
Formal models of software-defined networks
Feng, H.

Citation
Feng, H. (2024, December 3). Formal models of software-defined networks.
Retrieved from https://hdl.handle.net/1887/4170508
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4170508
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4170508


Chapter 2

Software-defined Networks

In this chapter, we briefly introduce software-defined networks (SDNs) starting
from the idea behind SDNs and their benefits over traditional computer networks.
We also discuss a few protocols and concentrate on OpenFlow, a protocol that
enables the centralized control of network switches and allows for programmable
networking capabilities.

2.1 Traditional networking vs. SDN

Traditional computer network architectures are based on the seven layers of
the Open Systems Interconnection (OSI) model: the physical layer, the data link
layer, the network layer, the transport layer, the session layer, the presentation
layer, and the application layer. More specifically these layers describe how data
is transferred and received over a network. Each layer is accountable for carrying
out particular tasks related to sending and receiving data, whereas, for a message
to be delivered and received, all of the layers must be utilized.

The seven layers above provide a conceptual framework for understanding
network communication[20]. When considering the functional components and
responsibilities we then classify network components depending on the control
logic, the forwarding functionality, and where applications are executed. In gen-
eral, the primary function of a network is to ensure the transport of packets via
routing decisions and packet forwarding. The actual forwarding part of the net-
work is called the data plane, whereas the part controlling how this has to be
executed is called the control plane. In a traditional network, the control and

11



2 SOFTWARE-DEFINED NETWORKS

Figure 2.1: Structure of the switch in a traditional network

data planes are closely tied together with the application plane, see Figure 2.1,
as they are in charge of packet forwarding, building, and maintaining the routing
tables. In fact, within the OSI model[102], switches are typically in the data link
layer, and are responsible for forwarding packets by using physical addresses that
identify devices on a network, the so-called MAC addresses. But switches can
also have routing functionality and are instead positioned in the network layer.
As such, if the behavior of this network needs to be changed the switches have
to update their local control planes accordingly. This is even more difficult when
more and more network devices are employed since the control plane is highly
distributed without a global view of the network. As a result, it is very diffi-
cult to program network-wide decisions and even more difficult to verify their
correspondence against global requirements.

The solution of an SDN architecture is to separate the data plane from the con-
trol plane and the application plane[62], moving the latter two from the switches
to the network as shown in Figure 2.2. The advantage is a much simpler way to
regulate the network behaviour allowing for more flexible and dynamic network
management, as well as improved scalability and security. Since the data plane is
only responsible for packet forwarding, modifying the networks can now be done at
the application level, using software, thus explaining the name “software-defined”
networking.

In an SDN, the control plane consists of a few controllers that are responsible
for managing a large part of a network. Each controller can be configured to
decide how to transfer packets over the network based on a variety of factors,
such as traffic patterns, security policies, and service-level agreements.

One of the key benefits of an SDN is that it allows for more efficient use of
network resources because each controller can make routing decisions in real-time,
without the need to stop the forwarding process of the switches, for example by
reconfiguring the network logical structure in response to changing conditions,

12



2.2 Protocols for SDNs

Figure 2.2: SDN architecture

such as nodes or hardware link failures.

2.2 Protocols for SDNs

The architecture offered by SDNs simplifies the design and deployment of net-
work management tasks: the control plane is a logically centralized controller that
gathers information from the data plane and provides a global view to applica-
tions running on top of the controller. These applications make packet routing
decisions based on the global view and distribute these decisions to the data
plane via the control plane. There is a northbound interface (NBI) between the
application plane and the controller for permitting a specific entity of a network
to communicate with a higher-level entity, the interface is on the upper side of
the controller called the “northbound” interface. Different from the southbound
interfaces (SBIs) between controllers and the switches, NBIs are offered by the
controllers themselves and are vendor-dependent as there is no open standard
NBI.

On the contrary, the SBI supports communication between the control planes
and data plane and is typically subject to OpenFlow [82], a specific communi-
cations protocol developed by the Open Networking Foundation (ONF). While

13



2 SOFTWARE-DEFINED NETWORKS

OpenFlow is the most famous communications protocol for SDNs, it is not the
only one. For instance, other popular protocols for the SBI of an SDN include:

• the Simple Network Management Protocol (SNMP), an Internet standard
protocol used for managing and monitoring network devices, allowing for the
collection of information and the control of network elements in a managed
network [115] [79];

• the Forwarding and Control Element Separation (ForCES) protocol that
separates the control plane from the data plane in network devices beyond
switches using a master-slave mechanism, and allowing for centralized con-
trol and management of forwarding elements [45];

• the Path Computation Element (PCE) protocol, a communication protocol
used to enable centralized path computation and optimization in multi-
domain or multi-layer networks, moving this functionality from the routes
operating systems to the control plane [105];

• the Border Gateway Protocol (BGP), used to exchange routing and reach-
ability information between autonomous systems (AS) on the Internet, en-
abling the interconnection and dynamic routing decisions among different
networks [91, 73].

• the NETwork CONFiguration Protocol (NETCONF), based on the Yet An-
other Next Generation (YANG), used for remote network device manage-
ment and configuration, providing a programmable interface for network
automation and orchestration [31].

Each of these protocols has its own set of features, capabilities, and use cases
and all can be used in an SDN architecture without competing with each other.
In this thesis, we only concentrate on the OpenFlow protocol.

2.3 The OpenFlow protocol

Next, we present an informal introduction to the basics of the OpenFlow
protocol, following the specifications released in [39]. We first recall the definition
of an SDN packet. Then we describe the three types of OpenFlow messages, from
where they flow, and how they are used to change the network behaviors.

14



2.3 The OpenFlow protocol

OpenFlow is a communications protocol that is used to control the flow of
data in SDN. It provides a standard way for SDN controllers to communicate
with switches and viceversa [97, 82, 52, 64, 17, 51].

2.3.1 SDN packets

A packet is a unit of data that carries information across a network, encap-
sulating the control information necessary for its transmission. Besides data, it
consists of a header containing fields storing, for example, source and destination
addresses, and protocol information. The example below shows two packets, both
with a header containing information about the tcp and ethernet destination
address of the packet:

tcp dst:22, eth dst:11 data: d1 tcp dst:23, eth dst:11 data: d2

2.3.2 OpenFlow flow tables and flow entries

In an SDN architecture, each switch in the data plane has a number of ports
that are used to receive and forward packets. Switches are connected to at least
one controller, from which they may receive or which they may send OpenFlow
messages to. The main task of a switch is to forward packets to other switches.

When a packet arrives at a port of a switch, the SDN controller, which has a
global view of the network, determines how the packet should be handled based
on its header information. The process of forwarding a packet involves forwarding
rules stored in a flow table. The table consists of an ordered set of pairs (b, a),
where b is a Boolean condition on the values in the header fields of a packet (the
so-called matching criteria) and a is the corresponding action to be executed on
the matching packet. The order of the matching-action pairs gives priority to the
application of the matching condition. There are basically three types of actions:
forwarding a packet to one or more ports of the switch, dropping a packet, and
updating a field of a packet with some value.

For example, the leftmost packet above matches the first rule of the table
below, and it is forwarded to the output ports 3 and 4. The rightmost packet
however matches only the last rule and it is forwarded to port 1 after its field
tcp dst is updated to 22.

15



2 SOFTWARE-DEFINED NETWORKS

Matching Condition Action
tcp dst:22 Forward[3, 4]
tcp dst:23, eth dst:12 drop

true tcp dst := 22; Forward[1]

2.3.3 OpenFlow messages

Controllers and switches communicate through three types of messages. A
PktIn message is from a switch to a controller. It includes a packet with all its
header fields and data and some additional information such as the port from
where the packet entered into the switch. Typically a PktIn message would be
processed by the controller to trigger an update of the flow tables.

A PktOut message is from a controller to a switch. It consists of a packet
together with a flow table action to be executed by the switch. This way a packet
need not pass through the flow table but is, for example, immediately forwarded to
other switches. The PktOut message is used to implement a one-time redirection
of a packet to a different path after a decision of the controller.

The flow table of a switch is updated by a FlowMod message, and it is sent by
a controller to the switch. Each FlowMod message consists of a ModType t (Add,
Remove, Modify), a matching condition b and an action a. If t = Add then the
pair (b, a) is added on top of the table (having thus highest priority), while if t =
Modify then the first pair in the flow table (b′, a′) with b implying b′ is substituted
with the new pair (b, a). In the remaining case when t = Remove, the first pair
in the flow table (b′, a′) with b implying b′ is removed from the table. In this
case, the action a does not play any role and therefore can be considered empty.
The FlowMod message allows a controller to add or remove rules to the flow table,
enabling the programmatic control of the behavior of the network. Note that
the action of an entry in the flow table is executed only when a package arrives
matching the respective conditions.

Those three types of messages plus dedicated packets to communicate data
allow controllers to gather information about the network and manage it.

2.3.4 Evaluating the OpenFlow protocol

OpenFlow enables centralized control over network devices, allowing for a
global view of the network and centralized control decisions. This facilitates
dynamic and flexible network management and it enables programmatic control

16



2.4 Two examples

by SDN controllers [38, 93]. The controller can be programmed to reconfigure the
network automatically in response to changing the network status. This can help
to improve the network’s overall performance, reliability, and scalability.

OpenFlow primarily focuses on the communication between the control plane
and data plane of network switches. The centralized control and programma-
bility introduced by OpenFlow can also pose vulnerability and security chal-
lenges [107] [10]. Also, the centralized control model of OpenFlow can become a
scalability bottleneck, and distributing the management of switches among sev-
eral controllers may introduce race conditions. Finally, the matching criteria of
a flow table are limited by the fields of a packet header. For example, predicates
on the action result are not allowed, limiting some traffic patterns or specialized
requirements.

2.4 Two examples

Consider the scenario presented in Figure 2.3 in which Switch 1 forwards all
packets received from port A to port C, and sends packets received from port B

to port Q as a PktIn messages for the controller. The controller in this example
has a local view of the topology of the network. In particular, it is aware that
ports A and B are connected to the host devices with IP addresses 192.168.0.1

and 192.168.0.2, respectively, while port C is connected to the host device with
IP address 192.168.1.1. Further, the switch uses port P for incoming PktOut and
FlowMod messages and port Q for outgoing PktIn messages.

The first time a packet is received by Switch 1, by using the OpenFlow protocol
the controller will receive a PktIn message containing the packet and may, for
example, decide to update the flow table of the Switch by sending a FlowMod

message so that the action of the second line of the flow table is updated to
forwarding a packet to port C. By sending also PktOut message with the original
packet and the new action, the controller guarantees that no placket gets lost.

A second example is given by a controller connected to four switches as shown
in Figure 2.4. Assume all switches have initially an empty flow table. When
switch 1 receives a packet at port A, since the packet does not match any entries
of the flow table, the switch sends it as a PktIn message to the controller. The
controller calculates a path to the destination device (say a device with IP number
192.168.1.1) and it returns a FlowMod message to all switches involved in the path
so that the packet is forwarded along ports B,C,D,E, F,G and H in the path

17



2 SOFTWARE-DEFINED NETWORKS

Figure 2.3: A single switch SDN network

(see Figure 2.4). Subsequently, the controller sends a PktOut message to switch
1 only, containing the original packet and the action for forwarding it to port B.
As the packet moves along the path to its destination, the flow table of the other
switches may or may not have received the FlowMod message for updating the
table. If yes the packet is forwarded from one switch to another until it arrives
at its destination.

However, because of an eventual race condition, if one of the switches along
the path has not yet received the FlowMod message for updating the table, when
the packet arrives it will be forwarded again to the controller inside a PktIn

message, and the controller will have to send it back via a PktOut message with
the corresponding forwarding action. However, once the first packet arrives at its
destination, it can be guaranteed that the next packet that arrives at port A of
Switch 1 will go directly to its destination without the need for a controller to
intervene.

18



2.4 Two examples

Figure 2.4: A multi-switch SDN network

19



2 SOFTWARE-DEFINED NETWORKS

20


