
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508

Chapter 7

Towards causality reasoning
for SCA

In this chapter, we introduce an NFA causal model based on counterfactuals, in-
spired by the seminal works on causal analysis by Halpern and Pearl, adapted to finite
automata models and with safety properties defined by regular expressions [26]. The
latter encodes undesired execution traces. We devise a framework that computes actual
causes, or minimal traces that lead to states enabling hazardous behaviors. Further-
more, our framework exploits counterfactual information and identifies modalities to
steer causal executions toward alternative safe ones. This can provide systems engineers
with valuable data for actual debugging and fixing erroneous behaviors. Our framework
employs standard algorithms from automata theory, thus paving the way to further
generalizations from finite automata to richer structures like probabilistic, KAT, and
NetKAT automata. The ultimate goal is to extend the framework to symbolic con-
straint automata [34], so as to be applied for causal reasoning on SDNs, for example by
using our Reo model presented in Chapter 4.

7.1 Introduction

Causal models and associated causal inference machinery are precious tools for the in-
terpretation and explanation of systems failures. Current testing and verification frame-
works such as equivalence checking, for instance, assess whether or not systems comply
with their specifications, and at most will produce a counterexample in case the system
fails. Causal analysis, instead, plays an important role in explaining complex phenom-
ena that are actual sources of hazards by adding, for example, additional information to

99

7 TOWARDS CAUSALITY REASONING FOR SCA

counterexamples on how to avoid the hazard.

A notion of causality often embraced and adopted by computer scientists was intro-
duced by Halpern and Pearl in their seminal works [47, 46]. Their causal model encodes
complex logical structures of multiple events that contribute to undesired effects, or
hazards. In essence, the model is based on the so-called alternative worlds, originally
proposed by Lewis [76]. In short, Lewis assumes the existence of worlds satisfying a
sufficiency condition, where both the cause and the effect occur, and other worlds satis-
fying a necessity condition, in which neither the cause nor the effect occurs. This enables
formulating the counterfactual argument, which defines a first condition to be satisfied
by a cause, namely: when the presumed cause does not occur, the effect will not occur
either. More complex aspects such as redundancy and preemption are also captured by
the causal model in [47, 46]. For intuition, redundancy refers to simultaneous events
that play the same role in enabling an undesired effect. Orthogonally, preemption refers
to subsequent events that have the same power to enable the effect. In both cases, the
counterfactual test alone cannot determine the actual cause. Last, but not least, causes
in the spirit of [46] comply with a minimality requirement which guarantees that only
the relevant set of causal events is identified.

Related work. Over time, several notions of causality have been proposed, each
of which is tailored to the type of the system under analysis, and associated correct-
ness specifications. Of particular interest for this chapter are the works in [74, 23, 25].
The aforementioned results propose trace-based adoptions of causality á la Halpern and
Pearl, applicable to automata models. These, in combination with model checking-
based methodologies, enabled computing causes for the violation of safety and liveness
properties in Kripke structures and labeled transition systems, for instance.

Our work is closely related to the contribution in [25]. Given an automaton model,
the naive goal is to identify the shortest sequence of actions that enable the effect, i.e.,
that can bring the system into a hazardous state. These are called “causal traces". Note
that, in contrast with the often tedious counterexamples identified by model-checkers,
the minimality of causal traces implies concise descriptions of systems faults. Thus,
causal traces encode essential information for systems engineers, for instance, and they
can serve as a debugging aid. As previously stated, in the spirit of Halpern and Pearl,
our definition of causality imposes a sufficiency condition: namely, whenever a causal
trace is executed, the effect is reached as well. However, important information on how
to avoid/fix hazardous behaviors can be extracted based on the aforementioned set of
alternative worlds (or traces in our model), that do not lead to an undesired effect.
Hence, we designed our causal model in the spirit of the counterfactual criterion of
Lewis and identified modalities to avoid hazardous scenarios. Similarly to [74, 23, 25],
we call these escape options – “events causal by their non-occurrence". This information

100

7.1 Introduction

can be exploited to steer an execution towards an alternative safe one, with immediate
applicability in synthesizing schedulers, for instance.

A rich body of work successfully exploited the counterfactual argument for fault
analysis and debugging techniques. Examples related to counterexample explanation in
model checking are the works in [44, 43, 92], for instance. In [43] the authors propose
a framework for understanding errors in ANSI C programs, based on distance metrics
for program executions. In [44] the cause describing the error includes the identification
of source code fragments crucial to distinguishing success from failure and differences
in invariants between failing and non-failing runs. Distance criteria have also been ex-
ploited in [92], in combination with the so-called nearest neighbor queries to perform
fault localization. The why-because-analysis in [71] was used to reason about aviation
accidents, in a framework where Lamport’s Temporal Logic of Actions (TLA) described
both the behavior of a system, the (history of) hazards and the sequence of the states
leading to an accident. The work in [114] provides a comprehensive approach to sys-
tematic debugging including, among others, delta debugging – a technique for isolating
minimal input to reproduce an error.

For finer notions of causal dependencies that distinguish between interleaving and
true concurrency, for instance, we refer to event structures [8, 88]. Nevertheless, in our
work, we adhere to the approaches in [74, 23, 25], and do not take into consideration
the order of events along execution traces.

Our contributions. We propose a shifting from the bisimulation setting presented
in [25] to a trace-based setting in the context of regular languages and automata theory.
The benefits are multifold. For instance, the paradigm change facilitates the application
of more standard algorithms from automata theory, in contrast with the rather ad-hoc
procedures in [74, 23, 25]. Furthermore, the current framework enables the use of an ex-
pressive logic for defining safety properties in terms of regular expressions (or automata),
instead of the ordinary Hennessy-Milner logic. The language-based approach to causal-
ity enables representing both hazards and causal explanations in terms of automata –
a format better accepted by engineers. In addition, in this chapter, we use regular lan-
guages (or full regular expressions including Kleene-star) to encode the non-occurrence
of events. Previous related works such as [74, 23, 25] can only provide finite sets of runs
steering an execution towards an alternative safe one. Orthogonal to the aforementioned
results, the current approach entails a “may" semantics of causality, instead of “must";
nevertheless, we believe that the approach can be easily modified to cater to the “must"
version. Besides, in contrast with the results in [25], steering executions are guaranteed
not to jump over hazardous states by simply concatenating sequences causal by their
non-occurrence and the causal trace. The ultimate goal of the current work is to gener-
alize from finite automata to richer structures like probabilistic automata and NetKAT

101

7 TOWARDS CAUSALITY REASONING FOR SCA

automata [4, 37].

Structure of the chapter. In Section 7.2 we provide an overview of regular lan-
guages and associated automata theory aspects. A running example is introduced in
Section 7.3. Section 7.4 defines the language-based model of causality, whereas in Sec-
tion 7.5 we show how to compute actual causes and safe computations. In Section 7.6
we provide an experimental evaluation of our method and in Section 7.7 we discuss how
our model can be extended with tests and assignments. Section 7.8 concludes our work.

7.2 Preliminaries

In this section, we recall a few basic facts about regular languages, finite automata,
and regular expressions [80].

Let A be a finite set of actions that we refer to as an alphabet. A word or string over
A is a finite sequence a1 . . . an of elements from A. We denote by ε the empty word,
i.e. the sequence of length 0, and write A∗ to denote the set of (possibly empty) words
over A. A language L is just a subset of words, that is L ⊆ A∗. We call a word w′ to
be a prefix of a word w whenever w = w′w′′. A word w′ is said to be a sub-word of a
word w, if w′ is obtained by deleting one or more elements of A at some not necessarily
adjacent positions in w. We denote by sub(w) the set of all sub-words of w. Note that
sub(ε) = ∅. Also, ε ∈ sub(w) but w ̸∈ sub(w) for every non empty word w.

A finite automaton (FA) is a 5-tuple M = (S,A, i,−→, F), where S is a finite set of
states, i ∈ S is the initial state, F ⊆ S is the set of accepting states and −→⊆ S×A×S

is the transition relation. For simplicity, we write s
a−→ t whenever (s, a, t) ∈−→. A

transition relation is called deterministic if for all s ∈ S and a ∈ A if s a−→ t1 and s
a−→ t2

then t1 = t2.
A string w ∈ A∗ is accepted by an automaton M from a state s if either (1) w = ε and

s ∈ F , or (2) w = aw′ and there exist s a−→ t such that w′ is accepted by M from the state
t. The language accepted by a FA M is the set L(M) = {w ∈ A∗ |M accepts w from i}.
Since for every FA M , we can build an FA N with a deterministic transition relation
such that L(M) = L(N), without loss of generality we will consider only finite automata
with a deterministic transition relation.

A language L over the alphabet A is said to be regular if there exists a finite automa-
ton M accepting it, that is L(M) = L. The class of all regular languages is closed under
union, intersection, concatenation, complement, and Kleene star. Here language union
and intersections are the usual set-theoretic operations, whereas concatenation of two
languages L1 and L2 is given by the set L1 ·L2 = {w1w2 | w1 ∈ L1 ∧w2 ∈ L2}. Finally,
for a language L, its Kleene star closure is defined by L∗ =

⋃
n∈N Ln where L0 = {ε}

and Ln+1 = L · Ln for all n ∈ N, thus denoting the concatenation of a language with

102

7.2 Preliminaries

itself a finite number of time.

In this chapter, we are interested in system communicating by message passing, and
thus we will always assume that the alphabet A is partitioned in three disjoint subsets
AI , AO, and AP of input, output, and private actions, respectively. Notationally, for
a ∈ A, we write a? if a is an input action in AI and a! if a is an output action in AO,
and use no markings for private actions in AP . We use σ to denote an action that can
be either input, output, or private.

Let A and B be two alphabets with disjoint private actions, and assume the set
P is disjoint from Q. Given two finite automata M = (P,A, i,−→M , E) and N =

(Q,B, j,−→N , F) their parallel composition is defined by the finite automaton M || N =

(P×Q,Σ, ⟨i, j⟩,−→, E×F) where ΣI = (AI\BO)∪(BI\AO), ΣO = (AO\BI)∪(BO\AI),
ΣP = (AP ∪BP)∪ (AI ∩BO)∪ (AO ∩BI), and −→ is the least transition relation such
that

p
σ−→M p′ σ ̸∈ B

⟨p, q⟩ σ−→ ⟨p′, q⟩
q

σ−→N q′ σ ̸∈ A

⟨p, q⟩ σ−→ ⟨p, q′⟩

p
a?−→M p′ q

a!−→N q′

⟨p, q⟩ a−→ ⟨p′, q′⟩
p

a!−→M p′ q
a?−→N q′

⟨p, q⟩ a−→ ⟨p′, q′⟩
The topmost rules are about either private actions that are not affected by the other
automaton or communication actions that do not involve the other automaton. The two
rules at the bottom are about complementary communication actions a! and a? that are
synchronized resulting in the private action a. Note that when A = B with AI = BO,
AO = BI , and AP = BP = ∅ then parallel composition reduces to the product automata
where all actions synchronize. In the case A is completely disjoint from B then parallel
composition results in the so-called shuffle product. Other variations of synchronization
products could be defined similarly, including multi-process synchronization, hiding of
successful communication, value passing synchronization (for a finite value domain), and
synchronization parameterized by a finite subset of actions.

For the characterization of the parallel composition of two languages, we need first
to introduce the projection function. Given two alphabets A1 and A2 we define the
projection πi:(A1 ∪ A2)

∗ → A∗
i by πi(ε) = ε, and πi(σ · w) = σ · πi(x) if σ ∈ Ai, and

πi(w) otherwise. Because projections are surjective functions they have inverse π−1
i

returning the set of strings that are projected into a given one. More precisely, we define
the inverse projection by π−1

i (w) = {x ∈ (A1 ∪ A2)
∗ | πi(x) = w} for every w ∈ A∗

i .
Projections and their inverses can extended to languages by applying them to all the
strings in the language. In general we have that πi(π

−1
i (L)) = L but for the converse

it only holds that L ⊆ π−1
i (πi(L)). Note that if two alphabets A1 and A2 have disjoint

private actions and we partition A1 ∪A2 as in the alphabet of the parallel composition
of two automata, then projections will assign private actions of A1∪A2 to either private,
input or output actions in Ai unambiguously. Similarly, inverse projections assign private

103

7 TOWARDS CAUSALITY REASONING FOR SCA

actions to private actions but may assign input and output actions to private ones.

The parallel composition of two languages L1 ⊆ A∗
1 and L2 ⊆ A∗

2 is the language L1 ||
L2 on the alphabet A1∪A2 defined as π−1

1 (L1)∩π−1
2 (L2). The intersection takes care that

dual communication actions will be synchronized, and that disjoint private events will
be shuffled with the others. As expected, we have that L(M1 ||M2) = L(M1) || L(M2),
implying that regular languages are closed under parallel composition [96].

We conclude this section by introducing extended regular expressions, that we may
use as alternative syntax to FAs to reason about causality in complex systems composed
of several components potentially communicating with each other.

Given an alphabet A including communication actions, extended regular expressions
are given by the following grammar:

e :: = 0 | 1 | a | a? | a! | e ; e | e+ e | e || e | e∗ , (7.1)

where a ∈ AP , a? implies a ∈ AI , and a! implies a ∈ AO. In process theoretic terms, 0
denotes no behavior, and 1 denotes a terminating process. The further building blocks
of processes are (communication) actions. Processes can be composed sequentially, non-
deterministically, in parallel, or can loop a finite number of times. Communication
between process terms is performed based on synchronizations between opposite com-
munication actions, that play thus a sender, respectively, receiver role. In the sequel, we
often use A as shorthand for the regular expression obtained by the finite set of every
action in A, and ¬a as a shorthand for the set of every action in A except a. Note that
in general, we could extend negation to all regular expressions, as regular languages are
closed under complement.

Ordinary regular expressions are expressions without any parallel composition. Ex-
cept for the parallel composition, we assume that an action cannot be used as input and
output in the same ‘sequential’ expression, i.e., regular expression with no occurrence of
the || operator. With this mild restriction, we can associate each regular expression e a
language L(e) inductively as follows:

L(0)=∅
L(1)={ε}
L(a)={a}

L(e1 ; e2)=L(e1) · L(e2)
L(e1 + e2)=L(e1) ∪ L(e2)

L(e1 || e2)=L(e1) || L(e2)
L(e∗) = L(e)∗

It is well known [63] that the language of an ordinary regular expression is regular. The
same holds for our extended regular expressions, as we have seen that regular languages
are closed under parallel composition. This implies that for every (extended) regular
expression e there exists an automaton M such that L(e) = L(M). We will not describe
the construction here as it is outside the scope of this chapter.

104

7.3 A Railway crossing Example

7.3 A Railway crossing Example

In this section, we recall the railway crossing example from [25] and adapt it to our
present setting. The example consists of a car, a train, and a gate of a crossing that
communicates with the train. The gate can communicate its status of being closed (Gc!)
or open (Go!). The status changes to closed only after the gate receives a message from
the train that is approaching the crossing (Ta?), and it can change to open only after it
receives the message that the train leaves the crossing (T l?). The behavior of the gate
is described by the following regular expression:

G = (Go!∗ ; (1 + Ta? ;Gc!∗ ;T l?))∗ .

When a train is approaching the crossing, it sends a message (Ta!). After that, it
will enter the crossing (Tc) and then send a message informing its departure from the
crossing (T l!). This behavior is described by the following regular expression:

T = Ta! ;Tc ;T l! .

Finally, a car can approach the crossing (Ca), wait as long as the gate is closed (Gc?),
eventually observe the gate being open (Go?), and only then it may enter the crossing
(Cc) and leave the crossing afterward (Cl). The regular expression encoding is given by:

C = Ca ;Gc?∗ ;Go? ;Cc ;Cl .

The FAs corresponding to the above three regular expressions are illustrated in Fig-
ure 7.1. Note that the car can enter the crossing only after the gate is open, whereas
the gate enters the state of being open only after a train signals its departure.

FA of Car: 1start 2 3 4 5
Ca

Gc?

Go? Cc Cl

FA of Train: 1start 2 3 4
Ta! Tc T l!

FA of Gate: 1start 2

Ta?

Tl?
Go!

Gc!

Figure 7.1: The Car, Train, and Gate as
FAs

1start 2 3

4

5

6 7 8

9 10

11 12

13 14

15 16

17 18

19 20

Ca Go Cc Cl

Ta

Ca

Ta

Gc

Tc Tc

Ca
Gc

T l T l

Ca Go

Ta

Tc

T l

Cc Cl

Ta Ta

Tc Tc

Cc Cl

Cc Cl

T l T l

Figure 7.2: The Railway System as
a FA

In Figure 7.2 we see the automaton describing the railway system that results from
the parallel composition of the three regular expressions: C || T || G where, for simplicity,
we renamed the states. For example, the initial state 1○ corresponds to the state ⟨1, 1, 1⟩

105

7 TOWARDS CAUSALITY REASONING FOR SCA

and the only accepting state is 8○ corresponding to ⟨5, 4, 1⟩. The red states 3○ and 4○
will be used in the next section as examples of states leading to a hazard situation: a
car entering the crossing and not leaving it before the train enters the crossing too.

7.4 A Language-based causal model

In this section, we introduce a notion of causality with respect to a so-called hazard,
or effect expressed in terms of regular expressions. The current causal framework is
inspired by the model introduced in [25] and massaged into the setting of FAs to use
trace semantics instead of bisimulation, and define different system properties in terms
of regular expressions (such as reachability) instead of the ordinary Hennessy-Milner
logic.

In short, a hazard is a regular language specified by a regular expression e (or
the corresponding automaton). It is said to occur in a FA M representing our model
whenever there is a finite (and possibly empty) string c = a0 . . . an in M such that after
c we may observe the hazard, that is, L(c ; e) ∩ L(M) ̸= ∅. In this case, we say that
c may enable the hazard e in M . Additional conditions that have to be satisfied by c,
such as minimality and non-occurrence of events, are formalized in Definition 7.1.

For an intuition, consider the railway crossing example of the previous section. A
hazardous situation can happen whenever both the train and the car enter the cross-
ing, and none of them leaves the crossing before the other one enters it. The regular
expression encoding this hazard is:

e = (Cc ; (¬Cl)∗ ;Tc+ Tc ; (¬T l)∗ ;Cc) ;A∗ (7.2)

Note that the hazard situation can terminate with any string in A∗. This is to guarantee
that after a trace c enables e, their concatenation will contain behaviors accepted by the
automaton, and thus the hazard is observed. It is straightforward to see that in the FA
in Fig. 7.1 it is possible to reach the above hazard with the string c1 = CaGo leading
to the state 3○, but also with the string c2 = CaGoTa leading to the state 4○. The
intersection of the language of the hazard e with that of the automaton M starting from
either state 3○ or 4○ instead of 1○ is non-empty. Furthermore, state 3○ and 4○ are both
reachable from the initial state 1○.

We may say that c1 does a better job at describing the relevant sequence of ac-
tions that, if triggered, lead to a hazard because it is a minimal sequence enabling it.
Moreover, we see that it is possible to avoid the hazard by “decorating” the string c1

with the strings Ta, Tc T l and, respectively, CcCl. This can result, for instance, in the
string w = TaCaTc T l GoCcCl which does not lead to a hazard. Sequences such as
Ta, Tc T l and CcCl are called causal by non-occurrence in works such as [23, 25]. Non-

106

7.4 A Language-based causal model

occurrence is essential for describing how certain dangerous situations, if controllable,
can be avoided within a system. This concept plays an important role in our definition
of causality.

As formalized in Definition 7.1, the non-occurrence of events is captured in terms
of the so-called computations [25]. The latter are strings in a regular language, typi-
cally denoted by π, built on top of a string c = a0 . . . an, and “decorated" with strings
di0, . . . , d

i
n+1, with i ∈ I, where I is a finite set of integers, such that:

w ∈ π ⇒ w = di0a0d
i
1 · · · and

i
n+1 .

Intuitively, given a trace c that enables a hazard, strings in π describe all the alter-
native runs (such as w above) that execute all actions in c and avoid the hazard. The
only requirement is that all strings specified by π are observable executions of M ; i.e.,
for a given FA M , π ⊆ L(M). Notice that π being a regular language means that it can
be expressed as a regular expression r, and because all strings in π contain c as subword,
we have r = Σj,kr

j
k with rjk = rj0; a0; r

j
1; . . . ak; r

j
k+1 for some finite indexes j and k and

regular expressions rjk+1. For simplicity, we sometimes write r instead of π.
The next definition formally introduces decorated causes for an FA M with respect

to a hazard e.

Definition 7.1 (Causality for FAs). Let M = (S,A, s0,→, F) be a FA, e be a regular
expression over A, denoting a hazard, and c ∈ A∗. We say that the computation π built
on top of c, with π ⊆ L(M), is a decorated cause of the hazard e if

AAC1: The string c may enable e – L(c ; e) ∩ L(M) ̸= ∅

AAC2.1: If the effect e is not observed then it has not been caused by c –
∀w ∈ L(M) \ L(A∗ ; e) : (L(w ; e) ∩ L(M) = ∅)⇒ (c ̸∈ sub(w) ∨ w ∈ π).

AAC2.2: Strings of π are safe, i.e., they do not cause the effect e –
∀w ∈ π :w ̸∈ L(A∗ ; e) ∧ (L(w ; e) ∩ L(M) = ∅)

AAC3: Minimality –
for all c′ ∈ sub(c) there is no computation π′ built on top of c′ with π′ ⊆ L(M),
that satisfies AAC1–AAC2.2 with respect to the string c′ and the hazard e.

We call c as above a causal trace and sometimes write Causec(e,M) to denote the
corresponding decorated cause π. We let Causes(e,M) be the union of all Causec(e,M).

Intuitively, AAC1 identifies a scenario where the string c enables the hazard e in
M . Note that AAC1 entails a “may" semantics of causality, instead of “must", as c

does not always have to lead to e. Catering for the “must" version requires modifying
AAC1 to L(c ; e) ⊆ L(M). AAC2.1 is a necessity condition according to which, if a
word w cannot enable e, then either w does not contain the causal trace c (meaning it

107

7 TOWARDS CAUSALITY REASONING FOR SCA

is an execution bringing not to the hazard), or it has been decorated with events that
eliminate the possibility of executing the hazard. Note that AAC2.1 can be equivalently
expressed (by modus tollens) as a sufficiency condition stating that a string w enables
the hazard e whenever the causal trace is contained in w but it is not decorated with
elements causal by their non-occurrence that would avoid the execution of the hazard:

∀w ∈ L(M) \ L(A∗ ; e) : (c ∈ sub(w) ∧ w ̸∈ π)⇒ (L(w ; e) ∩ L(M) ̸= ∅)

AAC2.2 requires causal traces decorated with events causal by their non-occurrence
to avoid the hazard. Furthermore, note that c itself cannot be a safe computation in
π, because otherwise AAC2.2 would contradict AAC1 . Observe that AAC2.2 is
reminiscent of the traditional counterfactual criterion of Lewis, as it allows us to test
the dependence of e on c under certain contingencies encoded, in our case, in terms of
non-occurrence of events. We refer to [47] for more insight on the so-called structural
contingencies. AAC3 is the minimality condition that requires considering decorated
causes entailed by the shortest causal traces c satisfying AAC1 –AAC2.2 .

We conclude the section with a few examples intended to clarify certain aspects of
the above definition and the differences with the work [25]. To begin with, we illustrate
the role played by loops in the decorations of computations.

Example 1. Consider the automaton M1 in Figure 7.3 and let the hazard be expressed
by the regular expression e = c ;A∗, meaning that we have to avoid executing action c.

s0 s1 s2 s3

s4 s5 s6

a

f

b c

b g
h

Figure 7.3: Automaton M1

s0 s1 s2

s3 s4

s5 s6 s7

a

b

d

c

c

b f

Figure 7.4: Automaton M2

Clearly, the string a b is a possible cause for the hazard. Hence, Causeab(e,M1) for this
example can be encoded via the regular expression: a ; f ;h∗ ; b ; g. Note that as a result
of considering the decorations as regular expressions, all finite repetitions of the loop are
conveniently represented with the Kleene star operator. The work in [25] handles loops
in the decorations by unfolding the loop only a finite number of times specified a priori,
hence, only the string afhnbg would be describing hazard avoidance, for all n ≤ k and
some fixed k.

In the second example, we consider the case when there are no possible decorations

108

7.4 A Language-based causal model

to steer a causal trace away from its hazard.

Example 2. Consider the automaton M2 in Figure 7.4 and let the hazard be as before
expressed by the regular expression e = c ;A∗.

In this example, there are two possible causal traces, namely, a and b. There are no
possible decorations for the causal trace a to make it avoid the hazard, whereas, there
exists a decoration for the causal trace b with Causeb(e,M2) = d ; b ; f . Whenever there
are no computations π satisfying Definition 7.1 for e in M w.r.t. a trace c, we say that
the hazard e, if enabled by c, is unavoidable in M .

In the above two examples, there was no actual difference if we had used c as a
hazard instead of the regular expression c ;A∗. In the next example, we show an FA
where the two expressions entail different decorated causes.

Example 3. Consider the automaton M3 in Figure 7.5 and the hazards e = c ;A∗

and e′ = c. For both hazards, ab is the causal trace, but

s0 s1 s2 s3 s4

s5 s6 s7

a b c d

f
b g

Figure 7.5: Example 3

Causeab(e,M3) = a ; f ; b ; g

Causeab(e
′,M3) = a ; f ; b ; g + a ; b ; c ; d

Observe that the string abcd is considered safe (i.e., avoids the hazard) according to
Causeab(e

′,M3) but is not considered safe in Causesab(e,M3), where the string afbg is
considered safe in both cases. This is different than the usual notion of safety (modeled
as in e and thus forbidding any possible continuation after the hazard) as e′ allows to
overpass the hazard if the system does not stop there. The expression e′ asserts that
the trace cannot halt with the action c. Accordingly, both abcd and afbg are valid
strings that satisfy this condition and thus avoid the hazard e′. On the other hand, the
expression e asserts that the action c followed by any possible sequence of actions (i.e.,
in A∗) constitutes a violation, hence, the action c cannot be observed at any point in
execution. Therefore, only afbg is a valid execution that will avoid the hazard e. It is
essentially not possible to define properties similar to e with the approach in [25], as
they allow jumping over a hazardous state while executing strings in π.

109

7 TOWARDS CAUSALITY REASONING FOR SCA

7.5 Computing causes

Given a FA M = (S,A, i,−→, F) and an effect specified by a regular expression e on
A, we show an algorithm for computing the set Causes(e,M) using standard operations
on automata and graphs. The algorithm first computes the set of loop-free traces that
lead to the hazard e. Then, for each one of them, it determines the associated com-
putation satisfying conditions AAC2.1 – AAC2.2 in Definition 7.1. The union of all
such computations will give a first approximation of the set Causes(e,M). We will then
show below how to obtain precisely the set Causes(e,M) by requiring the minimality
condition AAC3 in Definition 7.1.

Algorithm 1: Computing Causes
Input: A FA M = (S,A, i,−→, F), an effect e.
Output: The set of decorated causes Causes(e, M).

(1) Compute the set of traces that lead to e by following the steps:

(1.1) For all s ∈ S, construct the FA Ps = (S, A, s, −→, F) and compute
the following intersection:
L(P ′

s) = L(Ps) ∩ L(e).

(1.2) Construct the automaton P = (S,A, i,−→, F ′) where
F ′ = {s |L(P ′

s) ̸= ∅}.
(1.3) Compute all simple paths from the intial states i and a final state

f ∈ F in P .

(1.4) Let CausalTraces be the set of all strings in L(P) labeling the paths
computed in (1.3).

(2) For all c = a0 . . . an ∈ CausalTraces, compute Causec(e, M) by :

(L(A∗;a0;A
∗; . . . ;A∗;an;A

∗) \ {c}) ∩ (L(M) \ (L(A∗;e) ∪ L(P)))

(3) Return the union of all the languages computed in step (2) as Causes(e,
M).

Next, we discuss the underlying ideas behind the certain steps of Algorithm 1 and
then provide a proof of correctness for the algorithm. We first compute all traces that
enable e by constructing in steps (1.1) and (1.2) the automaton P that accepts exactly
all traces in M possibly causing the effect e. The only difference between the automata
P and M is their set of final states. The procedure for constructing P first involves
constructing a set of automata Ps, for all the states s of the automaton M , such that

110

7.5 Computing causes

s is the initial state in Ps and accepts strings of the language of the hazard e. If the
intersection of L(Ps) with L(e) is non-empty, then the corresponding state is considered
as a final state in the automaton P (step (1.2)). As a result, the strings in L(P) are
exactly those strings bringing M to a state where the hazard is activated. For our
railway crossing example in Section 7.3 with the hazard given by the regular expression
in (7.2), the automaton P would be the one in Figure 7.2 with states 3○ and 4○ as the
only final states.

In step (1.3) we compute CausalTraces as the subset of strings accepted by P

via a simple path starting from the initial state and ending in a final state. These
paths correspond to the set of loop-free traces that lead to the hazard e. While this
condition does not guarantee minimality (see discussion below) it already reduces the
set of possibly causal traces to a finite set. In general, L(P) will be infinite, if it involves
a loop in the automaton.

For each of the above finitely many causal traces, in step (2), we compute the set of
associated computations. For a given possibly causal trace c, this is done by subtracting
all the traces that enable the effect (i.e., L(P)) and all the traces that observe the effect
(i.e., L(A∗;e)) from L(M) and then take the intersection of the resulting language with
the language resulted from c decorated with non-occurrence in all possible ways. Note
that the intersection computed in step (2) may be empty, meaning that the hazard e is
unavoidable when executing the actions of c. For our running example in Section 7.3, the
possible causal traces computed by the algorithm are CaGo and CaGoTa. Examples of
strings in the associated computations are CaGoTaCcClTcT l and CaGoCcClTaTcT l.
Note that the first string avoids the hazard for both possibly causal traces, while the
latter is a string that avoids the hazard for CaGo.

Finally, the union of the resulting languages in the step (2) of Algorithm 1 is returned
as a first approximation of the set of all decorated causes of M for the hazard e. For this
set, the following theorem guarantees that conditions AAC1 – AAC2.2 hold. However,
condition AAC3 may fail to hold.

Theorem 5. The computations in Causes(e,M) returned by Algorithm 1 satisfy con-
ditions AAC1 – AAC2.2 by construction.

Proof. The set Causes(e,M) returned by Algorithm 1 is obtained as the union of all
Causesc(e,M) for all c ∈ CausalTraces. Elements in this set are obtained in step (1.4).
These strings are computed based on the language that the automaton P (constructed
in step (1.2)) recognizes. By construction, x ∈ L(P) implies there is y ∈ L(e) such that
xy ∈ L(M). Hence L(x ; e)∩L(M) ̸= ∅. Since CausalTraces ⊆ L(P), condition AAC1
holds.

In order to show that AAC2.1 holds for some c ∈ CausalTraces, take a string x

accepted by M that is not in L(A∗ ; e). Assume that L(x ; e)∩L(M) = ∅. Then x ̸∈ L(P)

111

7 TOWARDS CAUSALITY REASONING FOR SCA

because otherwise, as we have just seen above, there would exist y ∈ L(e) such that
xy ∈ L(M). Therefore, x ∈ L(M) \ (L(A∗;e) ∪ L(P)). Because CausalTraces ⊆ L(P),
it follows that x ̸= c for any possibly causal trace c. We have now two cases: for every
c ∈ CausalTraces either c ∈ sub(x) or not. In the latter case AAC2.1 holds. In the
other case c ∈ sub(x) and thus x ∈ L(A∗;a0;A

∗; . . . ;A∗;an;A
∗), from which it follows

based on step (2) that x ∈ Causesc(e,M), and thus AAC2.1 holds.
It remains to show that AAC2.2 . For some possible causal trace c ∈ CausalTrace

let x ∈ Causec(e,M). We must show that x ̸∈ A∗e and that L(x;e) ∩ L(M) = ∅.
The first part of the conjunction in AAC2.2 holds because the construction in step (2)
Causec(e,M) cannot contain strings from L(A∗;e). Similarly, the second part of the
conjunction holds because L(P) is subtracted from L(M) in the same step.

Condition AAC3 does not necessarily hold for Causec(e,M) used by the Algo-
rithm 1. In fact, for possibly causal traces x, y ∈ CausalTraces, if x ∈ sub(y) then any
sub-string of x is also a sub-string of y. In other words, for a0 · · · an = x ̸= y = b0 · · · bm
we have

L(A∗;a0;A
∗; . . . ;A∗;an;A

∗) ⊆ L(A∗;b0;A
∗; . . . ;A∗;bm;A∗) (7.3)

By step (2) of Algorithm 1 we thus have that Causesx(e,M) ⊆ Causesy(e,M). Note
that it must be the case that m > n for x ∈ sub(y). We can therefore easily compute the
smallest sets of safe computations by removing from the set CausalTraces all strings y

that have another possible causal trace x ∈ CausalTraces of smaller length as sub-word.
In our running example, the trace CaGo is a sub-word of the other one CaGoTa, and
indeed, the computation for CaGoTa is included in the computation for CaGo as well.
Hence, only the causal trace CaGo satisfies the minimality condition AAC3 .

7.6 Experimental evaluation

In this section, we provide an experimental evaluation and assess the applicability of
our method. We developed a tool prototype implementing our approach and evaluated
the time performance by computing the decorated causes on randomly generated FAs
with growing size. The implementation is based on Python and closely follows Algo-
rithm 1. The inputs to our tool are an FA and a regular expression which describes
the effect on the given FA. The output of our tool is an automaton that characterizes
the set of all decorated causes with respect to the given inputs. In our implementa-
tion, we utilized the BRICS automaton library [84] for performing standard automaton
operations.

We evaluated our tool in the following experimental setting: we generated random
FAs by using the libalf [18] framework. In the process of generating FAs, we fixed the
size of the alphabet to 5. We then generated over 1000 FAs with an increasing number

112

7.6 Experimental evaluation

of states and achieved a maximum of 300 states. Figure 7.6 shows an example of an
FA with 5 states that was generated randomly by libalf. For each generated FA we also
randomly computed an effect for which the decorated causes are determined. We fixed
the size of the effect length to 3. All the experiments were conducted on a computer
running Ubuntu 20.04.3 with an 8-core 1.8GHz Intel i7-10510U processor and 16 GB
RAM.

s0 s1

s2 s3 s4

a, e

b
a,e

e

d

b

e

c,b

Figure 7.6: Randomly generated FA
with 5 states. Figure 7.7: Experimental Results

The results of our experiments are displayed in Figure 7.7. We group the randomly
generated FAs by their number of states and report the average running times in each
group. We only report the times of the experiments in which the decorated causes were
not empty. The results indicate that for relatively small FAs with less than 100 states,
a result is obtained within 10 seconds. For larger FAs with 250 to 300 states, a result
is obtained in 3 minutes on average and within 15 minutes at maximum. We remark
that these results are obtained without any attempts to tailor the standard automaton
operations to our setting.

Number of States in the Input FA
1-49 50-99 100-149 150-199 200-249 250-300

States 71 185 266 422 484 560
Transitions 236 654 997 1565 1862 2177
Potential Causes 81 328 10476 21932 44750 73318
(Minimal) Causes 3 8 10 18 10 22

Table 7.1: Average size of obtained decorated causes.

In Table 7.1 we summarize some information on the automata that recognize the
decorated causes returned by the algorithm. Depending on the number of states of
the automata given as input, we report the average number of states and transitions
of the returned automata, the average number of causes, and the average number of
minimal causes obtained. As expected, the size of the automata of the output increased

113

7 TOWARDS CAUSALITY REASONING FOR SCA

linearly with that of the input. However, the number of potential causal traces computed
increases exponentially. That is not the case for the number of minimal causal traces, as
it increases only marginally when the size of the input increases. In fact, in the majority
of the cases, the number of minimal causes is less than 5, regardless of the size of the
given input automaton.

7.7 Extensions

To illustrate the generality of our causal model we briefly discuss possible extensions
to consider the addition of tests and assignments.

Adding tests: KAT The set of regular expressions we considered in (7.1) can be
extended with a set B of Boolean tests that we assume generated from a finite set At

of atoms, meaning that every b ∈ B is equivalent modulo the equations of the Boolean
algebra to a finite disjunction of atoms in At. This way one can model basic programming
constructs, like conditionals, loops, guarded actions, and assertions using tests in B and
actions in A.

Kozen [67] showed that the above extensions of regular expressions, called KAT
(Kleene algebra with tests) expressions, play the same role with regular sets of guarded
strings as ordinary regular languages play for regular expressions. Here a guarded string
is an ordinary string over the alphabet A ∪ At, such that the symbols in A alternate
with the atoms At. Formally, a guarded language is a subset of (At×A)∗ ×At.

A deterministic KAT automaton recognizing guarded strings [68] is just a determin-
istic finite automaton (S,Σ, i,−→, F) with Σ = At × A and F ⊆ S × At. The only
differences are thus the transitions that are now labeled by guarded actions (α, a), and
the accepting states, which are now labeled with atoms marking the end of an accepted
string. The idea is that an action a is executed only when its guard α (pre-condition) is
true, and a string is accepted only in states where the post-condition holds. We say that
a guarded string w ∈ (At×A)∗ ×At is accepted by a KAT automaton M from a state
s if either (1) w = α and (s, α) ∈ F , or (2) w = (α, a)w′ and there exists s

α,a−−→ t such
that w′ is accepted by M from the state t. The language accepted by a KAT automaton
M is the set L(M) = {w ∈ (At×A)∗ ×At |M accepts w from i}.

Our causal model for automata extends naturally to KAT automata by considering
hazards e as KAT expressions and causes c as strings in (At×A)∗. Safe computations in
M for the hazard e with respect to c are non-empty strings of L(M) satisfying AAC1 as
in Definition 7.1 but with respect to the alphabet (At×A) instead of A only. Also, the
algorithm for computing causes needs no adjustment, but for the way how operations
on automata are computed.

114

7.8 Conclusions

Adding assignments: NetKAT NetKAT[4] is a network programming model,
which is used for specifying and verifying the packet-processing behavior of software-
defined networks. In a nutshell, it is a variation on KAT that considers actions not as
abstract elements of an alphabet A but rather as state transformers, like assignments,
that are executed when a precondition α is satisfied and modified into a post-condition
β.

For a given set of atoms At of a Boolean algebra B, a deterministic NetKAT au-
tomaton [37] is a deterministic FA M = (S,Σ, i,−→, F) such that σ = At × At and
F ⊆ S × (At×At). The transition relation −→ is thus labeled by pairs of atoms (α, β)

and so are the accepting states. The interpretation of these pair of atoms is that they
represent pre-conditions and post-conditions of one-step executions.

A string w ∈ At×At×At∗ is accepted by M from a state s only when post-conditions
match the subsequent pre-condition, meaning that either (1) w = αβ and (s, α, β) ∈ F ,
or (2) w = (αβ)w′ and there exists s

α,β−−→ t such that βw′ is accepted by M from the
state t. Note that in the last condition is crucial that w′ is not the empty string. The
language accepted by a NetKAT automaton M is the set L(M) = {w ∈ At× A× At∗ |
M accepts w from i}.

As for KAT automata, our causal model for automata extends naturally to NetKAT
automata too, with hazard represented by NetKAT expressions [37], causes as strings
in At∗, and safe computations as strings in L(M) that can be projected into a cause by
deleting some atoms and satisfying the rest of the conditions of Definition 7.1.

7.8 Conclusions

In this chapter, we moved the causal model proposed in [25] from labeled transition
systems to finite automata to obtain a language-based causal model for safety. The
model is in line with the notion of causality described in a logical context in [46] in the
sense that a hazard may be observed if and only if it has been caused. Analogously to
the alternative worlds of Lewis [75], we also considered decorated causes as alternatives
to causes in the sense that they allow executing all actions of a cause interleaved with
other actions that guarantee hazard avoidance.

We treated only the case when causes may enable a hazard while strings of the
decorated causes must avoid it. While it can be interesting to consider a stronger
notion of causes as strings c that bring the automaton M to states where the hazard e is
inevitable for any of its possible extensions (i.e., by changing AAC1 to L(c ; e) ⊆ L(M)),
such a change would imply that there would be no causes in our railway system example.

We have also presented an algorithm to compute decorated causes, relying only on
basic automata-theoretic operations. The algorithms could be improved, using model
checking techniques for marking those states in which a hazard is enabled, and search

115

7 TOWARDS CAUSALITY REASONING FOR SCA

techniques to find the decorated causes avoiding marked states. Also, it would be inter-
esting to move from automata back to labeled transition systems but remain in a trace
setting, with hazards specified as LTL properties.

Finally, we briefly discussed extensions of our work to KAT and NetKAT automata.
More work needs to be done here, both to precisely set the definitions and to show the
applicability of the method to, for example, find causes of a hazard in a software-defined
network.

116

