
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508

Chapter 3

Reo and constraint automata

After having introduced SDNs in Chapter 2, we now turn to Reo, a coordina-
tion language that we will use in the next chapter to model SDNs. The advantage
of using Reo comes from its intuitive graphical syntax that comes equipped with
precise automata-based semantics. The emphasis in Reo is on data and synchro-
nization constraints, expressed by connectors, determining their behavior and
importance during composition. In fact, Reo has already been used for modeling
and analyzing a wide range of systems, including communication protocols [59],
workflow systems [85], and control systems [9].

3.1 A short introduction to Reo

Reo is a coordination language for the compositional construction of compo-
nent connectors [5]. Connectors in Reo are modeled as directed graphs describing
the way data flows through a system. The nodes of the graph are called ports
and can be used to connect a connector to other connectors. The behavior of a
Reo system is determined by the way these ports are connected together, as well
as the constraints that are imposed on the data flowing through the system. A
port that is used exclusively as the source of edges is called an input port and
represents an interface through which the connector receives data. Dually, a port
that is only the target of the edges of a connector is called an output port (or
sink), and represents an interface through which the connector offers data to the
environment. Ports that are both source and target of some edges of the con-
nector are "hidden" to the environment and have a ‘merge-replicate’ behavior: it

21

3 REO AND CONSTRAINT AUTOMATA

accepts data from one (chosen non-deterministically) of the target edges of the
connector and immediately sends it to all edges with the hidden port as a source.
Isolated ports do not have any behavior by themselves. Note that, being an input
or an output port is a property that depends on the connector, and in fact, when
composing connectors, the same port can be input for one and output for the
other.

Figure 3.1 shows the graphical representation of three simple Reo connectors:
(a) is an isolated Reo port p, (b) is a connector representing a channel where the
data flows from the input port p to the output port q under the constraints g, and
(c) is a connector with an unnamed internal port that enables the flow of data
from q to both q1 and q2 under some data constraints. Besides data constraints,
connectors specify also synchronization constraints that are visualized by using
two different types of edges: synchronous and asynchronous. Specifically, all the
connectors in this example use synchronous edges implying that flow between the
input and output ports of the connector is logically happening at the same time,
i.e. they synchronize.

p

(a) Port

p q

g

(b) Single channel connector

q

q1

q2

g1

g2

g2

(c) Multiple channel connector

Figure 3.1: Port, channel, and connector

Synchronization constraints in Reo are strict, meaning that they impose syn-
chronization between ports connected by synchronous edges, and nothing else.
No flow among other input and output ports belonging to a connector is allowed.
This is of importance when two connectors are connected, as data is only allowed
to flow between the common input and output ports, as well as on input or output
ports that belong to one but not to the other connector.

3.2 Constraint automata

Constraint automata are a formalism to describe the behavior of Reo con-
nectors and their composition [13]. Constraint automata can be thought of as
conceptual generalizations of finite state automata where data and synchroniza-

22

3.2 Constraint automata

tion constraints influence which transitions are enabled on a given state.
We assume given a finite set D (ranged over by d) denoting all possible data

that can be sent and received by Reo connectors, and a finite set P of ports names
ranged over by p, q. Here p ∈ P is a port of a connector (a different concept than
a port of a switch in an SDN). While later we will distinguish between input and
output ports, for simplicity, and following the original presentation [13] we do not
consider this difference here. Given a non-empty subset N ⊆ P of ports, we define
the set DC(N) by the following grammar::

g :: = true | p = d | g1 ∧ g2 | ¬g .

Here p = d is the basic constraint imposing the data d to be available at port p ∈
N . Basic constraints can be composed using the usual Boolean operation. Since
D is a finite set, we sometimes use p = q to denote the constraint

∧
d∈Data((p =

d) ∧ (q = d)). As usual, we write p ̸= d for ¬(p = d).

Definition 3.1 ([13]). A constraint automaton is a tuple (S,N,−→, S0) where

• S is a finite set of states,
• N ⊆ P is a finite set of ports,
• −→⊆ S × (N × DC(N)) × S is a transition relation such that s

P,g−−→ s′

implies P ̸= ∅ and g ∈ DC(P), and
• S0 ⊆ S is the set of initial states.

A transition s1
P,g−−→ s2 is enabled in state s1 when all ports in P have data

available (in the case of inputs) or no data (in the case of outputs). In this case,
the automaton moves to state s2 if all data constraints imposed by g are satisfied.

For example, the three automata corresponding to the connectors of Figure 3.1
are defined as follows

(a) A1 = ({s1}, {p}, ∅, {s1});

(b) A2 = ({s2}, {p, q},−→2, {s2}) with s2
{p,q}, g−−−−−→2 s2; and

(c) A3 = ({s3}, {q, q1, q2},−→3, {s3}) with s3
{q,q1,q2}, g1∧g2−−−−−−−−−−→3 s3.

The semantics of a constraint automaton describe how it behaves and evolves
over time. It is defined in terms of Timed Data Streams (TDS) [7] which associate
with each port an infinite sequence of events representing the data flowing through
the port and the time when this occurs. The transitions of the automaton then

23

3 REO AND CONSTRAINT AUTOMATA

define the constraints that the data must satisfy, whereas synchronization relates
to the time of the data flow at the synchronizing ports.

The composition of two constraint automata is a fundamental operation in the
formal modeling and analysis of systems using Reo. It describes how data flow
events of the two automata should align with each other.

Definition 3.2. The product of the two constraint automata A1 = (S1, N1,−→1

, S1,0) and A2 = (S2, N2,−→2, S2,0) with disjoint sets of states S1 and S2, is
defined as the automaton

A1 ▷◁ A2 = (S, N, −→, S0)

where S = S1 × S2, N = N1 ∪ N2, S0 = S1,0 × S2,0 and −→ is defined by the
following three rules:

s1
P1,g1−−−→1 t1 s2

P2,g2−−−→2 t2 and P1 ∩ N2 = P2 ∩N1

⟨s1, s2⟩
P1∪P2, g1∧g2−−−−−−−−−→⟨t1, t2⟩

s1
P1, g1−−−−→1 t1 and P1 ∩N2 = ∅

⟨s1, s2⟩
P1, g1−−−−→ ⟨t1, s2⟩

and
s2

P2, g2−−−−→2 t2 and P2 ∩N1 = ∅

⟨s1, s2⟩
P2, g2−−−−→ ⟨s1, t2⟩

Similar to the product automaton the above composition combines the states
of the two automata into pairs to represent the possible configurations of the
composed system. Common ports at each transition are matched based on their
names. This step ensures that the time of flow events of one automaton coincides
with the time of flow events of the other automaton. Also, the data coincides,
as data constraints of both automata must be valid. Data flow at disjoint ports
remains unchanged and happens in an interleaving fashion.

For example, the automata A2 and A3 above share only the port q. When
composing them, the behaviors at the other ports are unchanged, but the flow
of data at the common port q must be the same. The resulting automaton is
A1 ▷◁ A2 = ({⟨s2, s3⟩}, {p, q, q1, q2}, −→, {⟨s2, s3⟩}) with only one transition,
namely:

⟨s2, s3⟩
{p,q,q1,q2}, g∧g1∧g2−−−−−−−−−−−−−→ ⟨s2, s3⟩ .

Note that all four ports synchronize and that data in p must satisfy the same
constraints g ∧ g1 ∧ g2 as data at all other ports because it flows from p to q1

and q2 passing through q. Formally there is no direction in this flow, and all

24

3.2 Constraint automata

ports are still open to the environment, while it may be desirable for port q to be
restricted to further communication with the environment after a composition.
We will consider an extension addressing both points in the next section.

3.2.1 Constraint automata with memory

In many systems, the current behavior may depend on past events. Constraint
automata lack the ability to retain information about past inputs or data, which
can influence the current behavior of components. While this capability could be
recovered by adding more states to the automaton in the case of finite data, the
presentation of the automaton’s behavior would enormously suffer and the number
of states would increase exponentially. Moreover, in the presence of infinite data
adding states would not suffice. By incorporating memory, an automaton gains
the ability to become stateful by storing data in local internal variables. And these
variables can be utilized in constraints just as input or output ports in ordinary
constraints automata.

Next, we extend constraint automata by adding local variables to store data
as recently studied in [57]. Except for the existential quantifier in constraints
that could be easily added, the main difference with the approach below is a
neater treatment of the values in the memory before and after the execution of a
transition.

In addition to the set D of data and P of ports as used in constraint automata,
we now assume another disjoint finite set M of memory cells ranged over by m.
Further, let F be a set of function symbols and P a set of predicate symbols. Each
predicate symbol and each function symbol comes with an arity, the number of
arguments it expects. A term is defined as follows:

t :: = d | p | m | m• | f(t, ..., t)

The idea is that p denotes the value at the port p, m evaluates the value stored
in the memory cell before the execution of a transition, and m• to the value
immediately after the execution of the transition. Evaluation of functions is as
usual. Terms are used in constraints that are defined by the following predicate
formulas:

ϕ :: = ⊤ | p = t | m = t | m• = t | P (t, ..., t) | ϕ ∧ ϕ | ¬ϕ

25

3 REO AND CONSTRAINT AUTOMATA

The constraint p = t denotes the equality between the value passing through the
port p, and the value obtained by evaluating the term t; m = t is the equality
between the value stored in the memory m before evaluating the constraint and
the value denoted by t; and m• = t is the equality between the value stored in
the memory m immediately after the evaluation of the constraint and the value
denoted by t. The others are just the usual constraints.

In order to define the satisfaction of constraints, we assume the existence of
a function f̂ :Dn → D for each f ∈ F of arity n, and a subset P̂ ⊆ Dm for each
predicate symbol P ∈ P of arity m. For fixed sets of input ports I ⊆ P, output
ports O ⊆ P and hidden ports H ⊆ P, the evaluation of constraint is defined by
using the function α:I ∪O ∪M→ D⊥, and an environment η:H → D⊥ assigning
values to hidden ports. α is used for the visible components of a Reo connector.
Here α(p) represents the value passing through port p unless α(p) =⊥ denotes
the absence of data flow through port p. Similarly α(m) denotes the value stored
in the memory cell m.

We denote by At the set of all atoms α. Note that m• is not a part of an atom,
because it refers to the value of m after the evaluation of a transition. Therefore
we need pairs of atoms, one for the current values stored in memory cells, and
another for storing the side effect of an evaluation, i.e., the value of a memory cell
after the evaluation. Evaluation of guards is defined inductively as follows:

α1α2 |=η ⊤
α1α2 |=η p = t iff α1(p) = JtKηα1α2

α1α2 |=η m = t iff α1(m) = JtKηα1α2

α1α2 |=η m• = t iff α2(m) = JtKηα1α2

α1α2 |=η P (t1, ..., tn) iff ⟨Jt1Kηα1α2
, ..., JtnKηα1α2

⟩ ∈ P̂

α1α2 |=η ϕ1 ∧ ϕ2 iff α1α2 |=η ϕ1 and α1α2 |=η ϕ2

α1α2 |=η ¬ϕ iff α1α2 ̸|=η ϕ

Finally, we define the evaluation of a guard without hidden ports as follows:

α1α2 |= ϕ if and only if there is η such that α1α2 |=η ϕ.

26

3.2 Constraint automata

Here JtKηα1α2
denotes the value of the term t and is defined inductively by:

JdKηα1α2
= d

JpKηα1α2
=

{
α1(p) if p ∈ I ∪O

η(p) if p ∈ H

JmKηα1α2
= α1(m)

Jm•Kηα1α2
= α2(m)

Jf(t1, ..., tn)Kηα1α2
= P̂ (Jt1Kηα1α2

, ..., JtnKηα1α2
)

We are now ready for the definition of constraint automata with memory cells
describing operationally the behavior of a Reo connector.

Definition 3.3. A constraint automaton with memory is a tuple
(S, I,O,H,M,−→, S0) where S is a finite set of states with S0 ⊆ S the
set of initial states, I,O,H ⊆ P are sets of ports known by the automaton,
M ⊆ M is the set of memory cells, and −→ is a transition relation with
s

N,ϕ−−→ s′ denoting a transition from a state s to s′ synchronizing a set of ports
N ⊆ I ∪O ∪H under the data constraint ϕ. We assume that the ports appearing
in ϕ are a subset of N and the memory cells occurring in ϕ are a subset of M .

An execution of a constraint automaton is described by means of infinite
strings [55] in Atω. An infinite string α · w is an execution starting from the
state s, denoted by α ·w ∈ E(s) if and only if there is a transition s

N,ϕ−−→ s′ such
that the following three conditions hold:

1. ∀p ∈ I ∪O, p ̸∈ N iff α(p) =⊥;

2. w = α′ · w′ and αα′ |= ϕ;

3. w ∈ E(s′)

By the above definition, a constraint of a transition s
N,ϕ−−→ s′ is evaluated in

an execution α · w starting from a state s with respect to its first two atoms.
Furthermore, only the input and output ports in N fire, meaning that a value
passes through them as recorded by α, and the rest of the string w is an execution
of the target state s′.

Consider the following constraint automaton:

27

3 REO AND CONSTRAINT AUTOMATA

s0start s1

{p?}, m• = p

{q!}, m = q

{p?, q!, h}, m• = h ∧m = q ∧ h = p

Here the suffixes "?" and "!" on a port are just syntactic means for indicating
which ports belong to I and O respectively. The unmarked ports belong to H. An
example of an execution of the above automaton starting from s0 is the infinite
string:

[p = 1, q =⊥,m = 22] · [p = 3, q = 1,m = 1] · [p = 5, q = 3,m = 3]·
[p =⊥, q = 5,m = 5] · [p = 7, q =⊥,m = 33] · . . .

Note that the value of the memory of the second element of the string is equal
to the value at port p of the first element, and the value of port q of the second
element. Similarly for the value of p in the second element and the value of q and
the memory m in the third element.

The above automaton has the same executions from the initial state as the
following automaton without hidden ports.

s0start s1

{p?}, m• = p

{q!}, m = q

{p?, q!}, m• = p ∧m = q

While in general it is not always possible to remove all hidden ports without
modifying the set of executions, for simplicity and when there is no problem, in
the sequel we will simplify a constraint automaton by removing hidden ports and
obtaining an automaton with the same structure (states and transitions) and the
same executions from its initial state.

The language of a constraint automaton consists of the projection with respect
to the input and output ports of all executions starting from the initial state. It
represents the behavior of the automaton as visible from the environment. As
such, only input and output ports are visible, but not hidden ports or memory
cells. For example, the language accepted by the above two constraint automata is
the same (i.e., they are language equivalent) and it includes the following infinite

28

3.2 Constraint automata

string

[p = 1, q =⊥] · [p = 3, q = 1] · [p = 5, q = 3] · [p =⊥, q = 5] · · · .

3.2.2 Basic and more complex connectors

In the following table, we associate constraint automata with memory to a few
basic Reo connectors here described by means of their usual graphical represen-
tation [5, 65].

p q

The synchronous connector accepts data
from its input port p, and it passes syn-
chronously to its output port q.

{p?, q!}, p = q

p q

The synchronous drain has two input ports
p and q, from which it accepts any data, but
only when the two ports can be synchronized.
The data received as input is not important,
only ports’ synchronization matters.

{p?, q?}

p q

The lossy synchronous connector accepts
data from its input port p, it either passes
them synchronously to its output port q, or
loses them in the channel without any reason.

{p?, q!}, p = q

{p?}

p1

p2

q

The non-deterministic merger receives data
from either its input ports p1 or p2 and sends
it to the output port q synchronously. If data
is available at both input ports, only one of
them is chosen non-deterministically.

{p1?, q!}, q = p1

{p2?, q!}, q = p2

p

q1

q2

The replicator connector receives data from
its input port p and replicates it to both out-
put ports q1 and q2.

{p?, q1!, q2!},
q1 = p ∧ q2 = p

29

3 REO AND CONSTRAINT AUTOMATA

p q
•
m

The FIFO1 connector receives data from the
input port p if the internal buffer m is empty.
The data is stored in the buffer, which can
only contain at most one data item. When
m is full its content flows to the output port
q and it becomes empty. The behavior of a
similar connector with dots inside the box is
represented by the automaton with the other
state as the starting state.

{p?}, p = m•

{q!}, q = m

p q

f The transformer connector applies a function
f to a data item received through its input
port p, and synchronously offers the data re-
sulting from evaluating f(p) to it output port
q.

{p?, q!}, q = f(p)

p q

P

The pattern of a filter connector P ⊆ Data

specifies the type of data items that can be
transmitted through the channel. Any value
d ∈ P is accepted through its input port p

if the output port q can simultaneously dis-
pense d; all data items that do not satisfy P

are always accepted at the input p but they
are immediately lost.

{p?, q!},
q = p ∧ P (p)

{p?}, ¬P (p)

p1

q
p2

The pairing connector accepts two data items
through its input ports p1 and p2, and syn-
chronously output their pairing thorugh the
port q.

{p1?, p2?, q!},
q = ⟨p1, p2⟩

p q

m

The variable connector output the content of
m at the port q and update m with the data
at the input p. If only the input port is en-
abled then update m with the data received,
while if only the output port q is enabled,
then it sends the value of m to q and does
not change m.

{p?, q!},
m = q ∧m• = p

{p?},
m• = p

{q!}, m = q ∧m• = m

Note that the pairing connector is similar to a transformer but with two inputs

30

3.2 Constraint automata

and using as a function the pairing ⟨−,−⟩. In all automata in the table, we assume
that the ports known by each automaton are those used in the connectors.

We are now ready to extend the product of constraint automata given in the
previous section so as to consider different types of ports, internal local memory,
and restrictions of the ports used during synchronization. As before, the join
operation guarantees synchronization and the same data flow at common ports
but leaves the behavior at ports unknown to one of the automata unchanged.

Definition 3.4. Assume S1 ∩ S2 = ∅, M1 ∩M2 = ∅, H1 ∩ (I2 ∪ O2 ∪ H2) = ∅
and H2 ∩ (I1 ∪ O1 ∪H1) = ∅. The product of the two constraint automata A1 =

(S1, I1, O1,

H1, M1, −→1, S1,0) and A2 = (S2, I2, O2, H2, M2, −→2, S2,0) is defined as the
following automaton:

A1 ▷◁ A2 = (S, I,O,H,M,−→, S0)

where S = S1 × S2, S0 = S1,0 × S2,0, M = M1 ∪M2 I = (I1 − O2) ∪ (I2 − O1),
O = (O1− I2)∪ (O2− I1), H = (I1∩O2)∪ (I2∩O1)∪H1∪H2, and −→ is defined
by the following rules:

s1
N1,ϕ1−−−−→1 t1 s2

N2,ϕ2−−−−→2 t2 and Prt1 ∩ N2 = Prt2 ∩ N1

⟨s1, s2⟩
N1∪N2, ϕ1∧ϕ2−−−−−−−−−→⟨t1, t2⟩

s1
N1,ϕ1−−−−→1 t1 and Prt2 ∩ N1 = ∅

⟨s1, s2⟩
N1, ϕ1−−−−→ ⟨t1, s2⟩

and
s2

N2,ϕ2−−−−→2 t2 and Prt1 ∩ N2 = ∅

⟨s1, s2⟩
N1, ϕ1−−−−→ ⟨s1, t2⟩

Here Prt1 = I1 ∪O1, and Prt2 = I2 ∪O2.

Example 1. Figure 3.2 shows an example of a composition of a variable (on
the left) on ports {A?, B!} with a FIFO1 connector (second automata from the
left) acting on port {B?, C!}. The result is a new automaton with B as the
hidden port (the last automaton), which however is the language equivalent to
the automaton of a non-deterministic merger (in Figure 3.3 on the right) on ports
{A?, C!}. Initially, variable stores a value of m1, and FIFO1 starts with m2 = ⊥.

31

3 REO AND CONSTRAINT AUTOMATA

{A?, B!},

B = m1 ∧m•
1 = A

{A?}, m•
1 = A

{B!}, B = m1 ∧m•
1 = m1

▷◁

{B?}, m•
2 = B

{C!}, C = m2

=

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?, B}, B = m1,m
•
2 = B,m•

1 = A

{B}, B = m1,m
•
2 = B

{C!}, C = m2

Figure 3.2: The composition of two automata

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?, B}, B = m1,m
•
2 = B,m•

1 = A

{B}, B = m1,m
•
2 = B

{C!}, C = m2

≡

{A?},

m•
1 = A

{A?},

m•
1 = A

{A?}, m•
2 = m1,m

•
1 = A

m•
2 = m1

{C!}, C = m2

Figure 3.3: Removing hidden ports

Note that the port B is a hidden port in the resulting automaton because it is
an output port of one connector and an input port of the other. It is not hard to
see that the join operation is associative and commutative. The full conjunction
process is as follows.

Assume the first automaton is named A1, where the state in A1 is 1, the
transition above is t1, the right transition is t2, and the transition below is t3.
The second automaton is called A2, the first state from left is named 2, the second
state from left is 3, the transition from state 2 to state 3 is t4, the transition from
state 3 to state 2 is t5, then we have the following information:

For A1:
I1 = {A}, O1 = {B}, Q1 = {1}, q1 = 1, Prt1 = {A,B}, H = ∅,M1: m1 =

v

the transition t1: 1
N1,ϕ1−−−−→ 1, N1 = {A,B}, ϕ1: B = m1 ∧m•

1 = A

the transition t2: 1
N2,ϕ2−−−−→ 1, N2 = {A}, ϕ2:m

•
1 = A

the transition t3: 1
N3,ϕ3−−−−→ 1, N3 = {B, }, ϕ3: B = m1 ∧m•

1 = m1

For A2:
I2 = {B}, O2 = {C}, Q2 = {2, 3}, q2 = 2, Prt2 = {B,C}, H =

∅,M2: m2 = ⊥

32

3.2 Constraint automata

the transition t4: 2
N4,ϕ4−−−−→ 3, N4 = {B}, ϕ4: m

•
2 = B

the transition t5: 3
N5,ϕ5−−−−→ 2, N5 = {C}, ϕ5: C = m2

Applying to Definition 3.4, the composition of A1 and A2 is (Q, I,O,H,M,−→
, q0), where

Q = Q1 ×Q2 = {⟨1, 2⟩, ⟨1, 3⟩},

I = (I1 −O2) ∪ (I2 −O1) = ({A} − {C}) ∪ ({B} − {B}) = {A} ∪ ∅ = {A},

O = (O1 − I2) ∪ (O2 − I1) = ({B} − {B}) ∪ ({C} − {A}) = ∅ ∪ {C} = {C},

H = (I1 ∩O2) ∪ (I2 ∩O1) ∪H1 ∪H2 = ({A} ∩ {C}) ∪ ({B} ∩ {B}) ∪ ∅ ∪ ∅ = {B},

M = [m1 = v,m2 =⊥].

The transitions are defined as follows:

▶ t1 join with t4:
∵ N1 ∩ Prt2 = N4 ∩ Prt1 = {B},
∴ t1 join with t4: ⟨1, 2⟩

N6, ϕ6−−−−→ ⟨1, 3⟩,
N6 (i.e., N1∪N4) = {A,B}, ϕ6 = ϕ1∧ϕ4: B = m1∧m•

1 = A∧m•
2 = B

▶ t1 join with t5:
∵ N1 ∩ Prt2 = {B}, N5 ∩ Prt1 = ∅,
∴ t1 join with t5: ⟨1, 3⟩

N5, ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

▶ t2 join with t4:
∵ N2 ∩ Prt2 = ∅, N4 ∩ Prt1 = {B},
∴ t2 join with t4: ⟨1, 2⟩

N2,ϕ2−−−−→ ⟨1, 2⟩, N2 = {A}, ϕ2: m
•
1 = A

▶ t2 join with t5:
∵ N2 ∩ Prt2 = ∅, N5 ∩ Prt1 = ∅,
∴ t2 join with t5: ⟨1, 3⟩

N2,ϕ2−−−−→ ⟨1, 3⟩, N2 = {A}, ϕ2: m
•
1 = A,

⟨1, 3⟩ N5,ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

▶ t3 join with t4:
∵ N3 ∩ Prt2 = N4 ∩ Prt1 = {B},
∴ t3 join with t4: ⟨1, 2⟩

N7,ϕ7−−−−→ ⟨1, 3⟩,
N7(i.e., N3 ∪N4) = {B}, ϕ7:m

•
2 = B ∧B = m1 ∧m•

1 = m1

▶ t3 join with t5:

33

3 REO AND CONSTRAINT AUTOMATA

∵ N3 ∩ Prt2 = {B}, N5 ∩ Prt1 = ∅,
∴ t3 join with t5: ⟨1, 3⟩

N5,ϕ5−−−−→ ⟨1, 2⟩, N5 = {C}, ϕ5: C = m2

The list above has seven transitions after the conjunction, with regards to some
transitions that are overlapping, we keep one of them and remove the others. For
instance, the second transition of the list A1 ▷◁ A2 appears in the fourth and last
one, we only keep one transition as the result. Port B is removed in the final
automaton since it becomes the hidden port.

Example 2. As another more complex example, in Figure 3.4 we introduce a
three-input sequencer that regulates the flow of data from the input ports p1, p2,
and p3, in sequential order, one after the other. Similar sequencers can be defined
for any number of ports [41]. The connector is obtained by properly composing
three synchronous drain connectors (connecting p1 with i2, p2 with j2, and p3 with
k2), one non-deterministic merger (connecting j1 and j3 with j2) two replicators
(connecting i1 with i2 and i3, and k1 with k2 and k3), two FIFO1 connectors (one
from i3 to j1, and another from j3 to k1), and finally a FIFO1 connector from k3

to i1 with a buffer initially storing a token data.

p2p1 p3

i1

i2
i3

j1

j2

j3

k1 k2

k3

•
m1

•
m2

•

m3

Figure 3.4: A three-input sequencer

Starting from the constraint automata of the basic connectors we have given
above, and composing them according to Figure 3.4, we obtain the following
three-state constraint automaton, where we have removed all hidden ports.

34

3.2 Constraint automata

s1

s2

s3

{p1?} m•
1 = m3 {p2?} m•

2 = m1

{p3?} m•
3 = m2

35

3 REO AND CONSTRAINT AUTOMATA

36

