), (2) The activities performed in the validation study
were the same as children’s activities in the schoolyard (walk, run, free-living
activities such as computer games, playing with toys, aerobics, skipping, jump
rope, soccer). This variable was date- and time-matched to each 1-second
GPS data point to obtain how the activity level was related to environmental
features and physical affordances.
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Participants wore the three devices mounted on a belt of adjustable length, to be
worn around the waist. Subjects were asked to wear the belt only during the break
and to take it off when the break ended. Teachers supervising the children during
the break were also issued with sensor belts to capture their contacts with pupils.
As established at the reconnaissance visit, all children were required to leave the
classroom during breaks, except when the weather, sickness or other major problem
made it unwise.

2.3 Results

By adopting the above data-driven approach, we effectively carried out extensive
data collection in two schoolyards. In this section, we present the results of our data
analysis, which examined relations between children’s behaviour and environmental
characteristics. All analyses were performed in Python 3.6.1, within the Anaconda
environment. Geographical data for location identification was extracted from the
OpenStreetMap. For all three sensors, time was used as a unique identifier (uid),
and the merging of datasets was based on the recorded timestamps.

2.3.1 Physical Affordances

With respect to physical affordances, the data revealed that the availability of equip-
ment and furniture, as well as their condition, could be critical to attracting attention
and activity. Figure 2.4 shows the KDE plot of all groups in the (a) morning break
and (b) lunch break at school B, around the multi-functional structure that was
one of the key new features in the renovated schoolyard. This structure includes
one plastic slide (solid white colour in Figure 2.4) and a metal slide (white with
dot hatch), as well as stairs, rope and rock climbing, a catwalk area, and a spin-
ner structure. On that particular day, due to the cold weather and low ambient
temperature, the metal slide had frozen during the morning break. Since an icy
surface has lower friction, the metal slide afforded higher sliding speeds and was,
therefore, a popular spot, with a higher traffic density in comparison to the plastic
slide in Figure 2.4a. Figure 2.4b shows the situation at the same structure during
the lunch break: by that time, the temperature had risen, rendering the metal slide
less speedy and therefore less popular. In fact, at that time spatial density around
the plastic slide was higher.

This sophisticated, unusual play structure did spark children's curiosity and be-
came a popular spot after it was added to the schoolyard renovation. As the
heatmap of young children in Figure 2.5a shows, before the schoolyard was ren-
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Figure 2.4: Use of space, around the slides on multi-functional structure, analysed by GPS
data, during (a) the morning break, and (b) the lunch break in school B. The level of use
is analysed via GPS data, and obtained contours are colour coded from the lowest level of
use to the highest following the colour bar (from yellow to red).

ovated, the most heated spots were the sandpit and swings (Spots 2 and 3) and
the areas around them where children could cycle around. Adding the new multi-
structure on Spot 10 attracted children towards this new structure (Figure 2.5b).
However, during the follow-up, many children lost interest and reverted to their old
preferences (Figure 2.5¢; on Spots 2 and 3).

The layout of the schoolyards and the proximity of play structures relative to
each other could also affect children's movements and activities. Figure 2.6 shows
the physical activity level of children, fused with GPS locations and then mapped
to the floorplan. Having a low proportion of vigorous activities in this playgroup
suggests that the schoolyard does not offer enough space for high physical activity
level activities and games.

2.3.2 Social Affordances

With respect to social affordances, it is equally clear that the density of users affects
some activities such as cycling, pushing them away from crowded areas and causing
intermittent trajectories. Figure 2.7 depicts the trajectory of a subject in school
A, where the child is cycling in the schoolyard between the climbing frame and
a yard fence. His speed reaches its highest value in the midway and is reduced
near route endpoints and physical structures that provide opportunities for social
interactions: the bench where supervising teachers are seated, and the climbing
frame where peers are playing. As illustrated in Figure 2.7, near the climbing frame
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Figure 2.5: Young children’s heatmap, analysed via GPS data in school B (a) before the
renovation, they were attracted to the newly added structure, (b) after the renovation, and
then back to their old habitat during (c) the follow-up. The colour bar shows the duration
of the visit. The warmer the colour (following the colour bar from yellow to red), the
higher the duration of visits by children. The black dots indicate the number of children
in each segment. The larger dots show a higher number of children in that spatial bin.
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Figure 2.6: The location of physical activity levels in school B was analysed via Accelerom-
eter data and then fused with GPS locations.

the speed not only drops to a minimum, but stationary time also increases (as shown
in the red circle: data points with low-speed levels and little displacement along the
trajectories around the climbing frame), suggesting the possibility of quick chats
with peers. Face-to-face contacts captured by the proximity tags confirm that such
social interactions occurred near the climbing frame (green stars) and at the bench

oo SN
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(green triangle).
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Figure 2.7: Cyclist in school A: the trajectory of movement is extracted from GPS data,
and colour coded based on speed level (from light blue to light pink, following the colour
bar). Face-to-face contacts are analysed from proximity tags, fused with GPS data, and
mapped to the school floor plan (triangle: contacts with the teacher, and star: contacts
with peers).

Social affordances could also determine which physical affordances were estab-
lished. Especially in senior classes, the use of space could be influenced more by who
than by what. Children at this age often stay with a specific sub-group throughout
the break in a certain schoolyard area that they “own”. As Figure 2.8 shows, in
school A, the areas around the tennis table and the bench were where most social
contacts happened. GPS data confirm the presence of groups from senior classes
in these areas. The table was used for sitting and mingling rather than for playing
table tennis, which suggests that social affordances are more important than the
expected use. Use of the bench by a specific group from senior classes was consis-
tently observed across several break sessions and confirmed by the sensor data (see
Figure 2.8).

Data also reveal movement patterns at the individual level, such as the behaviour
of an autistic subject in comparison to the rest of the playgroup. Figure 2.9 shows
the GPS data of one of the playgroups in School A, where the spatial data of
an autistic subject indicates that the child remained close to the school building,
avoiding dense areas.
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Figure 2.8: Social use of space by senior classes in school A. The level of use is analysed
via GPS data, and obtained contours are colour coded from the lowest level of use to the
highest following the colour bar (from yellow to red), face-to-face contacts are extracted
from proximity data, fused with GPS locations and mapped to the school floor plan (note
that the base station could not cover the contacts that occurred in Area 1, therefore no
contacts from that region was registered).
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Figure 2.9: The use of space by an autistic child in comparison with its playgroup in school
A. The level of use is analysed via GPS data, and obtained contours are colour coded from
the lowest level of use to the highest following the colour bar (from yellow to red). The
GPS location of the autistic child is plotted on the floor plan, colour coded by the speed
level from the lowest speed to the highest, following the colour bar (from blue to pink).
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2.3.3 Cultural Affordances

Cultural affordances were quite strong, as expected for this age group and for the
capacities of autistic children. For instance, in School A, younger groups were free
to use all three sub-areas, |, II, and I1l. However, wheeled toys (e.g., bikes, steppers,
scooters, etc.) were restricted to sub-area |l when a specific supervisor was in
charge (Figure 2.10a). Since biking was one of the most popular activities among
young children, this restriction has a significant impact on the use of space in the
schoolyard. Figure 2.10a shows the KDE plot when wheeled play was restricted
to Ill: a high-density level around area Ill, with a peak at the end of Ill where
the turning point was. Figure 2.10b shows a different day when children were not
restricted to Il for biking. On that day, the spatial density was widely distributed
over all three sub-areas.

———————— Sub-Areas
Street
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B School Building

== Neighbours

Longitude
Longitude
ES

(a) Latitude (b) Latitude

Figure 2.10: The use of space by cyclist children in school A (a) with restriction (b)
without restriction from the break supervisor. The level of use is analysed via GPS data,
and obtained contours are colour coded from the lowest level of use to the highest following
the colour bar (from yellow to red).

Violation of school rules was only occasionally observed, for example, in the
trajectories of a few subjects who wandered around in School B before renovation
(green dots in Figure 2.11). This contrasted with the trajectories of subjects who
went to play on the football field: these followed the shortest route to the remote
football field, with no subjects wandering off (purple dots), according to the school
rules: children were not allowed to cross the soft boundaries and move around in
the residential area.

Supervision naturally reinforced cultural constraints. In fact, in both schools,
most constraints were designed with supervision in mind: how to make it more
economical and more effective. This, however, also created an illusion of full control
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Figure 2.11: The trajectory of a group wandering around against school rules, and football
players in school B, was extracted from GPS data.

among the teachers, who were surprised when the researchers reported the above
example: they had never observed or even suspected something like that. Otherwise,
they would have taken measures to prevent it.

2.4 Discussion & Conclusions

The purpose of this study was to show a data-driven approach that examined how
three environmental layers (physical, social, and cultural) interact with children’s
movements and behaviour during unstructured play at recess time. Through mod-
ern sensor technologies, sensor data was collected on children’s activities in two
primary special education schools in the Netherlands. The obtained data was fur-
ther analysed in light of schoolyard affordances.

Our first aim was to adopt a novel sensor data-driven approach to examine af-
fordances in schoolyards. Observations by our researchers and feedback from the
school demonstrated that the belt we had designed with sensors was not distracting
for children. Instead, it was exciting to primary school children, who showed eager-
ness to participate in the research. Moreover, our data-driven approach allowed us
to register more subjects over a longer period of time cost-effectively. The sensing
system in our approach includes GPS loggers, proximity tags, and MMR sensors to
capture different aspects of children’s behaviour (i.e., locations, face-to-face con-
tacts, physical activity level). Integration of this information was crucial in our
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study. The spatial dimensions of the face-to-face contacts and physical activities
were obtained by fusing the registered data with GPS locations. This enabled us
to understand how the physical characteristics of the schoolyard impact children's
contacts, physical activity levels and their use of space.

Regarding our second aim, our approach allowed us to identify three main envi-
ronmental factors that influence children’s behaviours:

First, the physical capacity of the schoolyard, such as its size, shape, equipment
(e.g., availability and arrangement) and relevant rules and constraints, serve as pre-
liminary triggers that affect children’s behaviours (e.g., the Sliding example in Fig-
ure 2.4; physical activity level in Figure 2.6). The schoolyard should have adequate
capacity and offer a variety of options for children to play and engage in different
activities. In addition, schoolyard equipment, depending on its design (e.g., climb-
ing frames, swings, seesaw, etc.) and arrangement (e.g., materials, height, size,
and proximity to other equipment), could either hinder or attract children to the
equipment and discourage or encourage play. Earlier research also confirmed that
schoolyard size and availability of play equipment, such as sports facilities, recreation
areas, surface materials, and greenery elements, could promote children’s physical
activity level [79,80]. Green areas are also found to be a contributing factor in
promoting children’s resilience and reducing their stress levels [81]. Similarly, close
proximity between play structures generates more spots for physical activity [72,82].
Yet, our data showed that close proximity between different play equipment in a
small space could also result in lower physical activity levels. The overall shape of
the schoolyard influences the supervision method and could result in demarcations
that reduce the space available to children (e.g., restricted cyclists in Figure 2.10,
versus wandering cyclists in Figure 2.11). Importantly, our three-wave data collec-
tion in school B shows that new, fancy equipment may not always remain attractive
after the novelty wears off. With time, children may still return to equipment that
affords a wider variety of creative activities. This again emphasizes the importance
of examining the capacity of the schoolyard according to its affordances.

Second, opportunities for social interaction often attract children towards certain
spots and motivate children to use the space for social purposes. Our data confirmed
that the spots where such opportunities were offered could indeed stimulate social
interaction, even when they were not originally designed for that purpose (e.g., the
bench and climbing structure in Figure 2.7; the ping pong table in Figure 2.8). This
outcome echoes previous findings about the impact of environmental aspects, such
that green and natural elements, multi-functional equipment with diverse structures
like sand-pits and stairs, (semi-)secluded places, etc., encourage children’s social
interactions [34,83-86]. These features usually afford more variety and flexibility
in children’s play, and may be helpful for the initiation of social activities, or offer
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a space to play and hang out without interruption or to recover from active play
[34,83]. Conversely, popular areas and equipment can also cause more conflicts over
available resources. For example, play structures such as swings, slides, seesaws,
etc., can be locations that support constructive interactions, as well as foci of
competition, irritation, or even bullying.

Third, individual needs could lead to quite different patterns in the use of space.
Despite the patterns shown in the above two points, our data showed that vulnerable
children (e.g., autistic and ADHD children who have different effectivities), who have
different capacities and needs in their interactions with the environment, may use
schoolyard affordances of any kind in a unique way. This is observed via sensor data
in their trajectory of movements, use of space, and activities during the break, as
with the autistic child who remained next to the school building in Figure 2.9, away
from the area where most of his/her classmates were playing. With this data-driven
approach, we show that this autistic child was not just alone, but alone in a context:
in the corner, with limited movements, throughout the break. Such information that
links individual patterns to environmental factors, in children’s natural setting, is
crucial for studying children’s behaviour, especially for understanding the needs
of vulnerable children. Yet, while our sensing system enabled us to detect these
differences, it is also important to identify whether these differences reflect the
preferences of the child, difficulties in joining others, or social exclusion.

Our third aim was to inform schools, designers, and policymakers about these
identified factors. School organisations and supervisors in schoolyards play a key
role in identifying situations where children are overwhelmed or triggered by peers
or certain equipment and avert these scenarios by taking the required precautions
and overruling the existing climate [87], for example, by planning a timetable for
using a popular play structure by different sub-groups of children. School organ-
isations should also deliver extra support, customised rules, and structures suited
to vulnerable children, and an inclusive school climate that values diversity and in-
dividual differences. For example, the schoolyard could have different sub-areas in
different colours and play structures, and children could choose in which colour (or
sub-area) they would like to play before starting the break. In this way, supervisors
could estimate high-demand areas and, by re-organizing the available resources, try
to strike a balance in the use of space. This could deliver substantial benefits, for
example, to children overwhelmed by crowded or noisy situations, such as children
with hearing aids or autistic children. These findings have important implications for
developing interventions that adapt to the environment to promote social participa-
tion. They also show the strengths of our proposed sensing system in evaluating the
intervention and providing relevant insights to schools, designers, and policymakers.

Overall, the obtained results showed that making affordances explicit and mea-
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surable, through the use of approaches such as those presented in this paper, can
help to better understand children’s behaviours and moves, translate these insights
into actionable advice for schools, designers and policymakers and further improve
current layouts and forms of organisation, especially with respect to the capacity of
vulnerable children.

2.4.1 Limitations and Future Directions

Our proposed sensing system allowed us to register more subjects and activities with
higher precision than we could have with observation methods. Yet, while a belt
with sensors may be exciting to primary school children, it may not be suitable for
adolescents in high school. Besides, regarding the performance of individual sensors,
GPS technology showed great promise in obtaining individual positions. Yet, given
GPS accuracy (1-10 m), ultra-wideband (UWB) (accuracy of 10 cm) are better
suited to the scale and context of schoolyards [88—90]. Such accurate positioning
systems could identify contacts between subjects in a more comprehensive range of
actions and interactions (e.g., parallel play) than proximity tags, which record only
face-to-face contacts [91]. This enhancement could withdraw the proximity tags
from the sensing system. In addition, in our current system, the value of contacts
(e.g., does a child identified alone on the playground feel lonely or happy to be
left alone) and moves remain unknown. For example, while we could truly obtain
from sensor data that a child played alone in the sand-pit, we did not know the
reason, i.e., their emotions or preferences. Therefore, the sensing system could be
improved in future in three ways: first, it should be made suitable for a wider age
range; second, it should include a more accurate positioning system, e.g., UWB;
and third, it should incorporate a strategy to let participants actively express their
emotions and preferences through focus group interviews and/or by providing real-
time responses for example via smartwatches.

Another limitation of this study is that the obtained results were based on a small
number of measurements at two special education schools. More data collection
would be needed to design an automated monitoring system whose conclusions could
be generalised to different environments and scenarios. This was not possible due to
the COVID-19 crisis, but it is currently one of the major foci of this research team.
Finally, our proposed data-driven approach makes it possible to analyse movement,
social behaviour and environmental interactions among children at a specific school.
While it makes it possible to gain a better understanding of the current challenges
children face, it also holds the potential to reach beyond this understanding alone
and empower schoolyard designers to define and monitor the effect of incremental
improvements to schoolyards, for example, in the form of new equipment or changes
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in the physical organisation of the schoolyard. This approach could even be used
to examine real-time adaptations to the rules and parameters of digital-physical
interactive schoolyards. As such, the work presented here is the first step in what
could become a long-term research program of a much broader scope.

For future studies that aim to adopt a similar approach, one of the most im-
portant lessons is that each case should be studied before collecting the data: all
environmental layers (physical, social, cultural and their interrelations) must be con-
sidered to form expectations for the data and their analyses. As described in Sec-
tion 2.2.2, a reconnaissance visit that featured informal interviews and inspections
helped us understand what took place in each schoolyard, its specific circumstances,
and the intentions of the school (which should be respected but also critically anal-
ysed). As the data analyses demonstrated, there were many factors behind observed
behaviours and patterns that may go unnoticed, if researchers focus on a single as-
pect or goal. In other words, context matters. Depending on the research questions
at stake, variables for capturing the environmental layers require clear definitions
and particular sensing technologies should be chosen accordingly. For example, the
positioning technology should be chosen depending on environmental conditions to
record the users' location appropriately and thus reliably analyse the child's interac-
tion with the environment. For example, GPS technology is more suitable for large
outdoor areas, while UWB is a better option for relatively small areas. Integrating
background knowledge obtained during reconnaissance visits and the collected data
from sensors allows for a better interpretation of environmental factors that affect
children’s movements and behaviour.
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Abstract

The present study aims to infer individuals' social networks from their spatio-
temporal behavior acquired via wearable sensors. Previously proposed static network
metrics (e.g., centrality measures) cannot capture the complex temporal patterns
in dynamic settings (e.g., children’s play in a schoolyard). Moreover, existing tem-
poral metrics overlook the spatial context of interactions. This study aims first to
introduce a novel metric on social networks in which both temporal and spatial
aspects of the network are considered to unravel the spatio-temporal dynamics of
human behavior. This metric can be used to understand how individuals utilize
space to access their network, and how individuals are accessible by their network.
We evaluate the proposed method on real data to show how the proposed met-
ric impacts the performance of a clustering task. Second, this metric is used to
interpret interactions in a real-world dataset collected from children playing in a
playground. Moreover, by considering spatial features, this metric provides unique
knowledge of the spatio-temporal accessibility of individuals in a community, and
more clearly captures pairwise accessibility compared with existing temporal metrics.
Thus, it can facilitate domain scientists interested in understanding social behav-
ior in the spatio-temporal context. Furthermore, We make our collected dataset
publicly available for further research.

3.1 Introduction

Increasing public awareness about the potential impact of social networks on in-
dividuals and society has led to an interest in understanding how these networks
function, and how individuals are positioned in their social contexts. In an effort to
investigate the structure of these networks, a considerable body of research literature
has developed around the theme of social network analysis (SNA) [92-95]. The
availability of wearable technologies that allow for the collection of fine-grained data
from daily activities, advances in data analysis techniques and computational tools,
and the need to understand the dynamics of social networks in various fields such as
sociology, sports science, and healthcare, have all contributed to increased interest
in SNA. SNA involves a collection of tools that adopt graph theory to perform exten-
sive computational techniques that ultimately identify connection patterns among
members of a community [96]. For instance, a static representation graph accumu-
lates relationships between individuals in an episode, calculates static metrics such
as centrality measures (e.g., closeness centrality [97]), and estimates the role of any
given node (or individual) in the static representation of that network.
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However, a static representation graph eliminates all temporal details, such as
the frequency of events and the time difference between subsequent events, when
this temporal information might include important information about the nature
of the interactions at stake [98]. It also does not take into account any spatial
relationships featured within those interactions.

Regarding omitted temporal detail, Figure 3.1 demonstrates the limitations of
existing approaches. Throughout this paper, we will refer back to this running
example - inspired by an in vivo social scenario - to illustrate our proposed method.
The example data here reflect the play of four children (A, B, C, and D) during
recess in a playground that features four distinct play areas: a sandpit, a bench, a
combination of green areas, and a walking path, plus the entrance to the playground.
In this scenario, Child-A played in the sandpit during the whole break, whilst Child-B
first played in the sandpit, then engaged in a conversation with a peer on a bench,
and later walked to the entrance of the playground. According to the data source
in Figure 3.1-a, Child-A interacted with peers only at the beginning of recess time
(i.e., T1, T2, T3) in the sandpit, where most of the peers appear to have been
located during the same period, whereas Child-B interacted with peers across the
entire recess time (i.e., T1, T4, T6) in different locations (i.e., sandpit, bench, and
the entrance). These facts reflect distinctions that are relevant to social network
structure. Yet although Child-A and Child-B had different behavioral patterns during
recess, their positions in the static graph representation, as shown in Figure 3.1-b,
appear the same: the graph shows an equal number of edges (partners) with equal
weights (number of interactions), which yields the same representation as in their
static metrics, such as centrality measures. This example illustrates how these static
metrics are not sensitive to temporal changes, and fail to capture complex dynamics
that could be contained within such data.

To tackle this problem, Kostakos [98] proposed a “temporal” graph representa-
tion, in which the relationship between nodes and the position of each node was
investigated in the temporal context of an entire network, rather than in an aggre-
gated format. Based on this representation, Kostakos [98] introduced new metrics,
including average geodesic proximity and average temporal proximity, which con-
sider edge availability over time and take into account possible wait times for each
node before meeting the next node. Specifically, these are measures of how quickly
an individual is accessible by their network, and how quickly the network is acces-
sible by the individual. Figure 3.1-c does show this temporal representation: in
contrast to a static analysis, Child-A and Child-B are positioned differently in this
representation. Here, the temporal metrics preserve information about the order
and the frequency of events over time.

Yet, even in this temporal representation of a network, one aspect that is still
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Figure 3.1: Visual comparison on how a data source of interactions between four children
in a playground is represented via b static graph, c temporal graph, and d Spatio-temporal
graph. While Child-A and Child-B have different temporal patterns (e.g., frequency of
interactions and difference in time between interactions) and spatial features (e.g., location
of interactions) in the (a) data source, their position in the (b) static graph is the same.
The (c) temporal graph could better preserve temporal details, but the spatial information
is ignored. And finally, the (d) spatio-temporal representation could preserve the temporal
and spatial information of interactions.

entirely overlooked is that of the physical environment. In the context of the example
illustrated in Figure 3.1, investigating the temporal accessibility of a child in the
playground does not inform us about how the child utilized the environment: did the
child walk around and interact with peers (e.g., Child-B in Figure 3.1-d), or simply
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remain in a crowded spot while making contact with peers (e.g., Child-A playing in
the sandpit in Figure 3.1-d)? To understand the impact of the physical environment
on an individual's interactions with their network, it is crucial to consider spatial
features in analyzing the social network. The temporal metric estimates availability
only by considering temporal differences between nodes. The spatial aspect of this
availability, i.e., the location of contacts in the physical environment, is still ignored
in a temporal graph representation.

The literature has already documented the importance of considering spatial
context when examining social networks. Several studies have examined the effect
of environments on human behavior, for example, the impact of physical and social
environments of neighborhoods on child and family well-being [99], the impact of
office design on employee's office usage and social interactions [100], and the impact
of schoolyard design on children’'s movement and their social behavior [1]. In fact,
including the spatial element of social networks enables us to understand better how
the physical environment impacts individuals’ behavior [101] and how users utilize
the environment to interact with their network.

While the impact of the physical environment on social networks has been con-
firmed in various studies, limited attention has been given to the integration of
these dimensions into a unified framework. Consequently, there is a critical need
for research that addresses this gap by introducing spatio-temporal metrics capable
of quantifying the complex interplay between social and physical environments.

In order to examine the interdependency between spatial and social contexts
of interactions and continue to build a better understanding of the impact of the
physical environment on social networks, the present study pursues two main aims.
First, we introduce a new metric for measuring the spatial and temporal dynamics
of social networks, known as average spatio-temporal proximity. By considering the
spatial differences between temporal networks, our proposed metric examines how
spatially sparse these networks are and how spatio-temporally a user is connected
to its network. Specifically, this metric calculates the shortest path based on the
spatial distance of temporal events and estimates how far, on average, nodes (or
individuals) in a network need to move to reach a specific node, and how far, on
average, a node needs to move to reach the rest of the network. Such a metric
would enable a more comprehensive understanding of the factors influencing social
accessibility (i.e., examining how the physical and social context reciprocates around
individuals).

Second, we evaluate the proposed metric in the context of a case study whose
goal was to investigate social interactions among a group of 32 children playing in a
schoolyard during recess. By measuring the spatio-temporal proximity of individuals
over time, we aim to better understand the social behavior of these children and
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their interactions within the context of their spatial environment.
Overall, this paper makes the following contributions:

= We introduce a new metric to quantify the proximity of nodes in a graph
that considers both temporal and spatial characteristics of contacts in order
to measure how individuals in a network utilize space to make contacts.

= We present and make publicly available a new dataset collected from chil-
dren’s interactions and movements in a schoolyard during recess. This dataset
uniquely registered face-to-face contacts and children’s locations over time,
measured via wearable proximity sensors and GPS loggers, respectively. This
dataset is available in a public repository for future use in spatio-temporal
research.

= We evaluate the performance of our proposed metric to show how it im-
pacts the performance of a clustering task in identifying clusters in a network,
compared to temporal measures alone.

= We further demonstrate how this metric can be used to illuminate the under-
lying interactions in our Schoolyard Dataset.

The rest of this paper is organized as follows: In Related work, we discuss the liter-
ature relevant to our study. The Problem Definition introduces the computational
problem at stake in our proposed methodology. Methodology presents the details
of our method. The experimental settings and results are presented in Experiments.
Finally, Conclusions summarizes the study and discusses future research directions.

3.2 Related work

To provide relevant context, here we reference further literature on two main ap-
proaches to the fusion of spatial information with time-series data: location-based
social network (LBSN) analysis, where spatial information is intertwined with social
networks, and spatio-temporal pattern mining, where relevant research is scanned
to identify spatio-temporal features, as a broad concept.

3.2.1 Location-Based Social Network (LBSN) Analysis

Most studies in LBSN analysis arose from the urban computing field and social
media networks analysis mainly due to the availability of large-scale databases such
as Foursquare, Twitter, Instagram, and Google Places [102-105]. In this body of
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research, the interdependency between spatial and social contacts lies in the co-
presence of two persons in the same physical locations, or the sharing of a similar
location history, common behavior, or activities. In these cases, interdependency is
implied from users' location data without assessing face-to-face interactions from
individuals’ perspectives [106]. The aim of this line of research is often to de-
sign physical location (or activity) recommendation systems [107-109], travel plan-
ning [110,111], and marketing [112] from accumulated spatial behavior, mainly by
considering similarity among users. In contrast, spatial information in the present
study is used as a descriptive machine learning model for the purpose of improving
the performance of a downstream task and for discovering more about the nature
of interactions rather than for predicting social contacts or common interests.

3.2.2 Spatio-temporal Pattern Mining

Recently, interest has been growing in areas related to the adoption of deep neural
network models to generate spatio-temporal features in varied applications. These
include crowd flow prediction [113], social event detection [3,114], and financially
aware social network analysis [115]. Although the performance of deep models for
extracting spatio-temporal features has appeared promising, these models require
a huge amount of representative data to learn about generalizable spatio-temporal
embeddings. Therefore, these methods are hardly applicable for small datasets in
which the duration of data assessments and the number of users is limited. In
addition, collecting large-scale data from certain populations (e.g., patients in a
hospital or children in a playground) is often impossible because of privacy protection
concerns. Therefore, analyzing spatial patterns over time via classical pattern mining
techniques has been the focus of many studies in domains such as animal revisitation
analysis [116], disease spread patterns [117], and the tourism industry [118, 119].
This line of research often involves extracting time domain features (e.g., residence
time, the time between visits) and applying a downstream task to the extracted
features, such as clustering and prediction.

Analyzing temporal events via graphs, as in a “temporal graph”, was first intro-
duced by Kostakos [98]. Using this representation, temporal metrics were defined
to assess geodesic and temporal proximity. These metrics estimated how quickly
a node was accessible by the network, and how quickly a network was accessible
by a node. Accessibility in temporal proximity was defined as the time difference
between temporal events in a weighted shortest-path algorithm. Geodesic proximity
was calculated using the number of hops between temporal events in an unweighted
shortest-path algorithm. Neither metric took into account the spatial context of
temporal events, e.g., the geo-distance between nodes.
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The present study is intended to further build upon the work of Kostakos [98].
Specifically, temporal metrics proposed by Kostakos [98] are further developed to
incorporate the spatial aspect of social contacts and to examine the spatio-temporal
accessibility of individuals within a network.

3.3 Problem Definition

Assume a spatio-temporal proximity dataset as a set of tuples in the form of
(vi,vj,s¢) where {v;,v; € V} are two entities in the set of entities V that are
detected in proximity to each other, where s; = (x,y,t) represents the coordinate
where the contact between these v; and v, is registered at time ¢, and ¢t € {1,--- ,T'}
represents the timestamp of the contact. Such a dataset can be collected, for exam-
ple, when the two entities are equipped with a proximity sensor (to detect contacts)
and a GPS sensor, to acquire the average coordinate representing the point of
contact between the entities.

First, we are interested in creating a spatio-temporal graph representation g =
(Vs,,E), where {v; 5, € V,} are sets of nodes each represented over timestamps
t, at a location denoted by s, and E is a set of instant and spatio-temporal edges.
Instant edges are unweighted and undirected links between spatio-temporal nodes
V55, and v;,, indicating contact between two distinct nodes v; and v;, @ # j at
location s in time ¢. Spatio-temporal edges are weighted and directed links between
consecutive pairs v; s, and v; 5, ,, of node v; (which is weighted based on the spatio-
temporal proximity assuming that the direction of edges) represents the temporal
order.

Second, we are interested in finding clusters C; = V¢, where V¢, C 'V, such
that all nodes V¢, within each cluster C; are spatio-temporally similar to each other
and dissimilar to the nodes in other clusters.

3.4 Methodology

In this section, we present essential mathematical preliminaries as the foundation
for understanding our proposed methodology, and the problem at stake. Then, we
explain our proposed spatio-temporal graph and its proximity metrics.



3.4 Methodology 41

3.4.1 Background and Preliminaries

Graphs are mathematical structures used to model pairwise relations between ob-
jects. In this structure, objects are represented as nodes that are connected by
edges [120]. In order to preserve temporal information via graph representations,
Kostakos [98] introduced the idea of temporal graphs. In this representation, con-
trary to static representations, the temporal relationship between nodes and the
position of each node in the temporal context of the entire network is preserved.
According to Kostakos [98], a temporal graph is constructed in three steps:

1. One temporal node per original node per point in time is created. Thus, node
v; in the original graph is represented as v; ; in the temporal graph where ¢t €
[1,..,T] are all the data points in which node v; is communicated; e.g., Child-
B in Figure 3.1 is represented by the set of instances v, = [vB1, VB4, VUB6]-

2. Consecutive pairs v; ¢, v; ¢, With directed edges of weight ¢, 1 —1, for each
set of instances v; are linked, representing the temporal distance between the
pair. For example, in Figure 3.1, the weight between nodes vp; and vpy is 3
time points.

3. The unweighted, undirected edges are used to link instantaneous communi-
cations between nodes. E.g., an interaction between Child-A and Child-B in
Figure 3.1 at time t; is instantiated as an undirected link between Child-A
and Child-B.

Therefore, each node v; in Figure 3.1-b is converted to a directed chain of nodes v; ;
that represent all temporal instances of nodes over time. Following this protocol,
the temporal graph is generated as shown in Figure 3.1-c.

Furthermore, Kostakos [98] defined average geodesic proximity G(v;,v;) on a
temporal graph as the measure of “on average, how many hops is node v; away
from node v;". This metric is formulated as follows:

T

G(’Ui,Uj) = %Zg(vi,vj,t), (3]_)

t=1

where g(v;,v;,t) is the shortest path, starting from node v; at time ¢ to the most
accessible version of node v; over time. t € [1,...,T] is the set of time points
that node v; is active (or communicating). n is the number of finite g(v;,v;,t)
values, e.g., g(A,D,t =1) =2 (i.e.,va1,vVa2,Vp2) in our example in Figure 3.1.
In this metric, the lowest number of hops defines the most accessible instance.
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Consequently, the G, (v;) and G,y (v;) are calculated for node v; as formulated in
Equation 3.2:

1 XM
Gin(v;) = -~ Z G(vj,v;),
Jj=1,j#i (3.2)
1 M
Gout(vi) = E ‘ Z AG(IUZ'»’Uj)
J=1j#1

Where G, (v;) and Goue(v;) are measures of “on average, in how many hops is
v; reached by the rest of the network” and “on average, in how many hops does
v; reach the rest of the network”, respectively. n is the number of finite G(v;, v;)
and G(v;,v;) values, and v; € V = {v1,vs, ..., 0a},v; # v; is sets of nodes in a
network with M nodes.

Similarly, average temporal proximity P(v;,v;) is the measure of, “on average,
the time it takes to go from v; to v;” and is formulated as follows:

T
1
P(’UZ',U]‘) = gzp(viavljawtat)v (33)

t=1

where p(v;, v, we, t) is the weighted shortest path, starting from node v; at time
t to the most accessible version of node v; over time. t € [1,...,T] is the set of
time points that node v; is active (or communicated). n is the number of finite
p(vi,vj, we, t) values e.g., p(A, D,we,t1) =1 (i.e.,va1,va2,vp2) in Figure 3.1.
The weight w; equals the time difference between nodes at a given path. Conse-
quently, the Py, (v;) and P, (v;) are calculated as formulated in Equation 3.4:

1 M
Pin(vi) = -~ Z P(vj,v;),
J=Lj#i (3.4)
1 M
P, )= — iy Vi
out(vz) n Z .P(vlﬂvj)
J=Lj#i

The P;, and P,,; are measures of “how quickly, on average, v; is reached by
the rest of the network” and “how quickly, on average, v; reaches the rest of the
network”. n is the number of finite P(v;,v;) and P(v;,v;) values, and v; € V =
{v1,v2,...,um},vj # v; is sets of nodes in a network with A nodes. This metric
estimates nodes' accessibility by obtaining its availability over time.
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To better understand these two temporal metrics, we calculated them in the
playground example presented in the Introduction (See Figure 3.1). Table 3.1 and
Table 3.2 show the result of average geodesic proximity and average temporal prox-
imity, respectively. The results demonstrate that, despite the static measures, Child-
A and Child-B have different in and out measures (both geodesic and temporal).
Child-A has the lowest G;,, and P;, as all peers find the child shortly at the start
of the break, and the highest G, due to its absence in communication during the
second half of the break. This might be because the child is more involved in soli-
tary games, rather than being with peers during recess. The lowest values belong
to Child-B in both G,,; and P,,; because Child-B accessed peers across the break
and interacted with all peers.

Table 3.1: The result of average geodesic proximity on playground example

G Gout
A B C D
A 0 233 133 267 2111
B 1 0 1 2 1.333
C 1 133 0 3.33 1.889
D 1 15 3 0 1.833
Gy 1 1722 1778 2.667

Table 3.2: The result of average temporal proximity on playground example

P Pout
A B C D
0 033 167 039 0.29
0.14 0 0.16 0.14 0.148
0.15 0.18 0 0.32 0.219
0.32 0.14 0.52 0 0.325
P, 0202 0218 0.281 0.284

Onw>

3.4.2 Spatio-temporal Proximity

Both of the metrics that are explained in the previous section overlook spatial de-
pendency among nodes, and consequently, ignore the spatial behavior of individuals
(e.g., whether a child is interacting in different areas over the course of recess, or
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the child stays in a single spot and interacts with peers who come over to that
same spot). Obtaining such detailed spatio-temporal behavior is not possible via
the existing measures (e.g., average geodesic proximity and average temporal prox-
imity). To address this gap, we introduce spatio-temporal graphs and define average
spatio-temporal proximity as S(v;,v;), which takes into account spatial dependen-
cies among nodes. By considering the spatial distances, e.g., Euclidean distance, the
spatio-temporal proximity examines how spatially close the user is to their network.
To create a spatio-temporal graph, we followed the same steps as in the tempo-
ral graph protocol, except in step (2), where the consecutive pairs Viyse, > Viyse,
are linked with the directed edges of weight al(vi,stw,vi,stachl ), which is the spatial
distance between instances v; s, and vis, (instead of temporal differences).

Accordingly, average spatio-temporal proximity is calculated based on this spatio-
temporal graph, and allows the weights to be the spatial distances among the
edges. This metric investigates “on average, how long (spatio-temporally) it takes
for the network to reach v; (S;,)", and “on average, how long (spatio-temporally)
it takes for v; to reach the rest of the network (S,,:)". The average spatio-temporal
proximity is formulated as follows:

3\*—‘

S(vs, v5)

T
ZS Uwvjvwsvt)a (35)
t=1

where s(v;, v;,ws,t) is the weighted shortest path, starting from node v; at time
t to the most accessible version of node v; over time. ¢ € [1,...,T] is the set of
time points that node v; is active (or communicated). n is the number of finite
s(v;,v;, ws, t) values. The weight wy is equivalent to the spatial distance between
nodes v; and v; at a given path, assuming that the location coordinates of all the
contacts are available.

Furthermore, the spatio-temporal proximity is calculated per pair of nodes in a
community, and the in-degree (S;,) and out-degree (.S;;,) variants are calculated by
taking the average over the in-reached and out-reached variables, respectively.

Sin(vi) = g S (v, v4),

Sout Uz E S U“U]
] Lj#i

(3.6)

The S;(v;) and Syt (v;) are measures of “how long, on average, v; is accessible
by the rest of the network” and “how long, on average, it takes on average for v;
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to access the rest of the network”. n is the number of finite S(v;,v;) and S(v;, v;)
values, and v; € V = {v1,v9,...,p},v; # v; is sets of nodes in a network
with M nodes. Similarly, the result of this analysis for the playground example is
shown in Table 3.3. To calculate this table, it is assumed that the sandpit, bench,
and entrance area are located at (3,1), (2,2), and (1,1) Cartesian coordinates,
respectively, and that the interactions happened around these areas. As described

Table 3.3: The result of average spatio-temporal proximity on playground example

S Sout
A B C D
0 085 0.1 0.83 0.594
0.141 0 0.1 048 0.241
0.1 0.43 0 1.2 0.579
0.1 0.7 0.2 0 0.333
Sin  0.114 0.66 0.133 0.84

Onw>

in Table 3.3, Child-A has the lowest S;,: during time points when the child was
available (i.e., T1, T2, and T3), all other peers were in the same spot (sandpit)
and could access the child with a short distance to travel. Meanwhile, Child-D got
the highest .S;,, because the child was only available at T2 and T6, and if anyone
wanted to reach Child-D after T2, they had to pass a long spatio-temporal route
(i.e., temporally from T2 to T6, and spatially to the entrance, in order to find the
child at the Entrance on T6). Regarding the S,,;, Child-A has the highest score
because some peers were not presented at T2 and T3 in the sandpit. Therefore,
the child had to wait and reach them in different locations. In contrast, Child-B
could more easily access peers (lowest S,,+) because the child was present across
recess time in different locations. Thus, our proposed metric quantifies accessibility
by unifying the spatial and temporal dimension of interactions, and provides unique
knowledge on how individuals and their networks utilize the spatial environment to
make contacts over time.

3.5 Experiments

We investigated the performance of the proposed metric in identifying social groups,
based on the most accessible peers. Specifically, we were interested in knowing
whether adding spatial context to the existing temporal metrics (i.e., geodesic and
temporal proximity) could help better identify groups in a network.
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We evaluated the proposed methodology by utilizing a clustering performance
task. Here, we first explain our experimental design and introduce the datasets
adopted in our experiments. Then, the evaluation metrics are presented. Next, we
show the result of our analysis in two sections: The first part evaluates the perfor-
mance of a clustering task using the proposed metric, compared with the existing
temporal metrics as the baseline. The second part analyses children’s behavior in
the schoolyard dataset.

3.5.1 Experiment Settings

Experiments were designed using the Python programming language. The code has
been made available in a public repository?.

The NetworkX module was used to execute social network analysis, and Dijkstra
shortest-path algorithm [121] was used for the calculation of proximity metrics (i.e.,
geodesic, temporal, and spatio-temporal proximity) on the spatio-temporal graph.
The SciPy and Scikit Learn packages were used to perform clustering tasks and
evaluate their performance, respectively. Hierarchical clustering [122] was used to
cluster the proximity matrices, which was a natural choice for clustering data in
the form of an adjacency matrix, especially when the dataset size is small. In
addition, hierarchical clustering serves best in exploratory analysis where there is no
specific outcome variable defined. For this purpose, first, the Pearson correlation
coefficients of the pairwise matrices were calculated separately across in-degree and
out-degree components to acquire how in-degree proximity (i.e., accessing the child
by the network), and out-degree proximity (i.e., accessing the network by the child),
were correlated among children. Consequently, we obtained a symmetric correlation
coefficient matrix (CCM) per in-degree and out-degree metrics, thereby determining
the strength and direction of the pairwise relationships among children. Next, the
upper triangular area of the in-degree CCM was merged with the lower triangular
area of the out-degree CCM, to create a non-symmetric CCM that described both
in-degree and out-degree correlations among children. Such a non-symmetric CCM
was used in the hierarchical clustering algorithm to identify groups based on mostly
correlational relationships. Furthermore, the obtained matrix was used in creating
heatmaps to visualize the relationships between children in a more organized way,
which aids in data exploration and analysis.

In designing the hierarchical clustering algorithm, three different linkage meth-
ods, including complete, average, and average group, were investigated to under-
stand how different strategies in creating the linkage matrix impact the performance

lhttps://github.com/maacedee/spatio-temporal-network.git
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Figure 3.2: The maximum Silhouette coefficient score is used to find the optimum ‘max-
clust’ value t for the hierarchical clustering algorithm on the range of t € [2, N], in which
N is the total number of data points for (a) PG-1 (IV = 10) and (b) PG-2 (N = 20).

Accordingly, the ‘maxclust’ is selected as 4 for all three measures in PG-1 and as
G=9,P=3,5=7for PG-2 based on the maximum Silhouette coefficient score.

of the clustering algorithm. In short, the ‘complete’ linkage method defines the dis-
tance between two groups as the distance between the most distant pair of points,
while the ‘average’ defines this distance as the average pairwise distance between
data points in two groups, and ‘average group' defines it as the average pairwise
distance between all data points when two groups are merged. Moreover, the cor-
relation distance was used to ensure that the clustering algorithm considered the
strength and direction of the correlations between variables. The ‘maxclust’ was
selected as the criterion, which finds a minimum threshold to ensure the cophenetic
distance between any two original points in the same flat cluster is no greater than
the threshold, and no greater than ¢ flat clusters are formed. Since the number of
clusters was unknown, the optimum value of ¢ was chosen based on the result of
clustering performance, using the Silhouette coefficient score [123] on the range of
t € [2,N], in which N is the total number of data points. This range was chosen
based on the assumption that there were at least two clusters in a playgroup, and
that, in the worst-case scenario, there was no child in the same cluster with peers.
Since ‘complete’ linkage, on average, performed slightly better than the other two
linkage methods (as shown in Table 3.5), this linkage matrix was used to obtain the
optimum number of clusters. Figure 3.2 shows results for both playgroups. Based
on these figures, the ‘maxclust’ was selected as 4 for all proximity measures in PG-1
and [G =9,P = 3,5 = 7] for PG-2 based on the maximum Silhouette coefficient
score.
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3.56.2 Schoolyard Dataset

We collected spatio-temporal data via wearable sensors from 32 children, aged be-
tween 4 and 12 years old, in two playgroups, PG-1 and PG-2, during recess in the
schoolyard of a primary special education school in the Netherlands. These data
are now publicly available, so other researchers may replicate our results?.

Playgroups PG-1 and PG-2 were children from junior and senior grades, respec-
tively, who were assigned to designated playgrounds. As shown in Figure 3.3, PG-1
used areas |, Il, and Ill, which included a soccer field, bench, climbing structure,
and sandpit. PG-2 spent recess time in areas IV and V, where a bench, table tennis,
climbing frame, and soccer field were located. Before starting each break, chil-
dren were asked to wear a belt with a mounted proximity tag and a GPS logger.
The proximity tags detected face-to-face contacts, and the GPS loggers recorded
the geographic locations of the users. Specifications for the datasets are described
in Table 3.4. In addition to sensor data, video recordings, and field observation
were conducted simultaneously to gain insight into the psychological aspects of
children’s interactions and social behavior. Parental informed consent was obtained
before conducting the data collection. Approval for the study was obtained from
the Leiden University Ethical Committee.

Table 3.4: Specification of Schoolyard Datasets for playgroups PG-1 and PG-2

Datasets #Groups #SessionsxDuration  #Participants  Age (M + SD)
PG-1 2 2 x 30min, 1 x 15min 11 5.7 £ 0.96
PG-2 3 2 x 15min 22 10.43 + 0.77

In order to evaluate the effectiveness of our proposed method and verify the
results, we need ground-truth data (i.e., unbiased and true values serving as a
reference for evaluating the method). The ground-truth informs us about the true
pairwise relationship among children, e.g., the true values on how often a child
was in meaningful interaction with peers, where precisely in the schoolyard, and
for how long. This data could be presented, for example, in the form of pairwise
group membership over time by defining ‘group’ as peers who are most accessible
by their group mates. Due to privacy concerns regarding any child population,
existing videos associated with the data collection were recorded only from focal
areas, following the approved ethics application. This made it practically impossible
to create ground-truth for the collected sensor data and to systematically verify the

?https://doi.org/10.34894/ZCPXDW
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Figure 3.3: Schoolyard floor plan: Junior grades spend their recess time in areas I, I, and
Il, while senior grades are in areas V and IV. The schoolyard environment has different
play structures, as described in the legend, which children may use during recess.

results. Moreover, evaluating the concept of pairwise proximity or accessibility over
time might not be easily understood and coded by monitoring video recordings or
direct observations, especially with regard to children's age groups who often tend to
change their peer group and attend different types of play over the course of recess
time. Yet, the collected video recordings and the field observation reports allowed
us to discover certain behaviors (e.g., identifying the most visited areas, popular
activities (or games) among children of a certain group, etc.), to draw a general
picture of schoolyards activities, and to verify the obtained results to some extent.
Therefore, the experiments in this section are at an exploratory level considering
different age groups and playground designs.

3.5.2.1 Data Preparation and Pre-processing

Proximity Data: Wearable proximity tags were used to detect face-to-face contact
between children during recess. If any pairs of proximity tags (i.e., children) were at
a distance of up to 1.5ms in the degree of about 60— 70°, then they registered each
other's unique code via Bluetooth. They wirelessly sent this detection to two base
stations installed in two different locations in the schoolyard. The installation loca-
tions were estimated beforehand to obtain the highest coverage over the schoolyard
by considering the fact that each base station covers an area of up to 25m?2.
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Hence, some children might have a low detection rate for various reasons, e.g.,
playing far away from the base stations or tag malfunctioning. To compensate
for this error, the detection rate is calculated per child by dividing the duration
of detection by beagle over the total duration of the break. Only children with
a detection rate higher than 50% are included for further analysis. As a result,
three children from PG-2 who had a low detection rate were excluded from further
analysis. The data reported in Table 3.4 is after this exclusion. The obtained
contact data is then fused with GPS data to obtain the location of interactions

GPS Locations: The GPS logger(i-gotU GT-120 USB) recorded location co-
ordinates in Longitude and Latitude per second. The GPS locations were converted
afterward to Cartesian space and merged with proximity contacts to obtain the
location of interactions. As suggested in the literature [91, 124, 125], we adopted
Euclidean distance to examine the spatial distances between temporal nodes (w; in
Equation 3.5). In our study, it was assumed that children in face-to-face contact
are almost in the same location, to use the data more efficiently. Therefore, the
available GPS data of one of the pairs in interaction was used for the other, in case
the GPS data were missed. In addition, a 10-second window was used to search
for the location of individuals in an interaction, and the median values were used
to report the location coordinates at the given time. This merged data was used in
our analysis to create the spatio-temporal graph.

3.5.3 Evaluation Metrics

This section describes the evaluation metrics used to examine the performance of
a clustering task. Since no ground-truth data were available for the schoolyard
dataset, we decided to use the following evaluation metrics, which do not require
ground-truth but still provide a quantitative assessment of the quality of the clusters
found in these datasets when different proximity metrics were used. We expect to
observe clusters with higher quality when more informative proximity metrics are
used.

1. Silhouette score [123] indicates how well clusters are separated from each
other. This metric is defined as follows:

N
1 (bj — a;)
SC = N ; mazx(a;, b;)

where a is the mean distance between sample ¢ and all other points in the
same cluster, and b is the mean distance between sample ¢ and all other points
in the next nearest cluster. IV is the total number of points.
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2. Calinski-Harabasz score [126] is the ratio between the within-cluster disper-
sion and the between-cluster dispersion, and is defined as follows:
tI‘(Bk) ng — k
s = X
tr(Wk) k—1

where ng and k are the data and cluster sizes, respectively. tr(By) is the
trace of the between-group dispersion matrix, and tr(W}) is the trace of the
within-cluster dispersion matrix defined as follows:

k
W= 3 (@—c)@—c)”. Bi=3 ngle,—cp)lcq—cp)”

q=1z€eC,

where Cy, is the set of points in cluster g, with cluster center equal to ¢;. cg
is the centroid of cluster E and n, is number of points in cluster g.

3. Davies-Bouldin score [127] is defined as the ratio between the cluster scatter
and the cluster's separation. A lower value of this metric will indicate a better
clustering and it can be calculated as follows:

1< Si + 8
DB = — max R;;, R;; = ——2

k ; i#£] e *J dij
where s; is the diameter of cluster 7 and d;; is the distance between cluster
centroids ¢ and j. DB is the Davis-Bouldin index.

3.5.4 Results and Discussion

In this section, we report the results of our experiments in two main areas: evaluation
of the performance of the proposed metric by obtaining the quality of clusters in a
hierarchical clustering task (Clustering Performance Evaluation), and the in-depth
analysis of our Schoolyard Datasets, to see how children interacted with peers and
utilized the physical environment.

3.5.4.1 Clustering Performance Evaluation

Table 3.5 shows the results of the clustering performance task using Silhouette,
Calinski-Harabasz, and Davies-Bouldin scores in clustering CCM of pairwise re-
lation. In pairwise relations of PG-1, the geodesic proximity and temporal prox-
imity obtained slightly higher Silhouette and Calinski-Harabasz scores, and lower
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Davies—Bouldin scores than spatio-temporal proximity in the three linkage matri-
ces. The superiority of geodesic and temporal proximity might be due to the fact
that most children in PG-1 played with bikes across the playground, according to
the field observations during the data collection. This activity uniformly increased
face-to-face contact with all other children across the playground, thereby making
them uniformly accessible. Therefore, pairwise spatial proximity might not be in-
fluential in describing pairwise proximity for PG-1. Meanwhile, in the senior group,
PG-2, our proposed spatio-temporal measure and temporal measure identified clus-
ters with higher quality than geodesic proximity by obtaining higher Silhouette and
Calinski-Harabasz scores. Whilst the result was not consistent for Davies-Bouldin
scores. This competitive result in temporal and spatio-temporal metrics indicates
that in addition to focusing on the temporal context, including the spatio-temporal
contexts of interactions contributed to describing children’s social behavior and their
position in the social network in PG-2. The availability of a larger playground area,
the tendency to play in group settings in certain areas in senior groups, and more
interest in stationary activities such as sitting and chatting with peers might be the
reasons why the spatial context provided a positive impact on the performance of
the clustering algorithm of this playgroup, compared with PG-1.

As Table 3.5 shows, the performance of linkage methods was inconsistent across
different metrics and evaluation scores. It is important to note that the performance
of different linkage methods can vary depending on the specific dataset and the
nature of the underlying data. Therefore, to optimize clustering performance, the
linkage method could be defined as a hyperparameter and optimized specifically
per dataset. In the present study, we adopted the result of the ‘complete’ linkage
matrix to conduct the analysis on the schoolyard dataset in the next sections of the
analysis.

Overall, our results highlight the value of including the spatial context in exam-
ining individuals’ social behavior, and in assessing their position in the network.

3.5.4.2 In-Depth analysis of Schoolyard Data

In this analysis, accessibility is defined in three dimensions: (1) geodesic proximity
- G(v;,vj), (2) temporal proximity - P(v;,v;), and (3) spatio-temporal proximity
- S(v;,v;). Each dimension provides unique knowledge on how individuals and
their networks were accessible in the geodesic space, over time, and in the spatio-
temporal context. Therefore, “accessibility” will heretofore refer to all three of these
dimensions, throughout the rest of this paper.

As previously discussed, the CCM was used to create heatmaps as depicted in
Figure 3.4 for both playgroups. The x and y axis show children from different groups
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Table 3.5: The result of clustering performance in pairwise relations, based on CCM of geodesic proximity G(vs,v;),
temporal proximity P(v;,v;), and spatio-temporal proximity S(vi,v;) for three different linkage methods: complete,
average and average group. The best performance per linkage method is indicated in boldface, and the best performance
among all linkage methods is shown with (x). a-group stands for Average group.

. Silhouette Calinski-Harabasz Davies-Bouldin

Data | Metric
complete average a-group | complete average a-group | complete average a-group
PG-1 | G(vs,v5) 0.400" 0.380 0.312 7.865 9.763" 6.397 0.722 0.622 0.994
P(v;,v,) 0.397 0.397 0.397 9.166 9.166 9.166 0.734 0.734 0.734
S(vs, v5) 0.367 0.367 0.313 7.363 7.363 6.369 0.814 0.814 1.170
PG-2 | G(v;,v;) 0.223 0.241 0.212 5.879 5.507 5.324 1.454 0.893 0.977
P(v;,vj) 0.292 0.292 0.249 8.276" 8.276" 8.006 0.666 0.666 1.465
S(vs, v5) 0.307 0.308" 0.263 7.438 6.713 6.637 0.608" 0.733 1.583
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in this figure. Specifically, there are two groups (A and B) in PG-1 and three groups
(A, B and C) that have similar break schedules, separated by green lines. The first
digit of each child’s identifier indicates their group. The results are shown as a
heatmap based on the correlation coefficients matrix in all three measures (i.e., av-
erage geodesic proximity, average temporal proximity, and average spatio-temporal
proximity). The grids are colored based on obtained correlation coefficients, such
that blue shows negative correlations, red shows positive correlations, and white
shows no correlation among pairs of children, following the color bar.

We further quantified and visualized the results of these heatmaps using the
box plots to better understand the relations in each playgroup. Figure 3.5 shows
the box plot of inter-group and cross-group correlation of the results per proximity
measure in both playgroups.

In Figure 3.5-a, we observed that in PG-1-A, the highest correlation was found
in pairwise temporal proximity, compared with the other two proximity measures.
Meanwhile, in group PG-1-B, spatio-temporal proximity scored the highest correla-
tion, indicating that spatial context could better describe the accessibility among
children of this group. In addition, the average correlation is higher in PG-1-A
compared with PG-1-B, among all proximity measures. This could be because of
the smaller group size in PG-1-A. Overall, there is a positive correlation between
the proximity measures of children from the same group and a negative correlation
among children from different groups, except in the temporal proximity of PG-1-B,
where the average cross-group correlation is higher than the inter-group correlation
in the boxplot. This is also illustrated in Figure 3.4-a, where several negative cor-
relations (cells in blue) were observed among children in PG-1-B. Nonetheless, no
pronounced patterns between in-degree and out-degree proximity were found in this
playgroup.

Figure 3.5-b shows that in PG-2 the positive and negative correlations are more
uniformly distributed across inter-groups and cross-groups pairs. Yet, in all three
groups (A, B, and C) and across all proximity measures, the average inter-group
correlation is higher than the cross-group measures. This means that, in general,
children are more accessible by peers from the same group, and it is easier to access
peers from the same group in all three dimensions of geodesic, temporal, and spatio-
temporal proximity. Yet, some children appear as outliers, not following the general
pattern in the heatmap visualizations (e.g., A4 and B11 in PG-1, A3 and C14 in
PG-2 as illustrated in Figure 3.4).

Furthermore, the triangular patterns are more pronounced in PG-2 than in PG-
1. This shows a considerable difference between proximity towards a child from the
peer group and proximity towards peers by a child. Specifically, in all three mea-
sures, children in PG-2-A and PG-2-B have a positive correlation in their in-degree



3.5 Experiments 55

components (i.e., more red cells in their upper triangular heatmap). In comparison,
in PG-2-C the positive correlation is observed in out-degree measures (more red cells
in their lower triangular heatmap). This means that the peer networks in groups A
and B had quicker access to a child, compared with the child accessing the network.
On the contrary, in group C, individuals had quicker access to peer groups.

Average Geodesic Proximit Average Temporal Proximity Average Spatio-temporal Proximili
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(a) PG-1 (groups A and B): the heatmap of pairwise accessibility in Geodesic
proximity, temporal proximity and Spatio-temporal proximity.
Average S alio-temioral Proximiti
|

Average Geodesic Proiimity Average Temporal Proximity

S

B

(b) PG-2 (groups A, B, and C): the heatmap of pairwise accessibility in Geodesic
proximity, temporal proximity and Spatio-temporal proximity.

Figure 3.4: The heatmap of Schoolyard Dataset for two playgroups: comparing the cor-
relation coefficients matrix of geodesic proximity, temporal proximity, and spatio-temporal
proximity among children in playgroup PG-1 and PG-2 (x.code = group id (A, B, or C).
Child identifier code). The playgroup consists of several groups (A, B, and C) divided by
green lines.

Furthermore, to better understand the impact of physical space in shaping iden-
tified clusters, we extracted the GPS location of children per cluster across one of
the school breaks, and visualized the kernel density estimation (KDE) of the GPS
locations. KDE represents the distribution of GPS locations using a continuous
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Figure 3.5: The correlation of pairwise proximity for two playgroups: comparing the CCM
of geodesic proximity (in green), temporal proximity (in red), and spatio-temporal proximity
(in blue) among children in playgroup PG-1 and PG-2. On average, children in both groups
have a higher correlation with peers from the same group and a lower correlation with peers
from different groups. This difference is more significant in PG-1-A and less significant in
senior playgroup, i.e., PG-2.
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probability density curve in two dimensions. The result of this analysis is depicted
in Figure 3.6 and Figure 3.7 for PG-1 and PG-2, respectively.

As shown in Figure 3.6, we identified four clusters via hierarchical clustering
of pairwise spatio-temporal proximity. Each cluster shows how the most accessible
peers within each cluster utilized the playground. As a result, in Cluster 1, children
were most accessible in the communal area where most play structures were quickly
reachable (e.g., climbing frame, funnel ball, sandpit, and bench). Children in Cluster
2 and Cluster 4 often played in sandpits and quickly accessed their peers playing in
the same location. According to field observations, children in PG-1 often attended
to wheeled movements. This is observed in Cluster 1 and Cluster 3, in which
children widely used the playground via wheeled mobility toys (e.g., bikes, steppers,
etc.). This finding shows how the available play structures impacted children’s use
of space, and could determine group activities in a network.

The impact of available play structures was even more evident in PG-2. In
Figure 3.7, hierarchical clustering of pairwise spatio-temporal proximity identified
seven clusters. In Cluster 2, with the most members, children often had face-to-
face contact with peers around the play structures. This could, for instance, be
due to using several play structures during the break (e.g., climbing frame, bench,
and bar fixes) or being involved in an active game that required movements. Thus,
the highly supplied area by the play structures attracted more children, and more
conscious or unconscious contacts happened in this cluster. Cluster 1 and Cluster
3 belong to children who stayed around and in the climbing frame to climb, chat,
or to simply observe other peers. The use of space as influenced by a specific play
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Figure 3.6: The GPS location of children in PG-1 is mapped to the school floor plan. The
KDE plot in blue shows the spatial density of the GPS locations in the identified clusters,

following the color bar.
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Figure 3.7: The GPS location of children in PG-2 is mapped to the school floor plan. The
KDE plot in blue shows the spatial density of the GPS locations in the identified clusters,

following the color bar.
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structure was also observed in Cluster 5 and Cluster 6, where the football field and
the attached structures (i.e., table tennis, rolling game, and bar fix) were located.
A higher number of clusters in this playgroup, compared with PG-1, occurred due
to a higher number of participants in PG-2; more extensive physical space provided
to this playgroup during recess; and differences in their age group, as senior grades
tend to have more group-oriented activities, such as talking on a bench or table
tennis, compared with junior grades.

3.6 Conclusions

The present study features a novel spatio-temporal proximity metric, which retains
spatial information about the underlying temporal dynamics. The main strength of
this metric, compared to the previously proposed temporal proximity metrics, lies in
the ability to account for the role of the physical environment when analyzing an
individual's temporal behavior. We applied the proposed metric to a case study, in
an effort to understand children’s social behavior in a schoolyard environment.

We evaluated the quality of the proposed metric by performing a downstream
clustering task. Our results show that the proposed spatio-temporal metric uniquely
quantified an individual’s relationships over time, concerning the spatial context of
their activity. This led to better clustering performance when compared to geodesic
proximity metrics that were applied to senior groups in our study. In junior groups,
the spatial context did not positively impact clustering performance.

We also introduced two new datasets collected from children playing in school-
yards during recess, using wearable proximity tags and GPS loggers. We made these
datasets available for other researchers to study social dynamics. In this case study,
we first examined pairwise accessibility based on the calculated proximity values
among children in a playgroup. Our results showed that, in general, children were
more accessible to peers from the same group. Similarly, children more easily ac-
cessed peers from the same group. Second, we analyzed the impact of the physical
environment and its characteristics on forming the most accessible clusters. Our
findings show that in both of the playgroups we studied, the most accessible clusters
utilized common areas in the playground, which were often located around one or
several play structures that the schoolyard featured.

In summary, we found that application of a novel spatio-temporal proximity
metric to data collected via wearable proximity sensors offered valuable insight into
the spatio-temporal accessibility of children in schoolyards. The proposed method
could be used to develop and evaluate targeted interventions aimed at creating
a more accessible and inclusive environment, for example, by designing new play
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structures or interactive games aimed at increasing pairwise accessibility among all
children. Moreover, the proposed method is applicable beyond schoolyards and
can be used in diverse scenarios, including analyzing employee behavior in an office
setting, tracking athletes’ movements on sports fields, and monitoring the well-
being of elderly individuals in a nursing home. The present study used the proposed
metric in the context of a case study at an exploratory level. Yet, making broad
generalizations about children’s behavior requires a larger sample of data. Collecting
a larger sample was not possible due to the COVID-19 crisis, which resulted in school
closure and implementing strict protocols during school re-openings, but it currently
remains one of the major focuses of the research team.

One of the limitations of this research is the absence of ground-truth data due to
privacy concerns and the complexity of defining “truth” for the examined variables.
Specifically, in order to provide ground-truth for children’s spatio-temporal proximity,
we need to know the details of their group behavior in time and space, e.g., the
true values of children’s pairwise meaningful interactions, the frequency of contacts
and their accurate location in the schoolyard. Thus, it is important to consider
some levels of uncertainty and the potential for alternative interpretations, e.g.,
uncertainties in sensors operations might conclude a different picture of schoolyard
activities or use of some specific areas might be due to the impact of external
events such as weather conditions, etc. Another limitation in the proposed method
is the time complexity of shortest-path algorithms, which is O(VlogV + E) for
the Dijkstra shortest-path algorithm, where E and V denote the number of edges
and the number of nodes, respectively. Thus, it is computationally expensive to
estimate the proximity metrics when the data is gathered from larger samples (higher
number of users) and over a longer period of time (higher number of temporal
edges). Employing shortest-path estimation algorithms and parallel computing is
recommended to enhance the scalability of the proposed method for larger graphs
in future research. Additional research is needed in order to understand factors
contributing to an inclusive environment, to investigate how the proposed metrics
describe such an environment, and to prioritize interventions using the proposed
metrics in a recommender system. Moreover, future research might explore the
Kinetic data structures, a data structure to track an attribute of a moving geometric
system, to capture the spatio-temporal changes of moving users.
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Abstract

Autistic children are often reported less socially connected, whilst recent studies
show autistic children experiencing more loneliness in school than allistic (i.e., non-
autistic) children, contradicting the traditional view that autistic children lack social
motivation. This study aimed to understand individual differences in how social
connectedness is construed between and within groups of autistic and allistic pupils
using a multi-method approach. Forty-seven autistic and 52 allistic classmates from
two special primary schools participated (8-13 years). Proximity sensors worn by
pupils on playgrounds during recess measured (i) total time in face-to-face contacts,
(i) number of contact partners, and (iii) centrality in playground networks. Peer
reports measured (iv) reciprocal friendships and (v) centrality in classmate networks.
To evaluate their feelings of connectedness, pupils rated the level of loneliness in
school. Compared to allistic pupils, autistic pupils had fewer reciprocal friendships,
but similar total time in social contacts, number of partners, classmate/playground
centrality, and levels of loneliness. Lower levels of loneliness related to higher class-
mate centrality in autistic children, but longer time in social contacts in allistic
children. For these autistic children, being liked as a part of a peer group seems a
key factor. Understanding relevant differences in children’s needs could lead to a
more welcoming school climate.

4.1 Introduction

Many previous studies reported that autistic children have fewer social connec-
tions. Yet, recent studies also show that autistic children more often feel lonely in
school than allistic (i.e., non-autistic) children. This outcome seems to go against
the traditional view that autistic children do not desire to have social connections.
Therefore, this study aimed to find out how autistic and allistic children feel about
their social connections. We included 47 autistic and 52 allistic children from two
special education primary schools (aged 8-13 years). We tested their social connec-
tions and loneliness in school through a new approach. This new approach includes
questionnaires and sensors for tracking social contacts on playgrounds during school
breaks. We found that allistic children felt more loneliness when they spent little
time in social contact during school breaks. Yet, autistic children felt more lonely
when their peers did not like to play with them. For these autistic children, feelings
of loneliness may go beyond face-to-face contact. Being liked as part of a peer
group was key. Understanding differences in children’s needs can lead to a more
effective design for a welcoming school climate.
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4.1.1 Social connectedness and loneliness in school for autistic
and allistic children

School is the main setting where most children experience social interactions out-
side the family circle. For a child to learn and practice social skills, these social
interactions are crucial. However, the nature of these interactions also relates to
how socially connected a child feels at school [128,129]. When there is a mismatch
between the desired and actual amount of social connectedness — i.e., when a child
is cognitively aware of the unmet desire in the quality and quantity of their social
connections — feelings of loneliness arise [130]. Feelings of loneliness in school can
be stressful and painful, and they can contribute to mental health problems, e.g.,
symptoms of depression and low self-esteem [131,132]. Yet what is less well-known
is the extent to which individual children may differ in how they construe social con-
nectedness, especially among autistic children. For example, extensive literature has
suggested that autistic pupils lack the desire to build social connections [133-135].
Yet other studies have found elevated levels of loneliness in school among autistic
adolescents, compared to allistic (i.e., non-autistic) peers, thereby challenging that
view [29,136] also see [137,138] for arguments against the “social motivation”
view). These discrepancies reflect a gap in the literature regarding individual differ-
ences in how autistic and allistic pupils construe their own social connectedness.

In this study, we focused on groups of primary-school autistic and allistic pupils
and distinguished two types of social connectedness: i) physical connectedness, i.e.,
pupils’ physical proximity with their peers in school at recess, and ii) emotional
connectedness, i.e., the peer connections with which pupils identify. Further, we
examined how pupils felt about their social connectedness by measuring their sub-
jective feelings of loneliness. To capture the social dynamics in the school environ-
ments, we uniquely employed a multi-method approach that combined self-report,
peer nomination, and wearable sensor technology.

4.1.2 Social Connectedness of Autistic Pupils

Pupils may build social connections simply by being in proximity, such as playing
next to a peer on the playground. Such opportunities for physical contact alone
could suffice to promote peer interaction [139] and foster mutual understanding
(see “contact theory” [140]). This type of physical connectedness in school could
be particularly relevant for autistic pupils, as it may allow them to remain part of the
group and learn social skills without becoming overwhelmed by the social demands
required for building more intimate relationships. Despite this, current empirical
evidence from observations shows that autistic pupils experience less physical con-
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tact in primary school compared to allistic peers. They more often spend time
alone during recess, engaging in unoccupied or solitary activities, and initiate or
respond to social interactions less frequently [141-144]. When a social connection
becomes meaningful to pupils and is acknowledged [145,146], a psychological bond
and preferences may form among them, leading to a sense of emotional connected-
ness. Past research has shown that when asked to identify their social connections,
autistic pupils tend to receive fewer nominations from peers as social group mem-
bers, often occupying more peripheral positions in a peer network, and engage in
fewer reciprocal friendships, compared to their allistic peers (e.g., [144,147-150].
Additionally, they are less often perceived as “someone to hang out with" by allistic
peers [148], and are more often considered as not preferred across their primary
school years [150]. This pattern seems to primarily apply to autistic boys, who are
more frequently rejected, while autistic girls are more often overlooked (i.e., not
mentioned in any types of nominations [151]). These findings touch upon the idea
that autistic pupils may feel less emotionally connected to their peers in school.

However, different results also surfaced when the perspectives of autistic pupils
themselves were involved. Reports show that autistic pupils in primary school per-
ceive themselves as socially involved because they nominate more friends and “bud-
dies” than their allistic peers, although these nominations are more often unrecip-
rocated [148]. At the same time, qualitative evidence indicated that many autistic
pupils reported having one friend and being satisfied with the friendship [152]. For
these autistic pupils, qualities such as shared interests, trust, and companionship
seemed more important in their peer relationships, compared to the other qualities
like reciprocity and closeness that were often valued by allistic pupils [152-155] also
see [156] for a review). Learning from autistic pupils’ varying experiences in school
is thus crucial.

4.1.3 Loneliness in Autistic Pupils

While it appears that primary-school autistic children are lower in their physical
and emotional connectedness in school than are allistic peers, the question is: are
these children alone but satisfied with their level of social connection, or are they
experiencing an unmet need and feeling lonely? To the best of our knowledge,
only three studies directly compared levels of loneliness between autistic and al-
listic pupils in primary schools, via standardized self-report questionnaires, and no
group differences were reported (aged 7-11 years; [136, 147, 148]). This is likely
because autistic pupils at this age do see themselves as socially involved, as dis-
cussed above [148]. Moreover, feelings of loneliness were found to be unrelated to
children’s overall friendship quality or to how prominent they were in a peer group,
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both in autistic and allistic children [147,148]. Nevertheless, in studies that also
included adolescents, self-reported levels of loneliness in autistic participants were
consistently higher than in their allistic peers [29,136,142,157-159]. In adolescence,
most pupils experience a transition in their social environment, where peers become
the primary partners in daily social interaction [160]. This transitional period can be
particularly challenging for autistic adolescents, given the heightened expectations
from the social environment. Notably, different factors seem to be relevant to these
adolescents’ reported loneliness. For allistic adolescents, higher levels of loneliness
were related to fewer intimate and prosocial interactions with peers, while these
relations were not observed in autistic adolescents [29, 142, 157]. Rather, autis-
tic adolescents felt lonelier when their social networks did not provide a sense of
togetherness and safety, i.e., when they experienced lower levels of trust and com-
panionship in their friendships and more limited school participation [29,142]. Thus,
when we want to gain a better understanding of the factors affecting loneliness in
autistic youth, we need to consider possible individual differences and an approach
that can capture dynamic features for social connectedness.

4.2 Present Study

Peer interaction is essential in most children’s school life. But how do they feel
about the connections that result from this interaction, and do differences such as
having autism lead to different ways of viewing these connections? Such questions
are important to answer, as they extend our knowledge on how children’s social
wellbeing in school may be enhanced.

In this study, we aimed to assess differences in how social connectedness was
construed, both between and within groups of primary-school autistic and allistic
pupils, respectively. We distinguished between physical and emotional social con-
nectedness, and examined their relationships with pupils’ feelings of loneliness, to
understand the potential sources of unmet social connectedness needs. To this
end, we recruited two special education schools, a setting where autistic children
were with other neurodivergent peers in their class and where their needs are better
addressed, compared to most mainstream schools investigated in many prior stud-
ies. Moreover, we adopted a multi-method approach that included self-report, peer
report, and wearable sensor technology (Radio Frequency Identification Devices,
or RFID). RFID has been shown to reveal social dynamics among children during
school recess in an objective and unobtrusive manner [1, 35, 161].

With this set-up, first, we aimed to determine the levels of physical and emotional
connectedness (Figure 4.1). RFID data revealed children’s physical connectedness
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Figure 4.1: Overview of the study variables and hypotheses. Solid lines represent the
hypotheses for the autistic group; dotted lines represent the hypotheses for the allistic
group. The double-headed arrows denote the negative correlations expected between actual
and felt social connectedness.

on the playground during school recess. From the RFID data, we computed (i)
amount of time spent in face-to-face social contacts, (ii) each child's number of
contact partners, and (iii) their level of connectedness to the entire playground
social network (i.e., the degree of “centrality” that reflects how physically close each
child was to all the other peers in the playground social network). For emotional
connectedness, peer nominations were used to measure reciprocity in friendships,
and each child's relative level of connectedness to the class social network (i.e., the
degree of centrality that reflects how all the other classmates in the class network
were emotionally available to each child). By including the centrality measure,
we took into account pupils' connectedness to the larger peer network. Given
that autistic pupils may value their social connections differently from their allistic
peers [29,142], we considered both the stronger and weaker social connections. We
expected autistic pupils to be less connected than allistic pupils, as measured by
peer nomination and by objective data collected in RFID sensors at recess, although
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this prediction was based on prior studies including autistic children in mainstream
school settings. We also expected to find significant variance among individual
scores, on all measures.

Second, we aimed to understand how children felt about their social connected-
ness at school. Therefore, we examined feelings of loneliness in school to understand
the extent to which children were unsatisfied with their current level of social con-
nectedness; and investigated the extent to which children’s loneliness was related to
their physical and emotional connectedness with peers, according to the above mea-
sures. We expected no difference in the levels of loneliness between autistic and allis-
tic pupils, as the pupils in this study were still in primary school years [136,147,148].
Furthermore, previous studies with relevant age groups showed that more loneliness
was associated with less intimate and less positive peer relationships among allistic
pupils, whereas, for autistic children, more loneliness was associated with a lack of
opportunities to safely be part of the school activities [29,142,157,159]. Therefore,
we expected that allistic pupils would feel less lonely when they have more recip-
rocated friendships, and/or when they spent more time in face-to-face contacts;
and autistic pupils would feel less lonely when they were included in school social
activities more often, e.g., when they had contact with more peers during recess
and/or occupied a more central position within their peer groups. However, this
part of the hypothesis was exploratory in nature.

4.3 Methods

4.3.1 Participants

All pupils in this study attended two primary schools for special education in the
Netherlands (School A and School B). Autistic pupils (n = 47) and their allistic
classmates (n = 52), aged 8 to 13 years, were recruited to participate (Myge=
10.84 years, SD = 1.21; 34 girls and 65 boys). Nineteen (40%) of the autistic
pupils had additional diagnoses related to psychiatric/behavioral conditions, such
as attention deficit hyperactivity disorder (ADHD). Among the allistic pupils, 18
(35%) had a diagnosis of psychiatric/behavioral conditions that did not involve
autism (see Table 4.1 for more details about the distribution of these diagnoses).
The autistic group was younger (¢(96) = 5.41,p < .001) and had fewer girls and
more boys (x? = 22.30,p < .001) than the allistic group. Note that specific data
on socioeconomic status were not recorded.

In the Netherlands, special education is divided into four clusters (1: low vision;
2: serious communication difficulties, e.g., hearing loss or language disorder; 3:
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cognitive/physical disabilities or a chronic illness; 4: psychiatric or serious behavioral
difficulties, e.g., autism, ADHD, and/or oppositional defiant disorder (ODD)). In
this study, both autistic and allistic children were recruited from two Cluster 4
schools. Both schools also accepted several pupils without a specific diagnosis who
switched from mainstream schools due to difficulties in adjusting to the pace of
learning, class size, and peer interactions, and their need to receive extra care and
support.

The special education setting provides activities that are more structured and
predictable and gives more personal attention and specialist support to individual
students. Both schools are members of the same private educational organization,
using similar teaching methods and structuring their school activities and rules
similarly. During recess, children shared the playground with peers from their grade;
teachers supervised the recess time but did not intervene in the activities unless
necessary.

Before a child can be admitted to a Cluster 4 school, the receiving school
must request a declaration of admissibility from the regional education council (i.e.,
the governmental organization responsible for the management of education in the
region). The council is obliged to be advised by at least two experts (from a com-
mittee of remedial educationalists, child psychologists/psychiatrists, social workers,
and doctors) to verify the condition and issue an admissibility statement. Based on
this system, in this study, we asked for the diagnosis information from parents and
confirmed these with their teachers according to the school documents.

This study was part of a larger-scale research project that examines different
aspects of social participation and inclusion of autistic children in schoolyards [1,
2]. Guardians of child participants signed informed consent forms prior to test
procedures. The study protocol and informed consent form were approved by the
Psychology Research Ethics Committee of Leiden University.

4.3.2 Measures and Procedures

Children completed self- and peer report questionnaires on a tablet, accompanied by
either their teacher in the classroom or an experimenter in a separate room in school.
Before filling out the questionnaires, they were presented an instruction video on
the tablet, which described the purpose of the study, instructed how to fill out the
questionnaires, and showed that they can ask questions. Teachers and experimenters
were instructed to only provide support when necessary, i.e., when children asked
questions or when they appeared to have misunderstood the questions.

Sensor data were collected from each child on four occasions on two school
days, during morning and lunch recess time on both days, each lasting 11 to 30
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Table 4.1: Background characteristics of the participants.

Autistic Allistic

N 47 52
Age, years, mean (SD) 10.20 (1.00) 11.38 (1.14)
Gender, n (%)

Girls 5 (11) 29 (56)

Boys 42 (89) 23 (44)
School distribution, n (%)

School A 6 (13) 46 (88)

School B 41 (87) 6 (12)
Playgroup allocation, n (%)

Lower grades (5-6) 27 (57) 27 (52)

Higher grades (7-8) 20 (43) 26 (48)
Additional psychiatric/behavioral conditions, n (%)

None or unknown 6 (13) 35 (67)

Autism only 24 (51) -

Attention Deficit Hyperactivity Disorder (ADHD) 17 (36) 16 (31)

Developmental Language Disorder 2 (4) 1(2)

Oppositional Defiant Disorder 0 1(2)

minutes (M = 18.97 minutes; SD = 6.62). Before recess, all pupils were given a belt
they wore on their waist, on which a RFID tag was mounted, facing front. Pupils
were explained that they could take off the belt when they were not comfortable
with it, but only 1-2 children in 2% of the break sessions did that. They wore the
belt throughout recess on the playground, and returned the belt when the recess
ended. Teachers on the playground were also given a sensor belt, although in this
study only the social contacts between pupils were considered. During recess on the
playground, children were not given specific instructions regarding where or with
whom to play.

4.3.2.1 Measures of Physical Connectedness via Wearable Proximity Sen-
sors

OpenBeacon RFID tags are proximity sensors by means of Bluetooth, registering
face-to-face contact between pupils on the playground during recess. RFID is an
unobtrusive and objective measure that allows for quantifying spatial proximity be-
tween children in their daily school settings, continuously throughout a recess. It
does not intervene children’s behavior and ensures ecological validity [76]. Previous
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research has proven the accuracy and specificity of the RFID technology, showing
that the social contacts detected by the RFID tags corresponded to video observa-
tions and self-reported amount of social contacts in both adults and children [35,77].
Moreover, RFID tags have been previously used in children with autism and hearing
loss [7].

Pupils on the playground were each given a RFID tag mounted to a belt, facing
front. When two children, whilst wearing an RFID tag, were facing each other and
within a distance of 1.5 meters, the tags detected Bluetooth signals and passed
on the data to the signal-receiving base station, which then registered a social
contact. RFID tags could detect multiple contacts simultaneously. To compensate
for unintended interruptions, contacts with interruptions shorter than 35 seconds
were registered as one single contact [1,161]. The receiving station captured RFID
sighals from an area covering 15 m? four times per second [76]. It was located on
the school playground at a pre-determined location to ensure maximized detection
range. To ensure a fair comparison between all children, we only considered the
RFID records of a participant when the participant was detected by the receiving
station for at least 50% of the recess time. Otherwise, the data for that participant
in that specific recess session were excluded from further analyses. Sensor data
points from the four measurements (two breaks x two days) were averaged for
further analyses. We included three variables derived from social networks detected
by the RFID (Figure 4.2):

= Total time in social contacts indicated the proportion of time a participant
spent in face-to-face contacts during recess. This was calculated by dividing
the total duration of time spent throughout all contacts by the total duration
of time that a participant was detected by the receiving station, in a specific
recess session.

= Number of contact partners indicated the number of different peers that a
participant had social contact with during recess. This was calculated by
dividing the total number of contact partners by N-1, where N denotes the
total number of pupils detected on the playground in a specific recess session.

» Lastly, we calculated playground closeness centrality from the RFID data
to examine each pupil's connectivity to all the other peers on the play-
ground. The closeness centrality was computed according to the following
formula [162]:

(n—1)

Clu) = —————
) o1 d(v, )

(4.1)
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Time in Interaction

Figure 4.2: Visualization of a sample social network detected by the proximity sensors
(RFID) during one school recess session. Each node represents an individual on the play-
ground. Autistic children are labeled with “*ASD"; teachers with “T". The color of the
nodes denotes total time in social contacts during this recess session; warmer colors (red
versus blue) suggest longer time. The thickness of the edges between two nodes denotes
the duration of dyadic contacts; thicker edges suggest two notes/children having longer
contacts with each other. The nodes are positioned in accordance with their centrality.

where d(v, u) denotes the shortest-path distance between Child v and Child «,
and n denotes the total number of participating children on the playground.
Here, we further weighed this score by dyadic contact time measured by the
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RFID, to reflect how closely a participant was connected to the network, both
in terms of the shortest-path distance to reach all the other peers in the
network, and the time spent with them.

Dyadic contact time refers to the duration of contact between two children,
normalized by the total duration when both children were detected by the
receiving station, in a specific recess session. The inverse of this value was
used as the weight; thus, longer dyadic contact time led to a smaller weight
(i.e., a shorter path), which led to a higher playground closeness centrality.
Therefore, this playground closeness centrality measure combined both the
time and the number of partners in each social contact, reflecting individual
children's relative position in their playground social network [162,163]: a
higher playground closeness centrality in this study thus indicated that the
participant was more physically close to all the other peers on the playground
than those with a lower closeness centrality.

4.3.2.2 Measures of Emotional Connectedness via Peer Nomination

To examine reciprocated friendship, peer nominations were obtained by asking each
child to write down the names of their best friends in school. They could provide
maximally five names. This limitation of maximally five names ensured that we
obtained the stronger social connections that can be recalled by the children, fol-
lowing [164]. From these nominations, we derived the number of nominations given
by each participant (i.e., outdegree in social network analysis) and the number of
nominations that were reciprocated (i.e., bi-degree; the participant nominated a
peer as a friend, and the peer also nominated back). We computed the degree of
reciprocated friendships by dividing bi-degree by outdegree.

To examine each pupil’s connectedness to their larger peer network in the class,
each participant was presented with a list of classmates, and they answered the ex-
tent to which they liked to play with each classmate (i.e., “yes”, “sometimes”, “no”,
or “l don't know"). Based on peers' ratings, we calculated a classmate closeness
centrality score for each participant. A higher classmate closeness centrality score
indicated that the participant could approach all the other peers in the class more
easily — more likely to be ‘liked’ — than those who with a lower centrality [163].
When Child v receives a “yes” or “sometimes” rating directly from Child u, the two
children are seen as having a connection with an one-unit distance. Based on all
the classmate ratings in each class, their centrality scores were computed using the
same formula described above. Here, we treated both “sometimes” and “yes” an-
swers as indicating being part of the social network, but “sometimes” answers were
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weighted with a distance of 1, while "yes" answers were weighted with a distance
of 0.5 (i.e., a shorter path). Only the ratings given by peers were considered.

4.3.2.3 Loneliness in School via Self-Reports

Children’s Loneliness Scale (CLS) was used to assess levels of loneliness in school in
terms of children’s dissatisfaction with social connections [165] (validated in Dutch-
speaking children: [166]). This is a self-report consisting of 24 items, rated on a
5-point scale (1 = not at all; 5 = always). Six items that were positively formulated
were reverse scored, thus higher scores indicating higher levels of loneliness. Eight
items were control items about children’s hobbies and preferred activities, and were
excluded from further analyses. Internal consistency was good (Cronbach’'s oo = .87
for all children; .87/.88 for autistic/allistic pupils).

4.3.3 Statistical Analyses

Closeness centrality from peer reports was computed using igraph within R [167,
168]. Variables derived from the RFID data were preprocessed and computed using
Python 3.9 [169]. The NetworkX 2.6.3 Python package was used for visualization.
Statistical analyses were performed using SPSS version 27.0 (SPSS Inc., Chicago,
IL, USA).

First, to examine the extent to which autistic and allistic children differed in their
connectedness in social networks (physical and emotional connectedness) and loneli-
ness, a series of Mann-Whitney U tests were conducted. Rank-based nonparametric
tests were used due to the presence of outliers in the variables of loneliness, play-
ground closeness centrality, and classmate closeness centrality. To assess whether
the variance among individual scores was equivalent between the two groups, Lev-
ene's tests of homogeneity of variances, based on the deviation from the median
values, were used.

Next, to examine the extent to which feelings of loneliness were related to
connectedness in social networks, partial Spearman’s correlation tests were admin-
istered, controlling for age. Fisher's r-to-z transformation was used to examine the
moderating role of autism diagnosis, comparing the strength of correlation between
autistic and allistic children. To correct for multiple testing, the Bonferroni proce-
dure was applied, and the significance level of the main analyses was adjusted to
p < /5 = .01. Little's MCAR test showed that data were missing completely at
random (x? = 177.82, p = .111). Thus, we handled missing data using the multiple
imputation (MI) technique [170-172]. Ten imputations were performed. Given the
age and gender differences between autistic and allistic pupils, and to reduce the
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effect of the school of origin, the inverse probability of treatment weighting (IPTW)
procedure was applied [173-175]. IPTW is a widely used weighting method for
adjusting confounding variables. Following the procedures proposed by Chesnaye
et al. [174], first the probability of a participant being in the autistic vs. allis-
tic group was computed into a propensity score, taking into account individuals'’
characteristics (i.e., age, gender, and school).

Next, a weight was assigned to each participant, computed as the inverse of the
propensity score, through which potential confounds were balanced across groups.
To avoid extreme weights that may bias the outcomes, the weights were stabilized
by accounting for the proportion of autistic vs. allistic children, and extreme values
beyond the 1st and 99th percentiles were truncated. Pooled and weighted results
were reported. Correlations between all study variables are presented in Appendix
A. Results based on raw data are reported in Appendix B. To understand the effect
of participant heterogeneity, we also ran the analyses while excluding the autistic
children with comorbidity and allistic children with a diagnosis (Appendix C), and
compared social connectedness between autistic children with and without comor-
bidity (Appendix D).

4.3.4 Community Involvement

The overall objectives of the larger project were formulated in meetings with autistic
self-advocates and researchers, as well as practitioners working with autistic individ-
uals. Also, the new methodology involving sensing technologies was discussed with
associations for promoting the interests of autistic people, school organizations, and
governmental organizations, although they were not directly engaged in formulating
the research questions addressed in this study.

4.4 Results

4.4.1 Levels of Physical and Emotional Connectedness and
Loneliness

Table 4.2 shows the mean levels and standard deviations for the study variables.
Regarding the observed levels of social connectedness as measured by peer reports
and RFID, autistic children had fewer reciprocated friendships (U = 1528.0,p =
.002) than allistic children. There were no group differences in total time in social
contacts, in the number of contact partners, or in classmate/playground closeness
centrality (Us > 1878.0,ps > 0.145). Regarding the levels of loneliness, no group



4.4 Results 75

Table 4.2: Mean levels and standard deviations (SD) of social connectedness and the
Spearman'’s correlations with loneliness (controlling for age)

Mean (SD) Correlation with loneliness
Range Autistic Allistic U All Autistic  Allistic
Loneliness (total score®) 16-68 33.38 (8.03) 37.03 (11.11) 1904.5 - - -
Physical connectedness
Time in social contact® 0.03-1 0.62 (0.22)  0.63 (0.20) 1878.0 -0.06 0.30 -0.39**
Number of partners® 0.09-0.95 0.56 (0.15)  0.56 (0.15) 2002.5 -0.08 - -

Playground Closeness centrality 0.02-0.11  0.08 (0.02)  0.08 (0.02) 1892.0 012 - -
Emotional connectedness

Reciprocated friendships? 0-1 0.39 (0.25)  0.48 (0.24) 1528.0** 0.04 - -
Classmate Closeness centrality ~ 0.47-2 1.05 (0.34)  1.12 (0.34) 2091.5 -0.10 -0.36**  0.08

Correlation coefficients for separate groups are reported only when Fisher's r-to-z transfor-
mation showed a significant difference in the strength of correlations between the group;
otherwise, the correlation coefficients for the entire sample are reported.

“ Highest possible total score is 80.

® Corrected by the total time when the child was detected.

¢ Corrected by n — 1, where n is the total number of children on the playground.

4 Calculated as a degree by dividing the number of reciprocated nominations by the num-
ber of outgoing nominations.

**p <.01.

**p <.001.

differences were noted in the levels of loneliness (U = 1904.50, p = .181). Tests of
homogeneity of variances showed that variances for the loneliness scores were not
equal between the two groups (SDgutistic = 8.03 < SDgyistic = 11.11, F(1,93) =
5.04,p = .027). For the other variables, the variances were equivalent across the
groups, Fs < 1.60, ps > .208.

4.4.2 Relations between Social Connectedness and Loneliness

Higher classmate closeness centrality was related to lower loneliness only in autistic
children (rho = —.36,p = .004), not in allistic children. More time spent in social
contacts was related to lower loneliness only in allistic children (rho = —.39,p <
.001), not in autistic children. No other significant correlations or group differences
in correlational strength were noted (Table 4.2).
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4.5 Discussion

The present study aimed to examine how autistic children construed their social
connectedness in school, compared to their allistic classmates. In line with our
expectations, autistic pupils in this study had fewer reciprocated friendships than
allistic pupils. Unexpectedly, autistic and allistic children were similarly connected
to their peers, in terms of time spent in social contacts and number of interaction
partners during recess, and their centrality in classmate and playground networks.
The levels of loneliness experienced by the two groups at school did not differ.
However, the factors related to their loneliness did differ: while allistic children felt
lonelier when they spent less time in physical social contact during recess, autistic
children reported higher loneliness when they were less central, i.e., less liked as a
classmate to play with, in the classmate network. No other relations were noted.
Unlike many previous studies that reported autistic children were less connected
to their peers than allistic children [141, 143,144, 148-150], in this study we found
comparable outcomes in most aspects of physical and emotional connectedness,
including total time in social contacts, number of contact partners during recess,
and their centrality in peer networks. That is, we observed that autistic children
were in social contacts at the group level to the same extent as their allistic peers.
It could be argued that this positive picture was likely a result of the special
education setting where we collected data. That is, compared to settings in main-
stream education, autistic pupils in special education are usually not the only ones
with a diagnosis; class sizes in special education are smaller; school activities in-
cluding recess are more structured; and teachers are better equipped with skills to
identify problems and support and facilitate positive social dynamics among chil-
dren [176-179]. In fact, in our sample, autistic children were the majority in several
of the classes. In this context, autistic children have more opportunities to meet
their autistic peers and other peers with special needs. When it is recognized that
all pupils have their unique needs, being “different” with a diagnosis and social dif-
ficulties may be less of an issue for joining peer activities [180]. A more structured
recess in special education settings may also allow more face-to-face contact to be
facilitated and thus be detected. Though beyond the scope of the current study,
our findings suggest that the school climate and how the school environment is
organized may play an important role in children’s social participation beyond indi-
vidual children’s diagnosis and social skills. Several prior studies have also shown
that autistic children become more socially engaged when the school playground is
adapted to provide more equitable opportunities that also address autistic children's
needs and capacities, e.g., by reducing noises and improving acoustic to lower over-
stimulation commonly encountered by autistic pupils in school settings; by offering



4.5 Discussion 77

more structure (e.g., by making different compartments with different functions);
and by addressing different sensory needs (e.g., to set up different sensory zones
and transition between the zones [181-184]).

Our use of sensor technology may also have contributed to such findings. The
present study showed the first attempt to capture social dynamics between autistic
children and their peers throughout recess, in a naturalistic setting, objectively and
unobtrusively (see [1,76] for more information about this methodological approach).
This method returns objective and richer information regarding children's group dy-
namics, complementing methods in previous studies (e.g., systematic observation),
which can be constrained by observation timeframe, observer bias, and the coding
scheme.

However, it seems that many autistic children were not considered friends by
peer group members and had fewer reciprocated friendships than allistic peers. The
peer-report measure for reciprocated friendships was the only social connectedness
indicator in this study that required active responses from peers, and it denoted the
reciprocity perceived by peers, towards a specific child. To receive more reciprocated
friendship nominations in a free-recall task, a child has to be prominent enough in a
network for the other peers to select them as friend. In such a scenario, it appears
that autistic children were more often overlooked by their social group members.

The question then is, how did the autistic children feel, in light of their lack of
connectedness? Our results showed that the degree of reciprocated friendships was
unrelated to feelings of loneliness, i.e., there was no mismatch between the recipro-
cated friendships that autistic children desired and perceived. Possible explanations
for this include that (i) autistic children were not particularly aware of reciprocity in
their social connections; (ii) they did not care about or want many connections, or
acted like they did not care for self-protection; or (iii) they did belong to a social
group, despite not having many apparent connections [148]. Adding to the study
by Chamberlain and colleagues [148], our results seem to substantiate the third ex-
planation. In this study, the large majority of autistic children did have at least one
peer who liked to play with them (n = 44; 94%), and they also experienced that
they had at least one friend (n = 38; 81%), which might meet their needs to know
that they are not alone. Moreover, in autistic children, more loneliness was related
to being less liked in a classmate network (i.e., lower classmate closeness centrality,
an aspect of emotional connectedness), whereas in allistic children more loneliness
was related to spending less time in social contacts during recess (an aspect of
physical connectedness). Apparently, for these autistic children, being liked as part
of a social group and experiencing group-level emotional connectedness is closely
related to their feelings of loneliness. It is thus likely that in autistic children, social
connectedness is not evaluated based on dyadic contacts, but beyond that, based
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on the extent that one feels accepted by a group. When they do feel they belong
to a social group, the risk of them feeling lonely might decrease.

These results highlight the importance of looking into individual differences and
widening the possible definition of social relationships. Different individuals could
find different features of social connection to be valuable. While spending time
together may be seen as a relationship goal by many people, it may not always
be the case for others. Actually, in autistic children, total time in social contact
during recess had a positive, rather than negative, correlation with loneliness (rho
= .30, although not reaching the significance level after the Bonferroni correction).
Possibly, having to stay in face-to-face interaction with others could cause stress,
anxiety, and exhaustion in autistic children, as they must constantly attend to social
cues that they may not fully understand, and/or some may even feel the need
to camouflage or hide their social difficulties so as to “fit in” [185-187]. These
challenges can be further aggravated in adolescence due to the even less structured
environment — moving from one classroom to another, going to canteens, and having
no supervision during recess — which may underly autistic adolescents’ elevated levels
of loneliness in school as reported by previous studies [29, 136, 159]. Nevertheless,
despite the possible differences in how social features were viewed, the fact that
autistic children experienced loneliness in school at varying levels, to an extent that
was comparable to that of allistic children, shows that autistic children do value
social connection and are aware of unfulfilled desires for social relationships, like
their allistic peers.

4.5.1 Limitations and Future Research

This study was among the first to examine physical and emotional connectedness in
autistic children and their relations with loneliness in school, using a multi-method
approach that accounted for social dynamics over an entire recess session. Yet, some
limitations should be taken into account, and some caution is due when interpreting
the results.

First, as mentioned earlier, all participants were from special education schools
and many allistic pupils also had a diagnosis, although not autism. We were thus
able to investigate what the social situation is like when autistic pupils are substan-
tially represented in a class network. This may explain why the measured levels of
social connectedness were largely similar across the groups, while previous studies
in mainstream schools (where usually only one or two autistic pupils were present)
showed lower levels in all aspects [141,144,148-150]. Future studies could explore
the extent to which these outcomes are generalizable to mainstream settings, and
how the findings from special education settings may inform inclusive practices in
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other settings. Future research is also required to understand how the school cli-
mate may vary with different school policies for inclusion and diversity, and how
an improved school climate may further enhance children's social wellbeing. Focus
group interviews could be organized with children belonging to different groups, to
take a variety of views into account.

Here, our finding regarding the importance of group-level emotional connect-
edness — a sense of belonging to a group — among autistic pupils requires spe-
cial attention. This may become increasingly difficult to achieve as their social
challenges intensify during adolescence. This may (partially) explain the higher
levels of loneliness found in autistic adolescents when compared to their allistic
peers [29, 136, 142, 157-159]. Moreover, this may imply that school policies and
practices could be especially influential for the school life of these pupils.

Second, half of the autistic children in this study had comorbidity (besides their
diagnosis of autism; see [188] for a review on comorbidity in autism), and 35% of
the allistic children had at least one diagnosis. Given the Cluster 4 special education
setting, the majority of the participants were not neurotypical. These sample char-
acteristics should be taken into account, as they influenced the social dynamics.
Future studies are encouraged to confirm whether the patterns we found for the
allistic group is specific to this sample that included many pupils with ADHD and
several pupils who transitioned from mainstream education. However, we included
all children, regardless of their diagnosis, in the study because our main goal was
to examine the effect of autism on social connectedness. Our findings highlighted
how pupils with and without autism may have different social needs, which should
be considered when providing support.

Notably, in our follow-up analyses, where we excluded autistic children with
comorbidity and allistic children with a diagnosis, we confirmed the same differen-
tial patterns (Appendix C). However, after those children with comorbidities were
removed, autistic and allistic children no longer differed in the number of recip-
rocated friendships. Further inspection added that autistic pupils with comorbidi-
ties had fewer reciprocal friends, while contacting more partners — hence spending
shorter time with each partner — during recess, compared to autistic pupils without
any comorbidities (Appendix D). While these outcomes might be affected by the
smaller sample size, it is likely that comorbidity could put autistic children in a more
vulnerable position, regarding the formation of close relationships. Future studies
are needed to further understand the needs and wishes for social connectedness of
children with comorbidities or other diagnoses, for creating a school environment
where all children are respected.

Third, the two groups differed in several aspects, besides their diagnoses. The
autistic group was older and featured fewer girls than the allistic group. While the
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IPTW method can balance the characteristics in the samples with reliable outcomes,
effectively reducing the impact of confounding effects, there could still be potential
biases in the results that we overlooked. Despite the fact that the two schools
we selected were managed by the same educational organization and organized
school activities in a largely similar way, there might be factors in the two schools
that influenced our results. To further assist interpretation of our findings, results
based on raw data were also presented (Appendix B). Whether weighted or not,
our results consistently revealed group differences in reciprocated friendships, and
in the relation between social contact time and loneliness in allistic children, but
not in autistic children.

Fourth, some limitations in our data collection should be noted. In this study, the
Children's Loneliness Scale [165] was used to examine levels of loneliness in terms
of children’s unmet needs of social connections. Yet it should be noted that this
measure has not been formally validated among autistic children. Prior studies have
shown that autistic children may define loneliness differently from their allistic peers:
they tended to focus on the dissatisfaction of social connections, whereas allistic
children more often also mentioned the associated negative affect [29]. This possible
discrepancy should thus be considered in future studies, and we also call for further
research to validate existing loneliness measures in autistic youth separately. Also,
peer nominations were limited to the school setting, yet it is likely that children also
have connections outside of school, e.g., in the neighborhood. Further, the proximity
sensors, i.e., the RFID badges, captured only face-to-face contacts within 1.5 meters.
Social contacts are not always on a face-to-face basis, or within such a close distance.
Children in a playground may play together side-by-side (which is often observed
in autistic children [189, 190] or talk to each other from a distance, but those
interactions could be largely missed with the current configuration. Moreover, these
detected social contacts may not necessarily reflect social engagement, as pupils may
be in close proximity but not involved in a joint activity. The governmental measures
such as social distancing in response to the COVID-19 pandemic might also affect
the social dynamics between children to some extent, although at the time of our
data collection, no constraints were imposed.

4.6 Conclusions

Most children go to school on a daily basis. Understanding how they feel and how
to promote their wellbeing in school is of utmost importance. Such knowledge,
however, is limited in the literature, especially regarding children with special needs,
who compose at least 10% of the student population [191]. Our findings provide
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evidence that loneliness in school may be construed differently by autistic and allistic
children, although the levels of loneliness were comparable in the two groups. For
these autistic children, feelings of loneliness may go beyond face-to-face interactions.
Rather, being liked as part of a peer group was key.

Our findings call for further investigations that examine individual differences in
social connectedness; and for school-based interventions that move the focus from
individual children’s social skills, for the purpose of “fitting into” peer activities, to
adapting the school environment so it promotes inclusion. Understanding relevant
differences in children’s needs could well lead to more effective design for a welcom-
ing school climate. This in turn could increase social wellbeing of not only autistic
children, but all children at school.
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CHAPTER 5

SiamCircle: Trajectory
Representation Learning in Free
Settings

The contents of this chapter are based on the following submitted study:

= M. Nasri, M. Baratchi, A. Koutamanis, C. Rieffe, “SiamCircle: Trajectory
Representation Learning in Free Settings”, IDA, 2025.
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Abstract

Trajectory representation learning (TRL) is an intermediate step in handling trajec-
tory data to realize various downstream machine-learning tasks. While most previous
TRL research focuses on modeling structured movements in large-scale urban spaces
(e.g., cars or pedestrians on streets), this paper focuses on a more challenging sce-
nario of modeling free movement in small-scale social spaces (e.g., children playing
in a schoolyard). We present SiamCircle, a novel contrastive learning approach
for TRL uniquely designed to process raw trajectories without additional feature
extraction to prevent information loss. SiamCircle adopts a Siamese network with
Circle Loss to learn trajectory embeddings. Furthermore, SiamCircle employs a data
augmentation process to enable self-supervised learning and enrich the input data
to address the limited access to high-quality data and ground truth. We evaluate
the performance of SiamCircle in downstream tasks using three classes of metrics,
namely trajectory ranking, trajectory similarity, and clustering performance, using
collectively nine evaluation metrics. Using an ablation study, we explored the impact
of different neural network components and loss functions on the model's perfor-
mance. Accordingly, we selected a 2-D convolutional design with Circle Loss as the
best-performing model. In a comparative study, we compared our model against
three other baselines. We observed up to 19% improvements in trajectory ranking
tasks and achieved the highest average rank in trajectory similarity and supervised
clustering tasks.

5.1 Introduction

In the wake of rapid growth in wearable technologies, people generate large amounts
of movement data using location-aware devices like sports bands and smartwatches.
Various organizations address existing challenges by collecting and analyzing this
data, known as spatio-temporal movement data or trajectories [192].

In a broader context, this movement data is captured in mainly two settings:
structured settings and free settings. In structured settings, movement is recorded
in areas influenced by spatial features or regulations, e.g., road networks or driving
policies. This setting often exhibits periodic patterns, such as commuting to work
on weekdays. Data from structured settings are valuable for applications like traffic
forecasting. Conversely, in free settings, individuals move without restrictions, re-
sulting in unstructured trajectories, which often occur in constrained environments,
such as students’ movements in a schoolyard or athletes’ movements in sports. This
data is useful for analyzing micro-level behaviors, including social interactions and
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Figure 5.1: Average pairwise distances between a trajectory and trajectories from the same
group (Sp) versus from different groups (.S, ). Many trajectories have smaller S,, than their
Sp, i.e., some samples are positioned below the red line.

group dynamics.

In the context of trajectory analysis in structured settings, trajectory represen-
tation learning (TRL) has attracted extensive research attention in various machine
learning tasks such as trajectory flow forecasting [192] or pair-wise similarity com-
putation [193]. Yet, one largely unsolved challenge is effectively designing a TRL
framework for movements occurring in free settings. Developing TRL models in free
settings is more challenging than in structured settings due to (i) irregular patterns
and movements formed in the absence of typical urban features, (ii) limitations in
data acquisition systems leading to imperfect location data and complicating tra-
jectory analysis, and (iii) privacy concerns restricting the collection and sharing of
high-quality data.

To understand these kinds of challenges, we present the average pair-wise dis-
tribution of trajectories in the ETH dataset [37], which captures trajectories in a
free setting, annotated by group membership. Figure 5.1 presents the pairwise
Euclidean distances between trajectories of the same group, i.e., positive samples
(Sp), and different groups, i.e., negative samples (S,,). The red line shows where
these two distances, i.e., S, and S,,, are equal. In general, one might assume that,
given individuals' tendency to walk closer to the group they belong to, all samples
within the same group should have smaller S, values compared to their S, (i.e.,
all samples to be positioned above the red line). However, here we observe that
a large number of samples maintain higher average S, values than their minimum
Sy, values being positioned below the red line. Many representation models, partic-
ularly auto-encoders [194], which learn embeddings without explicit differentiation
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between similar and dissimilar samples, may struggle to resolve this complexity. This
will, in turn, limit their performance in downstream tasks.

Furthermore, recent studies in modeling movements in structured settings im-
plement spatio-temporal pre-processing methods such as behavioral feature extrac-
tion [194], grid-cell projection [195], and graph embeddings [193]. While the results
are promising, their application to trajectories collected in free settings may be lim-
ited due to the potential information loss during the pre-processing. Besides, their
performance highly depends on the choice of hyperparameters, such as cell size. In
a free setting, finding the optimal grid size is more challenging, especially in the
presence of imprecision due to noise.

This paper presents a robust trajectory representation learning framework called
SiamCircle, which is directly applicable to raw trajectory data collected in free
movement settings. SiamCircle consists of three main components: (1) a data
augmentation process to generate the augmented trajectories accounting for im-
perfections in trajectories and enriching data sets with limited sample size, (2) a
neural network applicable to raw trajectory data that maximally exploits spatial and
temporal similarities among similar trajectories while amplifying differences between
non-similar ones, eliminating common information loss during feature extraction,
(3) a loss function uniquely designed with our learning framework to learn repre-
sentative features through the training process. To our knowledge, this is the first
study proposing a TRL framework using raw trajectories collected in free settings.
Overall, this paper makes the following contributions:

= We develop a framework to create augmented trajectories that simulate similar
movements and imperfections in data. Moreover, this framework generates a
ground-truth dataset that annotates the trajectories based on their similarity
class and enriches datasets with a limited sample size.

= We propose a unique deep neural network model with triplet-based Circle
Loss to learn trajectory representations directly from raw trajectories to limit
information loss commonly occurring during the feature extraction.

= We demonstrate the performance of the proposed framework by conducting
an ablation study and a comparative study on five trajectory datasets collected
in a free setting using nine evaluation metrics in downstream task using three
classes of metrics, namely trajectory ranking, trajectory similarity, and clus-
tering. We compare the performance of SiamCircle to three other baseline
models.

The remaining part of the paper is organized as follows. In Section 5.2, we discuss
related work. Section 5.3 presents the problem statement, and Section 5.4 explains
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the details of our proposed method. The experimental setup and results are pre-
sented in Section 5.5 and Section 5.6, respectively. Finally, we summarize the paper
and discuss future research directions in Section 5.7.

5.2 Related Work

Several studies proposed TRL models primarily in structured settings like urban
traffic forecasting and detecting transportation modes [196, 197]. Recent studies
incorporated external data, such as road networks and urban structures, into TRL
models [198,199]. While these models show promise, they become impractical for
data collected in free settings, especially in the absence of external information.
Moreover, several studies adopt feature engineering techniques to transfer raw tra-
jectories into an abstract representation before training their model [193,194]. Tra-
jectory2vec [194] proposed a manual feature extraction algorithm to extract space-
and time-invariant characteristics of trajectories, e.g., change of rate of turns. This
model adopted a sequence-to-sequence auto-encoder to generate a deep represen-
tation of trajectories from extracted features.

Moreover, TRL via Contrastive learning has been employed in various machine
learning problems in natural language and image processing and, more recently,
in the context of spatial problems [193,200,201]. Contrastive learning is especially
beneficial when using noisy and imperfect datasets with limited sample sizes. Fan Z.
et al. [201] proposes a contrastive learning approach powered by Triplet loss [202] in
combination with a sliced encoder network for a user re-identification problem based
on trajectory data. Their method, S-BiLSTM, learns the robust part of individuals’'
trajectories (segmented in 24 hours). Such a 24-hour sliced design is not applicable
for movements in free settings where trajectories do not exhibit regular patterns.
TrajCL [193] is another contrastive learning model including a dual-feature multi-
head self-attention-based encoder with InfoNCE loss [203] using trajectories in urban
areas. TrajCL proposed a pointwise trajectory feature enrichment method to extract
structural and point features to train their model. The optimization process used in
both loss functions, Triplet loss and InfoNCE loss, is rigid, as their loss calculations
give pairs with various similarity ranges an equal pre-defined margin.

The present study uses a Siamese network architecture with Circle Loss to learn
trajectories’ representative features designed explicitly for free movements in con-
strained environments (i.e., free settings). Our model uses raw trajectories without
any feature extraction techniques as opposed to earlier work [193,194] to limit the
unnecessary loss of data and oversimplification in free settings. We further im-
plement a dynamic penalty scheme based on the degree of similarity to obtain a
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Trajectory
Aumentation

Downstream Task

Figure 5.2: An overview of SiamCircle: Data Augmentation Process to create the [An-
chor, Positive, and Negative] triplets, Siamese Network with Circle Loss to generate the
embeddings of the given raw triplets.

sustainable optimization process and high-quality embeddings to address the rigid-
ness problem mentioned above in earlier works (see, e.g., [193,194]).

5.3 Problem Definition

Our trajectory modeling problem is based on a given trajectory dataset D, where
each trajectory {T; € D|T; = {(x1,v1), - ,(Zn,yn)}} is a sequence of two-
dimensional points recording the trace of the moving object ¢ with a fixed size
n where (z,,,y,) is the n*" location of the object.

We are interested in learning an embedding function F(-) that represents trajectory
T; as E(T;) = T;, € R™ (m < n is the dimension of embedding space) such that
f(T;,,T;,) is minimized for any pair of the object ¢ and j moving along the same
underlying route, and, conversely, maximized for any pair of objects ¢ and j moving
along different underlying routes. Here, f(-,-) is a distance function (e.g., Euclidean
distance or other distance measures).

5.4 Methodology

This section discusses our proposed method for TRL. First, we explain the trajectory
augmentation process. Next, the neural network design is presented. Lastly, we
present the loss function used in the proposed framework. An overview of our
method is presented in Figure 5.2.
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5.4.1 Trajectory Augmentation

In this section, we propose a trajectory augmentation method that adopts meaning-
ful transformations to generate augmented trajectories from original ones. Previ-
ously proposed trajectory augmentation methods involve applying pre-defined trans-
formations to the original data, for instance, by truncating or point masking [193,
195]. These transformations often modify the trajectory length, making them only
applicable in combination with manual feature extraction methods to create fixed-
length sequential data for neural network models. However, as we aim to utilize
raw trajectories with no feature extraction, we propose a unique trajectory augmen-
tation approach where the trajectory length remains unchanged while meaningful
transformations are applied. Our trajectory augmentation process serves three main
purposes: (1) simulating similar movement trajectories by distorting original tra-
jectories in different scales (i.e., additive noise) to account for different levels of
similarities, (2) enriching limited-size datasets by adding augmented trajectories to
the original dataset used purely for training. Thus enabling a self-supervised training
process for the neural network model, and (3) simulating the practical imperfections
found in location data acquisition systems in the form of large-scale noise (i.e., large
spatio-temporal displacements or jumps), aiming to train a model that is robust to
issues such as noise and other imperfections in the data. To achieve these goals,
the augmented trajectory T; is created by applying pre-defined transformations to
each original trajectory T; of a moving object 4, as formulated in Equation 5.1:

_ {x; =U(ly, hy).ds, (5.1)

7_'7',_’_: +l7+l7
('r y) (IZ JCL y'l yz) y; _ Z/{(ly7hy).ds7

where i(i, ) is the augmented trajectory of moving object i. x; is the = coordinate
of original trajectory T;. 1z} is the distortion vector across x coordinates. U is
the uniform distribution bounded between lower bound I, = —o(Az;) and higher
bound h, = o(Ax;), in which o(.) is the standard deviation. Ax; is the positional
differences across = coordinates. d is a distortion scale randomly selected among
the given scaling range. In all the mentioned annotations, replacing x with y gives
the same definition across the y coordinate (instead of x). In our experiments, two
types of ds are used, namely additive noise and jumps. While additive noise applies
to all coordination of the original data, jumps only apply randomly to & number
of samples. Another difference between additive noise and jumps is the scale of
the distortion. In the additive noise, dg includes a lower distortion scale to create
similar movements, satisfying aims (1) and (2). In the jumps, ds includes a larger
distortion scale to create imperfections in trajectories, satisfying aims (2) and (3).
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Thus, the semi-synthesized trajectory, T;(Z, §), creates one variation of the object i
in the database per distortion scale. In Section 5.4.2, we will discuss our proposed
neural network model.

5.4.2 Siamese Network Architecture

This section discusses the design of our proposed neural network model. The unique
aspect of this design is the model's ability to be directly applied to raw 2-D tra-
jectories without implementing any preliminary pre-processing steps. The rationale
behind this choice is to include as much information as possible without abstracting
spatial details, e.g., trajectory griding, or extracting spatio-temporal features, e.g.,
speed. To achieve this goal, we adopted a Triplet-based Siamese network, which
typically consists of three identical networks with shared weights [204]. The primary
purpose of Siamese networks is to learn the similarity between inputs by comparing
their representations. In this design, the model takes an anchor trajectory together
with a positive sample (i.e., a trajectory from the same class as the anchor) and a
negative sample (i.e., a trajectory from a different class than the anchor) as a triplet
input, pass each sample through its identical branch, and hand over the generated
embeddings to a triplet-based loss function. Specifically, our model contains two
sections:

2D-CNN/Average Pooling/Dropout. Inspired by neural networks in time-series
forecasting [205, 206], the 2-D convolutional layer is deployed as the first layer to
extract feature maps by sliding the learning filters through the input. This section
is further developed by an average-pooling layer, which reduces the noise and helps
the network generalize better, and a Dropout layer to prevent overfitting. Overall,
this section casts the trajectory into a more compact representation while retaining
the most significant features in trajectories.

Fully-connected Layer. The outputs from the previous layer representing high-
level embedding features are fed to a Fully-connected layer. This allows the model
to learn the non-linear combinations of these features. The generated embeddings
will be given to Circle Loss to allow the training process as detailed in Section 5.4.3.

5.4.3 Loss Function: Circle Loss

Most loss functions, including the triplet loss [202], directly incorporate the pairwise
distances, i.e., s, and sy, into a similarity score. This optimization approach is rigid
as it enforces equal penalty strength on each similarity score. ldeally, we would like to
give greater emphasis (or penalty) when a similarity score significantly deviates from
the optimum. To this end, Sun. et al. [207] proposed Circle Loss, which re-weights
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each similarity to highlight the less optimized similarity scores. The Circle Loss
was initially proposed in computer vision with a unified formula for two elemental
deep feature learning paradigms, i.e., learning with class-level and pair-wise labels,
formulated as follows:

3 1

L=1log 1+~ i (sh — M) YK | exp (—yai(sh — A o = 10p = 53l
log[ + 305 eap (vad (] — An)) iy eap (—yey (s, ,,))] ; {a% 5] — Oy

(5.2)
in which n and p annotations in a pairwise label paradigm refer to dissimilar and
similar pairs. -y is the scale factor. L and K are the number of dissimilar and
similar samples. A,, and A, are dissimilar and similar margins, and a{l and a;
are non-negative weighting factors for pairwise distances between dissimilar samples
(i.e., s5,) and similar samples (i.e., s,) respectively. In their calculation, [G]4 is the
“cut-off at zero" operation to ensure a;, and oJ, are non-negative. O, and O, is
the optimum similarity score for s, and s,, respectively. To reduce the number of
hyperparameters, O, = 1+m, O,, = —m, A, = 1—m, and A,, = m. Hence, there
are only two hyper-parameters, i.e., the scale factor v and the relaxation margin
m. In a class-level paradigm, the dissimilar and similar terminologies are replaced
with between-class and within-class terms using the same equation as Equation 5.2.
Analytically, Circle Loss offers a more flexible optimization approach towards a more
definite convergence target.

In our proposed model, Circle Loss is adopted for the first time for TRL in a
triplet learning paradigm using a Triplet-based Siamese network. We collect an
equal number of dissimilar and similar pairs in each batch (i.e., L = K, equal to a
pre-defined batch size) to create a triplet of anchor, positive, and negative samples.
This also creates a balanced batch (with an equal number of positive and negative
samples) in each epoch to prevent overfitting and bias towards a particular class.
Moreover, we adopted the “Hard"” triplet strategy [202]. In comparison with the
random triplet strategy, where triplets are selected randomly, applying this strategy
disregards triplets that are too easy, thereby reducing the risk of overfitting the
model.

5.5 Experiments

We evaluate SiamCircle on five real trajectory datasets using nine evaluation metrics
in downstream task using three classes of metrics: trajectory ranking, trajectory
similarity, and clustering. The following sections describe the experimental settings,



92 SiamCircle: Trajectory Representation Learning in Free Settings

datasets, baselines, and evaluation metrics.

Experimental Settings. SiamCircle is implemented in Tensorflow.! In the data
augmentation, jumps are only applied randomly to k € [2,5] number of samples.
The additive noise is ds € [0.5, 1], and the jump scale is ds € [15,20]. In the convo-
lutional layer, the filter size is 64, and the kernel size is (5, 5). The average pooling
size is (2,2), and the dropout rate is 0.2. The dimension of the embedding space is
d = 10. In Circle Loss, we set v=8 and m=0.85. We report the average and stan-
dard deviation of results across ten runs for each experiment. The Wilcoxon signed
rank test [208] has been applied to investigate the significant differences between
the top two performing models and to rank algorithms based on their performances
in different metrics. The SiamCircle is optimized with Adam Optimizer. The learn-
ing rate is initialized to 0.001 and decayed by half after every 5 consecutive epochs
with no improvement in the loss. The maximum number of training epochs is set
to 1000 with an early stop after 10 consecutive epochs without improvements in
the loss. In the following sections, we present the details of datasets, baselines, and
evaluation metrics used in our study.

Datasets. Five pedestrian datasets —eth, hotel [209], and zara0l, zara02,
and students03 [210]—are utilized in the experiments. These are widely recognized
benchmarks for group detection tasks using spatio-temporal data [37]. They contain
the location and velocity of movements across multiple timeframes, including ground
truth information on group membership. All five datasets are captured in a free
setting. Table 5.1 shows the main characteristics of these datasets. Since the
number of samples per dataset is limited, we adopted our novel data augmentation
process described in Section 5.4.1 to generate augmented trajectories per class (or
group). The augmented data is only used during the training process. Hence, we
chose a higher ratio for the test dataset to create enough samples for our evaluation
experiments. Specifically, first, we split the original data set into a train and test
set (i.e., train:test, 40:60). Next, via our proposed data augmentation process, we
further enriched the training dataset by generating a larger sample size (over 5000
samples) with higher variability, i.e., different distortion and jumps scales. The
generated augmented trajectory dataset is used only in the training process, and
the remaining original dataset has been used for evaluation.

Baseline. We compared SiamCircle with three other deep learning models, namely
S-BiLSTM [201], TrajCL [193], and Trajectory2vec [194]. We use the released code
and default parameters for all baseline methods except S-BiLSTM, which has no
released code. We implement this method following their original study [201]. In

IThe code is available at https://anonymous.4open.science/r/
SiamCircle-Trajectory-Representation-Learning-17C3/


https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/
https://anonymous.4open.science/r/SiamCircle-Trajectory-Representation-Learning-17C3/

5.5 Experiments 93

Table 5.1: The characteristics of Opentraj datasets. The columns indicate the name of the
dataset, the captured area, and the data size for Train, augmented train (i.e., Train(T))
and Test splits in the form of *(Sample Size, Number of groups).

Datasets Area | Train (T) | Train(T) Test

Eth 224.704 | (40, 15) | (5098, 15) | (96, 37)
Hotel 67.210 (12, 6) (5027, 6) (31, 15)
Zara01 171.504 | (34, 16) | (5050, 16) | (80, 35)
Zara02 158.063 | (71, 35) | (5164, 35) | (167, 82)
Student03 | 242.884 | (185, 61) | (5242, 61) | (433, 194)

TrajCL, the cell size is set to 5 as it performed better than the default value, i.e.,
cell size = 100, as it was designed for city-scale datasets.

Evaluation Metrics. We have adopted nine evaluation metrics in downstream
task using three classes of metrics. Specifically, the trajectory ranking task is eval-
uated using the top-k hitting ratio (k = 1, 5, 10). The trajectory similarity task is
assessed using the most similar search (MSS) and cross-similarity (CS). Finally, the
trajectory clustering task is evaluated using two supervised metrics, i.e., Normalized
Mutual Information (NMI) [211] and Fowlkes Mallows (FM) [212], and two unsu-
pervised metrics, i.e., Davies Bouldin (DB) [127] and Silhouette (Si) [123]. The
summary of these evaluation metrics is presented as follows:

Top-K Hitting Ratio. This metric examines the overlap of the top-k, for k = 1,5,
and 10, k, sorted distances between embeddings and the ground truth. Specifically,
we use the Euclidean measure to calculate the distances between the original trajec-
tory T and other trajectories in the test set. Analogously, we calculate the Euclidean
distances between F(T') and the embeddings of other trajectories in the test set.
We then sort the obtained distances in both sets and find the number of com-
mon indexes across the window size of k. The higher overlap ratio shows better
effectiveness of the measure.

Most Similar Search (MSS) [195]. This metric measures the quality of self-
similarity among trajectories. Specifically, we randomly select two trajectories per
class and store them in two separate subsets. Thus, each subset's size equals the
number of classes (or groups) in each test dataset. Then, we calculate the pairwise
distances between the embeddings of all trajectories in these two subsets and sort
the obtained distances in ascending order per class. lIdeally, the two trajectories
from the same class should rank first among others. We calculated the average
rank of the same-class trajectories across all classes and reported it as the MSS
score. The lower score shows a better performance.
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Cross-Similarity (CS) [195]. This metric evaluates the cross-similarity perfor-
mance by measuring the extent to which a similarity measure maintains the dis-
tance between two trajectories from different classes, i.e., cross-similarity. CS score
is formulated in Equation 5.3:

|d(Ty, Ty) — d(Ta, T)|

CS - d(Ta7 Tb)

(5.3)

where T, and T}, are the embeddings of two distinct original trajectories from the test
dataset. T, and T, are the embeddings of their distorted counterparts respectively.
d(.,.) denotes the Euclidean distance between the two given trajectories. A smaller
CS measure shows better performance.

Clustering performance. Retrieving the embedding of raw trajectories allows
a clustering algorithm to better identify groups of similar trajectories. To test
this, we selected two supervised evaluation metrics, namely NMI [211] and FM
score [212], and two unsupervised metrics, i.e., DB score [127] and Si [123], to
evaluate the performance of a K-mean Clustering Algorithm [213]. The number of
ground truth groups, as indicated in Table 5.1, defines the number of clusters in
the K-mean Algorithm. In summary, the NMI score measures the agreement of the
two assignments, with the highest score being 1. The FM score is the geometric
mean of the pairwise precision and recall, rating from 0 to 1. The Si score indicates
how well clusters are separated from each other, ranging between -1 and 1. DB
score is the average similarity measure of each cluster with its most similar cluster,
where the minimum score is zero, with lower values indicating better clustering. In
all other metrics, the higher score indicates better-defined clusters.

5.6 Results

In this section, the experiment’s results are presented in two studies: (i) an ablation
study to explore different design options and (ii) a comparative study to compare
the performance of our proposed model against three baselines.

Ablation Study. Our ablation study includes component analysis to investigate
the impact of different neural network components and loss function analysis to
investigate the impact of different loss functions in our framework.

Component analysis: As described before, our model mainly includes one 2-D
convolutional layer to extract spatio-temporal features in both dimensions of trajec-
tories (i.e., 1 x Conv2D). Through this experiment, we compare the performance
of 1 x Conv2D with three other alternatives. Since in the literature, recurrent



5.6 Results 95

neural networks have been suggested for analyzing time-series data, we have ex-
plored the use of LSTM and GRU layers instead of convolutional layers in models
LSTM, and GRU. Moreover, we explored the performance of two 2-dimensional
convolutional layers (instead of one) in 2 x Conv2D. As shown in Table 5.2, the
model 1 x Conv2D, which includes one layer of 2-dimensional convolutional layer,
on average, ranked higher than all the other models in all classes of metrics across
all datasets. This demonstrates that the 1 x Conv2D component captures spatial
and temporal dependencies in the data. Hence, this model is used in the following
sections to conduct further experiments.

Loss function analysis. After selecting the best-performing model in terms of
neural network design, in this section, we investigate the impact of different loss
functions on the performance of the selected model. Thus, we trained our pro-
posed neural network design, i.e., 1 x Conv2D, with Triplet loss [202], Contrastive
loss [214], USR loss [215], and Circle Loss. As shown in Table 5.3, the model
1 x Conv2D with Circle Loss, on average, ranked higher than all the other models
in almost all metrics across all datasets. There is only one exception on the unsu-
pervised clustering task where 1 x Conv2D with Circle Loss ranked last in average
rank (Mg) and the rank of each unsupervised metric (i.e., DB and Si). A deeper
analysis of the data shows that the worst performance of these two measures is in
the Hotel dataset, which includes the smallest area with the smallest sample size
in the original datasets (See Table 5.1). This might explain the poor performance
of these two metrics, as both indicate how well clusters are separated. This task
imposes more challenges in small areas and makes the clusters less distinguishable.
Yet, the other loss functions did not consistently outperform in either of these mea-
sures. Hence, 1 x Conv2D with Circle Loss, i.e., SiamCircle, is selected and used
in the following sections to conduct comparative experiments.

Comparative Study. In this section, we compare the performance of our
proposed model against three baselines, namely S-BiLSTM, TrajCL, and Trajec-
tory2vec, in three different classes of metrics, including trajectory ranking, trajec-
tory similarity, and clustering, using the nine evaluation metrics that are explained
in previous sections. The results are depicted in Table 5.4.

Trajectory Ranking. SiamCircle performed significantly higher than the baselines
in the top Hit-k measure in almost all cases except in the Hit-1 metric of the
Hotel dataset. However, the highest performance (obtained by S-BiLSTM) is not
statistically significant. Moreover, the SiamCircle outperformed with an average
performance gap of 19% compared with the second best-performing model, i.e.,
BiLSTM. This shows that the embedding vectors retrieved by our model are helpful
for trajectory ranking tasks to estimate the top similar trajectories.

Trajectory Similarity. In the Trajectory Similarity task, none of the models con-
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Table 5.2: The result of the ablation study in component analysis. The highest ranks in
each evaluation metric are shown in Boldface. R denotes the performance ranking. The
M r shows the average rank per category. Categories, separated by horizontal lines, include
trajectory ranking, trajectory similarity, supervised clustering, and unsupervised clustering.

. . Datasets
Loss Function | Metric | Stident03  Zara0l Zara02 | ©© | MR
[STM Hitl | 0792 0581 0703 07 0711 | 25
Hit-5 | 0773 0884 0706 0798 0901 | 28 | 2.8
Hit-10 | 0.807 0919  0.699  0.839 0874 | 3.2

MSS 2.694 1.867 2977 2.912 2.78 3.4

CS 0.617 2.968 1.389 3.388 2206 | 2.6 3.0

NMI 0.85 0.847 0.911 0.785 0.841 | 24 24

FM 0.361 0.423 0.392 0.165 0.001 | 24 '

DB | 0.685 0.602 054 0 607”@75173;”72727”27}”

Si 0.322 0.254 0.32 0.238  0.368 | 3.2 '
GRU Hit-1 0.76  0.452 0.738 0.738  0.725 | 2.2

CS 09 2983 1.34 3.988 1906 | 2.8 26
NMI 0.828 0.83 0.902 0.79 0.836 | 3.2 39
FM 0.307 0.37 0.355 0.179  0.074 | 3.2 ’
DB | 0.726 0.613 0517 0 573”’@37273(”72’2”’2’%”

2x Conv2D Hit-1 0.625 0.613 0.645 0.712 0.711 | 3.1

MSS [ 2222 1.8 2.6 3676 2932 |28,
cs 1.542 2495  0.907 6.217 1119 [ 2.0 | &
NMI 0.83 077 0.923 0785 0832 [31] .,
FM 0.308 0.198  0.464 0.146 005 |32 | ™
DB | 0708 06 0.552 | 0625 0325 [32 "

1xConv2D Hit-1 0.771 0.523 0.686 0.724 0.732 | 2.2

CS 2.229 2.864 1.039 5172 1502 | 2.6 2.0
NMI 0.858 0.878 0.911 0.811 0.849 | 1.3 1.2
FM 0.39 0.517 0.399 0.223  0.102 | 1.2 )
DB | 0.627 0.671 0526 0 589””0737274”72’4”’2’ 2
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Table 5.3: The result of the ablation study in loss function analysis. The highest ranks in
each evaluation metric are shown in Boldface. R denotes the performance ranking. The
Mr shows the average rank per category. Categories, separated by horizontal lines, include
trajectory ranking, trajectory similarity, supervised clustering, and unsupervised clustering.

Datasets

Loss Function | Metric | —eay—Horar Studento3  Zara0l zara0z | | M=
Triplet loss Hit-1 0.76  0.677 0.479 0.6 0.669 | 1.8
Hit-5 0.79  0.852 0.67 0.758 0.801 | 20| 1.9
Hit-10 | 0.857 0.935 0.69 0.814 0.815 | 2.0
MSS 1.972 1.4 3.9 3.147 2.949 1.8 1.8
CS 1.9 2.762 1.968 6.197 1.13 1.8 '
NMI 0.869 0.934 0.864 0.774 0.836 | 2.4 53
FM 0.406 0.765 0.174 0.123 0.063 | 2.2 '
DB | 0669 0588 | 0504 0. .5?1""05873”727.77”27;7
Si 0.345 0.434 0.322 0.286 0.334 | 2.8 ’
Contrastive loss | Hit-1 0.49 0.613 0.407 0.312 0.585 | 2.8
Hit-5 0.623 0.761 0.544 0.503 0.754 | 3.0 | 2.9
Hit-10 | 0.749 0.848 0.587 0.585 0.77 3.0
MSS 2.389 1.733 3.046 3.912 3.712 2.8 28
CS 2.316 10.926 0.972 21.021 1.028 2.8 '
NMI 0.79 0.845 0.87 0.788 0.844 2.6 26
FM 0.227 0.436 0.212 0.164 0.07 2.6 '
DB | 0.606 0336 | 0.454 0. .6437"@273@”727.07”27 67’
Si 0.395 0.38 0.34 0.253 0.394 | 2.0 ’
USR loss Hit-1 0.302 0.452 0.172 0.162 0.296 | 4.0
Hit-5 0.331 0.742 0.193 0.268 0.337 | 40 | 4.0
Hit-10 | 0.424 0.806 0.229 0.35 0.352 | 4.0
MSS 3.722 1.8 7.085 5.912 7.305 | 4.0 37
CS 2254 3.315 2.289 8.919 1.934 3.4 '
NMI 0.801 0.82 0.858 0.751 0.838 | 3.6 37
FM 0.248 0.34 0.152 0.056 0.049 | 3.8 '
DB | 0548 022 0.504 0. .3057"@2797?{”717.77”27 67’
Si 0.392 0.595 0.301 0.479 0.285 | 2.4 ’
Circle Loss Hit-1 0.771 0.523 0.686 0.724 0732 | 1.4
Hit-5 0.84 0.88 0.738 0.791 0909 | 1.0 | 1.1
Hit-10 | 0.892  0.953 0.744 0.843 0.877 | 1.0
MSS 2.211 1.56 2.687 2.806 2.717 1.4 1.7
CS 2229 2.864 1.039 5.172 1.502 2.0 )
NMI 0.858 0.878 0.911 0.811 0.849 1.4 1.4
FM 0.39 0.517 0.399 0.223 0.102 | 1.4 ’
DB | 0.627 0671 | 0526 | 0. .589""0372747”37.67”37;’
Si 0.328 0.218 0.331 0.287 0.366 | 2.8 :
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sistently outperformed in either of the metrics, i.e., MSS and CS. Yet, SiamCircle
ranked highest in the MSS score, and Trajectory2vec ranked highest in the CS score.
This means that SiamCircle was more successful in identifying trajectories belong-
ing to the same class but faced difficulty distinguishing trajectories from different

Table 5.4: The result of the comparative study in the format of (mean-tstandard division).
The statistically significant results are shown by *. The highest ranks in each evaluation
metric are shown in Boldface. R denotes the performance ranking. The Mg shows the
average rank per category. Categories, separated by horizontal lines, include trajectory
ranking, trajectory similarity, supervised clustering, and unsupervised clustering.
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classes. Trajectory?vec uses an autoencoder with no explicit labeling to reconstruct
representations. As a result, trajectory representation is solely based on the individ-
ual trajectory itself, without considering similarities with trajectories from the same
class. This might explain why Trajectory2vec has performed better in distinguish-
ing dissimilar trajectories (i.e., CS score) and did not perform at the same level as
SiamCircle in identifying similarities among same-class trajectories (i.e., MSS score).
Overall, SiamCircle obtained the best average rank My in the Trajectory Similarity
task compared to the baselines.

Clustering. SiamCircle performed higher than the other three baselines in su-
pervised clustering measures, i.e., NMI and FM scores (with S-BiLSTM performing
similarly to SiamCircle in the NMI metric). However, this was not the case for
unsupervised clustering measures, i.e., DB and Si. This could be due to providing
explicit positive and negative samples for training in these two models, which allows
the models to learn more specific patterns and relationships. Additionally, the dy-
namic penalty strategy by Circle Loss likely helped SiamCircle achieve a higher rank
than S-BiLSTM. On the other hand, the TrajCL has ranked best in unsupervised
clustering metrics. This could be because TrajCL did not use group membership
during training. Thus, the obtained embeddings via TrajCL form clusters in the em-
bedding space that do not necessarily reflect individual group memberships. This
makes TrajCL particularly useful when ground truth data is not available. Yet, a
deep understanding of data is required to translate the findings into an implication.

Overall, SiamCircle has ranked highest compared to the baselines in two classes
of metrics, Trajectory Ranking and Trajectory Similarity. Meanwhile, in Trajectory
Clustering, the highest performance is obtained only in Supervised metrics. This
demonstrates the strong capability of representations obtained by SiamCircle to be
used in various domains and applications.

5.7 Conclusion

This study revisits the problem of TRL, specifically when trajectories are collected
from free movements in small areas. We introduced a novel framework, SiamCircle,
which includes a Siamese framework with Circle Loss. We conducted experiments
with five benchmark datasets, using nine evaluation metrics in downstream tasks
using three classes of metrics, namely trajectory ranking, trajectory similarity, and
clustering. In the ablation study, we demonstrated that one 2-dimensional convolu-
tional layer together with Circle Loss, on average, outperformed other candidates.
In a comparative study, SiamCircle consistently outperformed other models in tra-
jectory ranking with an average performance gap of 19% compared with the second
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best-performing model, i.e., BILSTM, and in unsupervised clustering measures. im-
provements over the existing measures. SiamCircle can be used in various tasks,
such as analyzing social interactions in free settings, e.g., schoolyards and sports
clubs. In future research, automating hyperparameter selection in Circle Loss based
on the characteristics of the given datasets can be explored.
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Abstract

Modeling group behavior can be used in schoolyards to understand children’s so-
cial behavior and their interactions with the social environment. Several studies
have addressed the problem of identifying group behavior through modeling spatio-
temporal trajectories. In this chapter, we revisit this problem by conducting two
parallel studies using dyad-based models and context-based models. In this con-
text, children are modeled as nodes in a graph. Such a graph representation in-
dicates, for example, the social network of children in a class or playgroup. Our
proposed dyad-based model, i.e., WavenetNRI, models interactions between each
pair of nodes (i.e., dyadic nodes) using their spatio-temporal trajectories. Whereas
our proposed context-based model, i.e., T-DANTE, includes the context informa-
tion, i.e., it models interactions of dyadic nodes by additionally considering the
spatio-temporal trajectories of surrounding nodes. We conducted our experiments
using two collections of datasets, namely Opentraj datasets (with five real-world
pedestrian datasets) and spring simulation dataset (with five simulation datasets),
and two evaluation metrics, i.e., group mitre and group correctness. Our experi-
ments compare the performance of these two models with two other baselines. The
results demonstrate that including context information can improve the accuracy
of group behavior modeling in Opentraj datasets. Meanwhile, in the simulation
dataset, which includes groups with larger sizes, the dyad-based model performs
better than other models.

6.1 Introduction

Children constantly interact with their social environment (i.e., peer groups and
teachers) in schoolyards through different games and activities [1]. The social en-
vironment provides opportunities for children to develop their social skills. Yet,
these environments may include barriers (e.g., environments in which children expe-
rience ostracism by their peers) that hinder social development for certain children.
Addressing the existing barriers in the social environment is crucial to prevent prob-
lems such as bullying and social exclusion and promote emotional well-being in
children [216].

The primary step in identifying these barriers is understanding children's social
behavior and their group formations in schoolyards. The main challenge in ob-
taining this understanding is the variability of children's interactions over time and
space. For instance, children often change their interacting partners or groups over
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recess time [35], or they often use several areas of schoolyards during group interac-
tions [217]. Thus, accurately capturing children’s group behavior in schoolyards is
only possible when both spatial and temporal elements are considered in the design
of the modeling framework [2].

Excessive literature in children’s research has studied social behavior by mea-
suring face-to-face interactions [218,219]. In this form of interaction, children are
physically present with one another within close proximity [77]. Similarly, in the con-
text of the present thesis, proximity tags were initially adopted to capture children’s
face-to-face interactions in schoolyards (see Chapters 2 - 4). Although capturing
face-to-face interactions provides an informative and straightforward measure to
understand children’s social behavior, it overlooks other forms of interactions that
commonly happen in schoolyards. In order to create a clearer picture of children’s
social behavior, in addition to face-to-face interactions, we also captured parallel
interactions, e.g., walking and running side-by-side, in schoolyards (see Chapter 5).

Yet, the complex nature of schoolyard activities might involve more complicated
forms of interactions not captured in face-to-face contact or parallel movements.
Understanding these complex group interactions requires analyzing children’s be-
havior in their social networks in schoolyards. From the data science perspective,
analyzing group behavior in a social network can turn into a mathematical problem:
how to identify sub-groups (or sub-graphs) in a given community (or graph). To
this end, various studies in social network analysis focused on designing community
detection algorithms that identify sub-communities based on pairwise relationships
among individuals [220-222]. Despite their great performance in identifying static
groups, these algorithms might not be able to identify groups in scenarios where
group formation dynamically changes over time and space. For example, when a
group of children is playing hide and seek, depending on their role, they might be
involved in social interactions that can only be revealed by analyzing the spatio-
temporal dynamics of children in forming a group, i.e., how children move in space
over time compared with their peers. Including these spatio-temporal dynamics is
essential to analyze social interactions and group formations in a higher resolution,
going beyond face-to-face interaction and parallel play.

The first attempts to address this challenge focused on classical machine learning
models, which incorporate a manual feature extraction process to find the most sig-
nificant features [223,224]. Although the results show promise, the manual feature
extraction and selection process is often time-consuming and might potentially intro-
duce bias to the model. Recent studies in the field of artificial intelligence focused
on developing neural network models to automatically extract features and iden-
tify sub-groups based on individual interaction graphs [225-228]. These pipelines
typically incorporate spatio-temporal data to train a neural network model and re-
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construct an affinity graph, i.e., a graph that represents the pairwise relationship
of individuals. Applying a community detection algorithm or clustering method can
identify sub-communities within this reconstructed graph. Previous studies focused
specifically on spatial features by adopting multi-layer perception MLP layers [225]
or 1-dimensional convolutional layers [226] to model group behavior, overlooking
the temporal dependencies that might contribute to modeling group formations.

To address this gap, the current chapter revisits the problem of group behavior
modeling in spatio-temporal data via neural network models by conducting two
parallel studies: (1) WavenetNRI [3], built upon NRI [226], and (2) T-DANTE [4],
building upon DANTE [225], to create an affinity graph via a neural network model
that can be used by a community detection algorithm to identify groups in a given
community. Overall, this chapter includes the following subjects:

= Discussing two novel neural network frameworks, i.e., WavenetNRI [3] and
T-DANTE [4], to address group modeling tasks using spatio-temporal data.

= Discussing a trajectory simulation framework, built upon spring simulation
framework [226,229], to stimulate group and non-group interactions among
particles in a physical system. This framework uniquely simulates attraction
points (i.e., points where group members often mingle around) to stimulate
group movements.

= Evaluating the performance of the two models, i.e., WavenetNRI and T-
DANTE, using two sets of datasets, namely Opentraj dataset (includes five
pedestrian datasets) and spring simulation dataset (with five simulation datasets)
against two baselines (i.e., NRI [226], and DANTE [225]) via two evaluation
metrics, i.e., Group Mitre and Group correctness.

The present study is organized as follows. The related literature is presented in
Section 6.2. The group modeling problem is defined in Section 6.3. Section 6.4
presents the details of the proposed approach in pairwise information and context
information. Section 6.5 presents the datasets, the evaluation metrics, baselines,
and implementation details adopted in our experiments. Moreover, this section
discusses the results of our experiments. Finally, Section 6.6 summarizes the study
and points out the limitations and directions for future research.

6.2 Related Work

The spatio-temporal data adopted in modeling group behavior can be categorized
into two areas: Dyad-based modeling and Context-based modeling. In dyad-



6.2 Related Work 105

based modeling studies, the spatio-temporal data per pair of nodes in the interaction
graph focuses on training their model and predicting the affinity score. Studies in
context-based modeling included the spatio-temporal data of the surrounding nodes,
i.e., social context, in addition to the pairwise interaction data to predict the affinity
score. The following section discusses the existing literature on adopting these two
strategies.

6.2.1 Dyad-based Modeling

Various studies in this area adopted graph-based neural networks (GNN) to estimate
pairwise interactions among agents [226—-228]. Thompson et al. [230] modeled a
scene as an interaction graph, where nodes and edges represent individuals and
their dyadic relationship, respectively. GNN is used afterward to predict the pair-
wise affinity, indicating the likelihood of pairwise interactions. In another attempt,
Kipf et al. [226] proposed Neural Relational Inference (NRI), which predicts interac-
tions between moving particles using spatio-temporal data. Both studies assumed
interactions among specific pairs of agents remain constant throughout the entire
timeframe. Yet, in real-world social settings, individuals often change their interac-
tion partners.

Moreover, they both overlook the symmetric group relationships among pairs in
the affinity graph. Implementing this feature satisfies the following condition in the
embedding space (where the affinity graph is reconstructed): if A is in a group with
B, B is also in the same group with A, to account for bidirectional relations in group
memberships. The dyad-based model, WavenetNRI, adopts the dilated residual
causal convolutional (GD-RCC) block [231] to capture short and long dependencies
in spatio-temporal dynamics. Moreover, it uses symmetric temporal edge features
and a symmetric edge updating process to address the symmetric property of group
relationships.

6.2.2 Context-based Modeling

This line of research incorporates the context information, i.e., the surrounding
agents, in addition to the dyad information, into the model’s design. The underlying
reason is that determining whether two individuals belong to the same group does
not solely depend on the behavior of those two individuals. Additionally, the behavior
of surrounding individuals could also impact this determination, e.g., in the context
of the schoolyard, identifying two children running together as a group will be
easier by including the fact that other children are playing in the sandpit as it
suggests significant spatio-temporal differences between the two groups. In line
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with this idea, Swofford et al. [225] introduced DANTE, a neural network model
that incorporates MLP layers. DANTE adopts the information of surrounding agents
in addition to the pairwise interactions to learn graph representation for a single-
frame scene. In another attempt, Lu et al. [232] introduced VGDTN, which adopts
1-dimensional convolutional layers to identify group behavior using both dyad and
context information in a single-frame scene. Yet, the focus of both studies on a
single-frame scene might overlook the temporal features that occur over multiple
timeframes. Moreover, MLP models and 1-dimensional convolutionals are known
to be incapable of effectively modeling time-series data such as spatio-temporal
trajectories compared with recurrent neural network (RNN) models. To address
this, the context-based model, T-DANTE, enhances the context information by
including scenes with multiple timeframes instead of a single scene. Moreover, by
implementing RNN layers, T-DANTE aims to capture short and long dependencies
in the spatio-temporal data.

6.3 Problem Formulation

Consider a dataset D that includes the movement trajectories of M agents. Each
movement trajectory X,,, = {1, ..., ¢, ..., o7 } indicates a consecutive sequence of
spatio-temporal features x; of agent m, m € (1, M) over a timeframe with 7" time
steps, t € (1,T). Each dyadic agent may interact with the others over the given
timeframe.

Firstly, we are interested in estimating the pair-wise relationships between dyadic
agents by learning the affinity score h2i~. between all dyadic agents ¢ and j and
assembling all scores to form an affinity graph. Secondly, we are interested in
identifying groups C' = {¢;|j € [1, K]} of agents in the created affinity graph
(1 £ K < N is the number of groups) under three main assumptions: (1) the
group relationships are constant in a time window, while agents could interact with
other agents from a different group. (2) Agents of the same group share similar
spatial behavior over a timeframe. (3) The size of the timeframe is fixed across the
measurements.

The present chapter discusses two approaches to address this problem: (1) the
dyad-based modeling and (2) the context-based modeling. The dyad-based model
learns interactions between dyadic nodes using their spatio-temporal trajectories.
Meanwhile, the context-based model learns dyadic node interactions by considering
surrounding nodes’ spatio-temporal trajectories.
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Figure 6.1: An overview of WavenetNRI framework. (1) The symmetric edge feature will
be created based on the spatio-temporal of nodes ¢ and j. (2) The edge embeddings will
be created by applying a GD-RCC block to the symmetric edge feature sequences. (3) All
edge embeddings will be aggregated per node j to obtain the node representation. (4)
The node embedding and edge embeddings will be used in this block to create the final
edge embeddings, i.e., affinity score, between node ¢ and j.

6.4 Methodology

This section presents the design of two models, i.e., WavenetNRI and T-DANTE.
These models identify group behavior by learning the affinity graph from spatio-
temporal data of nodes (nodes can be agents or individuals depending on the con-
text). While WavenetNRI focuses on extracting complex spatio-temporal depen-
dencies based on dyad information, T-DANTE adopts an RNN model to identify
group behavior using both dyad and context information. The details of these two
models are described as follows:

6.4.1 WavenetNRI Framework

The WavenetNRI models group behavior solely based on dyad information. The de-
sign of this model is inspired by NRI framework [226] and Wavenet framework [231].
To satisfy the symmetric feature of group membership, WavenetNRI implements
symmetric edge features and symmetric edge updating functions to account for the
bidirectional nature of group memberships. Moreover, WavenetNRI adopts GD-RCC
to learn short and long-term spatio-temporal dependencies in the edge feature. The
overview of the WavenetNRI framework is depicted in Figure 6.1. This framework
consists of four blocks, each representing one step in the training process as follows:
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Step 1. Symmetric Edge Features. In the first step, the symmetric edge
feature sequences eti . will be created using the spatio-temporal data of dyad nodes
i and j. The origin’al NRI implements this by simply concatenating the spatio-
temporal data of dyad nodes i and j (i.e., ef, ;; = [X{, X}]). Built on this idea,
WavenetNRI implements symmetric edge sequences to satisfy the symmetric nature
of group relationships. The edge feature sequences in WavenetNRI are constructed
by concatenating the pairwise distances and temporal increments in spatio-temporal
data per dyad as follows:

ey = IIX{ = Xj|l,AX; 0 AX]], tel,..,T—1, AX{=X""—X] (6.1)

Where || X} — X}|| denotes the Euclidean distance between dyad nodes i and j
and AX!® AX;- denotes the element-wise production of the increments of dyads.
Thus, edge feature sequence efi’j) captures both spatial and temporal differences
between each dyad. Moreover, the edge features are symmetric, i.e., efi)j) = efj’i),
corresponding to the symmetric properties of pairwise group relationships.

Step 2. GD-RCCC Block. The edge feature sequences efi,j) obtained in
the previous step will be given to the GD-RCC block to extract spatio-temporal
features of the given edge (i.e., edge embeddings). The original NRI adopts one
convolutional layer that may not efficiently capture the long-term interactions of
edge feature sequences. In the WavenetNRI, a GD-RCC block [231] inspired by
Wavenet [231] is used to transform the edge feature sequences efw.) into the edge
embedding h(lm.) as formulated in Equation 6.2. The use of GD-RCC block has
several advantages for the design of WavenetNRI: (1) The causal convolution main-
tains the order of the timely ordered edge sequences, (2) the dilated convolutional
kernels exponentially expand the receptive fields, (3) the skip connection (i.e., 1D
CNN) tackles the gradient vanishing problem, and (4) the gating activation function
regulates the information flow.

hiig) = faproo(es, ) (6:2)
Step 3. Node Updating Function. This step sums up all edge embeddings
h%i,j) for dyadic nodes i and j and gives them to the node updating function f, (as

proposed in the original NRI). This function generates higher level node embedding
hi (or h}) for dyadic nodes i and j as formulated in Equation 6.3.

hy = £ bt ) (6.3)

i#]
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Figure 6.2: An overview of T-DANTE framework: The dyad branch extracts the spatio-
temporal data of the pair of nodes of interest. The context branch extracts the spatio-
temporal data of surrounding nodes, i.e., social context. The extracted features from the
dyad branch and context branch will be merged in the combined branch. The output of
this branch, i.e., the affinity score h%i,j)' will be calculated per dyads to create the affinity
graph.

Step 4. Symmetric Edge Updating Function. The element-wise production
of the obtained node embeddings will be concatenated by the feature embeddings
h%i’j) obtained in Step 2 and fed to the neural network f. to get final edge embedding

h%ij) between dyadic node i and j, represented as the affinity score between the

two nodes (See Equation 6.4). Through this process, the final affinity score h%i,j)

captures interactions between dyadic nodes ¢ and j and their interactions with other
nodes [226].

his gy = fe([hii gy hi © B3)) (6.4)

During the supervised training phase, the ground-truth pairwise group relationships
G ;5 are used as labels. Since the datasets include an imbalanced distribution
of the labels, the weighted cross-entropy is adopted as a loss function. This loss
function assigns higher weights to the rare labels to compensate for their lower
distribution. By minimizing the weighted cross-entropy, WavenetNRI is optimized
to identify the “interaction” versus “no interaction” relation between nodes. After
supervised training, the affinity graph will be constructed by assembling all the
obtained affinity scores between pairs of nodes. The Louvain community detection
algorithm [222] is applied afterward to the obtained affinity graph to find sub-groups
among given nodes.
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6.4.2 T-DANTE Framework

While the previous approach, WavenetNRI, solely focuses on the spatio-temporal
data of the dyadic nodes, the T-DANTE framework additionally includes the spatio-
temporal data of the surrounding nodes, i.e., social context. This section presents
the details of T-DANTE, inspired by the DANTE framework [225]. T-DANTE
extends DANTE by utilizing RNN blocks to retain temporal information and spa-
tial features. During the training process, first, these spatio-temporal features will
be extracted from the data to estimate the affinity score between pairs of nodes.
Then, this affinity score will be compared with the pairwise group membership (i.e.,
ground truth G; ;) using the log loss function. Assembling the estimated affinity
score between all pairs of nodes creates an affinity graph, which can be used after-
ward in a community detection algorithm to detect sub-groups in the given data.
The proposed T-DANTE consists of three branches: (1) Dyad Branch, (2) Context
Branch, and (3) Combined Branch (See Figure 6.2). The dyad branch, similar to
the WavenetNRI framework, captures local spatio-temporal information from the
dyadic nodes. The context branch captures the spatio-temporal information from
surrounding nodes (i.e., social context). The combined branch combines the output
of these two branches and estimates the affinity score between the pair of nodes
that are given in the dyad branch. The details of these branches are explained as
follows:

1. Dyad Branch. The Dyad Branch extracts the spatio-temporal features of
dyadic nodes using RNN layers, i.e., LSTM layers. The LSTM includes memory
cells and gating mechanisms, to selectively store and retrieve information over long
sequences, e.g., time series data such as movement trajectories. A series of convolu-
tional layers are then applied to concatenate the spatio-temporal features extracted
from RNN layers. Lastly, the dyad branch is followed by a Dropout layer to reduce
overfitting and a Batch Normalisation layer to avoid the covariate shift and enhance
the model’s generalizability.

2. Context Branch. Context Branch follows the same identical design as the
Dyad Branch. Yet, its given input data and role in the overall framework are differ-
ent. The Context Branch extracts the spatio-temporal features of the surrounding
nodes to account for context information. The number of surrounding nodes is a
hyperparameter of the model (i.e., context size).

3. Combined Branch. The Combined Branch merges the extracted spatio-
temporal features obtained from the Dyad Branch and Context Branch together.



6.5 Experiments 111

Specifically, the extracted features are first flattened and passed through a series of
fully connected layers, dropout layers, and batch normalization layers. Their specifi-
cations (e.g., number of layers, kernels, and filter size) depend on the characteristics
of the dataset, such as the number of frames, the maximum number of nodes, and
the data size. The last layer of this branch is a fully connected layer with a Sigmoid
activation function to constrain the single output to the [0, 1] range. This output
is the affinity score for the dyadic nodes.

Assembling all the affinity values between all dyadic nodes creates the affinity
graph. The group structures in the affinity graph will be identified afterward using
the Dominant Sets (DS) community detection algorithm [233].

6.5 Experiments

We conducted several experiments to evaluate the models’ performance. The fol-
lowing sections describe the datasets and evaluation metrics we used in our exper-
iments. Furthermore, the baselines used to compare with the performance of the
WavenetNRI and T-DANTE models are explained. Lastly, the implementation de-
tails of our experiments and the obtained results are presented. Our results compare
the performance of the proposed frameworks, WavenetNRI and T-DANTE, with two
other baselines using two evaluation metrics on two collections of datasets. The
goal of this experiment is to address the following research questions:

= RQ. 1. Can symmetric edge features and GD-RCC block improve the perfor-
mance of WavenetNRI compared with the original NRI model?

= RQ. 2. Can RNN block and including multiple timeframes per scene improve
the performance of T-DANTE compared with the original DANTE model?

= RQ. 3. Which of the dyad-based or context-based models can perform better
in identifying group behavior?

6.5.1 Datasets

In order to evaluate the performance of the models, we conducted our experiments
using two publicly available datasets, i.e., Opentraj Dataset and Spring Simulation
Dataset. Table 6.1 presents the characteristics of these datasets.
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= Opentraj Dataset. Opentraj dataset [234]" is extensively used in human tra-

jectory prediction literature. This dataset includes the trajectories of pedes-
trians, location, and velocity in multiple timeframes, captured via static cam-
era. Five pedestrian datasets, eth, hotel [209], and zara0l, zara02 and stu-
dents03 [210], which include the ground truth of the group membership, have
been used in our experiments. This ground truth is created by annotating the
pedestrians who seemed to walk in groups. The original dataset includes
location data relative to the world reference W. In order to enhance the gen-
eralizability of our approach across different datasets, the trajectory of each
pedestrian is transformed to a local coordinate system L;;, defined as the
middle point between pedestrian i and j.

Spring Simulation Dataset. The spring simulation framework, built upon
previous studies [226, 229], is developed to simulate group and non-group
interactions among particles in a physical system. In line with the original
studies, our spring simulation framework simulates the movements of groups
of particles in a 2-D space. In their movements, those from the same group
attract each other and distract from particles from another group. The lo-
cations, velocities, and the group membership (i.e., ground truth) of the
particles are included in this simulation. Our proposed framework has made
two improvements to the original framework: (1) defining group size as a
simulation parameter that can be controlled over different experiments and
(2) designing attraction points that stimulate particles from the same group
toward certain pre-defined spots. In the proposed framework, pre-defined
forces stimulate particles toward attraction points. All forces have the same
strength, but their direction is different to point a particle towards a certain
attraction point.

6.5.2 Evaluation Metrics

In order to evaluate the performance of the proposed model, we used two evaluation
metrics, i.e., Group Mitre [235], Group Correctness [225,233], in our experiments.
In both evaluation metrics, due to the higher number of pairs from different groups
compared to those from the same group, we adopted an F-1 score as it is more
suitable for evaluating imbalanced datasets.

= Group Mitre (Gjs) [235] is an evaluation metric, built upon the Mitre

loss [236], has been used by several studies [229, 237, 238] to measure the

Thttps://github.com/crowdbotp/OpenTraj
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Table 6.1: Characteristics of five Opentraj datasets and five spring simulation datasets used
in both models, regarding the duration of measurements, pedestrian dataset in seconds
and spring simulation dataset in timeframes, the number of agents, and the number of
groups.

Dataset Duration | Agents# | Groups#
‘@ | eth 773.4 360 58
£ | hotel 722.4 390 41
& | zara01 360.4 148 45
zara(02 420.4 204 58
students03 | 215.6 428 101
- stma 50 8 2
2 | sima 50 9 2
= | sims 50 9 3
£ | simy 50 10 2
D sims 50 10 4

quality of the identified groups. Mitre loss adopts spanning trees to represent
groups. This form of representation overlooks singletons, i.e., a group with
only one node. Group Mitre solves this problem by adding a fake counterpart
to each node. This fake node is considered in the same group as the original
node only if the original node was singleton. The detailed implementation of
G is presented by Solera et al. [235].

» Group Correctness (G.) [225,233] considers a group as correctly identified
if at least P * |c;| of its members are correctly classified in the group, where
P € [0,1] is a threshold and |c;| indicates the size of the original group j.
The P =1 requires all agents in ground truth group membership data to be
correctly identified in group j. Accordingly, P < 1 applies a milder metric in
evaluating the quality of the identified groups.

6.5.3 Baselines

In the comparative study, we compared the performance of our proposed methods
with two other baseline methods, namely NRI [226] as a dyad-based model and
DANTE [225] as a context-based model. These baseline methods are described in
Section 6.2 and are implemented based on their available source code. The original
studies [4, 229] include extensive experiments where more baselines and dataset
configurations have been presented. In this chapter, the most relevant approaches
has been selected and presented in the result section for consistency and improving
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Table 6.2: The results of Group Correctness G¢ and Group Mitre Gy for WavenetNRI
and T-DANTE compared with baselines using Opentraj datasets and simulation datasets.
The * sign shows that this result is significantly different compared with other cases under
the same evaluation metric and dataset.

Pedestrain Dataset
eth hotel zara0l zara02 students03
Gc Gum Gc Gum Gc Gum Gc Gu Ge Gu

DANTE 0.319 0.548 0.431 0.586 0.731 0.793 0.633 0.705 0.024 0.502
+0.047 | +0.019 | +0.043 | +0.035 | +0.051 | +0.028 | +0.038 | +0.026 | +0.012 | +0.013

NRI 0.201 0.571 0.169 0.540 0.285 0.597 0.106 0.417 0.006 0.280
+0.062 | +0.074 | +0.054 | +0.097 | +0.067 | +0.053 | +0.035 | +0.019 | +0.010 | +0.026

WavenetNRI 0.242 0.553 0.202 0.455 0.361 0.627 0.184 0.462 0.001 0.280
+0.059 | +0.057 | +0.048 | +0.080 | +0.091 | +0.066 | +0.065 | +0.040 | +0.004 | +0.024

T-DANTE 0.590* 0.665 0.508* 0.542 0.821* | 0.838* | 0.870* | 0.873* | 0.696* | 0.780*
+0.030 | £0.017 | +0.043 | +0.023 | +0.015 | +0.015 | +0.011 | +0.011 | +0.056 | +0.028
Simulation Dataset
simy Sima sims Sima sims
Go Gum Go Gm Go Gm Go Gu Ge Gu

DANTE 0.215 0.717 0.198 0.701 0.095 0.518 0.199 0.712 0.041 0.425
+0.007 | +0.004 | +0.008 | +0.003 | +0.011 | +0.011 | 4+0.011 | +0.005 | +0.007 | +0.009

NRI 0.984 0.991 0.983 0.993 0.988* | 0.995* 0.996 0.999 0.988* 0.995
+0.004 | £+0.002 | +0.007 | +0.002 | +0.004 | +0.002 | +0.003 | +0.001 | +0.007 | +0.003

WavenetNRI 0.996 0.998 0.995* | 0.998* 0.977 0.988 0.998* 0.999 0.953 0.968
+0.006 | +0.002 | +0.004 | +0.001 | +0.008 | +0.004 | +0.004 | +0.001 | +0.011 | +0.009

T-DANTE 0.969 0.983 0.980 0.989 0.982 0.988 0.971 0.987 0.945 0.976
+0.002 | £+0.002 | +0.002 | +0.001 | +0.006 | +0.003 | +0.006 | +0.002 | +0.011 | +0.003

the readability.

6.5.4 Implementation Details

Our experiments were implemented via the Python programming language. The
details of the implementation of WavenetNRI? and T-DANTE (with the spring sim-
ulation framework)* are available in the GitHub repository. We split each Opentraj
dataset into 5 folds and evaluated the performance of each method across 5 times
experiments per fold (i.e., 25 runs in total per method). Since spring simulation
datasets were generated under controlled conditions, they have not been split into
folds. Each spring simulation dataset was randomly split into train, test, and valida-
tion datasets. The performance of each method has been evaluated across 25 times
experiments per simulation dataset. We investigated the significant differences be-
tween the top two performing models by implementing the Wilcoxon signed rank
test [239]. In the following sections, the performance of the proposed models against
three state-of-the-art baseline methods is presented.

2https://github.com /fatcatZF /WavenetNRI
3https://github.com/ADA-research /context-group-detection
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6.5.5 Results

In this section, the performance of WavenetNRI and T-DANTE is compared with the
baselines. The results of the experiments for the simulation dataset and Opentraj
dataset are presented in Table 6.2.

6.5.5.1 Opentraj Datasets

According to Table 6.2, WavenetNRI has outperformed NRI in most of the cases
across different Opentraj datasets. This answers RQ. 1, indicating that overall,
including symmetric edge features and GD-RCC block to capture more complex
dependencies in the spatio-temporal data has improved the performance of the
WavenetNRI.

In order to answer RQ. 2, we compared the performance of DANTE with T-
DANTE. Our results show that T-DANTE is the superior model using the Group
Mitre metric in all datasets, except in the hotel dataset, in which DANTE performs
better. Yet, this result is not statistically significant. The superiority of T-DANTE
against DANTE in most cases demonstrates that including temporal dependencies
via the LSTM layers and further enriching with multiple timeframes per scene has
enhanced the performance of T-DANTE. Thus, implementing LSTM layers is more
suitable compared with MLPs when using the Opentraj datasets.

Finally, RQ. 3 compares the two dyad-based models, i.e., NRI and WavenetNRI,
with context-based models, i.e., DANTE and T-DANTE. The result shows that
T-DANTE outperforms all baselines, i.e., DANTE, NRI, and WavenetNRI, for all
Opentraj datasets using the Group Correctness metric. This shows that, indeed,
including context data is beneficial for modeling group behavior.

6.5.5.2 Spring simulation datasets

According to Table 6.2, inline with the result of Opentraj datasets, the capability
of WavenetNRI in learning symmetric edge features and capturing complex depen-
dencies via GD-RCC has enhanced its performance compared with NRI, addressing
RQ. 1).

To address RQ. 2, we compared the performance of DANTE with T-DANTE.
The results show that similar to the findings in the Opentraj datasets, including the
LSTM layers and multiple timeframes in T-DANTE, have significantly improved its
performance compared with DANTE across different simulation datasets using both
metrics.

Finally, to address RQ. 3, we compared the performance of dyad-based models,
i.e., NRI and WavenetNRI, with context-based models, i.e., DANTE and T-DANTE.
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The result of this comparison shows the superiority of dyad-based models over
context-based models across all simulation datasets. This contrast with the result
of Opentraj datasets can be explained by the differences in the characteristics of
the Opentraj and simulation datasets. Compared with Opentraj datasets, spring
simulation datasets have more scenes with group sizes larger than 3 particles. This
feature makes it suitable for dyad-based models, i.e., NRI and Wavenet, to extract
contextual information without being limited to the number of surrounding nodes.

Overall, the results in both dyad-based and context-based models demonstrate
the positive impact of capturing temporal dynamics in the data, either with GD-
RCC block or LSTM layers. Moreover, the context-based models were able to more
accurately model datasets with smaller group sizes, which are mainly included in the
Opentraj datasets. Whereas the dyad-based models were able to more effectively
extract spatio-temporal features in larger group sizes that are mainly included in the
simulation datasets. Additionally, in the Opentraj dataset, pedestrians often come
to the scene from one of the two ends (of streets) and leave the scene from the
other end. This structured movement might create overshared trajectories between
different groups and pose challenges to modeling group behaviors. Thus, including
context information has enhanced the performance of these models. In the spring
simulation dataset, particles freely move in a physical box, and their movement is
only directed by pre-defined attraction points. This is similar to scenarios where
individuals have unstructured movements with relatively mild restrictions. In these
types of scenarios, dyad information provided sufficient information to model group
behaviors, and adding context information did not improve the performance. For
example, on university campuses or on urban pavements where individuals appear
in smaller group sizes with structured movements, context-based models can more
accurately identify group behavior. Whereas in the context of individuals with
unstructured movements in larger groups, such as athletes on a soccer field or chil-
dren in schoolyards, dyad-based models can more accurately identify group behavior.
Thus, either of these models might be useful for a specific scenario, depending on
its characteristics. This leads us to the necessity of implementing dynamic context
size in our model to automatically define context size based on the characteristics
of the given dataset or even the specific scene.

6.6 Conclusion

Analyzing children's group behavior in schoolyards enables us to identify limitations
and possibilities in social environments around the child. In dynamic social settings,
such as children in schoolyards, individuals constantly change their interaction part-
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ners and activities, which poses extra challenges to modeling group behavior. In
these scenarios, analyzing group behavior requires including both spatial and tempo-
ral elements in individuals’ movements. To address this challenge, the present study
aims at modeling group behavior using spatio-temporal data by conducting two par-
allel studies, dyad-based modeling and context-based modeling. The first study, i.e.,
WavenetNRI as a dyad-based model, is built up on NRI [226] and Wavenet [231]
frameworks. WavenetNRI implements two features: (1) symmetric edge features
with symmetric edge updating processes to account for the symmetric nature of
group membership and (2) GD-RCC block to capture complex spatio-temporal de-
pendencies in data. This model solely adopts spatio-temporal data between dyadic
nodes to train the neural network model and reconstruct the affinity graph. The
second study, i.e., T-DANTE as a context-based model, is built on the DANTE
framework. T-DANTE adopts LSTM layers to estimate the affinity scores using the
spatio-temporal data of the surrounding nodes, i.e., context information, in addition
to the data of dyadic nodes. Moreover, this framework includes multiple timeframes
per scene to enrich the context data.

Our comparative study against state-of-the-art baselines demonstrates that T-
DANTE is the superior model for modeling group behavior using real-world Opentraj
datasets. Whilst WavenetNRI outperformed other baselines in simulation datasets.
The superiority of T-DANTE versus other dyad-based models, e.g., WavenetNRI
and NRI, in Opentraj datasets shows that including context information has en-
hanced the performance of group behavior modeling in Opentraj datasets where
group sizes are relatively small. Moreover, the superiority of T-DANTE over the
original DANTE shows that including RNN layers can better capture spatio-temporal
dependencies compared with MLP models. On the other hand, WavenetNRI has
outperformed the baselines in spring simulation datasets where larger group sizes
are available. The superiority of WavenetNRI over the original NRI shows that
including the symmetric edge features and GD-RCC block can better capture the
spatio-temporal dependencies for modeling group behavior in larger social settings
via dyad information.

This finding shows that our proposed method is capable of modeling group
behavior using spatio-temporal data. Moreover, the design of our models is not
limited to certain from of interactions, e.g., face-to-face interactions or parallel plays.
This feature enables modeling complex group behavior in higher resolution. While in
small social settings with structured movements, such as pedestrians’ movement on
pavements, including context information is beneficial for identifying group behavior,
in larger social settings with relatively unstructured movements, such as children in
schoolyards, focusing on dyad interactions is sufficient to model group behavior.

Due to the limited access to group membership data for children in schoolyards,
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we have only tested the performance of our proposed models on Opentraj benchmark
datasets and spring simulating datasets and not on actual schoolyards. However,
the Opentraj dataset has been collected from pedestrian movements in constrained
environments, e.g., university campuses, which to some degree is comparable to
schoolyard scenarios where children freely move in a constrained environment. Vet,
applying our proposed method to children’s datasets might require further investi-
gation. For example, since children’s group dynamics constantly change over time.
Thus, the implementation of dynamic context size and dynamic group membership
might be required in the design of the models.

Future research can explore the incorporation of dynamic context size (based
on the presented number of nodes) and dynamic group membership per scene to
enhance the generalization of the proposed approach across different datasets. An-
other future approach could be extending the proposed models in real-time applica-
tions with online data streaming. Various applications, such as analyzing students’
social behavior in schoolyards, monitoring tourists’ behaviors in touristic sights, and
analyzing sports teams' performances, may benefit from the presented work.



CHAPTER 7

General Discussion and Conclusion
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7.1 Summary

Playgrounds provide opportunities for children to grow and develop their social
and physical skills. Yet, playgrounds might include barriers that hinder children's
development, such as limited accessibility or discriminatory social behaviors. Play-
grounds should become an environment where children feel safe, accepted, and
included. Creating such an environment starts with understanding children’s ca-
pacities and needs and then identifying playgrounds’ limitations and possibilities in
relation to these needs. While the availability of data has opened up new possibili-
ties to tackle fundamental challenges in different communities, the question from a
data science perspective is how to design an analysis framework that can effectively
collect, process, and interpret data from children in playgrounds as objectively and
comprehensively as possible and derive meaningful insights into playground dynam-
ics. Designing such a framework enables us to address fundamental questions of
various stakeholders, such as psychologists, designers, and policymakers.

The main goal of this thesis is to develop a data analysis framework for cap-
turing children’s behavior in playgrounds. The proposed framework addresses the
three main characteristics of playgrounds that pose challenges to the design of our
framework, i.e., multiple environments, individual experiences, and spatio-temporal
dynamics, throughout Chapters 2 to Chapter 6. Specifically, our data-driven ap-
proach based on sensors, its feasibility to capture children’s behavior comprehen-
sively, consistently, and unobtrusively, and the identified interconnected environ-
ments are presented in Chapter 2. Chapter 3 proposes a novel spatio-temporal
metric to measure the impact of physical designs, e.g., play structures, layout, etc.,
on children’s spatio-temporal social networks. The proposed metric has also been
used to analyze children’s peer networks in playgrounds. Chapter 4 has examined
the use of children's experiences in analyzing sensor data. The measure of loneliness
via self-reports enabled us to explore how the duration of face-to-face contact in
sensor data is correlated with the reported level of loneliness. In Chapter 5 and
Chapter 6, we specifically focused on the spatio-temporal dynamics of individuals in
social settings. Chapter 5 aims to model interactions beyond face-to-face contact
by focusing on parallel movements to identify specific forms of interactions (e.g.,
bike riding, walking, or running side-by-side). Chapter 6 focuses on detecting in-
teractions between pairs of individuals based on their movements to identify group
behavior. This chapter further investigates the inclusion of movements of surround-
ing individuals, i.e., social context, and the interactions between pairs of individuals
to model group behavior.

The following section presents the general discussion of these studies in greater
detail.
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7.2 General Discussion

By incorporating advanced data analysis techniques, our analysis framework ad-
dresses the three main characteristics of playgrounds that pose challenges to the
design of our framework, i.e., multiple environments, individual experiences, and
spatio-temporal dynamics. This section presents the main outcomes and general
discussions per characteristics as follows:

7.2.1 Multiple Environments

In the context of multiple environments in playgrounds, we asked, “RQ. 1. To what
extent can modern sensing technologies capture individual interaction with
multiple environments in playgrounds?” To address this question, Chapter 2
adopted the theory of affordances [45, 240] to specify the environments around
the child. Affordances are the actionable properties an environment presents to a
child (e.g., a sand-pit affords to build a sandcastle) in relation to their desires, needs,
and capacities, i.e., effectivities [45,240]. Accordingly, three types of affordances are
identified in playgrounds, i.e., physical, social, and cultural. The physical affordances
enabled us to include the impact of the physical design (e.g., play structures, layout,
and materials in playgrounds). The social affordances examined children's social
networks, while the cultural affordances defined the local rules and constraints (e.g.,
restrictions on using certain areas).

Moreover, in Chapter 2, we introduced our data-driven approach based on sensor
data, which captures children’s interactions with respect to these identified affor-
dances. The sensor system adopted in this study includes GPS loggers, proximity
tags, and MMR sensors to capture locations, face-to-face contacts, and physical
activities, respectively. This sensor system enabled us to capture different aspects
of children’s behavior. For example, GPS loggers recorded the location of individ-
uals in playgrounds, enabling us to understand which areas they used, how often,
and for how long. Thus, GPS data mainly contributed to capturing the physical
affordances.

On the other hand, the proximity tags captured children’s face-to-face contact
with peer groups and supervisors in the playground, addressing the social affordances
around the child. Lastly, obtaining the physical activity level from MMR data and
GPS and proximity data enabled us to verify the local rules and constraints in the
cultural affordances. In addition to capturing multiple aspects, sensor data enabled
us to include all participants simultaneously and unobtrusively over the entire break,
whilst this was not possible using classical behavioral methodologies such as field
observation.
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These findings may benefit psychologists, designers, policy-makers, and relevant
authorities. For instance, by providing an ethical and privacy-preserved approach to
capture children's behavior via sensing technologies, schools can understand popular
play structures and define a timetable for their use if necessary, especially if the
crowd or noise is overwhelming for some children. They can also examine if certain
rules or constraints have been followed by students, for example, when the use
of a certain area is prohibited. Adopting our data-driven approach methodology
also enables policymakers to validate specific playground policies. The primary
steps have already been taken in this field by studying the role of movement data
in facilitating evidence-based policy-making in schools, the summary of which is
presented in the Data for Policy Conference [6].

The second question in this context was “RQ. 2. To what extent does the
physical environment around the child impact the child’s social behavior
in playgrounds during recess?”. Chapter 3 focused on the impact of physical
and social environments around the child. Specifically, this chapter introduced a
novel spatio-temporal metric to examine the accessibility of individuals in a spatio-
temporal social network. In a case study, this spatio-temporal accessibility metric
has been adopted to analyze the spatio-temporal social network of children in two
playgrounds. The results showed that, in general, children were more accessible
to peers from the same group. Similarly, children more easily accessed peers from
the same group. Moreover, the most accessible sub-groups utilized common areas,
mainly around play structures during recess.

Schools, municipalities, designers, policymakers, and relevant stakeholders can
benefit from this study by examining the spatio-temporal accessibility of children and
analyzing the impact of social and physical affordances in playgrounds in different
aspects.

First, municipalities, schools, and designers can optimize the layout of design
elements to enhance accessibility in playgrounds. This includes strategically placing
play structures (e.g., seesaw and sandpit) and physical features (e.g., bench and
storage) so that children are equally accessible in their social network and can
access their peer group equally. In this context, our proposed metric can validate a
specific design regarding spatio-temporal accessibility. Similarly, policymakers can
adopt our spatio-temporal metric to validate how implementing specific policies
impacts children’s accessibility in their social network.

Second, designers can use our proposed metric to validate whether their design
caters to all children with different effectivities. Specifically, play structures might
have different levels of impact on children’s social and cultural affordances. Some
require to define certain rules and constraints, e.g., areas for playing soccer with
designated goals and borders, and some are more relaxed regarding rules, e.g.,
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bench. Some design features might offer solid play, e.g., bar fix, while some might
introduce collaborative games, e.g., sandpit or seesaw. Including these different
designs with different affordances enables equal access to playground facilities and
peer groups for children with different effectivities.

Third, analyzing and understanding this impact enables designers to implement
line marks and designated areas for different purposes, e.g., pick-up and drop-off
zones, to enhance safety in playgrounds.

7.2.2 Individual Experiences

While sensors provided continuous measurement from individuals, our subjective
measurements provided more context, depth, and meaning to the sensor data. This
has been the focus of Chapter 4, in which we used sensor measurements, self-
reports, and peer nomination to understand children's experiences in playgrounds.
In this context, we asked “RQ. 3. To what extent does including individual
differences in experiencing playgrounds facilitate a more accurate interpre-
tation of data?” Chapter 4 examined the social connectedness of autistic children
in playgrounds compared to their non-autistic peers based on differences in effectiv-
ities [240]. We adopted various methods, including sensor data capturing children’s
face-to-face contacts, peer nomination data measuring their pairwise friendship sta-
tus, and loneliness questionnaires to assess their feelings of loneliness. Our findings
showed that according to peer nomination data, autistic children in this study had
fewer reciprocated friendships than their non-autistic counterparts. Nevertheless,
according to sensor data, both autistic and non-autistic children showed similar
levels of peer interactions and similar levels of centrality in their social network dur-
ing recess. Moreover, our self-report results showed no differences in the levels of
loneliness in these two groups. These data combined suggested that the underlying
reason for experiencing loneliness differed in the two groups of children: non-autistic
children tended to feel lonelier (self-report) when they had shorter interaction time
with peers during recess (sensor data), whereas autistic children reported higher
loneliness levels (sensor data) when they were less well included as preferred play-
mates within their peer networks (peer nomination).

These outcomes show the importance of addressing differences in effectivities
either at the group level or at the individual level in relation to the affordances of the
environment. Accordingly, in our playground context, the rules and constraints (i.e.,
cultural affordances), physical features, accessibility, and capacity of sub-areas (i.e.,
physical affordances), group sizes, and peer populations (i.e., social affordances)
are all essential elements in understanding individual differences and accommodat-
ing their effectivities. Therefore, it is crucial to consider different affordances in
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playgrounds, as well as differences in the effectivities of children in their interaction
with these affordances. It is not about educating a child to fit in a community,
but it is about adjusting the environment to accommodate the effectivities of all
individuals.

This study highlights the necessity of multimodal methodology in our frame-
work. Adopting modern sensing technology is an essential component for capturing
children’s behavior in the required level of detail. Sensors capture all participants’
locations, activities, and interactions throughout every second of recess time. Yet,
sensors alone cannot offer a clear picture of playground dynamics, as they struggle to
accurately measure individual experiences, e.g., children’s capacities and emotions
(i.e., effectivities). For example, just because someone is alone in the playground
does not imply loneliness; being with others does not mean feeling accepted and
less lonely. Thus, extracting in-depth knowledge and insights from the data is only
possible by combining modern sensing technologies with subjective measurements,
such as self-reports, peer nominations, video observations, field observations, and
questionnaires for parents and teachers, into the data collection methodology.

7.2.3 Spatio-temporal Dynamics

Analyzing and understanding children's social behavior plays a major role in exam-
ining their social affordances. In Chapters 2-4, social behavior has been defined
by measuring face-to-face contacts. This is a known method adopted by various
research studies in social and behavioral sciences [35,36,76]. Yet, social interactions
may include more complex scenarios than face-to-face contact. In playgrounds, for
example, children might bike together side-by-side, or they might play hide & seek.
These types of play do not necessarily include face-to-face contact, yet they indicate
strong forms of social interactions. To capture this, Chapter 5 and Chapter 6 par-
ticularly focused on analyzing complex spatio-temporal dynamics to obtain a clearer
picture of social affordances around the child. We designed advanced machine learn-
ing algorithms via Al models to find meaningful patterns in the spatio-temporal data
for detecting group interactions. Specifically, in Chapter 5, we asked, “RQ. 4. To
what extent can spatio-temporal data identify parallel movements as one
specific form of social interaction?”.

We addressed this question by designing a trajectory representation learning
model, i.e., SiamCircle. The trajectory representations obtained via SiamCircle
can be used to identify similar movements in a trajectory similarity computation
task. While previous trajectory representation models predominantly focus on mod-
eling structured movements within large-scale urban environments (e.g., vehicles
or pedestrians on streets), this chapter tackles a more complex challenge of mod-
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eling free movements collected from small-scale social spaces, e.g., playgrounds.
Our experiments demonstrate great promise in using SiamCircle to examine similar
movement trajectories.

Yet, including more complex forms of group interactions embedded in the spatio-
temporal dynamics of children makes our understanding of social environments
around the child clearer. Therefore, we asked, “RQ. 5. To what extent does
spatio-temporal data of individuals enable us to model group interactions as
one form of social behavior?”.

Chapter 6 has addressed this question by discussing two parallel studies in detect-
ing group interactions using individual spatio-temporal trajectories in constrained
environments. The first study used WavenetNRI, a supervised learning approach
based on graph neural networks for inferring complex group interactions from spatio-
temporal data. WavenetNRI incorporates symmetric edge features and edge updat-
ing processes to account for symmetric group relationships. Moreover, WavenetNRI
employs a gated dilated residual causal convolutional block to capture short and
long dependencies in the spatio-temporal data. The second study proposed T-
DANTE, which includes the contextual information embedded in the trajectories
of the surrounding peers, along with the spatio-temporal dynamics of the individ-
uals, to examine whether two pedestrians belong to the same interaction group.
T-DANTE incorporates LSTM layers to capture the temporal dynamics inherent
in the pedestrian’s trajectories. In a comparative study, T-DANTE outperformed
the other methods in the group detection task using real-world pedestrian datasets
which include groups with smaller sizes. Whilst, WavenetNRI outperformed other
models in simulation datasets, which include larger groups. This result shows that
either of the models can be helpful in modeling group behavior depending on the
characteristics of the given datasets.

This line of research provided valuable insights into complex social phenomena
that occurred in the social affordances of micro-communities. In both chapters, the
Opentraj benchmark dataset, due to the availability of ground truth information, has
been used to train, test, and evaluate the proposed Al models. Since both Opentraj
datasets and the playground datasets include free movements in constrained envi-
ronments, the proposed Al models can potentially be used in playground settings
to capture complex forms of group interactions among children. Understanding
children’s group behavior provides valuable insights for psychologists, designers, ed-
ucational practices, and policy-makers to identify issues such as bullying and social
isolation more effectively. Moreover, these insights enable schools and stakeholders
to design and implement practical interventions to address the identified issues and
create equity for all children.

Interdisciplinary collaboration is the key ingredient of this thesis. This project
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was primarily designed via a multidisciplinary collaboration and remained interdis-
ciplinary in every step and decision. The choice of sensors in computer science,
for example, depends on answering the question of ‘what do we need to measure?’.
From a psychological point of view, it is crucial to include social interactions and
measures for analyzing children’s social networks. From an architecture and de-
sign point of view, it is crucial to measure the use of space and the areas where
children spend most of their time. Yet, there are also areas where psychology and
architecture meet the same goal; for example, which locations offer more social in-
teractions? These questions from different disciplines have formed the design of the
sensors by computer scientists in our research. Yet, interdisciplinary collaboration
is not only about choosing sensors and defining which variables to measure. We
adopted excessive interdisciplinary knowledge to design our social network analy-
sis and machine learning algorithms, reveal insights, and interpret the findings and
patterns from sensor data. We required input from psychologists to understand the
capacity and desires of children with autism. We needed the architect’s input to
understand the design concept and what environments offer to the users based on
their capacities. We explored various playgrounds concerning the possibilities and
limitations they might have for children in terms of the noise level, the density of
use, the density of play structures, the variability of play the playground offers, etc.,
bearing in mind the effectivities of vulnerable children. All these different input
sources are considered when designing a data analytics algorithm, e.g., social net-
work analysis and machine learning model, tailored explicitly for analyzing children's
behavior in playgrounds. Thus, interdisciplinary collaboration is essential in every
step and every decision.

7.3 Limitations and possible directions for future
works

This section discusses the limitations of the current work and points out the possible
solutions to address the identified limitations in future work.

= Enhancing the sensing system. Our proposed sensing system accurately
captured a wide range of subjects and activities. Yet, this system can be
improved in several dimensions as follows:

— User-friendly hardware. While younger children may find sensor-equipped
belts engaging, these belts are unsuitable for older adolescents, for ex-
ample, in high schools. The implementation of smartwatches or wrist-
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wearable devices can be investigated in future directions to enlarge the
scope of the research. Moreover, future research may benefit from im-
plementing a co-design process to choose the sensing technology that
is most suitable for the target participants. In this process, the par-
ticipants, including vulnerable children, help researchers to understand
which design feature best suits their capacity and needs.

— Accuracy and resolution. GPS technology showed promise in tracking
individual positions. However, it is unsuitable for indoor areas, e.g.,
classrooms or sports halls. Moreover, UWB technology (accuracy of 10
centimeters) might be a better fit for playground contexts than GPS
(accuracy of 1-10 meters) regarding positional accuracy. Thus, future
research may investigate using alternative technologies to enhance ac-
curacy.

— Real-time experiences. Our current system lacks information about the
value of contacts and movements in real time. For example, while we can
detect a child playing alone, we do not know their underlying emotions
or preferences at that specific moment. Future studies may study the
inclusion of EMA (e.g., via smartwatches) to allow participants to express
their emotions and preferences in real time.

» Enriching datasets. Our study only collected data from two special edu-
cation schools, limiting the generalizability of our conclusions. One of the
reasons was the COVID-19 crisis, which prevented conducting more data col-
lection at schools. The other reason was that a limited number of parental
consents were received due to privacy concerns. Future research may enrich
the sample size in the following directions:

— Privacy-preserved data collection. Implementing anonymous data collec-
tion aligned with GDRP and upon approval from the ethics committee
might be a possible solution to maximize participation while preserving
participants’ privacy.

— Enhancing awareness about digital solutions. The use of sensing tech-
nologies in children's research is a relatively new field. Creating catalogs,
podcasts, and posts on social media can enhance awareness about the
importance of this methodology to attract more participants to join this
field of research.

= Directions for data analysis developments. Our analysis framework in-
cludes several advanced data analysis techniques to analyze spatio-temporal
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data. Yet, there are aspects overlooked in our proposed method that can be
addressed in future works:

— Tailoring spatio-temporal analysis to playground datasets. More steps
are required to make our proposed Al models functional at playgrounds.
For example, access to representative data, i.e., data from different en-
vironmental designs from children with various age groups, capacities,
and needs, is required to ensure that the designed model can perform
reliably across various conditions and minimize the risk of harm to users
or society. This could possibly be investigated in future works.

— Developing automation process. The design of the advanced Al models
developed in this thesis highly depends on the characteristics of the
given datasets. Adopting automated machine learning methods to design
hyperparameter-free models can be investigated in the future.

— Developing Data analysis techniques to tackle small sample sizes. Ad-
vanced data analysis techniques might be able to address a small sample
size problem. For example, developing GANs can be investigated in fu-
ture research to create semi-synthesized samples similar to the original
ones, thus creating a balanced and representative dataset from the re-
search population.

7.4 Conclusion

This thesis aimed to develop a data analysis framework for capturing children's
behavior in playgrounds. The proposed framework has addressed the three main
characteristics of playgrounds, i.e., multiple environments, individual experiences,
and spatio-temporal dynamics, by combining cutting-edge technological advance-
ments in the light of the theory of affordances and a multidisciplinary collaboration
involving psychology, architecture, and computer science experts. Specifically, our
multimodal data-driven approach combined sensor data with other sources of in-
formation (e.g., observations, questionnaires, and self-reports) to ensure that chil-
dren’s interactions with the playground affordances have been accurately captured.
Furthermore, by including individuals' experiences via self-report, our data analysis
framework considered various effectivities in children. Lastly, the advanced data
analytics and machine learning algorithms designed in this framework ensure that
the spatio-temporal dynamics of group interactions have been correctly modeled.
Implementing this framework offers a valuable tool for academics, psychologists,
sports clubs, policymakers, and designers. It enables them to analyze individual
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activities and identify individual—and group-level challenges and barriers in micro-
communities. Moreover, this framework can validate a proposed intervention in
micro-communities, e.g., adding a new design or setting a new policy.
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