
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508

Chapter 5

Implementing Reo into
Promela

In this chapter, we study a subclass of constraint automata with local variables.
The fragment denotes an executable subset of constraint automata for which syn-
chronization and data constraints are expressed in an imperative guarded com-
mand style, instead of a relational style as in ordinary constraint automata. To
demonstrate the executability property, we provide a translation scheme from
symbolic constraint automata to Promela, the language of the model checker
Spin. As a proof of concept, we model in Reo a software-defined network circuit,
translate it into Promela, and use the Spin model checker to verify that our model
satisfies some basic temporal properties.

5.1 A short introduction to Promela

Promela is a formal language widely used to specify concurrent systems and
is supported by Spin, a Linear Temporal Logic (LTL) model checker [48, 49].
Theoretically, any LTL formula φ can be converted into a Büchi automaton [40,
104], as well as the negative of φ. To verify if a system satisfies an LTL property φ,
we first construct an automaton A for the system, then compute the synchronous
product of the Büchi automaton BA(¬φ) and A. If the language of this product is
empty, then we called the original system to satisfy φ, otherwise φ is not satisfied
with the system, and the counter-examples will be provided, too.

51

5 IMPLEMENTING REO INTO PROMELA

A Promela program is composed of a set of processes, each processes run
concurrently and interact through shared channels. Both synchronous and asyn-
chronous communication between processes is supported by its constructs since
the modeling and analysis of processes, communication channels, and synchroniza-
tion primitives are granted. For synchronous communication, a channel works in
a rendezvous mode with no buffer (zero capacity), for asynchronous communica-
tion, channels work as a Fifo buffer with a non-zero user-specified capacity. All
of these features make Promela suitable for verifying the correctness of complex
systems, including hardware and software.

One of the most powerful model checkers for Promela is SPIN, SPIN can
exhaustively explore all possible system behaviors and check various properties,
such as safety, liveness, and temporal logic properties automatically. In a nut-
shell, each Promela process is transformed by Spin into a finite state automaton,
processes are then synchronized into a single system automaton. Similarly, linear
temporal properties expressed in the usual LTL syntax, are transformed into fi-
nite state automata. The automata representing both the Promela program and
the LTL properties are exploited by Spin to verify and assert satisfaction of the
properties [48, 49].

The syntax of LTL are:

⊤ | ¬φ | a | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | φ1Uφ2 | ♢φ | □φ

The property φ could be true, false, an atom, or, and, next, until,
eventually, always. The semantics are:

α |= ⊤ iff α is true
α |= ¬φ iff α ̸|= φ

α |= a iff a ∈ α[0]

α |= φ1 ∨ φ2 iff α |= φ1 or α |= φ2

α |= φ1 ∧ φ2 iff α |= φ1 and α |= φ2

α |= Xφ iff suffix(α, 1) |= φ

α |= φ1Uφ2 iff ∃j ≥ 0, suffix(α, j) |= φ2 and suffix(α, i) |= φ1, ∀0 ≤ i < j

α |= ♢φ iff ∃i ≥ 0, suffix(α, i) |= φ

α |= □φ iff ∀i ≥ 0, suffix(α, i) |= φ

where α = α[0]α[1]α[2] . . . is an infinite sequence of states.

52

5.2 Symbolic constraint automata

5.2 Symbolic constraint automata

In this section, we give an idea of symbolic constraint automata, and show
how the composition method of Reo applies to the symbolic constraint automata.

We have seen in Chapter 3 that Reo circuits are usually specified using con-
straint automata [13]. In that case, each transition is labeled by synchronization
and relational data constraints. To enhance the expressive power, we have consid-
ered an extension of constraint automata with memories. In both cases data con-
straints are declarative, and serve more as a specification than an implementation
of an executable Reo circuits. In this section, we introduce a subset of constraint
automata with transitions labeled by symbolic guarded actions. We show that,
under some simple consistency conditions, symbolic constraint automata can be
implemented and systematically translated into the Promela language. In fact,
most of the original basic Reo connectors can be modeled as symbolic constraint
automata, with only exceptions filter channels with predicates that constraint
output ports and transformer channels that update input ports.

The basic building blocks of a symbolic constraint automaton include a finite
set D of data ranged over by d, and a set V of variables, ranged over by x, y

and z. We use variables to denote Reo ports shared between a connector and
its environment, with different read and write permissions. An input port is a
variable that the environment writes to (i.e., put a value into it), and from which
a Reo connector destructively reads (i.e., take a value from it). Symmetrically,
an output port is a variable that a connector writes to (i.e., put) and from which
the environment destructively reads (i.e., take). Local variables are internal to a
channel and can be used to store data. An assignment of variables to values is a
function σ:V→ D. We range over input, output, and local variables by i, o, and
v, respectively.

To abstract from concrete actions, we use function symbols (ranged over by
f) and predicate symbols (ranged over by P). As usual, each function symbol f
comes equipped with an arity and coarity, i.e. the number of arguments it expects
and it returns, respectively. Similarly, predicate symbols come with an arity. We
assume the natural interpretation of such function and predicate symbols, as
executable function on Dn → Dm and as a decidable subset of Dn, respectively.
To simplify the notation, we identify predicate and function symbols with their
interpretations. Here, n is the arity and m the coarity. Syntactic substitution in
a term t of every occurrence of variable x for a term tx is denoted as usual by

53

5 IMPLEMENTING REO INTO PROMELA

t[tx/x].
Terms of symbolic constraint automata are defined by the grammar:

t ::= d | x | f(t̄)

Terms denote tuples of data values. Here the (local or port) variable x denotes the
data value it stores, while t̄ is a shorthand notation for a finite sequence of terms
t1, . . . , tn, and f(t̄) represents a tuple of values resulting from the computation f

when executed with input values t̄. The size of these tuples depends on the arity
and coarity of f .

A guarded action α consists of a predicate and an assignment,

P (x̄)→ ȳ := t .

We call P (x̄) the guard of the guarded action α, and ȳ := t the action that is
executed when the guard is true. In general, we refer to the guard of a guarded
action α by g(α), and the assignment at the right-hand side of α by a(α). We
implicitly assume that the size of ȳ corresponds to the coarity of t. To avoid
problems with simultaneous assignments, and without loss of generality, only
different variables may occur on the left-hand side of the assignment in an action.
This way, for z ∈ ȳ, we can denote by a(α)z the z-projection of the tuple of values
resulting from evaluating the term a(α).

Given finite subsets I,O, and V of V denoting some input, output, and lo-
cal variables, respectively, let Act(I,O, V) be the set of actions α such that all
variables occurring in g(α) are in I ∪ V , all variables on the left-hand side of the
assignment in a(α) are in O ∪ V , and all variables on the right-hand side of the
assignment in a(α) are either in V or occurring in g(α). The idea is that a guard
g(α) constrains what value input may take, based on the current value of its local
variables and pending values supplied by the environment. If the guard holds then
the right-hand side of a(α) can be satisfied using values from the local variables
and values given by the environment on its inputs. The result is assigned to the
variables on the left-hand side of a(α) changing the local store and communicat-
ing the result of the computation to the environment via the output variables.
Since output ports are only used to communicate a value to the environment, we
assume no occurrence of them on the guard g(α) and in the term on the right-
hand side of the assignment a(α). Dually, since input ports receive values only
from the environment, we assume no occurrence of them on the left-hand side

54

5.2 Symbolic constraint automata

of the assignment a(α). We denote by I(α) the set of all input ports occurring
in α. Similarly, we denote by O(α) and V (α) the sets of output ports and local
variables, respectively occurring on the left-hand side of the assignment in α. All
input ports occurring in a(α) must appear in the input of the guard g(α). The
test x = x denotes a guard that is true, and an assignment x := x denotes the
skip action. We often do not write them in a transition unless the context requires
it.

For example, the guarded action (i ≤ v → (o, v) := [i, i]) is an action in
Act(I,O, V), with I = {i}, O = {o} and V = {v}. But the guarded action
(i ≤ v → (o, i) := [i, o]) is not because i and o appear both on the left-hand side
and on the right-hand side of the action, respectively. Here [−,−] is the pairing
function, with arity 2 and coarity 2, mapping two inputs into their corresponding
pair of values.

Definition 5.1. A symbolic constraint automaton is a tuple (Q, q0, I, O, V,−→),
where

• Q is a finite set of states including the initial state q0,

• I ⊆ V is a finite set of input ports, O ⊆ V is a finite set of output ports,
V ⊆ V is a finite set of local variables such that they are mutually disjoint,
i.e., I ∩O = I ∩ V = O ∩ V = ∅,

• −→ is a transition relation between states and labeled by actions in
Act(I,O, V).

A transition q
α−→ q′ denotes the possibility of executing the action α from the

state q and moving to the state q′. In order for the actual execution of α to take
place, the guard of the action α must hold upon evaluation in the current state.
To simplify the notation, we will not write guards of actions that are always true.
Note that, differently from [57] and Chapter 3, we do not need to specify pre- and
post-values of a local variable, as our actions are imperative and thus the order
is implicitly given by the assignment operator.

In Figure 5.1, we show three symbolic constraint automata. The one on the left
has no internal state, and the data received at the input port i is synchronously
passed to the output o. This connector corresponds to the synchronous channel in
Reo. The one in the middle has three variables: one input variable i, one output
variable o, and an internal variable v. The automaton has two states: state 0 to
indicate that the internal variable can be rewritten (i.e., the buffer is empty), and

55

5 IMPLEMENTING REO INTO PROMELA

state 1 to indicate that it cannot (i.e., the buffer is full). The connector assigns
to v the value taken from i if it is in the empty state 0, and puts to the port o

the value from v if it is in the full state 1. The two states symbolic constraint
automaton is simpler than the equivalent single-state automaton (see Figure 5.2),
as it avoids guards on the internal variable and the use of an extra special value
⊥ to indicate that a variable is ‘empty’. This connector corresponds to the Fifo1
channel in Reo. Finally, the rightmost automaton has a non-trivial guard labeling
each of its two transitions. If the predicate P holds when a value is available at
an input port i, then the connector behaves like a synchronous connector and
passes the input value to the output port o. Otherwise, ¬P holds on the value of
i and the value is taken from i and lost, meaning that the component waiting for
synchronization on port i is released.

0

o := i

(a) Synch connector

0 1

v := i

o := v

(b) Fifo 1 connector

0

P (i)→ o := i

¬P (i)→ skip

(c) Filter connector

Figure 5.1: Three examples of symbolic constraint automata

An execution of a symbolic constraint automaton (Q, q0, I, O, V,−→) is given
in terms of an infinite sequence (σi)i∈N of assignments of values to variables for
which we can find an infinite sequence of states (qi)i∈N starting from the initial
state q0 and such that for all n ≥ 0 there is a transition qn

α−→ qn+1 satisfying
the following three conditions:

1. the interpretation of the guard g(α) holds in the assignment σn,

2. for all x ∈ O(α)∪V (α) the value σn+1(x) is the x-projection of the evaluation
of the variables on the left-hand side of the assignment in a(α) in the state
σn, that is σn+1(x) = σn(a(α)x);

3. for all variables not involved in the guarded action α, the value does not
change, that is, σn+1(y) = σn(y) for all y ∈ (I∪O∪V)\(I(α)∪O(α)∪V (α)).

Consecutive assignments σn and σn+1 in a sequence represent the change of the
internal and observable state of the system. The above conditions guarantee that

56

5.2 Symbolic constraint automata

the guard must hold on to the values assigned to input variables in the current
state before an action is taken, and that, after the execution of an action, the
output variables and the local variables involved in the action change according
to the action taken. The last condition guarantees that only variables that occur
freely in an action get modified (for example by the environment) when executing
that action. Note that after the execution of an action, input variables in I(α)

change to a new value assigned by the environment. Dually, the value assigned to
an output variable before the execution of an action is presumably taken by the
environment before the new output value, assigned by the action, overwrites it.
In other words, a transition in symbolic constraint automata, likewise constraint
automata, assigns values to its output and local variables while being constrained
on input and local variables. Also, the environment is allowed to change the values
assigned to other variables not declared in the automaton, i.e., any variable in
V \ (I ∪O ∪ V). This represents the effect of an independent action executed by
the environment in parallel with the automaton.

Local variables are used to store externally unobservable information. Only
communication via input and output ports should be observable. Therefore, we
define the semantics of a symbolic constraint automaton as the set of all possible
executions (σi)i∈N defined as above, but projected only on their input and output
variables. As usual, two automata are then equivalent if they have the same
semantics, i.e. they generate the same set of finite traces of assignments of input
and output variables.

v = ⊥ → v := i

v = ⊥ → v := i

v ̸= ⊥ → o, v := [v,⊥]

Figure 5.2: An equivalent symbolic constraint automaton for the Fifo 1 connector

Consider the symbolic constraint automaton in Figure 5.1.(b). The following
is an example of a sequence of assignments recognized by that automaton:

[i = 1, o = 0, v = 0][i = 2, o = 0, v = 1][i = 2, o = 1, v = 1][i = 3, o = 1, v = 2] · · ·

Initially, the automaton is in state 0, for example, with value 1 on the input port i. The
values of the two other variables do not matter at this point, and can be seen as previous
values that remained stored but not accessible. By taking the transition to the state
1, the connector assigns the value of i to the internal variable v. The output port o is

57

5 IMPLEMENTING REO INTO PROMELA

blocked and cannot be changed while executing this transition, while the input port is
free and here is assumed to get the value 2 from the environment. When taking the next
transition the content of the variable v is put in the port o, the input is blocked and the
cycle can start again. For each such a sequence we can find an equivalent sequence for
the automaton in Figure 5.2, by using the extra value ⊥ to check if the buffer is empty

[i = 1, o = 0, v = ⊥][i = 2, o = 0, v = 1][i = 2, o = 1, v = ⊥][i = 3, o = 1, v = 2] · · ·

Conversely, for every sequence representing the behavior of the automaton in Figure 5.2
we can find an equivalent sequence of assignments for the automaton in Figure 5.1.(b)
by copying the previous value of v instead of ⊥, and assigning an arbitrary initial value
for v. In other words, the two automata are equivalent. Note that the initial state of the
automaton in Figure 5.2 forces the connector to start with an empty buffer. Without
this initial transition, the two automata would not be equivalent as one could start to
output on port o the value stored in v.

The central operation on symbolic constraint automata is synchronization via their
shared ports which are input ports for one automaton and output ports for another.
Shared ports become internal local variables in the automaton resulting from the com-
position. No other synchronization by shared variables is allowed, as local variables
are only visible within the scope of a connector. Our definition is similar in spirit to
that of [57], but, in addition to that work, our symbolic constraint automata could be
automatically translated to Promela. The explicit input and output variables, and the
guarded command structure on the label impose some prerequisites on the product to
avoid inconsistencies. In fact, we define composition only for pairs of symbolic constraint
automata A1 and A2 such that (1) no local variables are in common, and (2) for every
pair of actions α1 and α2 of the two automata, they synchronize only on some input
ports used by one action and some output ports used by the other, but not on both
input and output ports at the same time. More formally, we assume that, for all actions
α1 labeling a transition in A1 and α2 labeling a transition in A2, the following holds

I(α1) ∩O(α2) ̸= ∅ ⇒ O(α1) ∩ I(α2) = ∅

or, equivalently,

O(α1) ∩ I(α2) ̸= ∅ ⇒ I(α1) ∩O(α2) = ∅

We call two automata with these two properties consistent. The intuition behind syn-
chronizing two guarded actions α1 and α2 is that their data value should agree on their
shared ports so that it can flow from the output of one to the input of the other actions.
The above condition together with the fact that the two automata do not share local
variables - and thus V (α1) ∩ V (α2) = ∅ - in fact impose a causality in the execution of
their actions as input is needed to update the internal state and to be passed to output

58

5.2 Symbolic constraint automata

ports. Next, we define formally the synchronization of two guarded actions α1 and α2.
Assume I(α1) ∩O(α2) = ū ̸= ∅, and let

α1 = P1(x̄1 ∪ ū)→ ȳ1 := t1(z̄1 ∪ ū) and α2 = P2(x̄2)→ ȳ2 ∪ ū := t2(z̄2) .

where x̄1 ∪ ū is the sequence of input and local variables occurring in P1, z̄1 ∪ ū

the sequence of input and local variables occurring in t1, and ȳ2 ∪ ū the sequence of
output and local variables occurring at the left-hand side of the assignment a(α2). Note
that variables in ū cannot occur in P2 nor in t2 as they are output variables for α2.
Similarly, they cannot occur in ȳ1, as they are input variables for α1. By definition of
guarded action, they can occur in P1. Under these circumstances, we can define the
synchronization α1 ⊗ α2 as the following guarded action

α1 ⊗ α2 = P1[t2ū/ū] ∧ P2 → ȳ1, ȳ2 ∪ ū := t1[t2ū/ū], t2(z̄2).

Since the guard P2 does not depend on output variables, we can evaluate it. If it holds
we can then assign the values returned by t2 to the output and local variables at the
left-hand side of a(α2). The values assigned to the shared output values ū are then
used in P1 as constant replacing the input variables ū. If this predicate holds, then
the same substitution is applied to t1 so that we can compute the assignment. Note
that I(α1 ⊗ α2) = (I(α1) \ O(α2)) ∪ I(α2), O(α1 ⊗ α2) = O(α1) ∪ (O(α2) \ I(α1)),
and V (α1 ⊗ α2) = V (α1) ∪ V (α2) ∪ (I(α1) ∩ O(α2)). The definition of α1 ⊗ α2 for the
symmetric case when O(α1) ∩ I(α2) ̸= ∅ is similar.

Definition 5.2. Without loss of generality, let Q1 and Q2 be two disjoint sets of
states, and V1 and V2 be two disjoint sets of local variables. The composition of
two consistent symbolic constraint automata A1 = (Q1, q1, I1, O1, V1,−→1) and A2 =

(Q2, q2, I2, O2, V2,−→2) is defined as the automaton A1 ▷◁ A2 = (Q, q, I, O, V,−→)

where:

• Q = Q1 ×Q2,

• q = ⟨q1, q2⟩,

• I = (I1 \O2) ∪ (I2 \O1),

• O = (O1 \ I2) ∪ (O2 \ I1),

• V = V1 ∪ V2 ∪ (I1 ∩O2) ∪ (I2 ∩O1), and

• −→ is defined by the following rules:

q1
α1−−→1 q

′
1 and q2

α2−−→2 q
′
2 and IO(α1) ∩ IO(A2) = IO(α2) ∩ IO(A1)

⟨q1, q2⟩
α1⊗α2−−−−→⟨q′1, q′2⟩

q1
α1−−→1 q

′
1 and IO(α1) ∩ IO(A2) = ∅
⟨q1, q2⟩

α1−−→⟨q′1, q2⟩
q2

α2−−→1 q
′
2 and IO(α2) ∩ IO(A1) = ∅
⟨q1, q2⟩

α2−−→⟨q1, q′2⟩

59

5 IMPLEMENTING REO INTO PROMELA

where IO(Ai) = Ii ∪Oi and IO(αi) = I(αi) ∪O(αi), for i = 1, 2.

Similar to the join operation on constraint automata the above synchronization oper-
ation on symbolic constraint automata synchronizes actions on shared ports and allows
independent parallel behavior for actions with no shared ports. The composition of con-
sistent symbolic constraint automata is symmetric and, when defined, associative. Here
are some other examples of symbolic constraint automata in below.

The primary distinction between symbolic constraint automata and the constraint
automata defined in Chapter 3 lies in the transition label. In the former, synchro-
nization relies on the ports used in the guarded action, whereas the latter explic-
itly declares which ports must synchronize. Furthermore, symbolic constraint au-
tomata are imperative and not declarative, utilizing variables as memory. For example,
the constraint automaton for the synchronous connector Sync{A?, B!} is denoted as

{A?, B!}, B = A , and the corresponding symbolic constraint automaton removes the
ports and changes the "equal to" to an "assignment" B := A , explicitly declaring
B as an output port and A as an input. Similarly, the Synchronous Drain connector
SyncDrain{A?, B?} is modeled by the constraint automaton {A?, B?} , ensuring
both inputs are lost synchronously when data arrives at both ports. The correspond-
ing symbolic constraint automaton is , where the guard of the action is always
true but involves the ports A and B, while the action is just a "skip." This way, input
ports A and B are forced to synchronize, but their received values are lost. The con-
nector Non − deterministicMerger{A?, B?, C!} has one output port C that receives
data from either input port A or B arbitrarily. The symbolic constraint automaton is
C := A C := B . The connector Replicator{A?, B!, C!} receives the data from the
input port A and copies it into the two output ports B and C. The symbolic constraint
automaton representing it is B,C := A,A . A Transformer{A?, B!} outputs on port
B the data received at input A after applying a function f . The symbolic constraint au-
tomaton is similar to the one for the synchronous channel, except for the use of f in the
action of its unique transition B := f(A) . The connector PairMerger{A?, B?, C!}
looks similar to Non− deterministicMerger{A?, B?, C!}, except that the output ports
C receive an ordered pair formed by the data of A and B, respectively: C := ⟨A,B⟩ .
Finally, the connector V ariable{A?, B!} contains an internal variable τ , that can store
input data from A that is available to the output port B. Note that reading from and

writing to τ can happen separately or contemporaneously:

B, τ := τ, A

τ := A

B := τ

.

60

5.3 From Reo to Promela

5.3 From Reo to Promela

Building on the work presented in [77], we translate Reo connectors into Promela
programs. We use symbolic constraint automata as a specification of Reo connectors,
and use the resulting Promela process as a protocol to coordinate messages exchanged
through the ports of other processes.

5.3.1 Implementing Reo ports in Promela

In Promela, a Reo port is expressed as a structure, as shown in Listing 5.1. It
contains two Promela channels of capacity one: a data and a trig channel. A port in
Reo is directional. We call putter the component that puts an element on the port, and
getter the component that gets an element from the port. Operations on a port are
blocking unless both a put and a get are performed at the same time. In which case the
port fires, and the data is forwarded from the putter to the getter.

The data channel in the Promela implementation of a Reo port is used to forward the
data message from the putter to the getter, while the trig channel is used to synchronize
the putter and the getter. The reason of using two channels of size one instead of a
rendezvous channel of size zero is that it is impossible in Promela to query whether a
process is currently waiting on a rendezvous channel. We will later see that querying
the state of a port is necessary for the protocol to coordinate the boundary processes.

Listing 5.1: definition of a Reo port in Promela
1 typedef port {
2 chan data = [1] of {Data};
3 chan trig = [1] of {int}; }

As described in Listing 5.2, two actions can be performed on a port: put and take.
The function call put(q, a) atomically fills the data channel of q with the datum a, and
blocks on the trig channel, waiting to synchronize with the component on the output
side of q. The integer variable x is used to get a value from the trig channel, and hence
to synchronize to it; the actual value communicated does not matter.

The function call take(q, a) atomically notifies, by outputting on the trig channel,
that there is a component willing to take data, and blocks on the data channel, until a
datum can be read and stored into the variable a. The integer value of −1 written into
the synchronization channel is arbitrary, as trig is used only for signaling.

Listing 5.2: put and take functions
1 inline put(q,a) {
2 int x;
3 q.data!a;
4 q.trig?x }

61

5 IMPLEMENTING REO INTO PROMELA

5

6 inline take(q,a) {
7 q.trig!-1; q.data?a }

We describe two temporal properties in Listing 5.3 that reflect the synchronous
behavior of a port. We say that a port fires whenever a data is exchanged between the
putter and the getter. If a port does not fire, it is silent. In the case of an implementation
of a port with two buffers, the firing property occurs whenever a port has both an input
and an output request, i.e. both channels are full. We then know, due to the definition of
the put and take operations, that the putter and the getter will be released from blocking
on the port, and the getter will get the value from the data channel. We define some
macros in Listing 5.3 to encode firing and silent property of port p as an LTL property.

Listing 5.3: Macros for firing of ports
1 #define p_fires (
2 !(len(p.data) == 0) && !(len(p.trig) == 0) &&
3 X((len(p.data) == 0) || (len(p.trig) == 0)))
4

5 #define p_silent (! p_fires)

Ports are not typed as input or output, as that depends on the component/connector
that uses them. We have seen in the previous section that within a connector, a port
used in a guard must be an input port, whereas a port used on the left-hand side of the
assignment of an action is an output port.

5.3.2 Implementing Reo connectors in Promela

Next we describe how to implement Reo connectors expressed as symbolic constraint
automata in Promela. A symbolic constraint automaton is encoded, in Promela, as a
proctype. A Promela proctype has a name, a signature, and a body. The Spin model
checker executes each proctype of its main concurrently, while taking into account block-
ing operations on channels. As we will see, input/output variables of a symbolic con-
straint automaton lead to shared port channels in Promela between the protocol and
the boundary processes.

Let (Q, q0, I, O, V,−→) be a symbolic constraint automaton. Input ports I and
output ports O are passed as parameters to the Promela process resulting from the
translation. As expected, local variables in V are declared locally to the Promela process,
i.e., within theproctype body. For each port p ∈ I∪O, a new local variable _p is declared
so as to store the value taken if p is an input or passed if p is an output. We use mytype

as a generic type for input, output, and memory variables.
Each state in Q is encoded as a special value for the state variable. The state variable

therefore models the control flow between the states of the automaton. For simplicity,

62

5.3 From Reo to Promela

and without loss of generality, here we assume that q0 = 0 is the initial state and
Q = {0, 1, . . . , n}.

We use the Promela non-deterministic do− od construct to model concurrent appli-
cations of transitions of a symbolic constraint automaton. The guard (respectively, the
command) of the statements in the do− od results from the translation of the guard
(respectively, the command) in the action labeling the corresponding transition. As a
result, each guard in the do− od loop contains a clause that controls that variable state

has the value corresponding to the pre-state, and updates the value to the post-state
in the command. The Promela language allows for non-destructive reads of channel’s
value: the operation A.data?< _a> assigns to the variable _a the value stored in channel
A.data without actually removing the values from that channel. However, in Promela,
this operation cannot be executed in a guard within a do− od statement. We circumvent
this problem by using a control variable fi for each transition ti ∈−→ of the automaton.
The variable fi can take two values. By default, fi is 1. If the synchronization constraint
of the guard of the i-th transition is satisfied but the data constraint is not, then the
value of fi is set to 0. Every transition, if taken successfully, resets all the fi to 1.

More formally, for a symbolic constraint automaton (Q, q, I, O, V,−→) we show in
Listing 5.4 its translation to Promela:

Listing 5.4: Promela code generated for a symbolic constraint automaton
1 proctype SCA(port P){
2 ∀p ∈ P , mytype _p;
3 ∀v ∈ V , mytype v;
4 ∀f ∈ {f1, . . . fk}. bool f = 1;
5 int state =0;
6 do
7 :: transition 1;

8
...

9 :: transition k;
10 od }

Here Q = {0, . . . , n}, q = 0, P = I ∪O, v = V , and the remaining overlined variables
are just consecutive sequences of them. For every (input or output) port p ∈ P there is
a variable _p associated with it on which we store the value communicated via the port.
The control variable state is used to store the current state of the automaton (thus it
ranges between 0 and n), and variables {f1, . . . fk} are used when evaluating predicates
on values received at input ports. Here k is the number of transitions. Let q α−→ q′ be the
j-th transition of the symbolic constraint automaton, with 1 ≤ j ≤ k, and remember that
the input ports in α are I(α) = {i1, . . . , im} the output ports are O(α) = {o1, . . . , ol},
and the local variables occurring in α are {v1, . . . , vh}. Then transition j in the listing
above is given by

63

5 IMPLEMENTING REO INTO PROMELA

1 state ==q && fj==1 &&
∧

i∈I(α)

Full(i.data) &&
∧

o∈O(α)

Full(o.trig)

2 -> Atomic { i1.data?<_i1 >; . . .; im.data?<_im >;
3 if
4 :: P(i1,. . .,im,v1 ,. . .vh) == True -> take(i1,_i1);. . .; take(im,_im);
5 A(_i1 ,. . .,_im ,v1,. . .vh , _o1 ,. . .,_ol);
6 put(o1,_o1);. . .; put(ol,_ol);
7 state=q’;f1=1;. . .; fk =1;
8 :: else -> fj=0;
9 fi }

where P is a function encoding the guard of α and A is a function encoding the assignment
action of α. When the control variables are not used in a transition (for example because
there is no predicate on input variables), then it is possible to simplify the generated
Promela code by removing such control variables. Similarly, when there is only one
state, the variable state can be removed as its value is constant.

We list several examples of translation of symbolic constraint automata to Promela.
Listing 5.5 gives the Promela code resulting from the translation of the symbolic con-
straint automaton in Figure 5.1.(a) that models the Sync connector.

Listing 5.5: Promela code generated for a Sync connector
1 proctype Sync(port A; port B){
2 mytype _a; mytype _b;// internal values in Sync
3 int state = 0; // initial state
4 do
5 :: state ==0 && Full(A.data) && Full(B.trig)
6 -> Atomic{take(A, _a); _b =_a; put(B,_b); state = 0};
7 od }

Here the parameter port A is the input port of the Sync channel, and port B is the
output port. There are no local variables except those associated with the ports, and the
control variable state that we will discuss later. The condition full(A.data)&&full(B.trig)

is satisfied if and only if there is an ongoing put(A, a) operation on the input port A

and an ongoing take(B, x) operation on the output port B. In this case, the Sync process
atomically takes the data from port A, stores it in a local variable _a, executes the action
of the associated transition of the symbolic constraint automata, i.e. _a = _b, and puts
the value in port B. Of course, the single state automaton of the Sync connector could
have been modeled by a much simpler Promela process without such an extra variable,
but, as for the other connectors, we keep it for generality.

Listing 5.6 shows the Promela code for a two-state symbolic constraint automaton
of the Fifo1 Reo connector given in Figure 5.1.(b).

Listing 5.6: Promela code generated for Fifo1 connector
1 proctype Fifo1(port A; port B){
2 mytype _a; mytype _b; int state = 0;

64

5.3 From Reo to Promela

3 mytype v; //v is the buffer of the Fifo 1 connector
4 // _a ,_b,v are the input , output and local variables , respectively
5 do
6 :: Full(A.data) && state ==0
7 -> Atomic{take(A,_a); v=_a; state =1};
8 :: Full(B.trig) && state ==1
9 -> Atomic{_b=v; put(B,_b); state =0};

10 od }

Besides an input and an output port, we also have a local variable v for the buffer
of the Fifo1 connector. The control variable state is initially set to 0, corresponding to
the initial state of the automaton.

This time, the do− od loop contains two transitions, one for each transition of the
symbolic constraint automaton. One statement corresponds to the transition that moves
the control from state = 0 to state = 1 if there is a pending data on the input port A.
The value is then taken and assigned to the local variable v. The other statement
corresponds to the transition that moves the control from state = 1 to state = 0 when
there is a pending request at the output port. In which case, the stored value is forwarded
to the output port B.

Next, we show how to translate the Filter connector of Figure 5.1.(c) that, unlike the
other two examples, contains two transitions labeled with a non-trivial predicate on the
input variable. The Promela code of the Filter connector is presented in Listing 5.7.

Listing 5.7: Promela code generated for Filter connector
1 proctype Filter(port A; port B){
2 mytype _a; mytype _b; int state =0; bool f1=1; bool f2=1;
3 do
4 :: state ==0 && f1==1 && Full(A.data) && Full(B.trig)
5 -> Atomic{ A.data ? <_a >;
6 if
7 :: P(_a)== True -> take(A,_a); _b=_a; put(B,_b); state =0; f1=1; f2=1;
8 :: else -> f1=0;
9 fi }

10 :: Full(A.data) && state ==0 && f2==1
11 -> Atomic{ A.data ? <_a >;
12 if
13 :: P(_a)== False -> take(A,_a); state =0; f1=1; f2=1;
14 :: else -> f2=0;
15 fi }
16 od }

Initially the control variables f1 and f2 associated with the two transitions are set to
true, meaning that any transition can be potentially selected. As before, the satisfiability
of each guard depends on the presence of some data at the input port A and the presence
of some signal at the output port B. The predicate P is evaluated only after one of the
two statements of the do− od loop is chosen. If true, the action of the transition is

65

5 IMPLEMENTING REO INTO PROMELA

taken, and the two control variables f1 and f2 are reset to true. Otherwise, the value
of the associated control variable fi is set to false and the control goes back to the loop
statement. In this way the i-th transition associated with fn will not be selected anymore,
even if all other predicates in the guard of the statement are true (for i = 1, 2), which
removes some undesirable livelocks.

We leave the detailed description of the encoding in Promela of a composition op-
erator mimicking that of symbolic constraint automata but just give an example below
corresponding to the composition of the Promela code generated for the Fifo1 and the
Filter connectors in Listings 5.6 and 5.7, respectively.

Listing 5.8: Promela code generated by composing Filter(port A;port B) with
Fifo1(port B;port C)

1 proctype FilterFifo1(port A; port C){
2 mytype _a; mytype _c;
3 mytype v; //v is the buffer of the Fifo 1 connector
4 mytype b; //b is a shared port that becomes a local variable
5 int state =0; // there are 1 x 2 states in total
6 bool f1=1; bool f2=1; bool f3=1; //there are 3 transitions in total
7 do
8 :: state ==0 && f1==1 && Full(A.data)
9 -> Atomic{ A.data ? <_a >;

10 if
11 :: P(_a)== True -> take(A,_a); _b=_a; v=_b; state =1; f1=1; f2=1; f3=1;
12 :: else -> f1=0;
13 fi }
14 :: state ==0 && f2==1 && Full(A.data)
15 -> Atomic{ A.data ? <_a >;
16 if
17 :: P(_a)== False -> take(A,_a); state =0; f1=1; f2=1; f3 =1;
18 :: else -> f2=0;
19 fi }
20 :: state ==1 && f3==1 && Full(C.trig)
21 -> Atomic{_c=v; put(C,_c); state =0; f1=1; f2=1; f3 =1;};
22 od }

5.3.3 Other Reo connectors in Promela

In this part, we show more examples of standard Reo connectors encoded as symbolic
constraint automata and translated to Promela. The symbolic constraint automata of
these Reo connectors are shown in the end of Section 5.2, it is important to remark
that the control variables fi do not introduce fairness or priority among the transitions,
they only control the flow so that Promela will not choose the same transition again
with a guard that has already been evaluated to false. Below in Listing 5.9 shows the
translation of SynchronousDrain, which has two input ports A and B, without any output
ports. SynchronousDrain process automatically takes two data items from A and B when

66

5.3 From Reo to Promela

the condition full(A.data)&&full(B.data) is satisfied, there is no data item be forwarded
to any ports.

Listing 5.9: Promela code generated for Synchronous Drain connector
1 proctype Syncdrain(port A; port B){
2 mytype _a; mytype _b;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.data) -> Atomic{take(A, _a); take(B, _b); state = 0;};
6 od }

The process of Non− deterministicMerger indicates two loops in do− od, it either
chooses to forward the data from port A to C when full(A.data)&&full(C.trig) is satisfied,
or choose to forward the data from port B to C when full(B.data)&&full(C.trig) is satisfied.
The state has not been changed and remains to be state = 0. The code is presented in
Listing 5.10.

Listing 5.10: Promela code generated for Non-deterministic Merger connector
1 proctype Merger(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(C.trig)
6 -> Atomic{take(A, _a); _c = _a; put(C, _c); state = 0;};
7 :: Full(B.data) && Full(C.trig)
8 -> Atomic{take(B, _b); _c = _b; put(C, _c); state = 0;};
9 od }

Listing 5.11 denotes the Replicator connector in Promela code, the process exe-
cutes replication of the input, then forward these two value to output port B and C

if full(A.data)&&full(B.trig)&&full(C.trig) is satisfied.

Listing 5.11: Promela code generated for Replicator connector
1 proctype Replicator(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig) && Full(C.trig)
6 -> Atomic{take(A, _a); _b = _a; _c = _a; put(B, _b); put(C, _c); state = 0;};
7 od }

Transformer process has a user defined inline function f which is distinct from other
processes. In Listing 5.12, f has a parameter x where x here indicates the value _a after
ongoing operation take(A,_a), then be forwarded to output port B when the condition
full(A.data)&&full(B.trig) is satisfied.

Listing 5.12: Promela code generated for Transformer connector

67

5 IMPLEMENTING REO INTO PROMELA

1 proctype Transformer(port A; port B){
2 mytype _a; mytype _b;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig)
6 -> Atomic{take(A, _a); _b = f(_a); put(B, _b); state = 0;};
7 od
8 inline f(x){
9 % user defined

10 }

The PairMerger connector has a ⊗ connected to each channels, which here in Promela
implemented by _c = ⟨_a,_b⟩, after taking data from input port A and B, when con-
ditions be satisfied. It sends the result _c to the output port C at the end. The code is
in Listing 5.13.

Listing 5.13: Promela code generated for PairMerger connector
1 proctype PairMerger(port A; port B; port C){
2 mytype _a; mytype _b; mytype _c;
3 int state =0;
4 do
5 :: Full(A.data) && Full(B.data) && Full(C.trig)
6 -> Atomic{take(A, _a); take(B, _b); _c = <_a, _b >; put(C, _c); state = 0;};
7 od }

Listing 5.14 supports a three-choice Variable process. The variable τ could be up-
dated by the inputs of A when there is a input in A, output port B receives τ when
there is a pending request at B. However, B can only receive the not updated τ in one
transition.

Listing 5.14: Promela code generated for Variable connector
1 proctype Variable(port A; port B){
2 mytype _a; mytype _b; mytype τ ;
3 int state = 0;
4 do
5 :: Full(A.data) && Full(B.trig)
6 -> Atomic{ take(A, _a); _b = τ ; τ = _a; put(B, _b); state = 0;};
7 :: Full(A.data) -> Atomic{ take(A, _a); τ = _a; state = 0;};
8 :: Full(B.trig) -> Atomic{ _b = τ ; put(B, _b); state = 0;};
9 od}

5.4 A case study: verifying a SDN

In this section, we apply our translation of symbolic constraint automata to Promela
on a software defined network model, and use the Spin model checker to verify several

68

5.4 A case study: verifying a SDN

temporal properties. We use the model of software defined networks introduced in [33],
where all components of an SDN are represented as Reo connectors, and thus as symbolic
constraint automata. The model is stateful and reflects the SDN separation between
switches, controllers, and network. For each part, we briefly describe the Promela code
obtained from the Reo components, and how we model the basic data flow operations
of an SDN: PktIn, PktOut, FlowMod.

5.4.1 A Promela SDN model via symbolic constraint au-
tomata

According to the model of SDN presented in Chapter 4, we got the generated Promela
code for the Reo model of a switch Switch(P0,P1,P2,Q0,Q1,Q2) with two input ports
P1 and P2, two output ports Q1 and Q2 as shown in Figure 5.3. As explained in the
last chapter, those ports form the interface of the switch with the rest of the network.
Additionally, the switch interface is extended with an input port P0 and an output port
Q0 that serve to exchange flow messages with the SDN controller that we can model
directly in Promela code. Flow messages from the controller Controller(P,Q) to the
switch are exchanged synchronously, via the synchronous connector Sync(P,P0). On
the other direction, flow messages are exchanged asynchronously via a queue connector
Queue(Q0,Q) from the port Q0 of the switch to the port Q of the controller.

Figure 5.3: A simple example of an SDN architecture

Informally, the symbolic constraint automaton of a switch consists of a single state
and few transitions labeled by the following type of guarded actions:

• α0 is executed when a FlowMod message is received from the input port P0. The
action here consists in updating the flow table according to the information sent
by the controller.

• α1 is enabled when a PktOut message is received by the switch from port P0. The
resulting action forwards a packet to a subset (possibly empty) of output ports of

69

5 IMPLEMENTING REO INTO PROMELA

the switch. This subset is contained in the PktOut message from the controller.

• α2 is enabled when one of the input port P1 or P2 of the switch receives a nor-
mal packet that is then forwarded to a subset (possibly empty) of output ports
according to the current information in the flow table of the switch.

The Promela code of the switch obtained via the translation from a symbolic constraint
automaton is presented (in a simplified manner for reason of space) below. The full code
and the results of its verification can be found in [32].

1 proctype Switch(port P0 , P1 , P2, Q0, Q1, Q2){
2 Message m; // either FlowMod or PktOut
3 Packet p;
4 Flowtable ft_old; ft_new
5 bool f1=1; f2=1; ...;fn=1; // control variables
6 int state =0; // automaton current state
7 do
8 // packet from P1 to Q1: this is a packet -forwarding α2 type of action
9 :: state ==0 && f1==1 && Full(P1.data) && Full(Q1.trig)

10 -> atomic{ take(P1 ,p); Match(ft_old ,p,[Q1]); put(Q1,p); f1 =1;... fn=1}
11 // packet from P1 to both Q0 (PktIn message to controller) and Q2:
12 // this is a α2 type of action
13 :: state ==0 && f2==1 && Full(P1.data) && Full(Q0.trig) && Full(Q1.trig)
14 -> atomic{ take(P1 ,p); Match(ft_old ,p,[Q0 ,Q1]); put(Q0,p);put(Q1 ,p);
15 f1 =1;... fn=1 }
16 // message from P0 to Q1 and Q2: this is an PktOut α1 type of action
17 :: state ==0 && f3==1 && Full(P0.data) && Full(Q1.trig)&& Full(Q2.trig)
18 -> atomic{ P0.data?<m>;
19 if
20 :: m==<p,[Q1,Q2]> -> take(P0 ,m);put(Q1,p);put(Q2 ,p); f1 =1;... fn=1;
21 :: else -> f3=0;
22 fi }
23 // message from P0 to update flow table: this is a FlowMod α0 type of action
24 :: state ==0 && f4==1 && Full(P0.data)
25 -> atomic{ P0.data?<m>;
26 if
27 :: m==<p,ft_new > -> take(P0,p); update(ft_old ,ft_new); f1 =1;... fn=1;
28 :: else -> f4=0;
29 fi }
30 // Similar actions follows here
31 ...
32 od}

Each transition synchronizes some of the actors in a network (hosts, switches, con-
trollers). Packet forwarding is done on the basis of the result of a function Match() of
the Reo transformer channel between ports D and E in Figure 4.1. Another non-trivial
function used here is update(), belonging to the transformer between ports F and E in
Figure 4.1 and used to model a FlowMod operation.

In our case study as described in Figure 5.3, the network consists of a switch pro-
grammed by a controller, where hosts A and B produce packets, and hosts C and D

70

5.4 A case study: verifying a SDN

consume them. We abstract from the specific behaviour of the hosts and model them
simply as producers and consumers of messages, respectively.

1 proctype HostA(port A){
2 packet p1;
3 atomic{p1.header = 11; p1.ipt = P1; put(A,p1)}
4 }

Host A produces a single packet that is sent to port P1. Here we assume a packet
contains a header (with information such as the tcp/ip source or destination), and the
port of the switch it is supposed to be received directly from the host.

1 proctype HostB(port B){
2 packet p2;
3 p2.ipt = P2;
4 do
5 :: atomic{p2.header = 11; put(B,p2)};
6 :: atomic{p2.header = 22; put(B,p2)}
7 od
8 }

The above Promela code for host B is similar to that of A, except that host B

repeatedly sends packets with header 11 or 22 to port P2. Hosts C and D are consumers
that repeatedly execute the take action from their ports C and D respectively. Once a
packet is received, they update their own local counter storing the number of packets
with header 11 that they receive. Below we show the Promela pseudocode of host C,
that of D is similar.

1 proctype HostC(port C){
2 packet q1;
3 int counter =0;
4 do
5 :: atomic{take(C,q1); if q1.header ==11 -> counter ++;}
6 od
7 }

Finally we give the Promela code of the controller. The controller takes a packet from
port Q if available. If the packet originally passed through port P1 then the controller
adds a rule in the flow table to forward similar messages (i.e., coming from the same
address as in the header) to port Q1. Packets with header 22 need to be forwarded
to both ports Q1 and Q2 (thus to hosts C and D). Finally, the following firewall is
installed: packets with header 11 that have passed through port P2 must be dropped.
Note that the controller will insert rules into the flow table of the switch to execute
the above commands, and will apply the action itself only the first time a packet does
not match any rule in the flow table, i.e., the first time the packet is forwarded to the
controller.

Listing 5.15: an example of controller

71

5 IMPLEMENTING REO INTO PROMELA

1 proctype Controller(port Q, P){
2 Flowtable ft;
3 Packet p;
4 Message m;
5 do
6 :: Full(Q.data) && (Q.data.ipt==P1) ->
7 take(Q, p);
8 ft.cond = p.header; ft.action = [Q1];
9 // create a rule: if match header then forward to Q1

10 m=<p,ft >; put(P, m); // update flow table
11 m=<p,[Q1]>; put(P, m); // Forward p to port Q1;
12 :: Full(Q.data) && (Q.data.header ==11) && (Q.data.ipt==P2) ->
13 // insert a firewall rule: no message from P2
14 take(Q,p);
15 ft.condition = p.header; f.action = []; // drop package if comes from P2
16 m=<p,ft >; put(P,m); // update flow table
17 :: Full(Q.data) && (Q.data.header ==22) ->
18 take(Q, p);
19 ft.cond = p.header; ft.action = [Q1 ,Q2];
20 // create rule: if match header then forward to Q1 and Q2
21 m=<p,ft >; put(P, m); // update flow table
22 m=<p,[Q1,Q2]>; put(P, m); // Forward p to port Q1 and Q2;
23 od
24 }

Port Q of the controller is linked to the output port of the queue connector
Queue(Q0,Q) which may store at most 10 packets. This number is reasonable as we
do not expect many PktIn messages to be forwarded to the Controller.

5.4.2 Verification and simulation

Figure 5.4 describes the scenario for which host A sends a packet with header 11

after host B sent a packet with header 22. Here the packet of A will arrive to C by first
passing through the controller, and the packet from host B will arrive to both hosts C

and D. The LTL properties associated with this scenario are

prop1 {[]((p1.header==11 && p1.ipt==P1)→<>(q1.header==11))}
/* satisfied */

prop2 {[]((p2.header==22)→(<>(q1.header==22)&&<>(q2.header==22)))}
/* satisfied */

Intuitively they says: The message of host A will receive B (no loop holes) and
always, if B sends a 22-message, then both eventually C receives a 22-message (but not
necessarily the same one), and eventually the same for D. Assuming that only B sends
22-messages then this means that every messages with header 22 received from hosts C

or D is originated from host B.
Figure 5.5 describes the scenario when the packet from host A is received at the

switch. As the flow table of the switch is empty, the switch forwards the packet to the

72

5.4 A case study: verifying a SDN

Figure 5.4: Packets from A and B arriving both to C

controller. However, the packet with the same header arriving from B is dropped. Of
course, if the packet B arrives at the switch after the updates of the flow table due to
the first message from host A, then the packet of B will match the flow table and be
redirected to host C, violating the firewall rule. We can verify this formally in Spin via
the following LTL property:

prop3 {<>(msg1.header==11)&&(<>[](HostC_counter==1))} /* unsatisfied */

This property together with the code of the three hosts A, B and C, states that there
is a state in the system where a packet with header 11 is received (either from host A

or B) and eventually C receive a message with header 11 and no other such a message
afterwards.

Figure 5.5: Are packets from B with header=11 always dropped?

73

5 IMPLEMENTING REO INTO PROMELA

We use the Spin model checker to verify the three LTL properties, with the follow-
ing parameters: Extra Compile-Time Directives is set to 20700; the number of hash-
functions in Bitstate mode to 5, and the Physical Memory Available to 102400 Mbytes.
We used depth-first search with partial order reduction and Bitstate/Supertrace in order
to achieve better performance [50]. The results of the verification are shown in Table 5.1.

Property Errors
found

Time
usage

Depth
reached

States
stored

States
matched

Transi
-tions

State-
vector

prop1 0 10.5s 479 214292 660445 1058424 2088 byte
prop2 0 8.64s 479 152057 373096 767167 2088 byte
prop3 2520 14.3s 500 183077 924560 1346688 2184 byte

Table 5.1: Verification results

Figure 5.6: Simulation result

We simulate the results of prop3 with the first founded error written in the “.trail"
file, the result of this simulation is shown in Figure 5.6, where we see the packet forwarded
by host B (here internally called prod2) to the switch (here called Protocol1). The flow
table in the switch is updated successfully (see in action 25!11, 2) but soon the packet
is dropped (see in action 25?11, 2). Before C (cons1) receives any other packets, the one
sent from host A matches the new flow table (header = 11) and thus will be dropped
(in action 1?11, 0) instead of being forwarded to C.

74

5.5 Related work

5.5 Related work

The first automata based model for Reo connectors appeared in [13] where con-
straint automata have been introduced. The authors define a product on constraint
automata that implements the Reo composition operator on timed-data streams seman-
tics [7]. Since then, several other operational models followed, such as Büchi automata
of records [54], guarded automata [19], and Reo automata [99]. Those models extend
constraint automata by allowing some context-dependent reasonings. See [58] for an
overview of the main operational and denotational models of Reo. Constraint automata
with memory and their composition have been thoroughly studied in [57]. Our work is
based on a similar model and semantics, but while we aim for finding a subset of it that
can be easily implemented, the work in [57] concentrates on the efficient computation of
the main composition operator.

Also, model checking of Reo connectors has been a very active area of research. Vere-
ofy is a dedicated model checker developed explicitly to verify linear time and branch-
ing time temporal properties of Reo connectors expressed as constraint automata [12].
Vereofy, however does not allow for explicit data to be handled in the automata and
properties. For this reason, in [66] the authors encode Reo connectors as communicating
processes, and use mCRL2 to check some behavioral properties. The model checker
mCRL2 [22], is based on the Algebra of communicating processes [11] with properties
expressed as formulas in the modal µ-calculus with strong and branching bisimulation
as equivalences as well as strong and weak trace equivalence. UPPAAL is a model
checker [16], for linear time temporal property of networks of timed automata [3]. UP-
PAAL can perform reachability analysis, as well as simulation and error reports. See [28]
for a recent use of UPPAAL to verify behavioral properties of real time Reo connectors.
Our work differs from previous works on model checking Reo Connector in the following
points. First of all, Spin is a data sensitive model checker. Contrary to Vereofy, we
can verify temporal properties on connectors that involve data values and local memory.
Second, our use of the Spin model checker is designed specifically to verify LTL proper-
ties of Reo connectors, contrary to the strong bisimulation equivalence used in proving
equalities in the mCRL2 encoding of Reo channels in [66]. Thus is more in line with
Vereofy and the semantic basis of Reo that is trace based, without branching proper-
ties. In addition, the encoding of Reo described in [66] does not encompass memory.
Finally, our translation into Promela differs from the above works in the use of atomic
statements in order to enforce synchrony. Of course extension of our work to real time
systems and UPPAAL are imaginable, and can be pursuit in the near future. All in all
our work extends the literature by providing another tool chain to compile connectors
to Promela and use the Spin model checker.

In [53], the authors check network consistency properties in the model of SDN topol-

75

5 IMPLEMENTING REO INTO PROMELA

ogy by using UPPAAL with the goal to detect an inconsistency or verify a flow against
real-time properties. An SDN model extended with synchronization barriers is consid-
ered in [1]. Their approach is based on encoding an SDN model into the ABS language,
and use the SYCO tool to verify properties about safety policies and network loops.
[35] uses Flow-LTL to specify the data flow in an extension of Petri nets. Concurrent
updates and packet coherence in the network are then checked with the hardware model
checker ABC.

5.6 Conclusion

In this chapter, we presented a full automatic translation from symbolic constraint
automata to Promela. Symbolic constraint automata are a characterization of constraint
automata with memory that can be used to compactly model almost all connectors of the
coordination language Reo. In particular, we restrict ourselves to an executable subset
of Reo, assuming predicate and actions to be decidable. On the one hand, symbolic
constraint automata cannot characterize relational constraints involving, for example,
output ports in predicates. On the other hand, our symbolic constraint automata and
their Promela translation easily allow for a generalization to lossy connectors by testing
the non-presence of a trigger in an output port before executing a lossy transition, as
shown, for example, in the following Promela code for a lossy synchronous connector:

1 proctype LossySync(port A; port B){
2 mytype _a; mytype _b;// internal values in Sync
3 int state = 0; // initial state
4 do
5 :: state = 0 && Full(A.data) && Full(B.trig) ->
6 Atomic{take(A, _a); _b =_a; put(B,_b); state = 0};
7 :: state = 0 && Full(A.data) && Empty(B.trig) ->
8 Atomic{take(A, _a); state = 0};
9 od }

The translation to Promela is interesting in itself as we had to circumvent the problem
of Promela not allowing for checking complex predicates on input ports in a guard of a
statement. This is however a crucial feature for Reo connectors, that we have taken care
of via delayed input and using control variables for recording transitions already taken
(and thus guaranteeing not only liveness, but also fairness in the transition selection
process).

As a proof of concept, we run our translation for the verification of an SDN model
in Spin. The intuitive and modular Promela code is internally translated to a large
transition system with more than 200.000 states and 100.000 transitions. It would be
interesting to look for an abstraction mechanism at the level of symbolic constraint
automata to help reduce the state explosion. An obvious candidate is the combination

76

5.6 Conclusion

of partial order reduction techniques at the symbolic level of the automaton itself.

77

5 IMPLEMENTING REO INTO PROMELA

78

