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Chapter 4

A Reo Model of SDNs

In this chapter, we present a formal model of SDNs based on the Reo lan-
guage. Using Reo we regard components in an SDN as constraints imposed on
the interactions among the parties engaged in the processing of network packets.
Starting with a small set of simple constraints, we obtain a declarative descrip-
tion of switches in the data plane as well as controllers in the control plane. The
composition of these components is supported through other simpler connectors
which give a global description of the topology of the network. Using the con-
straint automata semantics of Reo, the result is a compact finite state model for
SDN particularly suited for formal verification, a direction that we will explore in
the next chapter.

To scale up to handle large networks, our resulting SDN model is compositional
in the sense that the meaning of the entire computer network is obtained by
composing that of the individual models of the switches, network topology, and
controllers. Furthermore, the resulting model is independent of the (possibly
infinite) sequences of packets traversing the network.

4.1 Modeling the data plane

To begin with, we describe the switches of the data plane as Reo circuits,
and we translate them into their corresponding constraint automaton. Then, we
describe two examples of controllers managing a simple network with two switches.
The goal is to send packets from one host to another. We conclude by combining
the automata of these two layers with a network topology.
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4 A REO MODEL OF SDNS

In the context of software-defined networking, a packet refers to a discrete
unit of data that is transmitted over a network. It contains the actual data being
sent, along with a header that contains the control information necessary for its
routing and handling within the SDN infrastructure. We see a packet as a record
π : Fields → Data assigning fields from a finite set of Fields to data in Data.
We denote a packet by π = [f0 = d0, f1 = d1, ..., fn = dn], and use the notation
π.f to denote the value of the field f of the packet π.

We abstract from the concrete information contained in a packet, such as
the source and destination IP addresses, protocol information, and source and
destination ports. To cater to the latter, we assume that the set Fields includes
a field IP t for storing the identity of the input port of the switch where the
packet is received and OPt for the output port of the switch where the packet is
forwarded. This information is crucial for making forwarding decisions within the
SDN network.

4.1.1 The Reo connector of a switch

As packets traverse the network, SDN switches perform specific actions on each
packet based on its header information, such as forwarding the packet to specific
ports or modifying its headers. Controllers can dynamically program these actions
based on their global view of the network. Figure 4.1 introduces the Reo connector
representing a switch with an interface consisting of input ports {P0, P1, ..., Pn}
and output ports {Q0, Q1, ..., Qm}. Here both n and m are greater than or equal
to 0 so that a switch has always at least two ports: P0 and Q0. Port P0 is used
to receive messages from the controller (or controllers) supervising the switch,
whereas port Q0 is meant for sending packets to the controller. All other ports
are connected to other switches or open to the environment for communication
with hosts. The input ports receive packets, and the output ports send packets.

We can describe the behavior of the Reo connector representing a switch using
three scenarios.

1. The first one is when a packet π is received from a host or another switch.
In this case, the input port receiving the packet is Pi for some 1 ≤ i ≤ n.
The transformer AddIpt_i of the channel connected to Pi assign π.IP t to i

and outputs to node A a triple (FlowMsg, π, ∅). The first component of the
triple is the tag FlowMsg indicating that π is an ordinary network packet
with no side effect on the flow table. The last component is the subset of
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4.1 Modeling the data plane

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod
PktOut

RmvAddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Figure 4.1: The Reo circuit of a switch

output ports of the switch where the packet needs to be forwarded. The
above triple is paired with the current flow table stored in τ and received
by the filters FM and Msg. These filters check the first component of the
triple. In our case, only the filter Msg will succeed, and will pass the triple
(FlowMsg, π, ∅) together with the table τ to the transformer Mtc via node
D. This transformer matches the packet π against the table τ , executes
the corresponding field assignment modifying π into a new packet π′ and
outputs the pair (π′, F ) to node E. Here the set F contains all output ports
where the packet π′ needs to be forwarded, according to the action of the
matching pair in the flow table τ .

The filters Seli regulate the forwarding by outputting the pair (π′, F ) to
node Ri if i ∈ F . Note that the same pair may be duplicated to many
nodes, and in case F = ∅ it will be dropped. Also, If 0 ∈ F then the
packet is forwarded to the controller. From the node Ri the transformer
Cuti receiving as input the pair (π′, F ) will output the packet π′, removing
the information about the forwarding ports.

2. The second situation is when a PktOut message from the controller is re-
ceived at the input port P0. A PktOut message is a triple ⟨FlowMsg, π, F ⟩
consisting of a tag FlowMsg as in the previous case, a packet pi and a set of
output ports F where π needs to be forwarded. Only the filter PktOut lets
this triple flow to the node G, where a transformer receives it, removes the
tag, and outputs the pair (π, F ) to node E. The selection and forwarding
of π to each port in F are as before.
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4 A REO MODEL OF SDNS

3. The third and last situation is when a FlowMod message from the controller
is received at the input port P0. Also in this case it consists of a triple
⟨t, B,A⟩, but unlike the previous cases, this message is meant to update the
table stored in τ . More specifically, B is a Boolean condition on Fields

matching the pair of τ to be updated, and A is the action for field updating
and packet forwarding. The tag t can be either add, remove or modify to
add (B,A) on top of table τ , remove the first pair (b, a) of τ with b implying
B, or to modify the first pair (b, a) of τ with b implying B into the new pair
(b, A). Note that in the case of t = remove, the action A does not play any
role.

Of the two filters with input at P0 only the filter FlowMod will succeed,
so the triple ⟨t, B,A⟩ can be paired with the current flow table τ and reach
node C. Here the filter Msg will fail but FM will succeed, passing all
⟨t, B,A⟩ and τ to the transformer Upd. This transformer will update the
table τ as described in the triple ⟨t, B,A⟩, and will output a new table τ ′.
The latter is stored as the new current table by the variable channel with
input node F .

4.1.2 Constraint automata for switches

While the Reo circuit of a switch may look complicated, its actual constraint
automaton is rather simple. It consists of only one state (because all channels
used have one single state) and three types of transitions (see Fig. 4.2).

{P0?},C0

{Pi?} ∪ {Qj !|j ∈ F},C2
{P0?} ∪ {Qj !|j ∈ F},C1

Figure 4.2: Constraint automaton of a switch

The conditions C0, C1 and C2 are:

1. C0: P0 = ⟨t, B,A⟩ ∧ t ̸= Msg ∧ τ• = Upd(⟨τ, P0⟩);
2. C1: P0 = ⟨Msg, π, F ⟩ ∧

∧
j∈F Qj = π;

3. C2: Mtc(⟨τ, ⟨Msg, π[i/Ipt], ∅⟩⟩) = ⟨π′, F ⟩ ∧ τ• = τ ∧
∧

j∈F Qj = π′.

Condition C0 specifies when a FlowMod message is received by a switch so
that the flow table is updated. Transitions labeled by condition C1 or C2 depend
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4.2 Modeling the control plane

on the subset of output ports F received as input from P0 or assigned after a
matching action. This means there is a concrete transition for each possible
subset of the output ports, but only one will eventually be chosen. Condition C1

concerns FlowMsg messages received by a controller, while condition C2 defines
the handling of a packet received from a host or another switch.

If we assume that in a switch the number of input ports is n and that the
number of output ports is m, then the resulting constraint automata will have
one state and 1 + 2m + (n− 1) ∗ 2m transitions.

Each switch in the data plane can be considered as a Reo connector interacting
with others only via its input and output ports, while all other nodes and memory
cells of the components are hidden. For example, while too large to depict here,
the constraint automaton of the data plane composed of two simple switches
connected by a synchronous channel as described in Figure 4.3 consists of one
state, two memory cells (one for each switch flow table) and 26 transitions, which
can be generated using automated tools [6].

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Figure 4.3: Two connected switches

O1 I O2

Controller

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Figure 4.4: A controller and two
switches

4.2 Modeling the control plane

The SDN control plane contains a set of controllers. Controllers are typically
programmed using various programming languages to define network policies by
handling events and configuring flow rules, e.g., matching criteria and actions.
Each controller behaves as a reactive system, responding to PktIn messages re-
ceived from switches by sending back either PktOut or FlowMod messages. We
abstract from any full-fledged controller programming language and assume they
are specified as Reo connectors, and thus with a behavior described using con-
straint automata. Input ports and output ports represent the connection of a
controller with the switches under its control. Controllers can communicate with
each other to allow for synchronization. Figure 4.4 shows a simple example of a
controller with two switches.
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4 A REO MODEL OF SDNS

We proceed with an example. The controller described in Figure 4.5 guarantees
a flow of messages from the host connected to port P1 to the host connected to
port Q2. It is connected to two switches through the output ports O1 and O2, and
receives PktIn messages from the two switches via the input ports I. By chasing
the circuit we see that the controller updates the flow table of both switches every
time a new packet is received by switch 1 that does not match any condition of the
table. The topmost sequencer regulates first the sending of a FlowMod message to
O1, then to O2 and finally, it allows for the sending of the corresponding PktOut

to O1.
The second controller shown in Figure 4.6, has a similar specification: it allows

for flowing a packet from P1 to Q2, but each time it reacts to incoming PktIn

messages by updating the flow tables of both switches without waiting to receive
a PktIn message from the second switch.
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Figure 4.5: Reo circuit of controller 1

We combine the constraint automata of each controller, of the network
topology, and all the switches to get a complete model of an SDN. Typically,
the rate of a controller to receive messages from a switch is higher than the
time needed by the controller itself to process the message and react accordingly.
Therefore we use a Queue channel between the output ports of each switch and
the input port of the controller (instead of synchronous channels {Q0, I} and
{Q′

0, I} in Fig. 4.4). For the connections between switches and from controller
to switches we use synchronous channels, but, of course, other channels with
delay could be easily used instead. The Reo queue connector and its associated
constraint automata with memory are described below.
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4.2 Modeling the control plane
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Figure 4.6: Reo circuit of controller 2

p q
• ...

m
•

The Reo Queue connector behaves as a
FIFO1, but it has an unbounded internal
buffer m. As such, data can always be
received from the input port p and stored
in the buffer. If the buffer is non-empty
then the first element received by p flows
from the buffer to the output port q.

{p?}, m• = m · p

{q!}, q ·m• = m

Both Reo circuits of the controllers described in the example above guarantee
packets flowing from one host to another, but they are implemented differently
and their automata are language-distinguishable. For example, when controller 1
receives a PktIn message, it sends a FlowMod message to switch one and another
FlowMod to switch two so that a packet can pass the second switch directly without
needing to wait for the table to be updated. Controller 2 however, every time
receives a PktIn message, sends a FlowMod message only to the switch from which
it received the message, with a consequence the updating of the flow tables of each
switch happens only when a packet passes through it.

The constraint automata for controllers in Figure 4.5 and Figure 4.6 are shown
in Figure 4.7 and Figure 4.8, respectively. Both automata start from the initial
state 1 and always move to the state 2 when they receive a PktIn message from
the first switch. Receiving a PktIn message from the second switch changes the
state to 5 to the first controller and 4 to the second controller. They send either
one or two FlowMod messages to update the table of one or two switches, and
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4 A REO MODEL OF SDNS

then both send PktOut messages to let the packet continue its flowing to the host.
After that, both automata move back to the initial state and are ready to react
to new incoming messages.

1start

2

3

4

5 6

PktIn

F lowMod F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.7: Constraint automaton for controller 1

1start

2 3

4 5

PktIn

F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.8: Constraint automaton for controller 2

4.3 SDN models for two controller algorithms

In this section, we combine the data plane and control plane (as in 4.1 and
4.2) together with the channel Queue. Since we have two different models of the
controller (in Figure 4.5 and Figure 4.6), below shows two algorithms for each
controller.

Network :
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4.3 SDN models for two controller algorithms

Swith : S1 , S2
Cont r o l l e r : C1
Connection : S1 .Q1 −> S2 . P2
In_port : S1 . P1
Out_port : S2 .Q2

Cont r o l l e r 1 :
Def PktIn ( pkt ){
IF pkt . i npor t = In_port ( S1 )

Out = Out1 ; SwtP = Q1 ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action1 = "Fwd(Q1) " ;
Action2 = "Fwd(Q2) " ;
FlowMod (<Add , Match , Action1 >) to Out1 ;
FlowMod (<Add , Match , Action2 >) to Out2 ;

ELSE
Out = Out2 ; SwtP = Q2 ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action1 = "Fwd(SwtP ) " ;
FlowMod (<Add , Match , Action1 >) to Out ;

FI
}

PktIn ( pkt ) ;
PktOut (Msg , pkt , Action1 ) to Out

The constraint automaton of the whole SDN model by compiling Controller
1 is in Figure 4.9. In the automaton, each state has five loop transitions with
conditions:

1. {P1}, packet enter into the Queue of switch 1;
2. {P1}, packet enter into the Queue of switch 2;
3. {P1}, packet drop in the switch 1;
4. {P1}, packet drop in the switch 2;
5. {P1, Q2}, packet pass through the switch 1 and switch 2.

The initial state 1 chooses either switch 1 or switch 2 for receiving PktIn

message, then the controller sends a FlowMod message to the chosen switch for
installing a certain rule in it, after sending another FlowMod message to the alter-
native switch, the controller sends a PktOut message to the chosen switch. For
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4 A REO MODEL OF SDNS

Network :
Swith : S1 , S2
Cont r o l l e r : C1
Connection : S1 .Q1 −> S2 . P2
In_port : S1 . P1
Out_port : S2 .Q2

Cont r o l l e r 2 :
Def PktIn ( pkt ){
IF pkt . i npor t = In_port ( S1 )

Out = Out1 ; SwtP = Q1 ;
ELSE

Out = Out2 ; SwtP = Q2 ;
FI
}

PktIn ( pkt ) ;
Match = "tcp_dst = pkt . tcp_dst " ;
Action = "Fwd(SwtP ) " ;
FlowMod (<Add , Match , Action >) to Out ;
PktOut (Msg , pkt , Action ) to Out

example, if the first PktIn message comes from switch 1, the specific conditions
of this automaton are:

1. PktIn: q1 = q•1 · PktIn;
2. FlowMod: τ•1 = Upd(⟨τ1, ⟨t, b, Act1⟩⟩), t ̸= Msg;
3. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
4. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩;

To note q1 means the memory of Queue in switch 1, τ1 means the flow table in
switch 1, τ2 means the flow table in switch 2, q2 means the memory of Queue in
switch 2. If the first PktIn message comes from switch 2, the specific conditions
of this automata are:

1. PktIn: q2 = q•2 · PktIn;
2. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
3. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩.
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4.3 SDN models for two controller algorithms
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Figure 4.9: The automatons for the SDN with controller 1

The constraint automaton of the whole SDN model by applying controller 2
is in Figure 4.10.

1start

2 3

4 5
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F lowMod

PktOut

PktIn

F lowMod

PktOut

Figure 4.10: The automatons for the SDN with controller 2

Similar to the first algorithm, each state in the Fig 4.8 has five loop transitions,
the conditions of these loops are the same, the difference is controller only installs
one rule in the flow table of the switch each time when it receives a PktIn message.
If the first PktIn message comes from switch 1, the specific conditions of this
automaton are:

1. PktIn: q1 = q•1 · PktIn;
2. FlowMod: τ•1 = Upd(⟨τ1, ⟨t, b, Act1⟩⟩), t ̸= Msg;
3. PktOut: PktOut = ⟨Msg, π, SwtP ⟩;
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4 A REO MODEL OF SDNS

If the first PktIn message comes from switch 2, the specific conditions of this
automaton are:

1. PktIn: q2 = q•2 · PktIn;
2. FlowMod: τ•2 = Upd(⟨τ2, ⟨t, b, Act2⟩⟩), t ̸= Msg;
3. PktOut: Q2 = π ∧ PktOut = ⟨Msg, π,Q2⟩.

It is easy to see these two algorithms are very similar, both in program and
automata. However they are distinguishable in the language, e.g., for the loop
above in these two automata, algorithm 1 has two FlowMods in sequence, but
algorithm 2 has only one FlowMod between PktIn and PktOut.

4.4 Related work

The recent interest in the application of formal methods to software-defined
networks started with VeriCon [14], an interactive verification system based on
first-order logic to model admissible network topologies and network invariants.
Similar to our model is a finite state machine model of SDN introduced in [113].
In this work model checking is possible via a translation to binary decision dia-
grams, under a similar assumption to ours: controllers are described as finite-state
machines. Our approach however is based on a declarative description of both
controllers, switches, and network topology as a Reo circuit, that is automatically,
and compositionally, translated into a finite automaton.

Different than our declarative approach, [2] proposes an actor-based modeling
to verify concurrent features of SDN via the ABS tool suite. The use of automata
in our work instead of actors makes it easier to specify real-time and other quan-
titative properties of SDN. We do not explore this direction in this paper, but
we leave it for future work. Variation of regular expressions has been very suc-
cessful in modeling network programming languages [90, 100, 4]. In particular,
NetKAT offers a sound and complete algebraic reasoning system with an inter-
esting coalgebraic decision procedure. However, NetKAT only models a stateless
snapshot of the data plane traversed by a single packet. There is no update of
flow tables and no multiple packages are possible. Also, TLA+ [72] has been used
to model the behavior of SDN but in a very restrictive manner allowing only a
single switch [61].

Formal models are used not only to verify properties of an SDN such as consis-
tency of flow tables, violation of safety policies, or forwarding loops, but also for
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finding flaws in security protocols using CSP and the model checker PAT [110].

4.5 Conclusion

In this chapter, we presented a Reo model of SDN, based on a novel semantics
for constraint automata with memory, recently studied in [57]. The difference is
in a neater treatment of the values in the memory before and after the execution
of a transition. The model is stateful and allows concurrency at the level of
controllers but also at the level of the packets. The model can immediately be
used for verification of quantitative and qualitative properties of SDN, such as
consistency of flow tables, violation of safety policies, or forwarding loops. In
the next chapter, we show how this model can be used for verification through
a translation of Reo into the language Promela of the model checker Spin. In
the future, we plan to verify these properties by using tools like ReoLive [29], or
mCRL2 [65], which are part of the Reo framework [89]. Another line of research
easily supported by our model is the development of simulation and visualization
tools for packets flowing into the network.
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