
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508

Chapter 6

Concurrent NetKAT with
Ports

In this chapter, we extend the symbolic constraint automata which has already been
introduced in chapter 5 to NetKAT [4], therefore NetKAT supports concurrency opera-
tion. To accomplish this goal, we define pNetKAT as the language of NetKAT with ports,
and pNKA as the NetKAT automata, which has a parallel operator that allows policy
communication through the ports. We also define ioNKA as the NetKAT automata
with I/O (input/output) ports, which can be transformed from the symbolic constraint
automata [34], ioNKA allows composition operation when there are no synchronization
causality problems just like the symbolic constraint automata. We proceed as follows.
In Section 2 we briefly present NetKAT with a focus on the automata model. While the
original model is deterministic, we present also an equivalent but more compact model
based on non-deterministic NetKAT automata (NKA). In Section 3 we extend NetKAT
protocols with communication actions and concurrency and define closed semantics using
non-deterministic NetKAT automata with ports (pNKA). We continue in Section 4 by
introducing non-deterministic NetKAT automata with input and output ports (ioNKA)
and use them to model NetKAT with ports. We then briefly recall Reo and its symbolic
constraint automata semantics and show how to compositionally translate them into
NetKAT automata.

6.1 Introduction

The rapid evolution of technology, increasing network traffic, and the need for flexible
and scalable computer networks have necessitated a paradigm shift in network manage-

79

6 CONCURRENT NETKAT WITH PORTS

ment. Traditional network architectures use distributed switches to receive and forward
packets, each switch consisting of hardware and dedicated control software. Software
Defined Networks (SDNs) provide a centralized approach to network control and man-
agement by separating the control plane from the data plane [42]. This separation
allows for programmability and agility in network configurations, enabling dynamic pro-
visioning of resources, efficient traffic management, and the ability to adapt to changing
requirements.

The level of programmability of the software controllers in an SDN to handle traffic
flow, routing decisions, and network policies together with the use of protocols such as
OpenFlow [82] have generated increasing interest in the academic community to provide
a theoretical foundation for understanding the principles, components, and interactions
within SDNs. Examples include model-checking to verify controller programs [14, 15, 1,
34], formal models of OpenFlow [60, 33], or some specific part of it, such as the topology
discovery mechanism [109] or security protocols [27].

A policy-based approach is taken by NetKAT [4], a process algebraic model that em-
phasizes the policy-driven nature of SDNs. It consists of an extension of Kleene Algebra
with Tests tailored to define high-level policy specification and network components and
observe the network behavior from the point of view of a packet [69]. NetKAT, however,
is not stateful and does not allow modeling concurrent policies and multiple packets. In
this chapter, we present pNetKAT, a conservative extension of NetKAT, allowing multi-
ple concurrent policies to communicate via shared ports. In pNetKAT, ports are treated
as shared variables that can be undefined when no communication is possible. We give
an operational semantics to pNetKAT using non-deterministic NetKAT automata with
a slightly modified acceptance rule that enforces observability only if sequences with
successful synchronization steps). Without ports, both syntactically and semantically
pNetKAT and NetKAT coincide.

Under the assumption that ports are declared as either input or output, we give
another semantics to pNetKAT by refining the acceptance rule of non-deterministic
NetKAT automata so to allow for the system to interact with the environment along
the input and output ports. The new semantics is an extension of the previous one (and
thus the new equivalence is stricter, in general). We show that this model can be used
as semantics for the coordination language Reo [5]. from which we can borrow the join
composition operator and define it for NetKAT automata with input and output ports.

Unlike other methods, our pNetKAT extension to a stateful and concurrent NetKAT
is conservative as it remains in the semantic realm of language equivalence instead of
moving to pomset [106] or bisimulation equivalence [24]. The connection with Reo
paves the way to a more expressive concurrent NetKAT, with (concurrent, stateful)
policies declaring input and output ports (as switches and controllers in SDNs) that
can be composed using a join operation (only communication on common ports must

80

6.2 NetKAT

synchronize, while policies using undeclared ports in another process can proceed in
parallel).

Related work. Several works are extending NetKAT in different directions. For
example, [81] introduces network event structures to model constraints on updates and
define an extension of NetKAT policies with mutable state to give semantics to stateful
SDN controllers. DyNetKAT [24] is a NetKAT extension with concurrency and a stateful
state to model SDNs with dynamic configurations. The extended language is a process
algebra with constructs for synchronization, sequential composition, and recursion built
on top of NetKAT policies. While DyNetKAT allows for multi-packet behavior, the syn-
tax does not allow for the basic NetKAT “dup” action. Also, the focus is on bisimulation
rather than our (and NetKAT) language equivalence, which comes equipped with sound
and ground-complete axiomatization.

Staying in the realm of Kleene algebra is the line of works followed by [106], where
CNetKAT is introduced as a combination of Kleene algebra with tests, concurrent Kleene
algebra, and network operators. The semantics is given in terms of pomset languages
and is thus based on true concurrency rather than interleaving.

Besides the work we already mentioned, there are other formal models for SDN
closely related to NetKAT that involve concurrency. For example, concurrent Net-
Core [95] extends NetCore with concurrency, while NetKAT is an extension of NetCore
with Kleene star. In terms of tools, SDNRacer [30] checks various concurrency-induced
errors in SDNs and precisely captures the asynchronous interaction between controllers
and switches.

Constraint automata are the first automata-based model for Reo connectors [13].
Since then, various other operational models have emerged (see [58] for an overview).
Relevant to our work here is the extension of constraint automata with memory [57]
and the more recent work of symbolic constraint automata [34] that focus on an imple-
mentable subset, instead of an efficient computation of the composition operator. In this
chapter, we show how to embed symbolic constraint automata into ioNKA. We follow
I/O automata [78] and constraint automata [13] by explicitly declaring at the interface
the ports that are used as input and output. Transitions in ioNKA, however, are neither
action-based nor imperative, but rather declarative using pre- and post-conditions in
the style of NetKAT automata.

6.2 NetKAT

In this section, we briefly introduce NetKAT [4], a language for specifying the flow
of a packet through a network, and give its semantics in terms of finite automata and
languages.

81

6 CONCURRENT NETKAT WITH PORTS

We assume fixed a finite set of fields Fld, say of size k, and a finite set of values Val .
A packet π is a record of fields, that is, a function from Fld to Val that we represent
by [f1 = v1, · · · , fk = vk]. Tests for the value stored in a field form the basic building
block for the set of predicates B(Fld) defined by the following grammar:

a, b ::= 1 | 0 | f = v | a+ b | a · b | ¬a .

The set of all predicates (modulo the usual equations) forms a Boolean algebra, where
+ is interpreted as the disjunction, · as the conjunction, and ¬ as negation. Further,
1 is the truth predicate, and 0 denotes false. The set At of atoms α, β of the Boolean
algebra B(Fld) corresponds to the set of valuations, that is complete conjunctions of
basic tests f = v ranging over all fields in Fld. For simplicity, and with a convenient
abuse of notation, we denote an atom as a record α = [f1 = v1, · · · , fk = vk], allowing
us to switch between packets and atoms. The behavior of a packet through the network
is specified by policies

p, q ::= a | f ← v | dup | p+ q | p · q | p∗ .

Here a is a predicate in B(Fld), f ← v is the assignment of the value v to the field
f of a packet, p + q is the nondeterministic choice between the policies p and q, p · q
specify the sequential composition of two policies, and p∗ the iterative execution of a
policy p. The predicate 0 denotes failure and 1 is skip. As usual, we will often not write
“ ·” in policies. When applied to predicates, “+” and “ ·” act as logical disjunction and
conjunction operators, respectively.

The behavior of a packet π through the network is specified by a string in (At ·At) ·
At∗, denoting a sequence of conditions satisfied by the packet π before and after being
forwarded from one switch to another in the network. Syntactically, the forwarding is
specified by the action dup, which is thus the only observable action of a policy. The
semantics of a policy is then given by the set of all possible behaviors of a packet under
that policy. Since this is a regular subset of (At · At) · At∗, following [36], we use an
automaton to describe it.

Definition 6.1. A deterministic NetKAT automaton (dNKA) is a tuple
(S, F ld, δ, ξ, s0) where

• S is a finite set of states,

• Fld is a finite set of fields,

• δ : S ×At×At→ S is a transition map,

• ξ : S ×At×At→ 2 is an observation map, and

• s0 ∈ S is a distinguished initial state.

82

6.2 NetKAT

s0 s1 s2
α, β β, γ

α, α β, α γ, α

else
else

all

all

Figure 6.1: An example of a dNKA

Here At is the set of atoms of B(Fld), and 2 is the two-element Boolean set.

Differently from an ordinary automaton, a dNKA uses pre- and post-conditions as
labels to specify the execution of an action in a computation. Here δ(s, α, β) = s′ denotes
a transition from state s to a state s′ executed by an action satisfying the pre-condition
α and resulting in a post-condition β. Further, the observation map ξ(s, α, β) = 1 if and
only if an action in state s satisfies the pre-condition α, results in the post-condition β,
and successfully terminates a computation.

Figure 6.1 shows a dNKA. There are four states but only {s0, s1, s2} are accepting
computations that end in the pair of atoms labeling the respective vertical down arrows.
The state s0 is the initial state, as marked by an incoming arrow without a source. As
usual, labeled arrows between two states represent the transition map. Here we assume
only three atoms: α, β, and γ.

The language accepted by a dNKA is a subset of strings in (At · At) · At∗ and is
defined with the help of the following auxiliary acceptance predicate:

Definition 6.2. For a dNKA M = (S, F ld, δ, ξ, s0), we say that a string σ ∈ (At ·At) ·
At∗ is accepted by M if and only if the deterministic acceptance predicate DAcc(s0, σ)

holds, where DAcc is defined inductively as follows:

• DAcc(s, αβ) = ξ(s, α, β),

• DAcc(s, αβ · τ) = DAcc(δ(s, α, β), β · τ),

where s ∈ S, α, β ∈ At, and τ ∈ At+. The language Ld(M) is defined as the set of all
strings accepted by M .

The language of the automaton in Figure 6.1 is {αα, αβα, αβγα}. In fact, for ex-
ample, DAcc(s0, αβα) = DAcc(s1, βα) = ξ(s1, β, α) = 1.

For a more compact representation of the operational semantics of NetKAT, we use
non-deterministic NetKAT automata as introduced in [108].

83

6 CONCURRENT NETKAT WITH PORTS

Definition 6.3. A non-deterministic NetKAT automaton (NKA) is a tuple
(S, F ld, ∆, Ξ, s0), where

• S is a finite set of states;

• Fld is a finite set of fields;

• ∆: S ×At×At→ P(S) is a transition relation;

• Ξ:S ×At×At→ 2 is an observation map, and

• s0 ∈ S is a distinguished initial state.

As before, here At is the set of atoms of B(Fld).

For example, the sub-automaton defined by restricting the one in Figure 6.1 to the
three states s0, s1 and s2 is an NKA.

Having non-determinism is reflected in the definition of the language accepted, which
now selects only transitions leading to successful computations.

Definition 6.4. For an NKA N = (S, F ld, ∆, Ξ, s0), we say that a string σ ∈ (At ·
At) · At∗ is accepted by N if and only if the non-deterministic acceptance predicate
NDAcc(s0, σ) holds, where NDAcc is defined inductively as follows:

• NDAcc(s, αβ) = Ξ(s, α, β),

• NDAcc(s, αβ · τ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) .NDAcc(s′, β · τ),

where s ∈ S, α, β ∈ At, and τ ∈ At+. The language Lnd(N) is defined as the set of all
strings in (At ·At) ·At∗ accepted by N .

Every dNKA can be easily seen as an NKA with a functional transition relation.
Conversely, given an NKA, we can construct a dNKA that is language equivalent.

Theorem 1. For every NKA N there exists a dNKA M such that Ld(M) = Lnd(N).

The result is similar to the powerset construction for ordinary finite automata.
In fact, given a NKA N = (S, F ld, ∆, Ξ, s0) we can define a dNKA M =

(P(S), F ld, δ, ξ, {s0}) with

• ξ(X,α, β) = 1 if and only if ∃s ∈ X.Ξ(s, α, β) = 1,

• s ∈ δ(X,α, β) if and only if ∃s′ ∈ X.s ∈ ∆(s′, α, β).

Then, for all X ⊆ S, α, β ∈ At, and σ ∈ At∗ we can prove that DAcc(X,αβ · σ) if and
only if there exists s ∈ X such that NDAcc(s, αβ · σ). Note that the above language
equivalence does not hold if ∆ and Ξ would take as input general Boolean predicates
instead of atoms.

In Table 6.1 we give the operational semantics of NetKAT policies in terms of an
NKA. States of the automaton are policies themselves, that we consider modulo as-
sociativity, idempotency, and commutativity of the “+” operation to guarantee local
finiteness. A state represents (an equivalence class of) what still needs to be executed.

84

6.2 NetKAT

Table 6.1: Operational semantics of NetKAT

dup
α,α−−→ α

α≤a

a↓(α, α)

β≤(f=v)

f ← v↓(α, β)

p1
α,β−−→ p

p1 + p2
α,β−−→ p

p1↓(α, β)

p1 + p2↓(α, β)

p1
α,β−−→ p

p1 · p2
α,β−−→ p · p2

p1↓(α, β) p2↓(β, γ)

p1 · p2↓(α, γ)

p1↓(α, β) p2
β,γ−−→ p

p1 · p2
α,γ−−→ p

p
α,β−−→ p1

p∗
α,β−−→ p1 · p∗

p∗↓(α, α)

p↓(α, β) p∗
β,γ−−→ p1

p∗
α,γ−−→ p1

p↓(α, β) p∗↓(β, γ)

p∗↓(α, γ)

We have two types of rules: those specifying transitions (on the left-hand side of
Table 6.1), and those for observations, specifying the accepting states (on the right-hand
side). Intuitively, the behavior of a policy is to guide a given packet into a network. This
is described by the assignment of values to the fields to record, for example, where the
packet is, where it has to go, and other information. Policies filter out executions via
predicates. The basic transition step of a policy is given only by the execution of a dup

action. Predicate evaluations and field assignments are evaluated locally in the current
state. A policy execution may terminate in an accepting state (as specified on the right-
hand side of Table 6.1) or may diverge in an infinite computation (via the transition
rules of p∗) and not be observed. Note that since we consider states modulo associativity,
commutativity, and idempotency of the “+” operation, there is no need for symmetric
rules for the “+” for both the transition and the observation relation.

For a given policy p, in [36] a dNKA M(p) is constructed using syntactic derivatives.
Similarly, Let N(p) denote the NKA constructed using the rules in Table 6.1, with as
initial state (the equivalence class of) p. We then have the automata M(p) and N(p)

accept the same language [108].

85

6 CONCURRENT NETKAT WITH PORTS

6.3 NetKAT with ports

Next, we extend NetKAT protocols with a parallel operator and allow policies to
communicate via ports. A port x is a shared variable between two processes that can
be updated with a value v by an output operation x!v and can be destructively read
by an input operation x?f which stores the communicated value into a field f . Unlike
a variable, however, a port may be undefined, here denoted by the symbol ⊥ that we
assume is not a value in Val . Intuitively, a port x is undefined, i.e. x = ⊥, if it can
be used by an output operation. Dually, input on a port x can only take place if x is
not undefined, i.e. ¬(x = ⊥) that, as usual, we denote by x ̸= ⊥. In other words, we
see an output x!v as the atomic execution of the guarded command x = ⊥ · x ← v,
whereas an input x?f can be seen as the atomic execution of the guarded command
x ̸= ⊥ · f ← x ·x← ⊥. Here we use the assignment f ← x of a variable to a field, which
is just an abbreviation for the protocol Σv∈Val(x = v · f ← v) because V al is assumed
to be finite. Communication of two parallel protocols via a port x in an undefined state
is then the atomic execution of an output command on x followed by an input on x,
resulting in the command

(x = ⊥ · x← v) · (x ̸= ⊥ · f ← v · x← ⊥)

which, because is executed atomically, can be thought of as equivalent to x = ⊥ · f ←
v · x← ⊥.

Formally, we assume a finite set of variables Var partitioned in a set of fields Fld

and a set of ports Prt . As for NetKAT, fields are ranged over by f , while ports are
by x. All variables can store values from Val but only ports can be undefined, which
we denote with ⊥ ̸∈ Val . The set of predicates B(Var) extends those of NetKAT by
allowing basic tests on all variables, including ports, as defined by the grammar

a, b ::= 1 | 0 | f = v | x = v | x = ⊥ | a+ b | a · b | ¬a ,

where, f ∈ Fld, x ∈ Prt , and v ∈ Val . We use f = x as a shorthand for the test
Σv∈Valx = v · f = v. This is well defined because the set Val is finite. The behavior
of a packet in pNetKAT through a network subject to several communicating parallel
policies is specified by the following grammar that extends the one of NetKAT with
communication actions and a parallel operator:

p, q ::= a | f ← v | dup | x?f | x!v | p+ q | p · q | p||q | p∗ .

As discussed above, here x?f is an input action that is executed only when the port x

has a value available that is assigned immediately to the field f . The output action x!v

is executed if the port x is not busy (there is no value) and makes available the value

86

6.3 NetKAT with ports

v at the port. Note that only fields can be assigned directly by policies, whereas ports
can change values only through successful communications. Policies can be executed
in parallel via the operator “||”. Parallel policies executing an input, respectively an
output, action on the same port synchronize.

The operational semantics of pNetKAT are given in terms of NKA as presented in
Definition 6.3. The only addition to the rules given in Table 6.1 is the transition and
observation map for input and output actions and for the parallel composition of policies.
The extra rules are presented next.

Input and output actions are, like dup, primitive actions that have a transition step
and do not terminate for any observable pairs of atoms:

α ≤ (x = v) β = α[⊥ /x][v/f]

x?f
α,β−−→ β

α ≤ (x =⊥) β = α[v/x]

x!v
α,β−−→ β

The conditions in the premises of the two rules express the precondition and postcondi-
tion of the input and output, respectively, as we already discussed. Here α[v/x] (α[v/f])
is the atom assigning a port x to v (a field f to v, respectively) and all other variables
are as in α.

The transition relation of the parallel composition p1||p2 of two policies p1 and p2

is described by three types of rules, namely: synchronization, interleaving, and termi-
nation. When they occur in parallel, an input and an output action on the same ports
synchronize:

p1
α1,β1−−−−→ p p2

α2,β2−−−−→ q

p1||p2
α,β−−→ p||q

p1
α1,β1−−−−→ p p2

α2,β2−−−−→ q

p2||p1
α,β−−→ q||p

under the condition that there is a port x ∈ Prt and a field f ∈ Fld such that α(x) =

β(x) = α1(x) = β2(x) =⊥ and β1(x) = α2(x) = β2(f), whereas for all other variables
y ∈ Var different from x, α1(y) = α2(y) = α(y) and β1(y) = β2(y) = β(y). The above
condition says that the pair (α1, β1) describes the output of the value v on a port x,
that is received and assigned to field f by the input action specified by (α2, β2). For all
other variables, the preconditions and the postconditions of all transitions involved do
not change.

If the transition of a policy does not have a visible effect on the state of a port, then
when in parallel with any other policy it can proceed in an interleaving fashion:

p1
α,β−−→ p

p1||p2
α,β−−→ p||p2

p1
α,β−−→ p

p2||p1
α,β−−→ p2||p

87

6 CONCURRENT NETKAT WITH PORTS

where α(x) = β(x) for all port x ∈ Prt . Note that, the above symmetric rules in
combination with the synchronization rules imply that there cannot be multiparty syn-
chronization.

Similar to the shuffle of languages, if a policy p1 terminates when in parallel with
another policy p2, then p2 can continue alone from the postcondition observed at the
termination of p1:

p1↓(α, β) p2
β,γ−−→ p

p1||p2
α,γ−−→ p

p1↓(α, β) p2
β,γ−−→ p

p2||p1
α,γ−−→ p

p1↓(α, β) p2↓(α, β)

p1||p2↓(α, β)

Generally, the parallel composition of two policies does not terminate immediately, as it
may involve input and output actions. However, if no communication action is involved,
then it terminates observing the pair (α, β) if both policies do the same. Note that this
means inconsistent policies cannot terminate successfully, as they both act atomically
on the same packet.

As in the previous section, we denote by N(p) the NKA constructed using the rules
in Table 1 and the above ones for the parallel composition, with as states equivalence
classes of policies modulo commutativity and associativity of both “+” and “||”, and
idempotency of only “+”, and with as initial state (the equivalence class of) p. To enforce
synchronization, we impose that ports are undefined at all times in every accepted string
(a condition satisfied by the synchronization step but not by the postcondition of an open
output and a precondition of an open input). We thus refine the acceptance predicate
for NKA with ports (thus, pNetKAT) as follows:

Definition 6.5. Let At be the set of atoms of the Boolean algebra B(Var). For an NKA
(with ports) N = (S, Var , ∆, Ξ, s0), we say that a string σ ∈ (At ·At) ·At∗ is accepted
by N if and only if the predicate PAcc(s0, σ) holds, where PAcc is defined inductively as
follows:

• PAcc(s, αβ) ⇐⇒ Ξ(s, α, β) and ∀x ∈ Prt .α(x) = β(x) = ⊥,

• PAcc(s, αβσ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) .PAcc(s′, βσ) and ∀x ∈ Prt .α(x) = ⊥,

where s ∈ S, α, β ∈ At, and σ ∈ At+. The language Lp(N) is defined as the set of
all strings in (At · At) · At∗ accepted by N . We refer to NKA with PAcc predicates as
pNKA.

Because of the symmetry in the rules of the parallel composition, we have that “ ||”
is a commutative and associative operator. It is not idempotent in general, except for
policies with no occurrences of dup, input, or output actions. For example a||b = a · b
and f ← v||f ← v = f ← v.

If there are no ports in Var (i.e. Var = Fld) then they do not appear in atoms
in At. In this case, the definition of PAcc coincides with the usual definition NDAcc

88

6.3 NetKAT with ports

Figure 6.2: A SDN with two switches and two controllers

of accepted strings for an NKA. Note that because ports are undefined in every atom
occurring in a string accepted by PAcc ports can be removed (or added) to an NKA
without changing its language equivalence. Using the Kleene theorem for NetKAT [36],
we can relate (non-compositionally) pNetKAT with NetKAT:

Theorem 2. For every pNetKAT policy p there is a NetKAT policy q such Lnd(N(q))

is equal to Lp(N(p)) after removing the ports from every atom.

This implies that for every process in pNetKAT, we can find an ’equivalent’ process
in NetKAT, basically by compiling parallel processes into interleaved ones if no open
communication is involved and transforming synchronizations into assignments. In other
words, the semantics of pNetKAT is closed, meaning that it does not allow any external
communication after the system is defined. In the next section, we define an open
semantics that allows for the synchronization of several ports at the same time.

We conclude this section with an example adapted from [24] and sketched in Fig-
ure 6.2. Two switches SX and SY have 3 ports each: x1, x2, x3 and y1, y2, y3, respec-
tively. Their behavior depends on their current flow table and it is described by the
following set of policies:

SX0 = 0 SY0 = 0

SX1 = (f = x1) · f ← x3 SY1 = (f = y3) · f ← y1

SX2 = (f = x2) · f ← x3 SY2 = (f = y3) · f ← y2 ,

where f is a field of a packet that records the last passed port. The switches are linked
through ports x3 and y3:

L = (f = x3) · dup · f ← y3 .

Under the flow tables SX1 and SY1, for example, a packet that arrives at port x1 of

89

6 CONCURRENT NETKAT WITH PORTS

switch SX is forwarded to port x3. The latter is linked to port y3 of switch SY , which
forwards the packet to port y1. Note the role of the dup action to record that a packet
moves from one switch to another.

Each switch is linked with a controller via the ports sx and sy. CX is the controller
of switch SX and CY of switch SY . The two controllers are concurrently acting on their
switch by updating their flow tables. The task of the two controllers is to guarantee that
incoming packets at port x1 arrive at port y1 and incoming packets at port x2 arrive at
port y2. No mixing of flow is allowed. To avoid race conditions, the controllers have to
synchronize and guarantee a proper order of execution of their concurrent behaviors:

CX = (f = x1) · (sx!0 · c!1 · c?g · sx!1)
+ (f = x2) · (sx!0 · c!2 · c?g · sx!2)

CY = c?g · ((g = 1 · sy!1) + (g = 2 · sy!2)) · c!0 .

Here sx and sy are the ports connecting the controllers to their controlled switches.
When sending the flow message 0, 1, or 2, the flow table will be updated accordingly.
The two controllers use port c to synchronize each other and pass the information about
which flow table they have updated. While waiting for the update of the flow table of
switch SY , the switch SX first drops all incoming packets, and only after SY is updated
then SX accept packets from the correct port.

The behavior of the entire network is given by

(ft1← 0) · (ft2← 0) · (N∗||CX||CY)∗ ,

where

N = Σ2
j=0(ft1 = j) · SXj +Σ2

j=0(ft2 = j) · SYj + L+ sx?t1 + sy?t2

Initially, both switches start with empty flow tables that are updated when a controller
sends a flow message to its switch via the port sx or sy, respectively.

6.4 NetKAT automata with I/O ports

In the previous section, we used NKA for giving a closed semantics of our concurrent
policy language pNetKAT using the acceptance predicate PAcc that takes into account
ports. Next, we consider NetKAT automata for open concurrent systems and use them
as a model of pNetKAT.

To begin with, we partition the set of ports Prt into input ports IPrt and output
ports OPrt . Together with the disjoint set of fields Fld they form a finite set of variables
Var . Input ports are ranged over by i and output ports by o. As before, all variables
can store values from Val but only input and output ports can be undefined, which we

90

6.4 NetKAT automata with I/O ports

denote with ⊥ ̸∈ Val . Intuitively, an input port i of a connector is enabled if it contains
a value different from ⊥ so that this value is ready to be taken by the connector when
synchronizing on i with the environment that puts the value in it. Dually, an output
port o of a connector is undefined (i.e., o = ⊥) when the port o is ready to receive a
value from the connector and synchronizes with the environment when it will read from
o.

We use input and output ports to define a novel operational behavior of NKA by an
acceptance predicate that, differently from PAcc, does not enforce synchronization and
leaves the system open to communication instead of closing it in the style of [21].

Definition 6.6. Let At be the set of atoms of the Boolean predicates B(Var), where
Var = IPrt ∪OPrt ∪Fld. For an NKA N = (S, Val , ∆, ξ, s0) with atoms At involving
input and output ports, we say that a string σ ∈ (At×At)+ is accepted by N if and only
if the predicate IOAcc(s0, σ) holds, where IOAcc is defined inductively as follows:

• IOAcc(s, (α, β)) ⇐⇒ Ξ(s, α, β),

• IOAcc(s, (α, β)σ) ⇐⇒ ∃s′ ∈ ∆(s, α, β) . IOAcc(s′, σ) and β ▷ head(σ),

where s ∈ Q, α, β ∈ At, σ ∈ (At × At)+. The language LIO(N) is defined as the set
of all strings in (At× At)+ accepted by N . We refer to NKA with IOAcc predicates as
ioNKA

A pair (α, β) in a string accepted above represents the pre/post condition of an action
executed by a component. In between two pairs, the environment can communicate
with the components and change the values at its ports. We formalize this using the ▷

predicates. In fact, for every string in (At×At)+, we define head((α, β)σ) = α, and for
every two atoms α and β we say that the predicate β ▷ α holds if and only if:

a. local variables cannot be modified by the environment, i.e., β(f) = α(f) for every
field f ∈ Fld;

b. the environment can put a value to an input port only if the port is not already
enabled, i.e. either β(i) = α(i) or β(i) = ⊥;

c. the environment can take a value from an output port only if there is one, i.e.,
either β(o) = α(o) or α(o) = ⊥.

Here we see β as the postcondition of an action, and α as the precondition of the
next action both to be executed by the component, or, dually, they are the pre- and
postcondition of actions executed by the environment. The conditions on the second
and third items above allow the environment to communicate with a component only
through input ports that are not enabled and output ports that contain values. As such
the semantics of a component caters to all possible interactions with the environment
and is open. For example, if a component executes an action ending in a postcondition

91

6 CONCURRENT NETKAT WITH PORTS

[f = 1, i = ⊥, o = 3] then the environment could assign a value to the input port i so
that at the next step the component would start with a precondition [f = 1, i = 2, o =

3]. Alternatively, the environment could take the value from the output port o and
put a value in the input variable i resulting in the next step component precondition
[f = 1, i = 2, o = ⊥]. However, the environment could never change the value of the
field f as it is local to the component.

The set of input and output ports used by a pair (α, β) is defined by

I(α, β) = {i ∈ IPrt | α(i) ̸= β(i) = ⊥} and
O(α, β) = {o ∈ OPrt | β(o) ̸= α(o) = ⊥} .

The above reflects the fact that an input port must be enabled in the precondition and
is available for communication after the value has been taken, and dually for an output
port.

In the absence of input and output ports, the condition on the first item ensures
that for any two consecutive pairs (α1, β1)(α2, β2) occurring in an accepted string, the
postcondition β1 is equal to the precondition α2. In this case, we can transform a strings
σ ∈ (At×At)+ into essentially equal strings in t(σ) ∈ (At ·At) ·At∗ as follows:

t((α, β)) = αβ t((α, β)σ) = α · t(σ) .

The transformation t unifies the subsequent postcondition and precondition because they
are equal. The inverse t−1 of t maps strings in (At ·At) ·At∗ into strings in (At×At)+

by equating subsequent postcondition and precondition:

t−1(αβ) = (α, β) t−1(αβσ) = (α, β) · t−1(βσ) .

Here σ ∈ At+ and α, β are atoms in B(V ar), with V ar = IPrt ∪OPrt ∪ Fld.

Theorem 3. For every NKA automaton with no (input and output) ports, IOAcc(s, σ) =

PAcc(s, t(σ)) = NDAcc(s, t(σ)), for any state s and string σ ∈ (At×At)+.

Proof. The proof follows immediately by induction on the length of σ using the fact
that there are no ports and the definitions of the predicate IOAcc, PAcc(s, t(σ)), and
NDAcc, as well as the definition of the transformation t.

In other words, the predicate IOAcc is a conservative extension of NDAcc in the
context of NetKAT automata when there are no ports. However, if we assume Prt =

IPrt ∪Oprt and V ar = Prt ∪ Fld so that atoms in B(V ar) are of the correct type for
both predicates PAcc and IOAcc, we then have the following result.

Theorem 4. Let V ar = Prt ∪ Fld and Prt = IPrt ∪ Oprt and (S, V ar, ∆, Ξ, s0) be
a NKA. For every string σ ∈ (At ·At) ·At∗ where At is the set of atoms of B(V ar) and

92

6.4 NetKAT automata with I/O ports

s ∈ S if the predicate PAcc(s, σ) holds then also IOAcc(s, t−1(σ)) holds.

Proof. The proof is by induction on the length of σ ∈ (At ·At) ·At∗. For the base case,
assume σ = αβ. We then have

PAcc(s, αβ) =⇒ Ξ(s, α, β) Definition of PAcc
⇐⇒ IOAcc(s, (α, β)) Definition of IOAcc

⇐⇒ IOAcc(s, t−1(αβ)) Definition of t−1.

Assume now σ′ = γσ′′ where γ ∈ At and σ′′ ∈ At∗ > Consider the induction step with
the string σ = αβσ′. First of all, note that t−1(αβσ′) = (α, β) · t−1(βσ′) and similarly,
t−1(βσ′) = (β, γ) · t−1(σ′′). Thus β = head(t−1(βσ′)). We have

PAcc(s, αβσ′) =⇒ ∃s′ ∈ ∆(s, α, β).PAcc(s, βσ′) Def. of PAcc
=⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) Ind. hypothesis
⇐⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) & β ▷ β Def. of ▷
⇐⇒ ∃s′ ∈ ∆(s, α, β).IOAcc(s, t−1(βσ′)) & β ▷ head(t−1(βσ′))

⇐⇒ IOAcc(s, (αβ) · t−1(βσ′))) Def. of IOAcc

⇐⇒ IOAcc(s, t−1(αβ)σ′) Def. of t−1.

As a consequence of the above, we have that if two policies of pNetKAT are language
equivalent with respect to the IOAcc then they are also language equivalent for PAcc.
The converse is, in general, not true, meaning that the equivalence generated by pNKA

is coarser than that of ioNKA.

6.4.1 From symbolic constraint automata to ioNKA

Next, we show that NetKAT automata can be used to express the semantics of the
coordination language Reo [5] too. We use symbolic constraint automata as a semantic
model of Reo connectors as presented in Chapter 5, in Definition 5.1 with the addition
of accepting states to consider only finite executions.

Definition 6.7. A symbolic constraint automaton with accepting states (SCA) is a tu-
ple (S, s0, I, O, F, −→, A) such that (S, s0, I, O, F, −→) is an ordinary symbolic con-
straint automaton and A ⊆ S is a set of accepting states.

An execution of a symbolic constraint automata with accepting states is defined as
in Chapter 5 with the obvious adaptation to finite sequences.

Given a guarded action ϕ(x̄, ȳ) = P (x̄)→ ȳ ..= a(x̄) and atoms α, β assigning values
to all variables (and possibly ⊥ to some input or output ports) we denote by P (α) the
evaluation of P (x̄) where all occurrences of (free) variables z ∈ x̄ are substituted with

93

6 CONCURRENT NETKAT WITH PORTS

α(z) ∈ Val . Similarly, we denote by a(α) the list of values obtained by evaluating a

when all variables z ∈ x̄ get value α(z) ∈ Val . Finally, we say that the Hoare triple
{α}ϕ{β} holds if

• ϕ is executable under α, that is α(i) ̸= ⊥ for all input ports i ∈ x̄ and α(o) = ⊥
for all output port o ∈ ȳ.

• α is a precondition of ϕ enabling its guard, that is α ≤ P (α); and

• β is a postcondition of ϕ changing only the variables in ȳ and consuming the value
from all input ports in x̄, that is α[a(α)/ȳ, ⊥̄/̄i] ≤ β

where α[v̄/ȳ, ⊥̄/̄i] is the atom mapping variables in ȳ to the respective values in v̄,
enabling input ports in x to receive values, and remaining unchanged otherwise.

Pre and postconditions of guarded actions are used to construct an ioNKA from a
symbolic constraint automaton

Definition 6.8. A SCA with accepting states (S, s0, I, O, F, −→, A) can be trans-
formed into a ioNKA (S, V ar∆, Ξ, s0) with V ar = I ∪O ∪ F and

• s′ ∈ ∆(s, α, β) if and only if s ϕ−→ s′ and {α}ϕ{β};

• Ξ(s, α, β) if and only if s ϕ−→ s′ ∈ A and {α}ϕ{β}.

Here α and β are atoms in B(V ar).

Consider, for example, the symbolic constraint automaton in Figure 5.1.(b) of a
Fifo1 connector. The corresponding NetKAT automaton has the following transition
and observation maps:

∆(0, α, β) = {1} ∆(1, α′, β′) = {0} , and Ξ(1, α′, β′)

for any atom α ≤ i = v, β ≤ (i = ⊥·f = v), α′ ≤ (o = ⊥·f = u) and β′ ≤ (o = u·f = u).
A string accepted by this automaton is, for example, ([i = v, o = ⊥, f = u], [i = ⊥, o =

⊥, f = v]) · ([i = ⊥, o = ⊥, f = v], [i = ⊥, o = v, f = v]).

As another example, the ioNKA obtained from the symbolic constraint automaton
in Figure 5.1.(c) denoting a filter connector has the following transition and observation
maps:

∆(0, α, β) = {0} ∆(0, α′, β′) = {0} , and Ξ(0, α, β) Ξ(0, α′, β′)

for any atom α ≤ i = v ∈ P (v), β ≤ (i = ⊥·o = v), α′ ≤ i = v ̸∈ P (v), and β′ ≤ (i = ⊥).
Correctness of the translation from symbolic constraint automata to NKA with re-

spect to the following notion of bisimulation is immediate by construction. However,
this bisimulation relation will become more interesting when proving the correctness of
the parallel composition of two automata.

94

6.4 NetKAT automata with I/O ports

Definition 6.9. Given a symbolic constraint automaton with accepting states C =

(S, s0, I, O, F, −→, A) and an NKA N = (Q, V ∆, Ξ, q0) with V = I ∪ O ∪ F , we
say that a binary relation R ⊆ S × T is a bisimulation if (s0, q0) ∈ R and whenever
(s, q) ∈ R then

• for all s ϕ−→ s′ and {α}ϕ{β} there exists q′ ∈ ∆(q, α, β) such that (s′, q′) ∈ R;

• for all q′ ∈ ∆(q, α, β) there exists s
ϕ−→ s′ such that {α}ϕ{β} and (s′, q′) ∈ R;

• Ξ(q, α, β) holds for all s ϕ−→ s′ ∈ A and {α}ϕ{β};

• for all Ξ(q, α, β) there exists s
ϕ−→ s′ such that {α}ϕ{β} and s′ ∈ A.

Transitions with guarded actions must be matched by transitions with all pre and
postconditions of those actions, and vice-versa, every pair of pre and postconditions must
be related to at least one guarded action. Note that if two states q and q′ of an ioNKA
are language equivalent with respect to IOAcc, and a state s of an SCA is bisimilar to
q then s is bisimilar to q′ too, where bisimilarity is the largest bisimulation between an
SCA and a ioNKA.

6.4.2 Composing ioNKA

We conclude this section with a very brief presentation of a composition operator
between NetKAT automata with input and output ports inspired by the one used in
Reo [13]. The idea is that the two automata synchronize via all (and only) the shared
ports that are input for one automaton and output port for another. To avoid broadcast-
ing, shared ports become local fields. No other synchronization is allowed, as all fields
are only visible within the scope of an automaton. The composition is defined only when
no causality problem can arise when the input and output ports of two automata are
synchronized in the same step.

Definition 6.10. Let N1 = (S1, V1 ,∆1, Ξ1, s1) and N2 = (S2, V2, ∆2, Ξ2, s2) be two
non-deterministic NetKAT automata with Vi = Ii ∪Oi ∪Fi for i = 1, 2 such that F1 and
F2 are disjoint sets of fields in Fld. Assume that for every pair of (α1, β1) and (α2, β2)

and state s1 and s2 such that either ∆1(s1, α1, β1) ̸= ∅ and ∆2(s2, α2, β2) ̸= ∅ or both
Ξ1(s1, α1, β1) and Ξ2(s2, α2, β2) holds, the two automata synchronize only on the input
ports used by one and output ports used by the other, but not on both input and output
ports at the same time, that is

I(α1, β1) ∩O(α2, β2) ̸= ∅ ⇒ O(α1, β1) ∩ I(α2, β2) = ∅ .

Then the composition N1 ▷◁ N2 is defined as the ioNKA (S, V ∆, Ξ, s0) where:

• S = S1 × S2;

• s0 = ⟨s1, s2⟩;

95

6 CONCURRENT NETKAT WITH PORTS

1 2

m1
..= i

x ..= m1

▷◁ a b

o ..= m2

m2
..= x

= 1,a 2,b

m1, o ..= i,m2

m2
..= m1

Figure 6.3: Symbolic constraint automata for Fifo 1 composed with Fifofull

• V = I ∪ O ∪ F with I = (I1 \ O2) ∪ (I2 \ O1), O = (O1 \ I2) ∪ (O2 \ I1), and
F = F1 ∪ F2 ∪ (I1 ∩O2) ∪ (I2 ∩O1);

• ⟨s′, t′⟩ ∈ ∆(⟨s, t⟩, α, β) if s′ ∈ ∆1(s, α1, β1) and t′ ∈ ∆2(t, α2, β2) such that if
x ∈ I1 ∩O2 then α1(x) = β2(x) ̸= ⊥, and if x ∈ O1 ∩ I2 then α2(x) = β1(x) ̸= ⊥;

• Ξ(⟨s, t⟩, α, β) holds if both Ξ1(s, α1, β1) and Ξ2(t, α2, β2) hold, such that if x ∈
I1 ∩O2 then α1(x) = β2(x) ̸= ⊥, and if x ∈ O1 ∩ I2 then α1(x) = β2(x) ̸= ⊥,

where, in the last two items, for all i ∈ I, o ∈ O and f ∈ F ,

α(i) =

{
α1(i) if i ∈ I1 \O2

α2(i) if i ∈ I2 \O1

β(i) =

{
β1(i) if i ∈ I1 \O2

β2(i) if i ∈ I2 \O1

α(o) =

{
α1(o) if o ∈ O1 \ I2
α2(o) if o ∈ O2 \ I1

β(o) =

{
β1(o) if o ∈ O1 \ I2
β2(o) if o ∈ O2 \ I1

α(f) =

{
α1(f) if f ∈ F1 ∪ (I1 ∩O2)

α2(f) if f ∈ F2 ∪ (I2 ∩O1)
β(f) =

{
β1(f) if o ∈ F1 ∪ (O1 ∩ I2)

β2(f) if o ∈ F2 ∪ (O2 ∩ I1)

The above operation is congruence with respect to language equivalence as defined in
Definition 6.6 and is correct with respect to the parallel operator for symbolic constraint
automata as given in [34] in the sense that if there is a bisimulation relation between two
symbolic constraint automata and two ioNKA then we can find a bisimulation between
their respective parallel composition.

As an example, we show the composition of two SCA constraints automata, one
representing a FIFO buffer of size 1 taking values from the input port i, buffering the
field m1 and outputting the buffered value at the port x, and the other similar but with
input port x output port o and starting with a full buffer m2 instead of the empty m1.

The two symbolic constraint automata are described at the top of Figure 6.3, while
their composition is the SCA depicted at the bottom. We concentrate on the synchro-
nization of the transition execution of the action m1

..= i with that executing the action

96

6.5 Conclusion and future work

1 2

α1 · β1

· · ·

▷◁ a b

α2 · β2

· · ·

= 1,a 2,b

α · β

· · ·

Figure 6.4: pNKA for Fifo 1 composed with Fifofull

o ..= m2. They are implemented in the ioNKA in Figure 6.4, where α1 = [i = v1, x =

v2, m1 = v0], β1 = [i = ⊥, x = v2, m1 = v1], α2 = [x = u1, o = ⊥, m2 = u2], and
β2 = [x = u1, o = u2, m2 = u2]. Here v1 is the data received as input by the first
connector and u2 the one output by the second connector, while v2 and u1 are values
(possibly bottom) already present at the output and input port of the two connectors,
respectively. Following the definition we get the following sets of "used" ports:

I(α1, β1) = {i} O(α1, β1) = ∅ ,

I(α2, β2) = ∅ O(α2, β2) = {o} .

The resulting composition of the above transitions results in the precondition α = [i =

v1, x = v2, o = ⊥, m1 = v0, m2 = u2], and postcondition β = [i = ⊥, x = v2, o =

u2, m1 = v1, m2 = u2], where x becomes a local field. Note that if we create a loop
and let the port o = i in the second SCA then we have a problem of causality and
the composition cannot take place. The problem could be solved by inserting e.g., a
(synchronous) connector between o and i.

We leave it as future work the extension of the syntax of pNetKAT with an explicit
declaration of input and output ports for each policy, that can be combined with the
join operation ▷◁ as defined above.

6.5 Conclusion and future work

We extended NetKAT with concurrency and communication via shared ports. We
followed two semantics lines using non-deterministic constraints automata: one observ-
ing successful synchronization only, and another allowing interaction with the environ-
ment. In both cases, communication by ports played an important role, and the second
one can be used as a compositional model of the Reo coordination language too.

We focussed on the operational semantics and compositionality. A possible next step

97

6 CONCURRENT NETKAT WITH PORTS

is the study of axiomatizations of our two extensions. From a more practical point of
view, we could use our work on model checking Reo with SPIN [34] to obtain a model
checker for concurrent NetKAT. An orthogonal extension is to combine concurrency with
stacks to model VLANs [108].

98

