
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508


Propositions

pertaining to the thesis
Formal models of Software-Defined Networks

by Hui Feng

1. Incorporating formal models and languages into software-defined network
development enhances overall system reliability by enabling thorough veri-
fication of network behavior and policies. [Chapter 1 & 2]

2. The coordination language Reo can be used to model software-defined net-
works, allowing for compositional and formal specification of network com-
ponents and their interactions. [Chapter 3 & 4]

3. By translating Reo models into Promela code, developers can utilize the
SPIN model checker to perform exhaustive verification of software-defined
networks for correctness and reliability. [Chapter 5]

4. Constraint automata can be used to provide extended formal semantics
for concurrent NetKAT programs, enabling modeling and analysis of SDN
policies. [Chapter 6]

5. OpenFlow is a protocol for controlling network devices, but it is not
synonymous with software-defined networking. The latter is a broader
paradigm that encompasses various architectures and technologies beyond
just protocol-level control.

6. Testing software-defined networks remains difficult due to their dynamic
nature and the complex interactions between the control and data planes,
which can obscure subtle errors.

7. One of the primary challenges in the formal verification of software-defined
networks is ensuring scalability as network size and complexity increase,
requiring advanced algorithms and heuristics to manage the computational
load.

8. Temporal logic and other formal logic systems can be effectively utilized to
specify and verify dynamic properties of software-defined networks, such as
flow consistency and packet forwarding correctness.



9. The PhD process, with its intense focus on critical thinking and deep anal-
ysis, remains the gold standard for intellectual mastery and is increasingly
critical in today’s fast-paced, skills-based economy.

10. Engaging with new information has become a practical necessity, demanding
constant adaptation to stay relevant. The true challenge lies in knowing
what to prioritize and when to disengage.

Hui Feng
Leiden

December 3rd, 2024


